JP2005082444A - Production method for silicon nitride reaction sintered compact - Google Patents

Production method for silicon nitride reaction sintered compact Download PDF

Info

Publication number
JP2005082444A
JP2005082444A JP2003316244A JP2003316244A JP2005082444A JP 2005082444 A JP2005082444 A JP 2005082444A JP 2003316244 A JP2003316244 A JP 2003316244A JP 2003316244 A JP2003316244 A JP 2003316244A JP 2005082444 A JP2005082444 A JP 2005082444A
Authority
JP
Japan
Prior art keywords
nitriding
silicon nitride
sintered body
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003316244A
Other languages
Japanese (ja)
Inventor
Shigeru Nakama
茂 中間
Akishi Sakamoto
晃史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2003316244A priority Critical patent/JP2005082444A/en
Publication of JP2005082444A publication Critical patent/JP2005082444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for a silicon nitride reaction sintered compact whereby nitriding reaction is accelerated by a simple method. <P>SOLUTION: In the production method for a silicon nitride reaction sintered compact, a metallic silicon powder is mixed with an aqueous solution or an alcohol solution of a water-soluble compound having a nitriding acceleration element and molded; and the resultant molded product is reaction sintered in a non-oxidative atmosphere containing a nitrogen gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、窒化反応を促進する窒化珪素反応焼結体の製造方法に関するものである。   The present invention relates to a method for producing a silicon nitride reaction sintered body that promotes a nitriding reaction.

特開昭59−30767号公報には、機械的強度が高く、耐酸化特性の優れた高緻密性の窒化珪素反応焼結体を製造する方法として、最大粒径20μm以下の金属珪素100重量部に対し粉末酸化クロムを0.5〜2重量部配合した混合粉末を成形体とした後予備焼結なしに、該成形体を窒素ガス中もしくは窒素ガスを含む非酸化性雰囲気中にて1350〜1450℃で反応焼結を行う製造方法が開示されている。   Japanese Patent Laid-Open No. 59-30767 discloses 100 parts by weight of metallic silicon having a maximum particle size of 20 μm or less as a method for producing a highly dense silicon nitride reaction sintered body having high mechanical strength and excellent oxidation resistance. After forming a mixed powder containing 0.5 to 2 parts by weight of powdered chromium oxide to a molded body, the molded body was subjected to 1350 in a non-oxidizing atmosphere containing nitrogen gas or nitrogen gas without pre-sintering. A manufacturing method in which reactive sintering is performed at 1450 ° C. is disclosed.

また、特開昭57−188465号公報には、鉄、コバルト、ニッケルなどの窒化促進剤を特定量で含有する珪素粉末を成形し、1100℃以上でかつ珪素の融点より低い温度において、不活性雰囲気または真空中で焼結して得られた珪素の予備焼結体に1100〜1500℃の温度において窒素を作用させて窒化する高密度窒化珪素反応焼結体の製造方法が開示されている。   Japanese Patent Application Laid-Open No. 57-188465 discloses that a silicon powder containing a specific amount of a nitriding accelerator such as iron, cobalt, or nickel is molded and inactive at a temperature of 1100 ° C. or higher and lower than the melting point of silicon. A method for producing a high-density silicon nitride reactive sintered body is disclosed in which nitrogen is applied to a silicon pre-sintered body obtained by sintering in an atmosphere or a vacuum at a temperature of 1100 to 1500 ° C. for nitriding.

また、特開昭63−85052号公報には、窒化を促進し、かつ生成される焼結体の品質を高める方法として、金属珪素に鉄や二酸化クロムなどの窒化促進剤を配合して成形した成形体を1200〜1500℃の窒素雰囲気中で反応焼結する際、窒素雰囲気中の圧力を10気圧以上とする製造方法が開示されている。   In JP-A-63-85052, as a method for accelerating nitriding and improving the quality of a sintered body to be produced, a metal nitriding accelerator such as iron or chromium dioxide is blended and molded. A production method is disclosed in which the pressure in the nitrogen atmosphere is 10 atm or higher when the formed body is reactively sintered in a nitrogen atmosphere at 1200 to 1500 ° C.

