JP2005076024A - Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element - Google Patents

Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element Download PDF

Info

Publication number
JP2005076024A
JP2005076024A JP2003347586A JP2003347586A JP2005076024A JP 2005076024 A JP2005076024 A JP 2005076024A JP 2003347586 A JP2003347586 A JP 2003347586A JP 2003347586 A JP2003347586 A JP 2003347586A JP 2005076024 A JP2005076024 A JP 2005076024A
Authority
JP
Japan
Prior art keywords
oxide
thin film
phosphor
tin
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347586A
Other languages
Japanese (ja)
Inventor
Uchitsugu Minami
内嗣 南
Toshihiro Miyata
俊弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003347586A priority Critical patent/JP2005076024A/en
Publication of JP2005076024A publication Critical patent/JP2005076024A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film of gallium oxide-tin oxide multicomponent oxide fluorescent material, emitting high luminance light by controlling composition of a matrix material and thermal treatment condition in the amorphous multicomponent oxide matrix material comprising gallium oxide and tin oxide as main components doped with at least a kind of rare earth elements as a luminous center substance, and to provide a method for producing the same. <P>SOLUTION: The invention is performed in the following processes, a process for controlling the atomic ratio of tin to gallium from 5 to 95 atomic.%, preferably 14 to 18 atomic.% and a process for controlling the fluorescent thin film to contain Ga<SB>4</SB>SnO<SB>8</SB>as a principal component which is a ternary compound in the gallium oxide-tin oxide multiple oxide doped with Eu, and a process for thermally treating in an oxidative atmosphere at comparatively low temperature of 400-800°C, preferably 500-700°C thereby forming the amorphous thin film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明はエレクトロルミネッセンス素子用希土類添加酸化ガリウム−酸化錫多元系蛍光体薄膜の製造方法に関する。The present invention relates to a method for producing a rare earth-added gallium oxide-tin oxide multielement phosphor thin film for an electroluminescence element.

申請者らによって報告された(T.Minami,T.Miyata,T.Shirai and T.Nakatani,Mat.ResSoc.Symp.Proc.Vol621(2000)p.Q4.3.1)発光中心材料として希土類元素であるユーロピウム(Eu)を添加した酸化ガリウム−酸化錫酸化物蛍光体薄膜は、EL発光を得るために1000℃程度の高温での熱処理を施ことにより多結晶薄膜を作製していた。Reported by the applicants (T. Minami, T. Miyata, T. Shirai and T. Nakatani, Mat. Res Soc. Symp. Proc. Vol 621 (2000) p. Q4.3.1) Rare earth elements as luminescent center materials In order to obtain EL emission, the gallium oxide-tin oxide phosphor thin film to which europium (Eu) is added has been subjected to heat treatment at a high temperature of about 1000 ° C. to produce a polycrystalline thin film.

発明が解決しようとする課題Problems to be solved by the invention

しかしながら、上記のEu添加酸化ガリウム−酸化錫酸化物蛍光体薄膜を発光層に用いる薄膜エレクトロルミネッセンス素子(以下EL素子)からの発光は弱く、薄膜ELランプや薄膜ELディスプレイ用の発光層材料として実用に耐える輝度を実現できていなかった。加えて、熱処理温度が1000℃程度と高温であるため、従来、薄膜EL素子において使用されているガラス等の低融点基体材料が使用できないという問題点がある。However, light emission from a thin film electroluminescent device (hereinafter referred to as EL device) using the Eu-doped gallium oxide-tin oxide oxide phosphor thin film as a light emitting layer is weak, and it is practical as a light emitting layer material for thin film EL lamps and thin film EL displays. The brightness that can withstand In addition, since the heat treatment temperature is as high as about 1000 ° C., there is a problem that a low-melting point base material such as glass conventionally used in thin film EL elements cannot be used.

課題を解決するための手段Means for solving the problem

本発明においては、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜のガリウムに対する錫の原子比を5から95原子%、好ましくは14から18原子%、及び該蛍光体薄膜が3元化合物であるGaSnOを主成分となるように膜の組成を制御して形成し、その後、酸化性雰囲気中、400〜800℃、好ましくは500〜700℃の比較的低温度で熱処理を施すことにより非晶質の薄膜を形成する製造方法を用いることにより上記課題を解決できる。In the present invention, the atomic ratio of tin to gallium in the Eu-doped gallium oxide-tin oxide multi-component oxide phosphor thin film is 5 to 95 atomic%, preferably 14 to 18 atomic%, and the phosphor thin film is a ternary compound. The film composition is controlled so that Ga 4 SnO 8 as a main component is formed, and then heat treatment is performed at a relatively low temperature of 400 to 800 ° C., preferably 500 to 700 ° C. in an oxidizing atmosphere. Thus, the above problem can be solved by using a manufacturing method for forming an amorphous thin film.

