JP2005080535A - Method for detecting reaction between nucleic acid base and helicase - Google Patents

Method for detecting reaction between nucleic acid base and helicase Download PDF

Info

Publication number
JP2005080535A
JP2005080535A JP2003314404A JP2003314404A JP2005080535A JP 2005080535 A JP2005080535 A JP 2005080535A JP 2003314404 A JP2003314404 A JP 2003314404A JP 2003314404 A JP2003314404 A JP 2003314404A JP 2005080535 A JP2005080535 A JP 2005080535A
Authority
JP
Japan
Prior art keywords
helicase
reaction
nucleobase
fluorescence
stranded dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003314404A
Other languages
Japanese (ja)
Inventor
Naoaki Okamoto
直明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003314404A priority Critical patent/JP2005080535A/en
Publication of JP2005080535A publication Critical patent/JP2005080535A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily detecting a reaction between a nucleic acid base and a helicase in a short time and in high accuracy. <P>SOLUTION: The method comprises the following steps: (1) A solution of a fluorescence-labeled nucleic acid base is prepared using PCR (polymerase chain reaction). (2) A mixed solution is prepared by mixing together the above solution and a helicase and made to react at a temperature in a living body, e.g. at 37°C; alternatively, the mixed solution may be prepared by adding an enzyme acting on the reaction product of the nucleic acid base and helicase. (3) The reacted mixed solution is subjected to FCS(fluorescence correlation spectroscopy) and based on the measurement, the presence/absence of the reaction is detected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は核酸塩基とヘリカーゼとの反応を検出する方法に関する。   The present invention relates to a method for detecting a reaction between a nucleobase and a helicase.

特許文献1(特表2002-540800号公報)は、核酸塩基とヘリカーゼとを混合して反応させ、核酸塩基とヘリカーゼとの反応を、放射の測定、表面プラズモンの測定または核磁気共鳴の測定を行って検出することを開示している。
特許文献2(特開2000-197483号公報)は、核酸塩基とヘリカーゼとを混合して反応させ、核酸塩基とヘリカーゼとの反応を、抗体反応実験を行って検出することを開示している。
特許文献3(特表2000-508521号公報)は、支持体に固定された核酸塩基または支持体に固定されたヘリカーゼとアガロースビーズとを用い、核酸塩基とヘリカーゼとの反応を検出することを開示している。
特許文献4(特開2000-166600号公報)は、ヘリカーゼ遺伝子の発現量の抑制を指標として、化合物をスクリーニングする方法を開示している。
Patent Document 1 (Japanese Patent Publication No. 2002-540800) discloses that a nucleobase and a helicase are mixed and reacted, and the reaction between the nucleobase and the helicase is measured by radiation, surface plasmon, or nuclear magnetic resonance. It is disclosed to go and detect.
Patent Document 2 (Japanese Patent Laid-Open No. 2000-197483) discloses that a nucleobase and a helicase are mixed and reacted, and a reaction between the nucleobase and the helicase is detected by performing an antibody reaction experiment.
Patent Document 3 (Japanese Patent Publication No. 2000-508521) discloses that a reaction between a nucleobase and a helicase is detected using a nucleobase immobilized on a support or a helicase and agarose beads immobilized on a support. doing.
Patent Document 4 (Japanese Patent Application Laid-Open No. 2000-166600) discloses a method for screening a compound using suppression of the expression level of a helicase gene as an index.

特許文献5(特開2003-88369号公報)は、蛍光相関分光法(FCS)を利用してDNAエンドヌクレアーゼ活性を検出する方法、および分子量の大小と並進拡散時間(translational diffusion time)の大小との関係を開示している。   Patent Document 5 (Japanese Patent Application Laid-Open No. 2003-88369) discloses a method for detecting DNA endonuclease activity using fluorescence correlation spectroscopy (FCS), and the magnitude of molecular weight and translational diffusion time. The relationship is disclosed.

特許文献6(特表2002-543414号公報)は、試料中の蛍光分子又は他の粒子を特徴付ける方法、および蛍光強度多重(multiple)分布分析(FIMDA)および蛍光自己たたみ込み(autoconvoluted)強度分布分析(FACID)から並進拡散時間が得られることを開示している。
特表2002-540800号公報 特開2000-197483号公報 特表2000-508521号公報 特開2000-166600号公報 特開2003-88369号公報 特表2002-543414号公報
Patent Document 6 (Japanese Patent Publication No. 2002-543414) describes a method for characterizing fluorescent molecules or other particles in a sample, as well as fluorescence intensity multiple distribution analysis (FIMDA) and fluorescence autoconvoluted intensity distribution analysis. (FACID) discloses that translational diffusion time can be obtained.
Special Table 2002-540800 Japanese Unexamined Patent Publication No. 2000-197483 Special Table 2000-508521 JP 2000-166600 A JP 2003-88369 A Special Table 2002-543414

上記従来技術のうち、特開2000-197483号公報、特表2000-508521号公報および特開2001-321199号公報に記載される各検出方法は、ヘリカーゼの反応を検出する際に、放射の測定、表面プラズモンの測定または核磁気共鳴の測定を行ったり、抗体反応を利用したり、核酸塩基またはヘリカーゼを支持体に固定したり、アガロースビーズを用いたりするので、操作が煩雑で検出結果を得るまでに時間がかかるという問題がある。また、抗体のないヘリカーゼや基板に固定できないヘリカーゼについては反応を検出することが難しい。   Among the above-mentioned conventional techniques, each detection method described in JP 2000-197483 A, JP 2000-508521 A and JP 2001-321199 is a measurement of radiation when detecting a helicase reaction. , Surface plasmon measurement or nuclear magnetic resonance measurement, antibody reaction, nucleobase or helicase immobilized on a support, agarose beads, etc. There is a problem that it takes time until. In addition, it is difficult to detect the reaction of a helicase without an antibody or a helicase that cannot be immobilized on a substrate.

