JP2005070982A - Travel controller for vehicle - Google Patents

Travel controller for vehicle Download PDF

Info

Publication number
JP2005070982A
JP2005070982A JP2003297996A JP2003297996A JP2005070982A JP 2005070982 A JP2005070982 A JP 2005070982A JP 2003297996 A JP2003297996 A JP 2003297996A JP 2003297996 A JP2003297996 A JP 2003297996A JP 2005070982 A JP2005070982 A JP 2005070982A
Authority
JP
Japan
Prior art keywords
vehicle
traveling path
target
travel
travel control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003297996A
Other languages
Japanese (ja)
Inventor
Hajime Koyama
哉 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2003297996A priority Critical patent/JP2005070982A/en
Publication of JP2005070982A publication Critical patent/JP2005070982A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely prevent inaccurate control from being executed when an advancing route of own vehicle is not found accurately. <P>SOLUTION: Whether a vehicular speed is a very low speed or not is determined (S102) in automatic steering of automatic steering control, the advancing route of the own vehicle is estimated (S103) when not in the very low speed, a node on a target advancing route nearest from the present own vehicle position is extracted (S104), and a front-side contemplating distance is found (S105). The node on the target advancing route in the vicinity of the front-side contemplating distance is set thereafter as a guide target node (S106), a lateral shift level of the guide target node from the own vehicle advancing route is computed as a target node deviation (S107), and a target steering wheel angle is calculated thereafter (S108). Then, a steering wheel angle deviation is computed (S109), and a indication current of a motor-driven power steering motor is computed thereafter (S10). The automatic steering is interrupted (S112), when the vehicular speed is the very low speed in the S102. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、人工衛星から取得される自車位置と地図等に設定した目標進行路と現在の自車進行路とから自車両を目標進行路に沿って自動操縦や自動操舵により走行制御する車両の走行制御装置に関する。   The present invention relates to a vehicle for controlling driving of an own vehicle along the target traveling path by automatic steering or automatic steering based on the position of the own vehicle acquired from an artificial satellite, a target traveling path set in a map and the like and the current traveling path of the vehicle The present invention relates to a traveling control apparatus.

近年、人工衛星から得られる位置データに基づいて車両の位置を検出するGPS(Global Positioning System)が、車両用のナビゲーション装置において広く用いられており、このGPSで検出した自車位置情報を基に走行制御する様々な技術が提案され、実用化されている。   In recent years, GPS (Global Positioning System) that detects the position of a vehicle based on position data obtained from an artificial satellite has been widely used in navigation devices for vehicles, and based on the own vehicle position information detected by this GPS. Various techniques for running control have been proposed and put into practical use.

例えば、特開2003−26017号公報では、GPSからの情報を基に自車位置を検出し、走行目標である目標軌跡を演算し、操舵周波数応答に依存して前方注視距離を演算する。そして、自車両進行方向ベクトルを基に、前方注視距離位置での自車両と目標軌跡との将来位置横偏差を演算し、現在位置での自車両と目標軌跡との現在位置横偏差を演算し、現在位置横偏差と将来位置横偏差に基づき、自車両が目標軌跡に追従する操舵を行うための目標舵角変化量を演算し、演算された目標舵角変化量を得る指令値により操舵を行う自動操舵の技術が開示されている。
特開2003−26017号公報
For example, in Japanese Patent Application Laid-Open No. 2003-26017, the vehicle position is detected based on information from GPS, a target trajectory that is a travel target is calculated, and a forward gaze distance is calculated depending on a steering frequency response. Then, based on the vehicle traveling direction vector, the future position lateral deviation between the host vehicle and the target locus at the forward gaze distance position is calculated, and the current position lateral deviation between the host vehicle and the target locus at the current position is calculated. Then, based on the current position lateral deviation and the future position lateral deviation, the target steering angle change amount for steering the vehicle to follow the target locus is calculated, and the steering is performed with a command value for obtaining the calculated target steering angle change amount. Techniques for performing automatic steering are disclosed.
JP 2003-26017 A

しかしながら、上述の特許文献1の技術では、将来位置横偏差を演算するにあたり、自車両進行方向ベクトルを基準に求めるようになっているため、自車両進行方向ベクトルが不正確な場合、将来位置横偏差が精度良く求められず、精度の良い自動操舵ができないという問題がある。   However, since the technique of the above-mentioned Patent Document 1 calculates the future position lateral deviation based on the own vehicle traveling direction vector, if the own vehicle traveling direction vector is incorrect, the future position lateral deviation is calculated. There is a problem that the deviation cannot be obtained with high accuracy and automatic steering with high accuracy cannot be performed.