本発明では、該Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜を不活性ガス雰囲気中でのスパッタリング法、化学気相結晶成長(CVD)法、電子ビーム蒸着法、活性化反応性蒸着(ARE)法、クラスタイオンビーム(ICB)法、イオンビームスパッタ(IBS)法、原子層エピタキシャル(ALE)成長法、分子線エピタキシャル成長(MBE)法、ガスソースMBE(またはCBE)法、エレクトロンサイクロトロン共鳴(ECR)プラズマを利用する結晶成長法等公知の薄膜堆積技術を用いて作製し、大気等の酸化性ガスを含む雰囲気中で、400〜800℃、好ましくは500〜700℃程度の比較的低温で熱処理を施し、非晶質の膜を形成することにより、EL素子用発光層をしての十分な機能を付与することが可能になり、十分実用に耐える輝度を実現できることを特徴とする。また、該Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜の化学的な安定性をいかして、従来の湿式の化学的成膜方法、例えば溶液塗布法あるいはゾル・ゲル法を用いる成膜法も有効である。In the present invention, the Eu-doped gallium oxide-tin oxide multisystem oxide phosphor thin film is sputtered in an inert gas atmosphere, chemical vapor deposition (CVD), electron beam deposition, activated reactive deposition. (ARE) method, cluster ion beam (ICB) method, ion beam sputtering (IBS) method, atomic layer epitaxial (ALE) growth method, molecular beam epitaxial growth (MBE) method, gas source MBE (or CBE) method, electron cyclotron resonance (ECR) A relatively low temperature of about 400 to 800 ° C., preferably about 500 to 700 ° C., in an atmosphere containing an oxidizing gas such as the atmosphere, which is manufactured using a known thin film deposition technique such as a crystal growth method using plasma. It is possible to provide sufficient functions as a light emitting layer for EL elements by performing a heat treatment in order to form an amorphous film. It is characterized to be able to realize a luminance sufficiently withstand practical use. Further, taking advantage of the chemical stability of the Eu-doped gallium oxide-tin oxide multi-component oxide phosphor thin film, a conventional wet chemical film formation method such as a solution coating method or a sol-gel method is used. The law is also effective.

本発明による該Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜を400〜800℃、好ましくは500〜700℃程度の比較的低温度で熱処理を施す製造方法を駆使することにより作製した薄膜EL素子において高輝度赤色発光が実現できた。A thin film prepared by making full use of a manufacturing method in which the Eu-doped gallium oxide-tin oxide multi-component oxide phosphor thin film according to the present invention is heat-treated at a relatively low temperature of about 400 to 800 ° C., preferably about 500 to 700 ° C. High luminance red light emission was realized in the EL element.