また、特開平5−330921号公報には、高窒化率、高密度で且つ高強度な窒化珪素反応焼結体を製造する方法として、特定粒度分布の金属珪素粉末に、窒化促進用金属粉としてニッケル粉末を特定割合配合させた原料粉末を用いて成形体を成形する工程と、該成形体と窒素ガスを反応させる1次反応焼結処理を行い合成窒化珪素を含む中間体を得る工程と、該中間体に酸洗浄処理を施して該中間体からニッケル成分を溶出させる工程と、該中間体と窒素ガスを反応させて窒化珪素を合成する2次反応焼結処理を行う工程を順次行う窒化珪素反応焼結体の製造方法が開示されている。この方法は酸洗浄によりニッケル成分が溶出して形成される気孔が2次反応焼結処理において中間体内部へのガス侵入路となるため、窒化率を高めることができるというものである。
特開昭59−30767号公報(請求項1) 特開昭57−188465号公報(請求項1) 特開昭63−85052号公報(請求項1) 特開平5−330921号公報(請求項1)
JP-A-5-330921 discloses a method for producing a silicon nitride reaction sintered body having a high nitriding rate, a high density and a high strength as a metal silicon powder having a specific particle size distribution as a metal powder for nitriding promotion. A step of forming a molded body using a raw material powder in which a specific proportion of nickel powder is blended, a step of performing a primary reaction sintering process in which the molded body and nitrogen gas are reacted to obtain an intermediate containing synthetic silicon nitride, Nitriding that sequentially performs a step of subjecting the intermediate to an acid cleaning treatment to elute the nickel component from the intermediate, and a step of performing a second reaction sintering process for synthesizing silicon nitride by reacting the intermediate with nitrogen gas A method for producing a silicon reaction sintered body is disclosed. In this method, since the pores formed by elution of the nickel component by acid cleaning serve as a gas intrusion path into the intermediate body in the secondary reaction sintering process, the nitriding rate can be increased.
JP 59-30767 (Claim 1) JP-A-57-188465 (Claim 1) JP-A-63-85052 (Claim 1) JP-A-5-330921 (Claim 1)

しかしながら、従来の窒化珪素反応焼結体の製造方法は、金属珪素粉末に窒化促進剤である鉄や二酸化クロムなどを添加するため窒化反応は促進されるものの、その効果は未だ十分ではなく、金属珪素粉末の粒径、成形体の形状、密度によっては昇降温時間も含めて80時間を越える実用的とは言えないほど長時間の加熱工程を必要とするものであった。また、従来の窒化珪素反応焼結体の製造方法では、窒化反応を促進させるため、耐圧炉などの高価な設備を必要としたり、工程が複雑になるなどの問題があった。   However, although the conventional method for producing a silicon nitride reaction sintered body adds nitriding accelerators such as iron and chromium dioxide to metal silicon powder, the nitriding reaction is promoted, but the effect is not yet sufficient. Depending on the particle size of the silicon powder, the shape and density of the molded body, a heating process requiring a long time that cannot be said to be practical beyond 80 hours including the temperature raising and lowering time is required. Further, in the conventional method for producing a silicon nitride reaction sintered body, there is a problem that expensive equipment such as a pressure furnace is required and the process is complicated in order to promote the nitriding reaction.

従って、本発明の目的は、簡易な方法で窒化反応を促進させる窒化珪素反応焼結体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a silicon nitride reaction sintered body that promotes the nitriding reaction by a simple method.

かかる実情において、本発明者らは鋭意検討を行った結果、金属珪素粉末と窒化促進剤を混合して成形する際、該窒化促成剤を、窒化促進元素を有する水溶性化合物の水溶液として用いれば、驚くべきことに簡易な方法で窒化反応を著しく促進させることを見出し、本発明を完成するに至った。   In such a situation, the present inventors have intensively studied, and as a result, when the metal silicon powder and the nitriding accelerator are mixed and molded, the nitriding accelerator is used as an aqueous solution of a water-soluble compound having a nitriding accelerator. Surprisingly, it has been found that the nitriding reaction is remarkably accelerated by a simple method, and the present invention has been completed.