本発明は上記事情に鑑みてなされたもので、自車進行路が正確に求められない場合は、不正確な制御の実行を確実に防止することができる車両の走行制御装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a vehicle travel control device that can reliably prevent the execution of inaccurate control when the own vehicle traveling path is not accurately obtained. Objective.

本発明は、地球を周回する衛星からの情報を基に自車両の走行制御を行う車両の走行制御装置において、上記衛星からの情報に基づき自車位置を演算する自車位置演算手段と、上記自車位置の経時変化を基に自車進行路を推定する自車進行路推定手段と、自車両の走行すべき目標進行路を設定する目標進行路設定手段と、上記自車位置と上記自車進行路と上記目標進行路とに応じて自車両の走行制御を実行させる走行制御手段とを備え、自車速が予め設定しておいた極低速の場合には、上記自車進行路の推定を禁止させることを特徴としている。   The present invention relates to a vehicle travel control device for performing travel control of a host vehicle based on information from a satellite orbiting the earth, a host vehicle position calculation means for calculating the host vehicle position based on information from the satellite, Vehicle traveling path estimating means for estimating the traveling path of the vehicle based on a change over time of the vehicle position, target traveling path setting means for setting a target traveling path for the vehicle to travel, the vehicle position and the vehicle Travel control means for executing travel control of the host vehicle according to the vehicle travel path and the target travel path, and when the host vehicle speed is a preset very low speed, the host vehicle travel path is estimated It is characterized by prohibiting.

本発明による車両の走行制御装置は、自車進行路が正確に求められない場合は、不正確な制御の実行を確実に防止することが可能となる。   The vehicle travel control apparatus according to the present invention can reliably prevent the execution of inaccurate control when the own vehicle traveling path is not accurately obtained.

以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図4は本発明の実施の形態を示し、図1は車両の走行制御装置の全体を示す概略説明図、図2は自動操縦制御の自動操舵のフローチャート、図3は自動操舵の原理の説明図、図4は自車進行路が正確に推定できない場合の自動操舵の一例を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show an embodiment of the present invention, FIG. 1 is a schematic explanatory view showing the entire vehicle travel control device, FIG. 2 is a flowchart of automatic steering of automatic steering control, and FIG. 3 is a principle of automatic steering. FIG. 4 is an explanatory diagram showing an example of automatic steering when the own vehicle traveling path cannot be accurately estimated.

図1に示すように、本実施の形態は、GPSの形態の中でも、周知のRTK(Real-Time Kinematic)−GPSを用いて制御を行うものであり、地球を周回する人工衛星(GPS衛星)1からの情報(測位計算等に必要な衛星の軌道情報をはじめとするデータ等)は、基準局2と、移動局である自車両3により受信される。   As shown in FIG. 1, the present embodiment performs control using a well-known RTK (Real-Time Kinematic) -GPS among GPS forms, and is an artificial satellite (GPS satellite) that orbits the earth. Information from 1 (data including satellite orbit information necessary for positioning calculation etc.) is received by the reference station 2 and the own vehicle 3 as a mobile station.