特開2000-197483号公報、特表2000-508521号公報、特開2001-321199号公報および特開2000-166600号公報は、ヘリカーゼの解析のために、蛍光相関分光法(FCS)、蛍光強度多重(multiple)分布分析(FIMDA)および蛍光自己たたみ込み(autoconvoluted)強度分布分析(FACID)を用いることは開示していない。   Japanese Unexamined Patent Publication Nos. 2000-197483, 2000-508521, 2001-321199 and 2000-166600 describe the use of fluorescence correlation spectroscopy (FCS), fluorescence intensity for helicase analysis. There is no disclosure of using multiple distribution analysis (FIMDA) and fluorescence autoconvoluted intensity distribution analysis (FACID).

特開2003-88369号公報および特表2002-543414号公報は、DNAとヘリカーゼとの反応を検出する方法については開示していない。   Japanese Patent Application Laid-Open No. 2003-88369 and Japanese Patent Application Publication No. 2002-543414 do not disclose a method for detecting the reaction between DNA and helicase.

本発明の目的は、核酸塩基とヘリカーゼとの反応を、簡便かつ短時間で精度よく検出する方法を提供することにある。   An object of the present invention is to provide a method for detecting a reaction between a nucleobase and a helicase easily and accurately in a short time.

上記目的を達成する本発明の特徴は、核酸塩基またはヘリカーゼを蛍光標識し、核酸塩基とヘリカーゼとを混合し、蛍光解析法により混合溶液中の蛍光標識を有する物質の大きさ、明るさまたは数を求めることにある。   The feature of the present invention that achieves the above object is that the size, brightness, or number of substances having a fluorescent label in a mixed solution by fluorescent labeling a nucleobase or helicase, mixing a nucleobase and a helicase, and using a fluorescence analysis method Is to seek.

この特徴によれば、各溶液の混合と蛍光解析法によって蛍光標識を有する物質の大きさ、明るさまたは数を求めることができるので、放射の測定、表面プラズモンの測定または核磁気共鳴の測定、支持体への固定などの煩雑な操作を行わずに、核酸塩基とヘリカーゼとの結合や作用などの反応の有無、ヘリカーゼの反応活性、反応生成物の大きさの変化、明るさの変化、数の変化などの検出結果を簡便に短時間で精度良く得ることができる。   According to this feature, the size, brightness, or number of substances having fluorescent labels can be determined by mixing each solution and fluorescence analysis, so measurement of radiation, measurement of surface plasmons or measurement of nuclear magnetic resonance, Without complicated operations such as fixation to the support, presence or absence of reaction such as binding or action of nucleobase and helicase, helicase reaction activity, change in reaction product size, change in brightness, number As a result, it is possible to easily obtain a detection result such as a change in the time and accuracy with a short time.

また、固体支持体を用いないので、固定できないヘリカーゼでも反応させ解析することができる。また、抗体反応を利用しないので、抗体のないヘリカーゼでも反応させ解析することができる。   In addition, since a solid support is not used, helicase that cannot be immobilized can be reacted and analyzed. Moreover, since an antibody reaction is not used, it is possible to react and analyze even a helicase without an antibody.

また、各溶液の混合と、蛍光相関分光法(FCS)、蛍光相互相関分光法(FCCS)、蛍光強度分布解析法(FIDA)、多項目蛍光強度分布解析法(FIMDA)または蛍光偏光解析法(FIDA-polarization)の利用により、浮遊系における反応生成物の大きさの変化、明るさの変化、数の変化をnMオーダーという非常に良い感度で検出することができる。   In addition, mixing each solution, fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity distribution analysis method (FIDA), multi-item fluorescence intensity distribution analysis method (FIMDA) or fluorescence polarization analysis method ( By using FIDA-polarization), it is possible to detect a change in the size, brightness, and number of reaction products in a floating system with very good sensitivity of the order of nM.

また、核酸塩基として蛍光標識された二本鎖DNAを、ヘリカーゼとしてDNAヘリカーゼIIを用いてもよい。この場合、反応生成物の並進拡散時間が未反応の蛍光標識二本鎖DNAのものより顕著に小さくなっていれば、二本鎖DNAとDNAヘリカーゼIIとの反応を検出できたことになる。   Alternatively, double-stranded DNA fluorescently labeled as a nucleobase may be used, and DNA helicase II may be used as a helicase. In this case, if the translational diffusion time of the reaction product is significantly shorter than that of the unreacted fluorescently labeled double-stranded DNA, the reaction between the double-stranded DNA and DNA helicase II can be detected.

二本鎖DNAとDNAヘリカーゼIIとの混合溶液にさらにエキソヌクレアーゼIを混合してもよい。この場合、反応生成物の並進拡散時間が未反応の蛍光標識二本鎖DNAの並進拡散時間より1桁小さくなっていれば、二本鎖DNAとDNAヘリカーゼIIとの反応を検出できたことになる。   Exonuclease I may be further mixed in a mixed solution of double-stranded DNA and DNA helicase II. In this case, the reaction between the double-stranded DNA and DNA helicase II could be detected if the translational diffusion time of the reaction product was an order of magnitude less than that of the unreacted fluorescently labeled double-stranded DNA. Become.