すなわち、本発明は、金属珪素粉末と、窒化促進元素を有する水溶性化合物の水溶液又はアルコール溶液を混合して成形し、該成形体を窒素ガス中、又は窒素ガスを含む非酸化性雰囲気中で反応焼結を行うことを特徴とする窒化珪素反応焼結体の製造方法を提供するものである。   That is, the present invention mixes and molds metallic silicon powder and an aqueous solution or alcohol solution of a water-soluble compound having a nitriding promoting element, and the molded body is in nitrogen gas or in a non-oxidizing atmosphere containing nitrogen gas. The present invention provides a method for producing a silicon nitride reactive sintered body characterized by performing reactive sintering.

本発明によれば、簡易な方法で窒化反応を著しく促進させることができる。このため、加熱工程を短縮することができ、製造コストを低減できる。   According to the present invention, the nitriding reaction can be significantly accelerated by a simple method. For this reason, a heating process can be shortened and manufacturing cost can be reduced.

本発明の窒化珪素反応焼結体の製造方法は、金属珪素粉末と、窒化促進元素を有する水溶性化合物の水溶液又はアルコール溶液を混合して成形し、該成形体を窒素ガス中、又は窒素ガスを含む非酸化性雰囲気中で反応焼結を行うものである。   In the method for producing a silicon nitride reaction sintered body of the present invention, metallic silicon powder and an aqueous solution or alcohol solution of a water-soluble compound having a nitriding promoting element are mixed and molded, and the molded body is nitrogen gas or nitrogen gas. Reactive sintering is carried out in a non-oxidizing atmosphere containing

金属珪素粉末としては、特に制限されないが、例えば最大粒径が1〜100μmのものが好ましい。最大粒径が1μm未満では飛散し易く、その取り扱いが困難であり、また、最大粒径が100μmを超えるものでは、本発明の方法を用いても十分な窒化反応促進効果が得られないため好ましくない。   Although it does not restrict | limit especially as a metal silicon powder, For example, a thing with a largest particle size of 1-100 micrometers is preferable. When the maximum particle size is less than 1 μm, it is easily scattered and difficult to handle, and when the maximum particle size exceeds 100 μm, a sufficient nitriding reaction promoting effect cannot be obtained even if the method of the present invention is used. Absent.

窒化促進元素を有する水溶性化合物の水溶液又はアルコール溶液(以下、単に「窒化促進元素含有溶液」とも言う)において、窒化促進元素としては、ニッケル、コバルト、銅及び鉄が挙げられる。また、これら窒化促進元素を有する水溶性化合物としては、例えばこれら窒化促進元素の酢酸塩、硝酸塩、硫酸塩、炭酸塩または塩化物が挙げられる。具体的には、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、炭酸ニッケルなどのニッケル化合物、硝酸コバルト、硫酸コバルト、塩化コバルト、酢酸コバルト、炭酸コバルトなどのコバルト化合物、硝酸銅、塩化第1銅、塩化第2銅、酢酸銅、炭酸銅などの銅化合物、塩化第1鉄、塩化第2鉄、硫酸第1鉄などの鉄化合物が挙げられる。   In an aqueous solution or an alcohol solution of a water-soluble compound having a nitriding promotion element (hereinafter, also simply referred to as “nitriding promoting element-containing solution”), examples of the nitriding promoting element include nickel, cobalt, copper, and iron. Examples of the water-soluble compounds having these nitriding promoting elements include acetates, nitrates, sulfates, carbonates or chlorides of these nitriding promoting elements. Specifically, nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, nickel carbonate and other nickel compounds, cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt acetate, cobalt carbonate and other cobalt compounds, copper nitrate, cuprous chloride And copper compounds such as cupric chloride, copper acetate and copper carbonate, and iron compounds such as ferrous chloride, ferric chloride and ferrous sulfate.