基準局2は、予め位置が正確に求められている地点に設けられており、GPSアンテナ2a、GPS受信機2b、無線機2cを備えて主要に構成されている。そして、この基準局2で観測したGPS衛星1からの電波の位相情報、疑似距離、及び、基準局2の位置座標を、測位する地点、すなわち、移動局である自車両3に無線機2cにより送信する。基準局2からは、具体的には、誤差補正量、疑似距離補正量、座標値等のデータ等が自車両3に対して送信される。   The reference station 2 is provided at a point where the position is accurately obtained in advance, and mainly includes a GPS antenna 2a, a GPS receiver 2b, and a radio 2c. Then, the phase information of the radio wave from the GPS satellite 1 observed at the reference station 2, the pseudo distance, and the position coordinates of the reference station 2 are transmitted by the radio device 2c to the positioning vehicle, that is, the own vehicle 3 which is a mobile station. . Specifically, the reference station 2 transmits data such as an error correction amount, a pseudo distance correction amount, and coordinate values to the host vehicle 3.

移動局である自車両3には、GPSアンテナ3a、GPS受信機3b、無線機3cが搭載されており、上述の基準局2からの誤差補正量、疑似距離補正量、座標値等のデータ(無線機3cで受信されるデータ)や、自車両3で受信したGPS衛星1からの情報をGPS受信機3b内で比較解析することにより、自車位置(座標値)を即座に精度良く(例えば、誤差1〜5cm)得られるようになっている。このように、GPS受信機3bは、自車位置演算手段としての機能を有している。   A self-vehicle 3 that is a mobile station is equipped with a GPS antenna 3a, a GPS receiver 3b, and a wireless device 3c. Data such as an error correction amount, a pseudo-range correction amount, a coordinate value, and the like from the reference station 2 described above (wireless Data received by the machine 3c) and information from the GPS satellite 1 received by the host vehicle 3 are compared and analyzed in the GPS receiver 3b, so that the host vehicle position (coordinate values) can be obtained immediately and accurately (for example, Error 1-5 cm). Thus, the GPS receiver 3b has a function as a vehicle position calculation means.

また、自車両3には、制御装置3dが設けられており、この制御装置3dには、GPS受信機3bが図示しないシリアル−CAN変換器等を介して接続され現在位置情報が入力されると共に、車速Vを検出する車速センサ3e、ハンドル角θHを検出するハンドル角センサ3f等のセンサ類と自動操縦制御のメインスイッチ3gが接続されている。   The host vehicle 3 is provided with a control device 3d. A GPS receiver 3b is connected to the control device 3d via a serial-CAN converter or the like (not shown) and current position information is input. Sensors such as a vehicle speed sensor 3e for detecting the vehicle speed V, a handle angle sensor 3f for detecting the handle angle θH, and a main switch 3g for automatic steering control are connected.

更に、自車両3の制御装置3dには、図示しないハードディスク、或いは、CD、DVD等の記憶メディアに予め必要な地図情報が記憶されている。この地図情報は、例えばダッシュボード上に設けられた液晶ディスプレイ3hに適宜表示され、ドライバが図示しないリモコン装置等により目的地を入力することで、現在の自車位置と、この現在位置から目的地までの最適なコース(目標進行路:ノード列で与えられる)を、地図上に表示する。   Further, the control device 3d of the host vehicle 3 stores necessary map information in advance on a hard disk (not shown) or a storage medium such as a CD or a DVD. This map information is appropriately displayed on, for example, a liquid crystal display 3h provided on the dashboard, and the driver inputs a destination using a remote control device (not shown), so that the current vehicle position and the destination can be determined from the current position. The optimal course up to (target path: given in node sequence) is displayed on the map.

また、自車両3の制御装置3dには、自動操縦制御を実行するアクチュエータとして、電動スロットル弁制御装置3i、ブレーキ制御装置3j、及び、電動パワーステアリング制御装置3kが接続されている。   In addition, an electric throttle valve control device 3i, a brake control device 3j, and an electric power steering control device 3k are connected to the control device 3d of the host vehicle 3 as actuators that execute automatic steering control.

そして、ドライバが自動操縦制御のメインスイッチ3gをONし、自動操縦制御における目標車速が設定されると、この目標車速を維持するように、電動スロットル弁制御装置3iに信号を出力してスロットル弁3lを駆動させ、加速、或いは、減速を実行させ、所定以上の大きな減速を行わせる際には、ブレーキ制御装置3jに信号を出力して自動ブレーキを作動させる。   When the driver turns on the main switch 3g for autopilot control and the target vehicle speed in the autopilot control is set, the driver outputs a signal to the electric throttle valve control device 3i so as to maintain the target vehicle speed. When 3l is driven to accelerate or decelerate and a large deceleration greater than a predetermined value is performed, a signal is output to the brake control device 3j to activate the automatic brake.