作用Action

発光中心材料として希土類元素であるユーロピウム(Eu)を添加した酸化ガリウ厶−酸化錫酸化物蛍光体薄膜は、EL発光を得るために1000℃程度の高温度での熱処理を行い多結晶薄膜を形成していた。また、該酸化ガリウム−酸化錫酸化物蛍光体薄膜の母体材料の組成比も多結晶を得るために適した配合比が必要と考えられてきた。しかし、申請者らは、酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜の製造方法ならびに作製条件等について様々な検討を重ねた結果、より低温度で且つ適度の酸化性雰囲気中で熱処理を施して非晶質の該蛍光体薄膜を作製することにより、高輝度赤色発光を実現できる作用効果を持つ新しい該酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜の製造方法を発明した。また、該蛍光体製造方法は、大気等の酸化性ガスを含む雰囲気中で、400〜700℃程度の比較的低温度の熱処理プロセスでよいことから、基体材料として、従来EL素子において使用されているガラス等の低融点材料を用いることが可能であり、EL素子の大面積化並びに高精細化に対して極めて有利であるという作用効果がある。また、共添加した元素と発光中心との相互作用により、発光スペクトルを変化させる作用効果も期待できる。The gallium oxide-tin oxide phosphor thin film to which europium (Eu), which is a rare earth element, is added as the luminescent center material is heat-treated at a high temperature of about 1000 ° C. to obtain EL luminescence. Was. Further, it has been considered that the composition ratio of the base material of the gallium oxide-tin oxide oxide phosphor thin film needs to be suitable for obtaining a polycrystal. However, as a result of various studies on the manufacturing method and production conditions of the gallium oxide-tin oxide multi-component oxide phosphor thin film, the applicants conducted heat treatment at a lower temperature and in an appropriate oxidizing atmosphere. The present inventors have invented a new method for producing the gallium oxide-tin oxide multi-component oxide phosphor thin film having the effect of realizing high-luminance red light emission by producing the amorphous phosphor thin film. In addition, since the phosphor manufacturing method may be a heat treatment process at a relatively low temperature of about 400 to 700 ° C. in an atmosphere containing an oxidizing gas such as the atmosphere, it has been conventionally used in EL devices as a base material. It is possible to use a low-melting-point material such as glass, which is extremely advantageous for increasing the area and definition of the EL element. In addition, the effect of changing the emission spectrum can be expected by the interaction between the co-added element and the emission center.

以下、本発明を実施例により説明する。
(実施例1)
Hereinafter, the present invention will be described with reference to examples.
(Example 1)

ガリウム(Ga)に対して錫(Sn)を16.5原子%混合した粉末に発光中心材料として二酸化ユーロピウム(Eu)粉末をGaに対して、6.0原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体粉末を作製した。該蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃、基体−ターゲット間距離25mmの条件下でEu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層を形成した。その後、大気中において、500〜900℃で1時間のアニール処理を行った。Sufficient to contain 6.0 atomic% of europium dioxide (Eu 2 O 3 ) powder as a luminescent center material with respect to Ga in a powder in which 16.5 atomic% of tin (Sn) is mixed with gallium (Ga) After mixing, the powder was baked at 1000 ° C. for 1 hour in an argon (Ar) gas atmosphere to produce Eu-doped gallium oxide-tin oxide multi-component oxide phosphor powder. A sputtering target was prepared using the phosphor powder, and on the sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer, in argon (Ar) gas, gas pressure 6 Pa, sputtering input power 100 W, substrate temperature 275 An Eu-added gallium oxide-tin oxide multi-component oxide phosphor light-emitting layer was formed under the conditions of ° C and a substrate-target distance of 25 mm. Then, annealing treatment was performed at 500 to 900 ° C. for 1 hour in the air.

図1に該蛍光体薄膜のフォトルミネッセンス(PL)スペクトルのアニール処理温度依存性をしめす。同図に示すように、PL発光強度は600℃程度の比較的低温度でピークを持ちそれ以上の温度では低下した。また、600℃で熱処理を施した該蛍光体薄膜はX線回折測定の結果、非晶質であった。また、発光色は図2に示すように実用に十分耐えうる色純度の赤色発光を実現できた。また、該蛍光体薄膜を電子線励起したところ、市販の赤色蛍光体と同等以上の高発光効率赤色カソードルミネッセンス(CL)を実現できた。FIG. 1 shows the annealing temperature dependence of the photoluminescence (PL) spectrum of the phosphor thin film. As shown in the figure, the PL emission intensity had a peak at a relatively low temperature of about 600 ° C. and decreased at a temperature higher than that. Further, the phosphor thin film subjected to heat treatment at 600 ° C. was amorphous as a result of X-ray diffraction measurement. Further, as shown in FIG. 2, the luminescent color was able to realize red luminescence with a color purity that can be sufficiently put into practical use. Moreover, when the phosphor thin film was excited with an electron beam, a high emission efficiency red cathode luminescence (CL) equivalent to or higher than that of a commercially available red phosphor could be realized.