また、窒化促進元素含有溶液としては、これら窒化促進元素を有する水溶性化合物を水、アルコール又は水とアルコールの混合液に溶解させたものが挙げられる。アルコールとしては、例えばエタノールが挙げられる。水溶液又はアルコール溶液中の当該水溶性化合物の配合量としては、特に制限されず、当該水溶性化合物の種類、金属珪素粉末と当該水溶液との混合形態などによって適宜決定される。これら窒化促進元素含有溶液は1種単独又は2種以上を組み合わせて用いることができる。このうち、硝酸ニッケル6水和物を水に溶解させた水溶液が、硝酸ニッケル6水和物は水への溶解度が高い点で好適である。   Examples of the nitriding promoting element-containing solution include a solution obtained by dissolving a water-soluble compound having these nitriding promoting elements in water, alcohol, or a mixture of water and alcohol. Examples of the alcohol include ethanol. The amount of the water-soluble compound in the aqueous solution or alcohol solution is not particularly limited, and is appropriately determined depending on the type of the water-soluble compound, the mixed form of the metal silicon powder and the aqueous solution, and the like. These nitriding promotion element-containing solutions can be used singly or in combination of two or more. Among these, an aqueous solution in which nickel nitrate hexahydrate is dissolved in water is preferable because nickel nitrate hexahydrate has high solubility in water.

本発明において、金属珪素粉末と窒化促進元素含有溶液を混合し成形する方法としては、特に制限されず、例えば鋳込み成形、押し出し成形など、水やアルコールを配合する成形法においては、予めその配合水として窒化促進元素含有溶液を用いて金属珪素粉末と混合し、成形する方法が挙げられる。また、静水圧プレス成形などの少量の水しか必要としない成形法であれば、予め金属珪素粉末と窒化促進元素含有溶液を混ぜ合わせた後、液体成分を乾燥除去し、得られた乾燥物を成形する方法などが挙げられる。   In the present invention, the method for mixing the metal silicon powder and the nitriding accelerating element-containing solution is not particularly limited. For example, in a molding method in which water or alcohol is blended, such as casting molding or extrusion molding, the blended water is preliminarily used. And a method of forming by mixing with metal silicon powder using a nitriding promoting element-containing solution. If the molding method requires only a small amount of water, such as isostatic pressing, after mixing the metal silicon powder and the nitriding promoting element-containing solution in advance, the liquid component is removed by drying, and the resulting dried product is removed. Examples of the method include molding.

予め金属珪素粉末と窒化促進元素含有溶液を混ぜ合わせる方法としては、例えば、所定量の水又はアルコールに所定量の窒化促進元素を有する水溶性化合物を添加し溶解させて窒化促進元素含有溶液を得、次いでプラネタリミキサーなどの混合装置に所定量の金属珪素粉末と上記方法で得られた窒化促進元素含有溶液を投入し、数十分程度混合する方法が挙げられる。混合後に行う乾燥方法としては、特に制限されず、得られる乾燥体が成形でき且つ均一組成の反応焼結体が得られる条件でよい。   As a method of mixing the metal silicon powder and the nitriding promoting element-containing solution in advance, for example, a water-soluble compound having a predetermined amount of nitriding promoting element is added to and dissolved in a predetermined amount of water or alcohol to obtain a nitriding promoting element-containing solution. Then, a method in which a predetermined amount of metal silicon powder and the nitriding promoting element-containing solution obtained by the above method are charged into a mixing apparatus such as a planetary mixer and mixed for several tens of minutes can be mentioned. The drying method performed after the mixing is not particularly limited, and may be a condition in which the obtained dried body can be molded and a reaction sintered body having a uniform composition can be obtained.