また、核酸塩基とヘリカーゼとの混合液にさらに酵素を混合してもよい。この酵素は、核酸塩基とヘリカーゼとの反応生成物に対して反応するものがよい。この酵素によって、蛍光標識を有する物質は2段階の反応を経てから、物質の大きさ、明るさまたは数を求められるので、物質の大きさの変化、明るさの変化または数の変化が顕著に現れて、これらの結果をより精度良く得ることができる。   Further, an enzyme may be further mixed in a mixed solution of nucleobase and helicase. This enzyme preferably reacts with a reaction product of a nucleobase and a helicase. With this enzyme, a substance with a fluorescent label undergoes a two-step reaction, and then the size, brightness, or number of the substance can be determined. Appearing, these results can be obtained more accurately.

本発明の他の特徴は、蛍光標識された核酸塩基、へリカーゼおよびサンプルを混合し、蛍光解析法により混合溶液中の反応生成物の大きさ、明るさまたは数を求め、この値と
核酸塩基とへリカーゼとの反応生成物の大きさ、明るさまたは数、もしくは未反応の核酸塩基の大きさ、明るさまたは数とを比較することにある。反応生成物の並進拡散時間が未反応の蛍光標識二本鎖DNAのものより顕著に小さくなっていれば、もしくは蛍光標識一本鎖DNAの並進拡散時間と顕著な差が無ければ、二本鎖DNAとDNAヘリカーゼIIとの反応が行われたことになり、サンプル中にヘリカーゼ阻害剤が存在しないと言える。
Another feature of the present invention is that a fluorescently labeled nucleobase, a helicase, and a sample are mixed, and the size, brightness, or number of reaction products in the mixed solution is obtained by fluorescence analysis, It is to compare the size, brightness, or number of the reaction product with and helicase, or the size, brightness, or number of unreacted nucleobases. If the translational diffusion time of the reaction product is significantly shorter than that of unreacted fluorescently labeled double-stranded DNA, or if there is no significant difference from the translational diffusion time of fluorescently labeled single-stranded DNA, then double-stranded Since the reaction between DNA and DNA helicase II has been carried out, it can be said that there is no helicase inhibitor in the sample.

この特徴によれば、各溶液の混合と蛍光解析法によって蛍光標識を有する物質の大きさ、明るさまたは数を求めることができるので、放射の測定、表面プラズモンの測定または核磁気共鳴の測定、支持体への固定などの煩雑な操作を行わずに、ヘリカーゼ阻害剤の有無を簡便に短時間で精度良く得ることができる。   According to this feature, the size, brightness, or number of substances having fluorescent labels can be determined by mixing each solution and fluorescence analysis, so measurement of radiation, measurement of surface plasmons or measurement of nuclear magnetic resonance, The presence or absence of the helicase inhibitor can be easily and accurately obtained in a short time without performing a complicated operation such as fixing to a support.

本発明によれば、各溶液の混合と蛍光解析法によって蛍光標識を有する物質の大きさ、明るさまたは数を求めることができるので、放射の測定、表面プラズモンの測定または核磁気共鳴の測定、支持体への固定などの煩雑な操作を行わずに、核酸塩基とヘリカーゼとの結合や作用などの反応の有無、ヘリカーゼの反応活性、反応生成物の大きさの変化、明るさの変化、数の変化などの検出結果を簡便に短時間で精度良く得ることができる。   According to the present invention, the size, brightness or number of a substance having a fluorescent label can be determined by mixing each solution and analyzing fluorescence, so that measurement of radiation, measurement of surface plasmon or measurement of nuclear magnetic resonance, Without complicated operations such as fixation to the support, presence or absence of reaction such as binding or action of nucleobase and helicase, helicase reaction activity, change in reaction product size, change in brightness, number As a result, it is possible to easily obtain a detection result such as a change in the time and accuracy with a short time.

また、各溶液の混合と、蛍光相関分光法(FCS)、蛍光相互相関分光法(FCCS)、蛍光強度分布解析法(FIDA)、多項目蛍光強度分布解析法(FIMDA)または蛍光偏光解析法(FIDA-polarization)の利用により、浮遊系における反応生成物の大きさの変化、明るさの変化、数の変化をnMオーダーという非常に良い感度で検出することができる。   In addition, mixing each solution, fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity distribution analysis method (FIDA), multi-item fluorescence intensity distribution analysis method (FIMDA) or fluorescence polarization analysis method ( By using FIDA-polarization), it is possible to detect a change in the size, brightness, and number of reaction products in a floating system with very good sensitivity of the order of nM.

本実施の形態では、以下の手順で核酸塩基とヘリカーゼの反応の解析を行う。図1に手順の例を示す。   In this embodiment, the reaction between the nucleobase and the helicase is analyzed by the following procedure. FIG. 1 shows an example of the procedure.

(1)核酸塩基の蛍光標識と調整
ポリメラーゼ連鎖反応(Polymerase Chain Reaction:PCR)を利用して、蛍光標識された核酸塩基(以下、蛍光標識核酸塩基と呼ぶ)を作り、約10nMの蛍光標識核酸塩基の溶液を作る。
(1) Nucleobase fluorescent labeling and preparation Using the polymerase chain reaction (PCR), a fluorescently labeled nucleobase (hereinafter referred to as a fluorescently labeled nucleobase) is prepared and approximately 10 nM of fluorescently labeled nucleic acid. Make a base solution.

(2)蛍光核酸塩基とヘリカーゼとの反応実験
蛍光標識核酸塩基の溶液とヘリカーゼを混合して混合液を作り、生体内の温度条件、例えば37℃で反応させる。また、核酸塩基とヘリカーゼとの反応生成物に作用する酵素を加えて混合液を作ってもよい。
(2) Reaction experiment of fluorescent nucleobase and helicase A solution of fluorescently labeled nucleobase and helicase are mixed to prepare a mixed solution, which is reacted at in-vivo temperature conditions, for example, 37 ° C. Alternatively, a mixed solution may be prepared by adding an enzyme that acts on a reaction product of a nucleobase and a helicase.