そして該発光層薄膜上にアルミニウム添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、図3に示すように600℃で熱処理を施した該蛍光体薄膜を用いたEL素子において、最も高輝度が実現でき、最高輝度162cd/mの実用に十分耐えうる高輝度赤色EL発光を実現できた。これにより、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層がEL素子用発光層薄膜として十分機能した。
(実施例2)
An EL element was prepared by forming an aluminum-added zinc oxide (ZnO: Al) transparent electrode on the light emitting layer thin film and a metal Al electrode on the back surface. When a 1 kHz sine wave AC voltage was applied to the EL element, the highest luminance was achieved in the EL element using the phosphor thin film that was heat-treated at 600 ° C. as shown in FIG. 3, and the maximum luminance was 162 cd / m. Thus, high luminance red EL light emission that can sufficiently withstand the practical use of No. 2 was realized. As a result, the Eu-doped gallium oxide-tin oxide multi-component oxide phosphor thin film light emitting layer sufficiently functioned as a light emitting layer thin film for an EL element.
(Example 2)

ガリウム(Ga)に対して錫(Sn)を33原子%混合した粉末に発光中心材料として二酸化ユーロピウム(Eu)粉末をGaに対して、6.0原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体粉末を作製した。該蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃、基体−ターゲット間距離25mmの条件下でEu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層を形成した。その後、大気中において、600℃で1時間のアニール処理を行った。Europium dioxide (Eu 2 O 3 ) powder as a luminescent center material was sufficiently mixed so as to contain 6.0 atomic% with respect to Ga in a powder in which 33 atomic% of tin (Sn) was mixed with gallium (Ga). Thereafter, the resultant was baked at 1000 ° C. for 1 hour in an argon (Ar) gas atmosphere to produce Eu-doped gallium oxide-tin oxide multi-component oxide phosphor powder. A sputtering target was prepared using the phosphor powder, and on the sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer, in argon (Ar) gas, gas pressure 6 Pa, sputtering input power 100 W, substrate temperature 275 An Eu-added gallium oxide-tin oxide multi-component oxide phosphor light-emitting layer was formed under the conditions of ° C and a substrate-target distance of 25 mm. Thereafter, annealing treatment was performed at 600 ° C. for 1 hour in the air.

600℃で熱処理を施した該蛍光体薄膜はX線回折測定の結果、非晶質であった。また、PL発光色は実用に十分耐えうる色純度の赤色発光を実現できた。また、該蛍光体薄膜を電子線励起したところ、市販の赤色蛍光体と同等以上の高発光効率赤色カソードルミネッセンス(CL)を実現できた。The phosphor thin film heat-treated at 600 ° C. was amorphous as a result of X-ray diffraction measurement. In addition, the PL emission color was able to realize red emission with a color purity that could be sufficiently put into practical use. Moreover, when the phosphor thin film was excited with an electron beam, a high emission efficiency red cathode luminescence (CL) equivalent to or higher than that of a commercially available red phosphor could be realized.

そして該発光層薄膜上にアルミニウム添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、実用に十分耐えうる輝度の赤色EL発光を実現できた。
(実施例3)
An EL element was prepared by forming an aluminum-added zinc oxide (ZnO: Al) transparent electrode on the light emitting layer thin film and a metal Al electrode on the back surface. When a 1 kHz sine wave AC voltage was applied to the EL element, red EL light emission with a luminance sufficient for practical use could be realized.
(Example 3)

ガリウム(Ga)に対して錫(Sn)を16.5原子%混合した粉末に発光中心材料として二酸化ユーロピウム(Eu)粉末をGaに対して、6.0原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体粉末を作製した。該蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度350℃、基体−ターゲット間距離25mmの条件下でEu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層を形成した。その後、大気中において、600℃で1時間のアニール処理を行った。Sufficient to contain 6.0 atomic% of europium dioxide (Eu 2 O 3 ) powder as a luminescent center material with respect to Ga in a powder in which 16.5 atomic% of tin (Sn) is mixed with gallium (Ga) After mixing, the powder was baked at 1000 ° C. for 1 hour in an argon (Ar) gas atmosphere to produce Eu-doped gallium oxide-tin oxide multi-component oxide phosphor powder. A sputtering target is prepared using the phosphor powder, and a sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer is placed on an argon (Ar) gas with a gas pressure of 6 Pa, a sputtering input power of 100 W, and a substrate temperature of 350. An Eu-added gallium oxide-tin oxide multi-component oxide phosphor light-emitting layer was formed under the conditions of ° C and a substrate-target distance of 25 mm. Thereafter, annealing treatment was performed at 600 ° C. for 1 hour in the air.