金属珪素粉末と窒化促進元素含有溶液の混合物、又はその乾燥物には、有機バインダーを適宜の配合量で配合するのが好ましい。有機バインダーを配合することにより、丈夫な成形体を得ることができる。有機バインダーとしては、セルロース誘導体、アクリル誘導体などが挙げられる。   It is preferable that an organic binder is blended in an appropriate blending amount in the mixture of the metal silicon powder and the nitriding promoting element-containing solution or the dried product thereof. By blending an organic binder, a strong molded body can be obtained. Examples of the organic binder include cellulose derivatives and acrylic derivatives.

金属珪素粉末と窒化促進元素含有溶液の混合物中、窒化促進元素の配合量は、金属珪素粉末100重量部に対し、元素として0.05〜10重量部、好ましくは0.5〜5重量部である。窒化促進元素の配合量が、金属珪素粉末100重量部に対し、0.05重量部未満であれば、十分な窒化促進効果が得られない点で好ましくなく、また10重量部を超えると、それ以上の窒化促進効果は得られず、また得られる焼結体中の不純物が増えることになり強度、耐食性が低下する点で好ましくない。   In the mixture of the metal silicon powder and the nitriding promoting element-containing solution, the compounding amount of the nitriding promoting element is 0.05 to 10 parts by weight, preferably 0.5 to 5 parts by weight as an element with respect to 100 parts by weight of the metal silicon powder. is there. If the blending amount of the nitriding accelerating element is less than 0.05 parts by weight with respect to 100 parts by weight of the metal silicon powder, it is not preferable in that a sufficient nitriding accelerating effect cannot be obtained. The above nitriding promotion effect cannot be obtained, and impurities in the obtained sintered body increase, which is not preferable in terms of strength and corrosion resistance.

上記の方法により金属珪素粉末と窒化促進元素含有溶液を混合し、これを乾燥して得られる乾燥体の金属珪素粉末表面には窒化促進元素が微小サイズで且つ均一に担持される。そして次工程の窒化反応において、金属珪素粉末表面に担持した窒化促進元素に対する窒素の吸着が促進され、その結果窒化反応が促進される。   By mixing the metal silicon powder and the nitriding accelerating element-containing solution by the above-described method and drying the mixed solution, the nitriding accelerating element is uniformly supported in a minute size on the surface of the dried metal silicon powder. In the nitriding reaction in the next step, the adsorption of nitrogen to the nitriding promoting element supported on the surface of the metal silicon powder is promoted, and as a result, the nitriding reaction is promoted.

本発明において、焼結温度は1200〜1500℃、好ましくは1300〜1400℃である。焼結温度が1200℃未満では窒化反応が遅く、本発明の効果も十分に得られないため好ましくなく、また焼結温度1500℃を超える温度は焼結温度としては不必要であり、エネルギーの無駄となるため好ましくない。   In the present invention, the sintering temperature is 1200 to 1500 ° C, preferably 1300 to 1400 ° C. If the sintering temperature is less than 1200 ° C., the nitriding reaction is slow, and the effects of the present invention cannot be obtained sufficiently. This is not preferable, and a temperature exceeding the sintering temperature of 1500 ° C. is unnecessary as a sintering temperature and wastes energy. Therefore, it is not preferable.

反応焼結は、窒素ガス中、又は窒素ガスを含む非酸化性雰囲気中、公知の反応焼結条件で行う。窒素ガスを含む非酸化性雰囲気とは、窒素ガス中に水素ガス、ヘリウムガスなどの窒化促進ガスを含むガス雰囲気を言う。また、窒素ガス中、又は窒素ガスを含む非酸化性雰囲気中の圧力としては、特に制限されず、1×10Pa(1気圧)のような大気圧であってもよい。本発明の反応焼結は加圧を行わなくとも窒化反応を促進させることができるため耐圧炉などの高価な設備を必要としない。 Reaction sintering is performed under known reaction sintering conditions in nitrogen gas or in a non-oxidizing atmosphere containing nitrogen gas. The non-oxidizing atmosphere containing nitrogen gas means a gas atmosphere containing nitrogen gas such as hydrogen gas or helium gas in the nitrogen gas. Moreover, it does not restrict | limit especially as a pressure in nitrogen gas or the non-oxidizing atmosphere containing nitrogen gas, An atmospheric pressure like 1 * 10 < 5 > Pa (1 atmosphere) may be sufficient. Since the reactive sintering of the present invention can promote the nitriding reaction without applying pressure, expensive equipment such as a pressure furnace is not required.