(3)FCS解析
反応させた混合液をFCS測定用のガラスボトムプレート、例えばマイクロプレートに移し、FCS測定を行う。FCS測定での測定値に基づいて、反応の有無を検出する。
(3) FCS analysis The reacted mixed solution is transferred to a glass bottom plate for FCS measurement, for example, a microplate, and FCS measurement is performed. The presence or absence of reaction is detected based on the measured value in FCS measurement.

FCS測定では、微小領域内の蛍光分子の揺らぎを測定し、求められた値に基づいて並進拡散時間(Diffusion Time)を求める。並進拡散時間の大小は分子量の大小を示すので、反応の前後で並進拡散時間を比較することにより、分子量の増加または減少がわかる。分子量の増加は生体分子間の結合反応を、分子量の減少は生体分子の分解反応を、分子量の維持は生体分子に結合も分解も無かったことを示す。従って、蛍光標識核酸塩基とヘリカーゼとの反応の前後で、蛍光標識された物質の並進拡散時間の増加を検出することにより、蛍光標識核酸塩基とヘリカーゼとの反応を検出することができる。   In the FCS measurement, the fluctuation of the fluorescent molecule in the minute region is measured, and the translational diffusion time (Diffusion Time) is obtained based on the obtained value. Since the magnitude of the translational diffusion time indicates the magnitude of the molecular weight, an increase or decrease in the molecular weight can be found by comparing the translational diffusion times before and after the reaction. An increase in molecular weight indicates a binding reaction between biomolecules, a decrease in molecular weight indicates a degradation reaction of biomolecules, and a maintenance of molecular weight indicates that there is no binding or degradation to biomolecules. Therefore, the reaction between the fluorescently labeled nucleobase and the helicase can be detected by detecting an increase in the translational diffusion time of the fluorescently labeled substance before and after the reaction between the fluorescently labeled nucleobase and the helicase.

上述した手順では、(3)で反応生成物の並進拡散時間を求めるために蛍光相関分光法(fluorescence correlation spectroscopy:FCS)を用いたが、蛍光相関分光法(FCS)の代わりに、蛍光相互相関分光法(fluorescence cross correlation spectroscopy)、蛍光強度分布解析法(Fluorescence Intensity Distribution Analysis)、多項目蛍光強度分布解析法(Fluorescence Intensity Multiple Distribution Analysis)または蛍光偏光解析法(FIDA-polarization)を用いてもよい。これらの解析法から、反応後の核酸塩基の大きさ、数、明るさに関連するデータを求める。これらのデータから、反応前後での核酸塩基の大きさの変化、数の変化、明るさの変化を得ることができる。例えば、FCS測定の結果、反応の前後で核酸塩基の大きさに顕著な差はないが、1分子あたりの蛍光の明るさに変化がある場合には、蛍光強度分布解析法(FIDA)を行うことによって、反応の有無を知ることができる。   In the above procedure, fluorescence correlation spectroscopy (FCS) was used to determine the translational diffusion time of the reaction product in (3), but instead of fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation (FCS) was used. Spectroscopy (fluorescence cross correlation spectroscopy), fluorescence intensity distribution analysis (Fluorescence Intensity Distribution Analysis), multi-item fluorescence intensity distribution analysis (Fluorescence Intensity Multiple Distribution Analysis) or fluorescence polarization analysis (FIDA-polarization) may be used. . From these analysis methods, data related to the size, number, and brightness of the nucleobases after the reaction are obtained. From these data, changes in the size, number and brightness of the nucleobases before and after the reaction can be obtained. For example, if there is no significant difference in the nucleobase size before and after the reaction as a result of FCS measurement, but there is a change in the brightness of fluorescence per molecule, the fluorescence intensity distribution analysis method (FIDA) is performed. Thus, it can be known whether or not there is a reaction.

[実施例]
(蛍光標識二本鎖DNAとDNAヘリカーゼIIとの反応実験)
本実施例では以下のものを用いる。特に、核酸塩基として蛍光標識二本鎖DNAを、ヘリカーゼとしてDNAヘリカーゼIIを、さらに核酸塩基とヘリカーゼとの反応生成物に作用する酵素として、エキソヌクレアーゼIを用いる。
[Example]
(Reaction experiment of fluorescently labeled double-stranded DNA with DNA helicase II)
In this embodiment, the following is used. In particular, fluorescently labeled double-stranded DNA is used as a nucleobase, DNA helicase II is used as a helicase, and exonuclease I is used as an enzyme that acts on the reaction product of a nucleobase and a helicase.