600℃で熱処理を施した該蛍光体薄膜はX線回折測定の結果、GaSnOを含む非晶質であった。また、PL発光色は実用に十分耐えうる色純度の赤色発光を実現できた。また、該蛍光体薄膜を電子線励起したところ、市販の赤色蛍光体と同等以上の高発光効率赤色カソードルミネッセンス(CL)を実現できた。As a result of X-ray diffraction measurement, the phosphor thin film subjected to heat treatment at 600 ° C. was amorphous including Ga 4 SnO 8 . In addition, the PL emission color was able to realize red emission with a color purity that could be sufficiently put into practical use. Moreover, when the phosphor thin film was excited with an electron beam, a high emission efficiency red cathode luminescence (CL) equivalent to or higher than that of a commercially available red phosphor could be realized.

そして該発光層薄膜上にアルミニウム添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、実用に十分耐えうる輝度の赤色EL発光を実現できた。
(実施例4)
An EL element was prepared by forming an aluminum-added zinc oxide (ZnO: Al) transparent electrode on the light emitting layer thin film and a metal Al electrode on the back surface. When a 1 kHz sine wave AC voltage was applied to the EL element, red EL light emission with a luminance sufficient for practical use could be realized.
Example 4

ガリウム(Ga)に対して錫(Sn)を16.5原子%混合した粉末に発光中心材料として二酸化ユーロピウム(Eu)粉末をGaに対して、0.5から10原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体粉末を作製した。該蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃、基体−ターゲット間距離25mmの条件下でEu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層を形成した。その後、大気中において、600℃で1時間のアニール処理を行った。Europium dioxide (Eu 2 O 3 ) powder as a luminescent center material in a powder in which 16.5 atomic% of tin (Sn) is mixed with gallium (Ga) is contained in an amount of 0.5 to 10 atomic% with respect to Ga. Then, the mixture was baked at 1000 ° C. for 1 hour in an argon (Ar) gas atmosphere to produce Eu-doped gallium oxide-tin oxide multi-component oxide phosphor powder. A sputtering target was prepared using the phosphor powder, and on the sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer, in argon (Ar) gas, gas pressure 6 Pa, sputtering input power 100 W, substrate temperature 275 An Eu-added gallium oxide-tin oxide multi-component oxide phosphor light-emitting layer was formed under the conditions of ° C and a substrate-target distance of 25 mm. Thereafter, annealing treatment was performed at 600 ° C. for 1 hour in the air.

図4に該蛍光体薄膜のフォトルミネッセンス(PL)スペクトルのEu添加量依存性を示す。同図に示すように、PL強度はEu添加量6原子%でピークを持ちそれ以上の添加量では低下した。FIG. 4 shows the Eu addition amount dependence of the photoluminescence (PL) spectrum of the phosphor thin film. As shown in the figure, the PL intensity had a peak at an Eu addition amount of 6 atomic% and decreased at an addition amount higher than that.

そして該発光層薄膜上にアルミニウ厶添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、Eu添加量6原子%で作製した該蛍光体薄膜を用いたEL素子において、最も高輝度が実現でき、実用に十分耐えうる色純度の赤色EL発光を実現できた。これにより、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層がEL素子用発光層薄膜として十分機能した。
(実施例5)
An EL device was fabricated by forming an aluminum soot-added zinc oxide (ZnO: Al) transparent electrode on the light emitting layer thin film and a metal Al electrode on the back surface. When a 1 kHz sine wave AC voltage is applied to the EL element, the EL element using the phosphor thin film produced with an Eu addition amount of 6 atomic% can achieve the highest luminance, and has a color purity that can sufficiently withstand practical use. EL emission was achieved. As a result, the Eu-doped gallium oxide-tin oxide multi-component oxide phosphor thin film light emitting layer sufficiently functioned as a light emitting layer thin film for an EL element.
(Example 5)