次に、自車両3の制御装置3dにおける自動操縦制御の自動操舵について、図2のフローチャート及び図3の自動操舵の原理の説明図で説明する。図2のフローチャートは、自動操縦制御のメインスイッチ3gがONされると、所定時間毎に実行されるプログラムで、まず、ステップ(以下、「S」と略称)101で必要なパラメータの読み込みが行われる。   Next, automatic steering of automatic steering control in the control device 3d of the host vehicle 3 will be described with reference to the flowchart of FIG. 2 and the explanatory diagram of the principle of automatic steering of FIG. The flowchart in FIG. 2 is a program that is executed every predetermined time when the main switch 3g for autopilot control is turned on. First, necessary parameters are read in step (hereinafter abbreviated as “S”) 101. Is called.

次に、S102に進み、車速が極低速か否か判定され、極低速でない場合は、S103以降へと進む。   Next, it progresses to S102 and it is determined whether the vehicle speed is very low speed, and when it is not extremely low speed, it progresses to S103 or later.

S103では、自車位置の過去の履歴の中から、例えば、現在位置より5m手前の自車測位点履歴を抽出し、この5m手前の自車測位点と現在の自車位置とを結んで自車進行路を推定する。   In S103, for example, the vehicle positioning point history 5m before the current position is extracted from the past history of the vehicle position, and the vehicle positioning point 5m before and the current vehicle position are connected. Estimate the car traveling path.

次いで、S104に進み、現在の自車位置から最も近い、目標進行路のノードを抽出する。   Next, the process proceeds to S104, and the node of the target traveling path that is closest to the current vehicle position is extracted.

その後、S105に進み、現在の自車速と、予め設定しておいた前方注視時間(例えば、1.5秒)より、前方注視距離を求める。例えば、現在の自車速が20km/hの場合は、前方注視距離は、5.56m・1.5秒=8.34m。   Thereafter, the process proceeds to S105, and the forward gaze distance is obtained from the current host vehicle speed and the preset forward gaze time (for example, 1.5 seconds). For example, when the current vehicle speed is 20 km / h, the forward gaze distance is 5.56 m · 1.5 seconds = 8.34 m.

次いで、S106に進み、S105で求めた前方注視距離近傍の目標進行路上のノードを誘導目標ノードとして設定する。   Next, the process proceeds to S106, and a node on the target traveling path in the vicinity of the forward gaze distance obtained in S105 is set as the guidance target node.

次に、S107に進み、誘導目標ノードと自車進行路からの横方向のずれ量を目標ノード偏差ΔDとして演算する。   Next, proceeding to S107, the lateral deviation from the guidance target node and the own vehicle traveling path is calculated as the target node deviation ΔD.

次いで、S108に進み、目標ノード偏差ΔDをゼロにするように目標ハンドル角δhを以下の式により算出する。
δh=Gp・ΔD+Gd・(d(ΔD)/dt)
ここで、Gpは比例項ゲインであり、Gdは微分項ゲインである。
Next, in S108, the target handle angle δh is calculated by the following formula so that the target node deviation ΔD is zero.
δh = Gp · ΔD + Gd · (d (ΔD) / dt)
Here, Gp is a proportional term gain, and Gd is a differential term gain.

次に、S109に進み、目標ハンドル角δhとハンドル角センサ3fで検出した実際のハンドル角θHとからハンドル角偏差Δδ(=δh−θH)を演算する。   Next, in S109, a handle angle deviation Δδ (= δh−θH) is calculated from the target handle angle δh and the actual handle angle θH detected by the handle angle sensor 3f.