Human DNA;
Nonラベルプライマー(F) 19mer;
EvoBlue(633nm)ラベルプライマー(R) 20mer(TAMRAラベリングでもよい);
TITANIUM TaQ DNAポリメラーゼ;
QIAquick PCR Purification Kit;
エキソヌクレアーゼI(Exonuclease I:EPICENTRE X40501K) 20U/μl;
DNAヘリカーゼII(DNA Helicase II E coli:Wako) 200μg/ml;および、
Helicase Buffer(25mM Tris HCl(pH7.4)、20mM NaCl、3mM MgCl2、2mMβ-MEおよび2mM ATP、水(H2O))
(1)二本鎖DNA溶液の調整
表1の試薬を用いてポリメラーゼ連鎖反応(Polymerase Chain Reaction:PCR)を行い、蛍光標識された二本鎖DNA(以下、蛍光標識二本鎖DNAと呼ぶ)を得た。蛍光標識二本鎖DNAの長さは160bpである。PCRの温度制御は、94℃2分の後、94℃30秒と74℃30秒を30サイクル、そして74℃5分の後、4℃で保存した。

Figure 2005080535
Human DNA;
Non-labeled primer (F) 19mer;
EvoBlue (633nm) label primer (R) 20mer (may be TAMRA labeling);
TITANIUM TaQ DNA polymerase;
QIAquick PCR Purification Kit;
Exonuclease I (EPICENTRE X40501K) 20U / μl;
DNA Helicase II E coli: Wako 200 μg / ml; and
Helicase Buffer (25 mM Tris HCl (pH 7.4), 20 mM NaCl, 3 mM MgCl 2 , 2 mM β-ME and 2 mM ATP, water (H 2 O))
(1) Preparation of double-stranded DNA solution Polymerase chain reaction (PCR) is performed using the reagents shown in Table 1 and fluorescently labeled double-stranded DNA (hereinafter referred to as fluorescent-labeled double-stranded DNA). Got. The length of fluorescently labeled double-stranded DNA is 160 bp. PCR temperature control was 94 ° C for 2 minutes, followed by 30 cycles of 94 ° C for 30 seconds and 74 ° C for 30 seconds, and stored at 4 ° C after 74 ° C for 5 minutes.
Figure 2005080535

溶液中から未反応プライマーや一本鎖DNAを除去するために、PCR溶液25μlに対してエキソヌクレアーゼIを3〜5μl加えた。同時にMgCl2を最終濃度が10mMになるように添加し(Mg++が反応に必要なため)、37℃で1時間程度反応させた。その後、QIAquick PCR Purification Kitを用いて、未反応のプライマー、ヌクレオチド、酵素(Enzyme)、塩(salt)などを取り除いた。そして蛍光標識二本鎖DNAを精製した後、3%アガロース/TAEで電気泳動してバンドを確認した。 In order to remove unreacted primers and single-stranded DNA from the solution, 3 to 5 μl of exonuclease I was added to 25 μl of the PCR solution. At the same time, MgCl 2 was added to a final concentration of 10 mM (because Mg ++ is necessary for the reaction), and the reaction was carried out at 37 ° C. for about 1 hour. Thereafter, unreacted primers, nucleotides, enzyme (Enzyme), salt, etc. were removed using QIAquick PCR Purification Kit. The fluorescently labeled double-stranded DNA was purified and electrophoresed with 3% agarose / TAE to confirm the band.

精製して得られた蛍光標識二本鎖DNAを蛍光相関分光法(FCS)で測定し、粒子数(n)が10程度になるようにHelicase Bufferで希釈し、蛍光標識二本鎖DNAの溶液(約10nM)を作った。粒子数(n)が10程度の蛍光標識二本鎖DNA溶液を用いて各実験を行うと、FCS測定の際にコンフォーカルボリュームにおける粒子数は0.3〜2となり、精度よくFCS測定が行え、蛍光標識二本鎖DNAとヘリカーゼとの反応が精度良く検出できる。   Fluorescently labeled double-stranded DNA obtained by purification is measured by fluorescence correlation spectroscopy (FCS), diluted with Helicase Buffer so that the number of particles (n) is about 10, and a solution of fluorescently labeled double-stranded DNA (About 10nM). When each experiment was carried out using a fluorescently labeled double-stranded DNA solution with a particle number (n) of about 10, the number of particles in the confocal volume was 0.3 to 2 during FCS measurement, and FCS measurement could be performed with high accuracy and fluorescence. The reaction between labeled double-stranded DNA and helicase can be detected with high accuracy.

(2)反応実験とFCS測定
図1に反応実験の手順を示す。FCS測定は各反応後に、波長633nm、出力400μWのレーザー光を1回に15秒照射する条件で3回行った。FCS測定には、MF20(オリンパス光学工業株式会社製)を用いた
(反応実験1:蛍光標識二本鎖DNAのみ)
表2に示した試薬を混合し、37℃で15分間反応させた。反応させた混合液をFCS測定用のガラスボトムプレート、例えばマイクロプレートに移し、FCS測定して並進拡散時間を求めた。

Figure 2005080535
(2) Reaction experiment and FCS measurement Fig. 1 shows the procedure of the reaction experiment. The FCS measurement was performed three times after each reaction under the condition that a laser beam having a wavelength of 633 nm and an output of 400 μW was irradiated for 15 seconds at a time. MF20 (manufactured by Olympus Optical Co., Ltd.) was used for FCS measurement (reaction experiment 1: fluorescently labeled double-stranded DNA only)
The reagents shown in Table 2 were mixed and reacted at 37 ° C. for 15 minutes. The reacted mixture was transferred to a glass bottom plate for FCS measurement, for example, a microplate, and FCS measurement was performed to determine the translational diffusion time.
Figure 2005080535

(反応実験2:蛍光標識二本鎖DNAとDNAヘリカーゼIIとの反応)
表3に示した試薬を混合し、37℃で15分間反応させた。反応させた混合液をFCS測定用のガラスボトムプレート、例えばマイクロプレートに移し、FCS測定して並進拡散時間を求めた。

Figure 2005080535
(Reaction experiment 2: Reaction of fluorescently labeled double-stranded DNA with DNA helicase II)
The reagents shown in Table 3 were mixed and reacted at 37 ° C. for 15 minutes. The reacted mixture was transferred to a glass bottom plate for FCS measurement, for example, a microplate, and FCS measurement was performed to determine the translational diffusion time.
Figure 2005080535