ガリウム(Ga)に対して錫(Sn)を16.5原子%混合した粉末に発光中心材料として二酸化ユーロピウム(Eu)及び二酸化マンガン(MnO)粉末をGaに対して、それぞれ6.0原子%及び2原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Eu、Mn共添加酸化ガリウム−酸化錫多元系酸化物蛍光体粉末を作製した。該蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃、基体−ターゲット間距離25mmの条件下でEu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層を形成した。その後、大気中において、700℃で1時間のアニール処理を行った。5. Europium dioxide (Eu 2 O 3 ) and manganese dioxide (MnO 2 ) powders as a luminescent center material in a powder obtained by mixing 16.5 atomic% of tin (Sn) with respect to gallium (Ga), respectively. After sufficiently mixing to contain 0 atomic% and 2 atomic%, it is fired in an argon (Ar) gas atmosphere at 1000 ° C. for 1 hour, whereby Eu and Mn co-doped gallium oxide-tin oxide multicomponent oxide fluorescence A body powder was prepared. A sputtering target was prepared using the phosphor powder, and on the sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer, in argon (Ar) gas, gas pressure 6 Pa, sputtering input power 100 W, substrate temperature 275 An Eu-added gallium oxide-tin oxide multi-component oxide phosphor light-emitting layer was formed under the conditions of ° C and a substrate-target distance of 25 mm. Thereafter, annealing treatment was performed in the atmosphere at 700 ° C. for 1 hour.

該蛍光体薄膜からは、赤と緑色のPL発光が観測された。そして該発光層薄膜上にアルミニウ厶添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、該蛍光体薄膜を用いたEL素子においては、印加電圧の増加に伴ってEL発光色が緑から赤色へと変化した。これにより、Eu、Mn共添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜発光層がEL素子用発光層薄膜として十分機能した。Red and green PL emissions were observed from the phosphor thin film. An EL device was fabricated by forming an aluminum soot-added zinc oxide (ZnO: Al) transparent electrode on the light emitting layer thin film and a metal Al electrode on the back surface. When a 1 kHz sine wave AC voltage was applied to the EL element, in the EL element using the phosphor thin film, the EL emission color changed from green to red as the applied voltage increased. As a result, the Eu and Mn co-doped gallium oxide-tin oxide multi-component oxide phosphor thin film light emitting layer sufficiently functioned as a light emitting layer thin film for EL elements.

発明の効果The invention's effect

本発明によれば、Eu添加酸化ガリウム−酸化錫多元系酸化物蛍光体薄膜を公知の成膜技術を用いて形成し、膜のガリウムに対する錫の原子比を5から95原子%、好ましくは14から18原子%、及び該蛍光体薄膜が3元化合物であるGaSnOを含むように膜の組成を制御して形成し、その後、酸化性雰囲気中、400〜800℃、好ましくは500〜700℃の比較的低温度で熱処理を施すことにより非晶質の薄膜を形成する製造方法を用いることにより、フォトルミネッセンス(PL)、カソードルミネッセンス(CL)及びエレクトロルミネッセンス(EL)のいずれにおいても高輝度赤色発光を実現できた。特に、EL素子用発光層材料としては、高い色純度を実現でき、加えて、該蛍光体は酸化物特有の極めて高い化学的安定性有する。以上のことから、該薄膜蛍光体は薄膜EL素子を始めとして、蛍光ランプ、プラズマディスプレイ、ブラウン管等の蛍光体として広範な応用が可能でありその効果は絶大である。According to the present invention, an Eu-doped gallium oxide-tin oxide multi-component oxide phosphor thin film is formed using a known film formation technique, and the atomic ratio of tin to gallium in the film is 5 to 95 atomic%, preferably 14 To 18 atomic%, and the phosphor thin film is formed by controlling the composition of the film so as to contain Ga 4 SnO 8 which is a ternary compound, and thereafter in an oxidizing atmosphere, 400 to 800 ° C., preferably 500 to By using a manufacturing method in which an amorphous thin film is formed by performing a heat treatment at a relatively low temperature of 700 ° C., high photoluminescence (PL), cathodoluminescence (CL), and electroluminescence (EL). Bright red emission was achieved. In particular, as a light emitting layer material for an EL element, high color purity can be realized, and in addition, the phosphor has extremely high chemical stability peculiar to oxides. From the above, the thin film phosphor can be widely applied as a phosphor such as a thin film EL element, a fluorescent lamp, a plasma display, and a cathode ray tube, and its effect is enormous.