本発明において、反応焼結時間としては、特に制限されないが、例えば最大粒径30〜50μmの金属珪素粉末で100mm×100mm×10mm、嵩密度1.2〜1.4g/cmの焼結体の場合、1350〜1400℃の窒化雰囲気で15〜20時間で十分である。このような短時間の反応焼結であっても窒化率85%以上、好ましくは90%以上のものを確実に得ることができる。従来の窒化珪素反応焼結体の製造方法における反応焼結時間は実際には30〜40時間であることから、本発明の窒化珪素反応焼結体の製造方法によれば、加熱工程を大幅に短縮することができる。 In the present invention, the reaction sintering time is not particularly limited, but for example, a sintered body of 100 mm × 100 mm × 10 mm and bulk density of 1.2 to 1.4 g / cm 3 made of metal silicon powder having a maximum particle size of 30 to 50 μm. In this case, 15 to 20 hours is sufficient in a nitriding atmosphere at 1350 to 1400 ° C. Even with such a short reaction sintering, a nitride ratio of 85% or more, preferably 90% or more can be obtained with certainty. Since the reaction sintering time in the conventional method for producing a silicon nitride reaction sintered body is actually 30 to 40 hours, according to the method for producing a silicon nitride reaction sintered body of the present invention, the heating process is greatly increased. It can be shortened.

本発明の窒化珪素反応焼結体の製造方法において、窒化反応が顕著に促進されるのは、成形体の金属珪素粉末表面に窒化促進元素が微小サイズで且つ均一に担持される。このため窒化反応において、金属珪素粉末表面に担持した窒化促進元素に対する窒素の吸着が促進され、この吸着した多量の窒素が更に金属珪素へ吸着していき、窒化反応が促進されるものと推察される。   In the method for producing a silicon nitride reaction sintered body of the present invention, the nitriding reaction is remarkably accelerated because the nitriding accelerating element is uniformly supported on the surface of the metal silicon powder of the compact. For this reason, in the nitriding reaction, the adsorption of nitrogen to the nitriding promoting element supported on the surface of the metal silicon powder is promoted, and this large amount of adsorbed nitrogen is further adsorbed to the metallic silicon, which is presumed to promote the nitriding reaction. The

エタノール50重量部に対しニッケル原子として1重量部となる量の硝酸ニッケル6水和物を添加し、十分に溶解させて窒化促進元素含有溶液を得た。次にこの窒化促進元素含有溶液の全量、最大粒径30μmの金属珪素粉末100重量部、及びバインダーとなるアクリル誘導体1重量部をプラネタリミキサーに投入し、30分間混合攪拌した。次に、この混合物をステンレス製鋳込み型に流し込んだ後、120℃で5時間乾燥して100mm×100mm×10mm、密度1.4g/cmの板状成形体を得た。次いで、得られた成形体を1×10Pa(1気圧)の窒素ガス雰囲気中で1400℃、20時間の条件により窒化処理したところ、窒化率が98%となる窒化珪素反応焼結体を得た。なお、窒化率は実際の重量増加を窒化反応における理論重量増加で除して百分率で示したものである。 Nickel nitrate hexahydrate was added in an amount of 1 part by weight as nickel atoms to 50 parts by weight of ethanol and dissolved sufficiently to obtain a nitriding promotion element-containing solution. Next, the entire amount of the nitriding promotion element-containing solution, 100 parts by weight of metal silicon powder having a maximum particle size of 30 μm, and 1 part by weight of an acrylic derivative serving as a binder were put into a planetary mixer and mixed and stirred for 30 minutes. Next, this mixture was poured into a casting mold made of stainless steel and then dried at 120 ° C. for 5 hours to obtain a plate-like molded body having a size of 100 mm × 100 mm × 10 mm and a density of 1.4 g / cm 2 . Next, the obtained molded body was subjected to nitriding treatment in a nitrogen gas atmosphere of 1 × 10 5 Pa (1 atm) at 1400 ° C. for 20 hours to obtain a silicon nitride reaction sintered body having a nitriding rate of 98%. Obtained. The nitriding rate is expressed as a percentage by dividing the actual weight increase by the theoretical weight increase in the nitriding reaction.