(反応実験3:蛍光標識二本鎖DNA、DNAヘリカーゼIIおよびエキソヌクレアーゼIの反応)
表4に示した試薬を混合し、37℃で15分間反応させた。反応させた混合液をFCS測定用のガラスボトムプレート、例えばマイクロプレートに移し、FCS測定して並進拡散時間を求めた。

Figure 2005080535
(Reaction experiment 3: reaction of fluorescently labeled double-stranded DNA, DNA helicase II and exonuclease I)
The reagents shown in Table 4 were mixed and reacted at 37 ° C. for 15 minutes. The reacted mixture was transferred to a glass bottom plate for FCS measurement, for example, a microplate, and FCS measurement was performed to determine the translational diffusion time.
Figure 2005080535

(反応実験4:蛍光標識二本鎖DNAとエキソヌクレアーゼIとの反応)
表5に示した試薬を混合し、37℃で15分間反応させた。反応させた混合液をFCS測定用のガラスボトムプレート、例えばマイクロプレートに移し、FCS測定して並進拡散時間を求めた。

Figure 2005080535
(Reaction experiment 4: Reaction of fluorescently labeled double-stranded DNA with exonuclease I)
The reagents shown in Table 5 were mixed and reacted at 37 ° C. for 15 minutes. The reacted mixture was transferred to a glass bottom plate for FCS measurement, for example, a microplate, and FCS measurement was performed to determine the translational diffusion time.
Figure 2005080535

反応実験1〜4のFCS測定の結果を表6に示す。蛍光色素のみでのFCS測定結果も合わせて示す。

Figure 2005080535
Table 6 shows the results of FCS measurement in Reaction Experiments 1 to 4. The results of FCS measurement using only the fluorescent dye are also shown.
Figure 2005080535

図2に反応実験1〜4における生成物の並進拡散時間のグラフを示す。
反応実験1では、DNAヘリカーゼIIもエキソヌクレアーゼIも混合していないので、蛍光標識二本鎖DNAは変化しない。したがって、反応実験1の並進拡散時間は、未反応の蛍光標識二本鎖DNAのものである。
The graph of the translational diffusion time of the product in reaction experiment 1-4 in FIG. 2 is shown.
In Reaction Experiment 1, since neither DNA helicase II nor exonuclease I is mixed, the fluorescence-labeled double-stranded DNA does not change. Therefore, the translational diffusion time in Reaction Experiment 1 is that of unreacted fluorescently labeled double-stranded DNA.

反応実験2では、反応生成物の並進拡散時間が未反応の蛍光標識二本鎖DNAの並進拡散時間より顕著に小さい。これは、二本鎖DNAがDNAヘリカーゼIIによって一本鎖になったことを示す。したがって、反応実験2の並進拡散時間は、蛍光標識された一本鎖DNAのものである。   In Reaction Experiment 2, the translational diffusion time of the reaction product is significantly smaller than the translational diffusion time of unreacted fluorescently labeled double-stranded DNA. This indicates that the double-stranded DNA has become single-stranded by DNA helicase II. Therefore, the translational diffusion time in Reaction Experiment 2 is that of fluorescently labeled single-stranded DNA.

反応実験3では、反応生成物の並進拡散時間が蛍光標識された一本鎖DNAの並進拡散時間よりもさらに顕著に小さくなった。これは、二本鎖DNAがDNAヘリカーゼIIによって一本鎖になり、そして一本鎖DNAがエキソネクレアーゼIによって特異的に分解されて、短い塩基配列になったことを示す。したがって、反応実験3の並進拡散時間は、蛍光標識された短い塩基配列Aのものである。   In Reaction Experiment 3, the translational diffusion time of the reaction product was significantly shorter than that of the fluorescently labeled single-stranded DNA. This indicates that the double-stranded DNA was made into a single strand by DNA helicase II, and the single-stranded DNA was specifically decomposed by exonuclease I into a short base sequence. Therefore, the translational diffusion time of Reaction Experiment 3 is that of the short base sequence A that is fluorescently labeled.

反応実験4の並進拡散時間は、未反応の蛍光標識二本鎖DNAの並進拡散時間と顕著な差はなかった。これは、エキソヌクレアーゼIが二本鎖DNAには反応しないことを示す。   The translational diffusion time in Reaction Experiment 4 was not significantly different from that of unreacted fluorescently labeled double-stranded DNA. This indicates that exonuclease I does not react with double stranded DNA.

従って、サンプル中にDNAヘリカーゼIIが存在するか否か検出する場合には、蛍光標識された二本鎖DNAとサンプルとを混合し、反応生成物をFCS測定して並進拡散時間を求め、その値を未反応の蛍光標識二本鎖DNAの並進拡散時間と比較するとよい。反応生成物の並進拡散時間が未反応の蛍光標識二本鎖DNAのものより顕著に小さくなっていれば、サンプル中にDNAヘリカーゼIIが存在していると言える。   Therefore, when detecting whether or not DNA helicase II is present in the sample, the fluorescently labeled double-stranded DNA and the sample are mixed, the reaction product is subjected to FCS measurement, and the translational diffusion time is obtained. The value may be compared with the translational diffusion time of unreacted fluorescently labeled double stranded DNA. If the translational diffusion time of the reaction product is significantly shorter than that of unreacted fluorescently labeled double-stranded DNA, it can be said that DNA helicase II is present in the sample.