実施例1における該蛍光体薄膜のフォトルミネッセンス(PL)スペクトルのアニール処理温度依存性Dependence of annealing temperature on photoluminescence (PL) spectrum of the phosphor thin film in Example 1 実施例1における該蛍光体薄膜のフォトルミネッセンス(PL)のCIE色度座標CIE chromaticity coordinates of photoluminescence (PL) of the phosphor thin film in Example 1 実施例1における該蛍光体薄膜を発光層用いた薄膜EL素子の1kHz正弦波駆動時の輝度−印加電圧特性Luminance-applied voltage characteristics at the time of 1 kHz sine wave driving of a thin film EL element using the phosphor thin film as a light emitting layer in Example 1 実施例4における該蛍光体薄膜のフォトルミネッセンス(PL)スペクトルのEu添加量依存性Dependence of Eu on the photoluminescence (PL) spectrum of the phosphor thin film in Example 4

Claims (10)

ガリウム(Ga)及び錫(Sn)を主成分とするGa−Sn−O系酸化物母体材料に発光中心材料として少なくとも1種類以上の希土類元素を添加してなる非晶質の蛍光体において、該母体材料の組成がガリウムに対して錫の原子比が5から95原子%であることを特徴とする薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体。In an amorphous phosphor obtained by adding at least one kind of rare earth element as a luminescent center material to a Ga—Sn—O-based oxide base material containing gallium (Ga) and tin (Sn) as main components, A multi-component oxide phosphor for a thin-film electroluminescence device, wherein the composition of the base material is an atomic ratio of tin to gallium of 5 to 95 atomic%. 前記請求項1記載のGa−Sn−O系酸化物母体材料に発光中心材料として少なくとも1種類以上の希土類元素を添加してなる非晶質の蛍光体において、該母体材料の組成がガリウムに対して錫の原子比が14から18原子%であることを特徴とする薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体。An amorphous phosphor obtained by adding at least one kind of rare earth element as an emission center material to the Ga—Sn—O-based oxide matrix material according to claim 1, wherein the composition of the matrix material is smaller than that of gallium. A multi-element oxide phosphor for a thin-film electroluminescent device, wherein the atomic ratio of tin is 14 to 18 atomic%. 前記請求項1及び2記載のGa−Sn−O系酸化物母体材料に発光中心材料として少なくとも1種類以上の希土類元素を添加してなる非晶質の蛍光体において、該母体材料が酸化ガリウム(Ga)と酸化錫(SnO)を含む複合酸化物であることを特徴とする薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体。3. An amorphous phosphor obtained by adding at least one kind of rare earth element as a luminescent center material to the Ga—Sn—O-based oxide matrix material according to claim 1 or 2, wherein the matrix material is gallium oxide ( A multi-component oxide phosphor for a thin-film electroluminescence device, which is a composite oxide containing Ga 2 O 3 ) and tin oxide (SnO 2 ). 前記請求項1及び2記載のGa−Sn−O系酸化物母体材料に発光中心材料として少なくとも1種類以上の希土類元素を添加してなる非晶質の蛍光体において、該母体材料が3元化合物であるGaSnOを主成分とすることを特徴とする薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体。3. An amorphous phosphor obtained by adding at least one kind of rare earth element as an emission center material to the Ga—Sn—O-based oxide matrix material according to claim 1 or 2, wherein the matrix material is a ternary compound. A multi-component oxide phosphor for a thin-film electroluminescence device, characterized in comprising Ga 4 SnO 8 as a main component. 発光中心材料がユーロピウム(Eu)であることを特徴とする前記請求項1〜4記載の薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体。The multi-component oxide phosphor for a thin-film electroluminescence device according to claim 1, wherein the emission center material is europium (Eu). 発光中心材料として添加するユーロピウム(Eu)が母体材料のガリウム(Ga)に対して1〜11原子%、好ましくは4〜8原子%であることを特徴とする前記請求項1〜5記載の薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体。6. The thin film according to claim 1, wherein europium (Eu) added as a luminescent center material is 1 to 11 atomic%, preferably 4 to 8 atomic%, based on gallium (Ga) as a base material. Multi-element oxide phosphor for electroluminescence element. 前記発光中心材料であるEuに加えて少なくとも一種類以上の任意の元素を共添加することを特徴とする前記請求項1〜6記載の薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体。The multi-element oxide phosphor for a thin film electroluminescent device according to claim 1, wherein at least one kind of arbitrary element is co-added in addition to Eu as the luminescent center material. 前記請求項1〜7記載のGa−Sn−O系酸化物蛍光体を発光層として使用することを特徴とする薄膜エレクトロルミネッセンス素子。A thin film electroluminescent device using the Ga—Sn—O-based oxide phosphor according to claim 1 as a light emitting layer. 前記請求項1〜7記載のGa−Sn−O系酸化物蛍光体の薄膜を任意の作製方法で形成した後、酸化性雰囲気中、400〜800℃、好ましくは500〜700℃で熱処理することを特徴とする薄膜エレクトロルミネッセンス素子用多元系酸化物蛍光体薄膜の製造方法。A thin film of the Ga-Sn-O-based oxide phosphor according to any one of claims 1 to 7 is formed by an arbitrary manufacturing method, and then heat-treated in an oxidizing atmosphere at 400 to 800 ° C, preferably 500 to 700 ° C. A method for producing a multi-element oxide phosphor thin film for a thin film electroluminescence device. 前記請求項9記載の製造方法により作製した前記請求項1〜7記載の酸化ガリウム−酸化錫多元系酸化物蛍光体の薄膜を発光層として使用することを特徴とする薄膜エレクトロルミネッセンス素子の製造方法。A method for producing a thin film electroluminescent device, wherein the thin film of the gallium oxide-tin oxide multi-component oxide phosphor according to claim 1 produced by the production method according to claim 9 is used as a light emitting layer. .
JP2003347586A 2003-08-29 2003-08-29 Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element Pending JP2005076024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347586A JP2005076024A (en) 2003-08-29 2003-08-29 Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347586A JP2005076024A (en) 2003-08-29 2003-08-29 Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element