次いで、S110に進み、以下の式によりハンドル角偏差Δδをゼロにするように、電動パワーステアリング制御装置3kにおける電動パワーステアリングモータの指示電流Iδを演算し、S111で、この指示電流Iδを出力してプログラムを抜ける。
Iδ=Kp・Δδ+Kd・(d(Δδ)/dt)+Ki・∫Δδdt
ここで、Kpは比例項ゲイン、Kdは微分項ゲイン、Kiは積分項ゲインである。
Next, in S110, the command current Iδ of the electric power steering motor in the electric power steering control device 3k is calculated so that the steering wheel angle deviation Δδ is zero by the following formula, and this command current Iδ is output in S111. Exit the program.
Iδ = Kp · Δδ + Kd · (d (Δδ) / dt) + Ki · ∫Δδdt
Here, Kp is a proportional term gain, Kd is a differential term gain, and Ki is an integral term gain.

一方、前述のS102で、車速が極低速であると判断した場合は、S112に進み、自動操縦を中止してプログラムを抜ける。すなわち、図4に示すように、車速が極低速の場合は、5m手前の自車測位点と現在の自車位置との間に複数の測位点が存在し、単純に、5m手前の自車測位点と現在の自車位置とを結ぶことによっては正確な自車進行路が推定できない。図4の例では、5m手前の自車測位点と現在の自車位置とを結んで推定する自車進行路と、実際の自車進行路との間にはθeの誤差が生じることになる。このように自車進行路が正確に推定できない状況においては、誤差を含む自車進行路で自動操縦を継続するより中止した方が好ましい。従って、本実施の形態では、自車位置の経時変化を基に自車進行路を推定するため、自車速が予め設定しておいた極低速の場合には、上記自車進行路の推定を禁止させることで、却って誤差の多い制御を実行することを防止するようになっている。尚、自動操縦を中止するのではなく、前回まで行われていた自動操縦を今回も継続させるようにしても良い。   On the other hand, if it is determined in S102 that the vehicle speed is extremely low, the process proceeds to S112, and the automatic steering is stopped and the program is exited. That is, as shown in FIG. 4, when the vehicle speed is extremely low, there are a plurality of positioning points between the own vehicle positioning point 5 meters before and the current vehicle position, and the own vehicle 5 meters before is simply An accurate own vehicle traveling path cannot be estimated by connecting the positioning point and the current vehicle position. In the example of FIG. 4, an error of θe occurs between the own vehicle traveling path estimated by connecting the own vehicle positioning point 5 m before and the current own vehicle position and the actual own vehicle traveling path. . In such a situation where the host vehicle traveling path cannot be accurately estimated, it is preferable to stop the autopilot operation rather than continue on the host vehicle traveling path including the error. Therefore, in the present embodiment, since the host vehicle traveling path is estimated based on the time-dependent change of the host vehicle position, the host vehicle traveling path is estimated when the host vehicle speed is a preset very low speed. By prohibiting it, it is possible to prevent the control with many errors on the contrary. Instead of stopping the autopilot, the autopilot that has been performed up to the previous time may be continued this time.

このように、本実施の形態においては、自車両3の制御装置3dは、自車進行路推定手段、目標進行路設定手段、及び、走行制御手段としての機能を有している。   Thus, in the present embodiment, the control device 3d of the host vehicle 3 has functions as host vehicle traveling path estimation means, target traveling path setting means, and travel control means.

また、本実施の形態においては、5m手前の自車測位点と現在の自車位置とを結ぶことで自車進行路を算出する例を用いて説明したが、本発明はこれに限定されない。すなわち、一定距離だけでなく、一定時間前の自車測位点を用いて算出する場合においても適用することができる。具体的には、図5に示すように、現在の自車測位データとΔt時間前の測位データを比較する場合であっても、図5(a)の極低速の場合ではGPSの持つ誤差により、自車進行方向ベクトルの誤差も大きくなり、図5(b)の通常速の場合に比べ、正確に方向を求めることが出来なくなる。この場合においても、極低速の場合に自車進行方向の推定を禁止することで、誤差の多い制御が実行されるのを禁止することが出来る。   Further, in the present embodiment, the description has been given using the example in which the own vehicle traveling path is calculated by connecting the own vehicle positioning point 5 m ahead and the current own vehicle position, but the present invention is not limited to this. That is, the present invention can be applied not only to a fixed distance, but also to a case where calculation is performed using a vehicle positioning point that is a fixed time ago. Specifically, as shown in FIG. 5, even if the current own vehicle positioning data and the positioning data before Δt time are compared, the extremely low speed in FIG. Further, the error of the own vehicle traveling direction vector also becomes large, and the direction cannot be obtained accurately as compared with the case of the normal speed in FIG. Even in this case, it is possible to prohibit the execution of the control with many errors by prohibiting the estimation of the traveling direction of the host vehicle at an extremely low speed.