水50重量部に対し銅原子として1重量部となる量の塩化第1銅を添加し、十分に溶解させて窒化促進元素含有溶液を得た。次にこの窒化促進元素含有溶液の全量及び最大粒径30μmの金属珪素粉末100重量部をプラネタリミキサーに投入し、30分間混合攪拌後、100℃に加熱して水分を乾燥除去した。次に、この乾燥後の金属珪素粉末全量、水7重量部及びバインダーとなるセルロース誘導体1重量部をプラネタリミキサーに投入し、30分間混合攪拌した後、この混合物を100mm×100mm×10mm、密度1.4g/cmの板状にプレス成形した。得られた成形体を120℃で5時間乾燥した後、1×10Pa(1気圧)の窒素ガス雰囲気中で1400℃で20時間窒化処理したところ、窒化率が93%となる窒化珪素反応焼結体を得た。 An amount of cuprous chloride to be 1 part by weight as copper atoms was added to 50 parts by weight of water and dissolved sufficiently to obtain a nitriding promotion element-containing solution. Next, the entire amount of the nitriding promotion element-containing solution and 100 parts by weight of metal silicon powder having a maximum particle size of 30 μm were put into a planetary mixer, mixed and stirred for 30 minutes, and then heated to 100 ° C. to dry and remove moisture. Next, the total amount of the metal silicon powder after drying, 7 parts by weight of water and 1 part by weight of a cellulose derivative as a binder were put into a planetary mixer, mixed and stirred for 30 minutes, and then the mixture was 100 mm × 100 mm × 10 mm, density 1 It was press-molded into a 4 g / cm 2 plate. The obtained molded body was dried at 120 ° C. for 5 hours, and then subjected to nitriding treatment at 1400 ° C. for 20 hours in a nitrogen gas atmosphere of 1 × 10 5 Pa (1 atm). A sintered body was obtained.

硝酸ニッケル6水和物に代えて、硫酸コバルト7水和物を用いた以外は、実施例1と同様の方法で行ったところ、窒化率が91%となる窒化珪素反応焼結体を得た。   A silicon nitride reaction sintered body having a nitriding rate of 91% was obtained when the same method as in Example 1 was used except that cobalt sulfate heptahydrate was used instead of nickel nitrate hexahydrate. .

硝酸ニッケル6水和物に代えて、塩化鉄6水和物を用いた以外は、実施例1と同様の方法で行ったところ、窒化率が92%となる窒化珪素反応焼結体を得た。
比較例1
硝酸ニッケル6水和物を無配合としたこと以外は、実施例1と同様の方法で行ったところ、窒化率が43%となる窒化珪素反応焼結体を得た。
比較例2
硝酸ニッケル6水和物に代えて、最大粒径3μmの金属ニッケル粉末を用いた以外は、実施例1と同様の方法で行ったところ、窒化率が52%となる窒化珪素反応焼結体を得た。
A silicon nitride reaction sintered body having a nitriding rate of 92% was obtained by the same method as in Example 1 except that iron chloride hexahydrate was used instead of nickel nitrate hexahydrate. .
Comparative Example 1
A silicon nitride reaction sintered body having a nitriding rate of 43% was obtained by the same method as in Example 1 except that nickel nitrate hexahydrate was not added.
Comparative Example 2
A silicon nitride reaction sintered body having a nitriding rate of 52% was obtained in the same manner as in Example 1 except that metallic nickel powder having a maximum particle size of 3 μm was used instead of nickel nitrate hexahydrate. Obtained.