Publications (1)

Publication Number Publication Date
JP2005076024A true JP2005076024A (en) 2005-03-24

Family

ID=34419604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347586A Pending JP2005076024A (en) 2003-08-29 2003-08-29 Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element

Country Status (1)

Country Link
JP (1) JP2005076024A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278102A (en) * 2005-03-29 2006-10-12 Japan Science & Technology Agency Electroluminescent element
JP2008147084A (en) * 2006-12-12 2008-06-26 Japan Science & Technology Agency Oxide electroluminescent element
WO2010018707A1 (en) * 2008-08-11 2010-02-18 出光興産株式会社 Gallium oxide-tin oxide based oxide sintered body and oxide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278102A (en) * 2005-03-29 2006-10-12 Japan Science & Technology Agency Electroluminescent element
JP2008147084A (en) * 2006-12-12 2008-06-26 Japan Science & Technology Agency Oxide electroluminescent element
WO2010018707A1 (en) * 2008-08-11 2010-02-18 出光興産株式会社 Gallium oxide-tin oxide based oxide sintered body and oxide film

Similar Documents

Publication Publication Date Title
KR100355456B1 (en) A red phosphor for fluorescent display and a preparation method thereof
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
JP2004533095A (en) Single source sputtering of thioaluminate phosphor films
JP4042895B2 (en) Oxide phosphor for PL, CL or EL, electroluminescence element, and method for producing the same
JP4047095B2 (en) Inorganic electroluminescent device and manufacturing method thereof
JP2005076024A (en) Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
JP2009001699A (en) Red-emitting phosphor, fed device, and eld device
JP4944408B2 (en) Oxide phosphor, light emitting element, and display device
JPH0935869A (en) Manufacture of electroluminescence element
JP2008214461A (en) Phosphor film and phosphor film production method
US6707249B2 (en) Electroluminescent device and oxide phosphor for use therein
JP4994678B2 (en) Green phosphor and method for producing the same
JP2004307808A (en) Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material
JP5283166B2 (en) Collision excitation type EL phosphor, method for manufacturing collision excitation type EL phosphor thin film, thin film EL element, thin film EL display, and thin film EL lamp
JP2011057953A (en) Ultraviolet excitation phosphor, electron-beam excitation phosphor, blue phosphor for collision excitation type el, method for producing thin film of blue phosphor for collision excitation type el, filmy el element, filmy el display, and filmy el lamp
JP4516390B2 (en) Phosphor
JP3726134B2 (en) Electroluminescent light emitting layer thin film, inorganic thin film electroluminescent element, and method for producing light emitting layer thin film
JP5099820B2 (en) Red light emitting phosphor, FED device and ELD device
JP2004099692A (en) Zinc oxide phosphor
JP2002201469A (en) Oxide phosphor for electroluminescence device and electroluminescence device
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JP4928329B2 (en) Thin film inorganic EL element
JP3865122B2 (en) Sulfur oxide phosphor for electroluminescence device and electroluminescence device
JP2006219641A (en) Light-emitting material and light-emitting element
KR100449582B1 (en) Phosphors and their preparation method for field emission display