車両の走行制御装置の全体を示す概略説明図Schematic explanatory diagram showing the entire vehicle travel control device 自動操縦制御の自動操舵のフローチャートFlow chart of automatic steering of automatic steering control 自動操舵の原理の説明図Illustration of the principle of automatic steering 自車進行路が正確に推定できない場合の自動操舵の一例を示す説明図Explanatory drawing which shows an example of the automatic steering when the own vehicle traveling path cannot be estimated accurately 一定時間前の自車測位点を用いて自車進行路を推定する際の車速に応じた誤差の大きさの説明図Explanatory drawing of the magnitude of the error according to the vehicle speed when estimating the own vehicle traveling path using the own vehicle positioning point before a certain time

符号の説明Explanation of symbols

1 GPS衛星
2 基準局
2a GPSアンテナ
2b GPS受信機
2c 無線機
3 自車両
3a GPSアンテナ
3b GPS受信機(自車位置演算手段)
3c 無線機
3d 制御装置(自車進行路推定手段、目標進行路設定手段、走行制御手段)
3e 車速センサ
3f ハンドル角センサ
3g メインスイッチ
3h 液晶ディスプレイ
3i 電動スロットル弁制御装置
3j ブレーキ制御装置
3k 電動パワーステアリング制御装置
3l スロットル弁

代理人 弁理士 伊 藤 進
1 GPS Satellite 2 Reference Station 2a GPS Antenna 2b GPS Receiver 2c Radio 3 Automobile 3a GPS Antenna 3b GPS Receiver (Own Vehicle Position Calculation Means)
3c wireless device 3d control device (own vehicle travel path estimation means, target travel path setting means, travel control means)
3e Vehicle speed sensor 3f Handle angle sensor 3g Main switch 3h Liquid crystal display 3i Electric throttle valve control device 3j Brake control device 3k Electric power steering control device 3l Throttle valve

Agent Patent Attorney Susumu Ito

Claims (3)

地球を周回する衛星からの情報を基に自車両の走行制御を行う車両の走行制御装置において、
上記衛星からの情報に基づき自車位置を演算する自車位置演算手段と、
上記自車位置の経時変化を基に自車進行路を推定する自車進行路推定手段と、
自車両の走行すべき目標進行路を設定する目標進行路設定手段と、
上記自車位置と上記自車進行路と上記目標進行路とに応じて自車両の走行制御を実行させる走行制御手段とを備え、
自車速が予め設定しておいた極低速の場合には、上記自車進行路の推定を禁止させることを特徴とする車両の走行制御装置。
In a vehicle travel control device that performs travel control of the host vehicle based on information from satellites orbiting the earth,
Own vehicle position calculating means for calculating the own vehicle position based on the information from the satellite;
Vehicle traveling path estimation means for estimating the traveling path of the vehicle based on the time-dependent change of the vehicle position
Target travel path setting means for setting a target travel path for the host vehicle to travel;
Travel control means for executing travel control of the host vehicle according to the host vehicle position, the host vehicle traveling path, and the target traveling path;
A traveling control apparatus for a vehicle, wherein when the own vehicle speed is an extremely low speed set in advance, the estimation of the own vehicle traveling path is prohibited.
上記自車進行路推定手段は、自車の現在位置と所定距離前の自車位置とに基づいて自車進行路を推定することを特徴とする請求項1記載の車両の走行制御装置。   2. The travel control apparatus for a vehicle according to claim 1, wherein the own vehicle traveling path estimation means estimates the traveling path of the own vehicle based on a current position of the own vehicle and a position of the own vehicle before a predetermined distance. 上記自車進行路推定手段は、自車の現在位置と所定時間前の自車位置とに基づいて自車進行路を推定することを特徴とする請求項1記載の車両の走行制御装置。   2. The travel control apparatus for a vehicle according to claim 1, wherein the own vehicle traveling path estimating means estimates the own vehicle traveling path based on the current position of the own vehicle and the own vehicle position before a predetermined time.
JP2003297996A 2003-08-21 2003-08-21 Travel controller for vehicle Pending JP2005070982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297996A JP2005070982A (en) 2003-08-21 2003-08-21 Travel controller for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297996A JP2005070982A (en) 2003-08-21 2003-08-21 Travel controller for vehicle