Claims (4)

金属珪素粉末と、窒化促進元素を有する水溶性化合物の水溶液又はアルコール溶液を混合して成形し、該成形体を窒素ガス中、又は窒素ガスを含む非酸化性雰囲気中で反応焼結を行うことを特徴とする窒化珪素反応焼結体の製造方法。   Metal silicon powder and an aqueous solution or alcohol solution of a water-soluble compound having a nitriding promoting element are mixed and molded, and the molded body is subjected to reactive sintering in nitrogen gas or in a non-oxidizing atmosphere containing nitrogen gas. A method for producing a silicon nitride reaction sintered body. 前記窒化促進元素が、ニッケル、コバルト、銅及び鉄から選ばれる1種又は2種以上であることを特徴とする請求項1記載の窒化珪素反応焼結体の製造方法。   The method for producing a silicon nitride reactive sintered body according to claim 1, wherein the nitriding promotion element is one or more selected from nickel, cobalt, copper and iron. 前記窒化促進元素の水溶性化合物が、酢酸塩、硝酸塩、硫酸塩、炭酸塩または塩化物であることを特徴とする請求項1又は2記載の窒化珪素反応焼結体の製造方法。   The method for producing a silicon nitride reaction sintered body according to claim 1 or 2, wherein the water-soluble compound of the nitriding accelerating element is acetate, nitrate, sulfate, carbonate or chloride. 前記反応焼結は1300〜1400℃の温度範囲で行うことを特徴とする請求項1〜3のいずれか1項記載の窒化珪素反応焼結体の製造方法。   The method for producing a silicon nitride reactive sintered body according to any one of claims 1 to 3, wherein the reactive sintering is performed in a temperature range of 1300 to 1400 ° C.
JP2003316244A 2003-09-09 2003-09-09 Production method for silicon nitride reaction sintered compact Pending JP2005082444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316244A JP2005082444A (en) 2003-09-09 2003-09-09 Production method for silicon nitride reaction sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316244A JP2005082444A (en) 2003-09-09 2003-09-09 Production method for silicon nitride reaction sintered compact

Publications (1)

Publication Number Publication Date
JP2005082444A true JP2005082444A (en) 2005-03-31

Family

ID=34416204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316244A Pending JP2005082444A (en) 2003-09-09 2003-09-09 Production method for silicon nitride reaction sintered compact

Country Status (1)

Country Link
JP (1) JP2005082444A (en)

Similar Documents

Publication Publication Date Title
CN106699227B (en) A kind of nano wire self-reinforcing porous silicon nitride ceramic and preparation method thereof
TW201718901A (en) Method for preparing porous spherical iron-based alloy powder by reduction reaction, powders and sintered body thereof having the advantages of low cost, high fluidity, high compressibility and excellent sintering property.
JP2011202208A (en) Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
JP2020057779A (en) Samarium-iron-bismuth-nitrogen-based magnet powder and samarium-iron-bismuth-nitrogen-based sintered magnet
JPH04329801A (en) Production of sintered parts
JP2005082444A (en) Production method for silicon nitride reaction sintered compact
KR101446840B1 (en) Manufacturing method for iron powder
JP2011063487A (en) Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact
CN114592138A (en) Nano alumina particle reinforced copper-based composite material and preparation method thereof
JP2018014341A (en) Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet
JPH02107703A (en) Composition for injection molding
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JPH07216474A (en) Production of high purity metallic chromium
US11491545B2 (en) Method of preparing magnetic powder, and magnetic powder
WO2017069131A1 (en) Method for manufacturing magnetic material
JPS63183145A (en) High hardness titanium-aluminum-vanadium alloy and its production
JPS61155210A (en) Preparation of easily sinterable aluminum nitride powder
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JPH06279124A (en) Production of silicon nitride sintered compact
JPH0524810A (en) Production of aluminum nitride powder
JPH08151268A (en) Production of silicon carbide sintered compact
JPH0270004A (en) Method for degreasing injection molded body
JP2008088459A (en) Method of manufacturing complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance
JPH03271302A (en) Manufacture of powder sintered product
JPH0313505A (en) Method of degreasing powder formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100310