また、サンプル中にDNAヘリカーゼIIが存在するか否か検出する場合に、蛍光標識された二本鎖DNAとサンプルとの混合液に、さらにエキソヌクレアーゼIを混合してもよい。反応生成物の並進拡散時間が1桁小さくなっていれば、サンプル中にDNAヘリカーゼIIが存在してすると言える。   In addition, when detecting whether or not DNA helicase II is present in the sample, exonuclease I may be further mixed in a mixed solution of the fluorescently labeled double-stranded DNA and the sample. If the translational diffusion time of the reaction product is reduced by an order of magnitude, it can be said that DNA helicase II is present in the sample.

また、サンプル中にヘリカーゼ阻害剤が存在するか否か検出する場合には、蛍光標識された二本鎖DNA、DNAヘリカーゼIIおよびサンプルを混合し、反応生成物をFCS測定して並進拡散時間を求め、その値を未反応の蛍光標識二本鎖DNAの並進拡散時間または蛍光標識一本鎖DNAの並進拡散時間と比較するとよい。反応生成物の並進拡散時間が未反応の蛍光標識二本鎖DNAのものより顕著に小さくなっていれば、または蛍光標識一本鎖DNAの並進拡散時間と顕著な差が無ければ、二本鎖DNAとDNAヘリカーゼIIとの反応が行われたことになり、サンプル中にヘリカーゼ阻害剤が存在しないと言える。   When detecting whether a helicase inhibitor is present in a sample, fluorescently labeled double-stranded DNA, DNA helicase II and the sample are mixed, and the reaction product is subjected to FCS measurement to determine the translational diffusion time. The obtained value may be compared with the translational diffusion time of unreacted fluorescently labeled double-stranded DNA or the translational diffusion time of fluorescently labeled single-stranded DNA. If the translational diffusion time of the reaction product is significantly less than that of unreacted fluorescently labeled double-stranded DNA, or if there is no significant difference from the translational diffusion time of fluorescently labeled single-stranded DNA, then double-stranded Since the reaction between DNA and DNA helicase II has been carried out, it can be said that there is no helicase inhibitor in the sample.

本実施例によれば、蛍光標識二本鎖DNAとDNAヘリカーゼIIとの反応を、各溶液を混合して反応させ、反応生成物をFCS測定することにより、精度良く検出することができる。また、二本鎖DNA以外にゲノム、一本鎖DNA、RNAなどの核酸塩基と、DNAヘリカーゼII以外のヘリカーゼを用いて反応の有無を検出することもできる。   According to this example, the reaction between the fluorescence-labeled double-stranded DNA and DNA helicase II can be detected with high accuracy by mixing each solution and reacting them, and measuring the reaction product by FCS. In addition to the double-stranded DNA, the presence or absence of a reaction can also be detected by using a nucleobase such as a genome, single-stranded DNA, or RNA and a helicase other than DNA helicase II.

また、各溶液の混合と、蛍光相関分光法(FCS)、蛍光相互相関分光法(FCCS)、蛍光強度分布解析法(FIDA)、多項目蛍光強度分布解析法(FIMDA)または蛍光偏光解析法(FIDA-polarization)の利用により、浮遊系における反応生成物の大きさの変化、明るさの変化、数の変化をnMオーダーという非常に良い感度で検出することができる。   In addition, mixing each solution, fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity distribution analysis method (FIDA), multi-item fluorescence intensity distribution analysis method (FIMDA) or fluorescence polarization analysis method ( By using FIDA-polarization, it is possible to detect changes in the size, brightness, and number of reaction products in a floating system with very good sensitivity on the order of nM.

また、放射の測定、表面プラズモンの測定または核磁気共鳴の測定、支持体への固定などの煩雑な操作を行わずに、検出結果を簡便に短時間で得ることができる。また、固体支持体を用いないので、固定できないヘリカーゼでも反応させ解析することができる。また、抗体反応を利用しないので、抗体のないヘリカーゼでも反応させ解析することができる。   In addition, the detection result can be easily obtained in a short time without performing complicated operations such as measurement of radiation, measurement of surface plasmon or nuclear magnetic resonance, and fixation to a support. In addition, since a solid support is not used, helicase that cannot be immobilized can be reacted and analyzed. Moreover, since an antibody reaction is not used, it is possible to react and analyze even a helicase without an antibody.

また、本実施例では、二本鎖DNAに蛍光標識したが、二本鎖DNAには蛍光標識せずにDNAヘリカーゼIIに蛍光標識して、反応実験を行ってもよい。   In this example, the double-stranded DNA is fluorescently labeled, but the double-stranded DNA may not be fluorescently labeled but may be fluorescently labeled with DNA helicase II to conduct a reaction experiment.

また、本発明は、自動分注機、プレートスタッカーを用いれば、大量のサンプルのスクリーニング作業にも応用できる。   In addition, the present invention can be applied to screening of a large amount of sample by using an automatic dispenser and a plate stacker.

本実施形態におけるタンパク質解析手順の例を示す図。The figure which shows the example of the protein analysis procedure in this embodiment. 反応実験1〜4での各反応生成物の並進拡散時間を示すグラフ。The graph which shows the translational diffusion time of each reaction product in the reaction experiments 1-4.