Publications (1)

Publication Number Publication Date
JP2005070982A true JP2005070982A (en) 2005-03-17

Family

ID=34403629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297996A Pending JP2005070982A (en) 2003-08-21 2003-08-21 Travel controller for vehicle

Country Status (1)

Country Link
JP (1) JP2005070982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118997A (en) * 2018-06-25 2020-12-22 宝马汽车股份有限公司 Driving system with automatic lateral guidance that can be deactivated by steering intervention and method for deactivating automatic lateral guidance
JP2021105607A (en) * 2015-02-10 2021-07-26 モービルアイ ビジョン テクノロジーズ リミテッド System for autonomously navigating autonomous vehicle, autonomous vehicle, and method for navigating autonomous vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105607A (en) * 2015-02-10 2021-07-26 モービルアイ ビジョン テクノロジーズ リミテッド System for autonomously navigating autonomous vehicle, autonomous vehicle, and method for navigating autonomous vehicle
CN112118997A (en) * 2018-06-25 2020-12-22 宝马汽车股份有限公司 Driving system with automatic lateral guidance that can be deactivated by steering intervention and method for deactivating automatic lateral guidance
US11897561B2 (en) 2018-06-25 2024-02-13 Bayerische Motoren Werke Aktiengesellschaft Driving system with automated lateral guidance which can be deactivated by a steering intervention, and method for deactivating automated lateral guidance

Similar Documents

Publication Publication Date Title
JP4435519B2 (en) Vehicle travel control device
JP4230312B2 (en) VEHICLE PATH ESTIMATION DEVICE AND TRAVEL CONTROL DEVICE EQUIPPED WITH THE PATH ESTIMATION DEVICE
JP2005067483A (en) Vehicular running control device
KR100626539B1 (en) Method for correcting azimuth of vehicle in navigation system
JP3570372B2 (en) Vehicle current position detection device, vehicle current position display device, navigation device, and recording medium
CA2695633C (en) Partial manual control state for automated vehicle navigation system
CN106043302B (en) The cruise active control system and its method of vehicle
JP2019038396A (en) Vehicle operation support device
CN102007417A (en) In-vehicle sensor-based calibration algorithm for yaw rate sensor calibration
JP2019028027A (en) Drive support device for vehicle
US20140236412A1 (en) Apparatus and method for automatically parking vehicle
JP2002181577A (en) Navigation system and method, and information record medium for recording computer-readable navigation program
JP4346993B2 (en) Vehicle guidance control device
JP6539129B2 (en) Vehicle position estimation device, steering control device using the same, and vehicle position estimation method
US20220326021A1 (en) Course generation apparatus and vehicle control apparatus
JP2018169319A (en) Vehicle travel lane estimation device
JP2005071114A (en) Guide controller for vehicle
JP2018067034A (en) Mobile body control device, mobile body control method, and program for mobile body control device
US20240011797A1 (en) A method for controlling a driving operation of an autonomously controlled vehicle
JP2018167735A (en) Steering support device of vehicle
JP2005070982A (en) Travel controller for vehicle
JP7238721B2 (en) self-driving device
JP6717132B2 (en) Vehicle traveling control method and vehicle traveling control device
JP7317166B1 (en) Driving support device and driving support method
US20230126923A1 (en) Vehicle control device, vehicle control system, vehicle control method, and computer-readable storage medium