Claims (5)

核酸塩基またはヘリカーゼに蛍光標識するステップと、
前記核酸塩基と前記ヘリカーゼとを混合し混合溶液をつくるステップと、
蛍光解析法により混合溶液中の蛍光標識を有する物質の大きさ、明るさまたは数を求めるステップと
を有することを特徴とする核酸塩基とヘリカーゼとの反応を検出する方法。
Fluorescently labeling a nucleobase or helicase;
Mixing the nucleobase and the helicase to form a mixed solution;
A method for detecting a reaction between a nucleobase and a helicase, comprising a step of obtaining a size, brightness, or number of a substance having a fluorescent label in a mixed solution by a fluorescence analysis method.
前記蛍光解析法は、蛍光相関分光法(FCS)、蛍光相互相関分光法(FCCS)、蛍光強度分布解析法(FIDA)、多項目蛍光強度分布解析法(FIMDA)または蛍光偏光解析法(FIDA- polarization)であることを特徴とする請求項1の核酸塩基とヘリカーゼとの反応を検出する方法。   The fluorescence analysis methods include fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS), fluorescence intensity distribution analysis method (FIDA), multi-item fluorescence intensity distribution analysis method (FIMDA), or fluorescence polarization analysis method (FIDA- The method for detecting a reaction between a nucleobase and a helicase according to claim 1, wherein 前記蛍光標識するステップは、核酸塩基に蛍光標識するステップを含み、
前記核酸塩基は二本鎖DNAであり、前記ヘリカーゼはDNAヘリカーゼIIであることを特徴とする請求項1の核酸塩基とヘリカーゼとの反応を検出する方法。
The step of fluorescent labeling comprises the step of fluorescently labeling a nucleobase;
2. The method for detecting a reaction between a nucleobase and a helicase according to claim 1, wherein the nucleobase is a double-stranded DNA and the helicase is a DNA helicase II.
前記混合溶液をつくるステップは、
前記核酸塩基と前記ヘリカーゼとの反応生成物に対して反応する酵素を混合するステップを含むことを特徴とする請求項1の核酸塩基とヘリカーゼとの反応を検出する方法。
The step of preparing the mixed solution includes:
The method for detecting a reaction between a nucleobase and a helicase according to claim 1, comprising a step of mixing an enzyme that reacts with a reaction product of the nucleobase and the helicase.
蛍光標識された核酸塩基、へリカーゼおよびサンプルを混合し混合溶液をつくるステップと、
蛍光解析法により混合溶液中の反応生成物の大きさ、明るさまたは数を求めるステップと、
求められた前記物質の大きさ、明るさまたは数と、核酸塩基とへリカーゼとの反応生成物の大きさ、明るさまたは数、もしくは、未反応の核酸塩基の大きさ、明るさまたは数とを比較するステップと
を有することを特徴とするヘリカーゼ阻害剤を検出する方法。
Mixing a fluorescently labeled nucleobase, a helicase and a sample to form a mixed solution;
Determining the size, brightness or number of reaction products in the mixed solution by fluorescence analysis;
The obtained size, brightness or number of the substance and the size, brightness or number of the reaction product of nucleobase and helicase, or the size, brightness or number of unreacted nucleobase And a method for detecting a helicase inhibitor.
JP2003314404A 2003-09-05 2003-09-05 Method for detecting reaction between nucleic acid base and helicase Pending JP2005080535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314404A JP2005080535A (en) 2003-09-05 2003-09-05 Method for detecting reaction between nucleic acid base and helicase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314404A JP2005080535A (en) 2003-09-05 2003-09-05 Method for detecting reaction between nucleic acid base and helicase

Publications (1)

Publication Number Publication Date
JP2005080535A true JP2005080535A (en) 2005-03-31

Family

ID=34415025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314404A Pending JP2005080535A (en) 2003-09-05 2003-09-05 Method for detecting reaction between nucleic acid base and helicase

Country Status (1)

Country Link
JP (1) JP2005080535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490274A (en) * 2019-01-04 2019-03-19 齐鲁工业大学 A kind of experimental provision and application method for studying enzyme unidirectional mass transfer in the leather

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490274A (en) * 2019-01-04 2019-03-19 齐鲁工业大学 A kind of experimental provision and application method for studying enzyme unidirectional mass transfer in the leather

Similar Documents

Publication Publication Date Title
US8143030B2 (en) Intermittent detection during analytical reactions
US8383369B2 (en) Intermittent detection during analytical reactions
US20150362503A1 (en) Real-time analytical methods and systems
Cordes et al. Sensing DNA opening in transcription using quenchable Forster resonance energy transfer
US8518643B2 (en) Method to improve single molecule analyses
GB2550712A (en) Method for constructing nucleic acid molecule
Friedrich et al. Analysis of single nucleic acid molecules in micro-and nano-fluidics
US20230304087A1 (en) Single molecule analysis in an electrical field
Sobek et al. Single-molecule DNA hybridisation studied by using a modified DNA sequencer: a comparison with surface plasmon resonance data
US20210121879A1 (en) Systems and methods for sample preparation
CN114929889A (en) Method and apparatus for sequencing using a cassette
JP2005080535A (en) Method for detecting reaction between nucleic acid base and helicase
Lin et al. Signal amplification on a DNA-tile-based biosensor with enhanced sensitivity
JP2005328707A (en) Method for detecting mutation of nat2*6 and nucleic acid probe and kit therefor
CN108444969B (en) Method for detecting nucleic acid structure based on surface enhanced Raman spectroscopy
Jin et al. Single-Molecule DNA Visualization
JP4517175B2 (en) NAT2 * 7 mutation detection method and nucleic acid probe and kit therefor
JP4320188B2 (en) Single base substitution detection method and single base substitution detection kit
JP4517176B2 (en) Method for detecting NAT2 * 5 mutation and nucleic acid probe and kit therefor
WO2024110463A1 (en) Multiple molecular binding sites
JP5020734B2 (en) Nucleic acid analysis method and apparatus
Bauer Preparing and sequencing ultra-long DNA molecules from single chromosomes
JP2001269198A (en) Method for determining type of polymorphic gene
Vo-Dinh DNA Sequencing Using Fluorescence Detection
Gerrity Investigations in readlength improvements for DNA sequencing by synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013