JP2005069130A - Ignition timing control device of internal combustion engine with variable compression ratio mechanism - Google Patents

Ignition timing control device of internal combustion engine with variable compression ratio mechanism Download PDF

Info

Publication number
JP2005069130A
JP2005069130A JP2003301308A JP2003301308A JP2005069130A JP 2005069130 A JP2005069130 A JP 2005069130A JP 2003301308 A JP2003301308 A JP 2003301308A JP 2003301308 A JP2003301308 A JP 2003301308A JP 2005069130 A JP2005069130 A JP 2005069130A
Authority
JP
Japan
Prior art keywords
compression ratio
ignition timing
internal combustion
combustion engine
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003301308A
Other languages
Japanese (ja)
Other versions
JP4277623B2 (en
Inventor
Toru Noda
徹 野田
Takanobu Sugiyama
孝伸 杉山
Shinichi Takemura
信一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003301308A priority Critical patent/JP4277623B2/en
Publication of JP2005069130A publication Critical patent/JP2005069130A/en
Application granted granted Critical
Publication of JP4277623B2 publication Critical patent/JP4277623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and highly precisely control ignition timing in accordance with a compression ratio variably controlled. <P>SOLUTION: An actual compression ratio is detected while setting a basic compression ratio in accordance with an engine operating condition (S1-S3). Basic ignition timing set in accordance with the engine operating condition is corrected in accordance with positive and negative in compression ratio deviation ΔCR (actual compression ratio - basic compression ratio). When ΔCR is negative >0, a lag correction factor αret and lag correction amount ΔADV are successively set to execute the lag correct of the ignition timing (S4-S6, S8, S9, S11-S13). When ΔCR is positive <0, a advance correction factor αadv and advance correction amount ΔADV are successively set to execute advance angle correct of the ignition timing (S4-S6, S8, S10-S13). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮比を可変する可変圧縮比機構を備えた内燃機関の点火時期制御に関する。   The present invention relates to ignition timing control of an internal combustion engine provided with a variable compression ratio mechanism that varies a compression ratio.

圧縮比を可変にできる内燃機関の点火時期制御として、高圧縮比用と低圧縮比用の2つの点火時期マップを備え、中間圧縮比については、両方のマップから参照した値を内挿補間して点火時期を設定するようにしたものがある(特許文献1)。
特開平06−25647号公報
As an ignition timing control for internal combustion engines with variable compression ratios, two ignition timing maps for high compression ratio and low compression ratio are provided. For the intermediate compression ratio, the values referenced from both maps are interpolated. In some cases, the ignition timing is set (Patent Document 1).
Japanese Patent Laid-Open No. 06-25647

しかしながら、上記従来の点火時期制御方式では、複数の圧縮比用における点火時期マップを用意する必要があり、点火時期設定の演算負荷も大きくなり、応答性を損ねていた。
本発明は、このような従来の課題に着目してなされたもので、1つのマップを用いて簡易な演算によって応答性良く点火時期を制御できるようにした可変圧縮比機構付き内燃機関の点火時期制御装置を提供することを目的とする。
However, in the conventional ignition timing control method, it is necessary to prepare ignition timing maps for a plurality of compression ratios, and the calculation load for setting the ignition timing is increased, resulting in a loss of responsiveness.
The present invention has been made by paying attention to such a conventional problem, and the ignition timing of an internal combustion engine with a variable compression ratio mechanism that can control the ignition timing with high responsiveness by a simple calculation using one map. An object is to provide a control device.

このため本発明は、可変圧縮比機構によって圧縮比を可変に制御しながら、機関運転状態に基づいて基本圧縮比を設定すると共に実圧縮比を検出し、機関運転状態と前記基本圧縮比とに基づいて基本点火時期を設定し、前記実圧縮比と前記基本圧縮比との隔たりに基づいて前記基本点火時期を補正し、補正した点火時期に制御する構成とした。   Therefore, the present invention sets the basic compression ratio based on the engine operating state while variably controlling the compression ratio by the variable compression ratio mechanism, detects the actual compression ratio, and determines the engine operating state and the basic compression ratio. Based on this, the basic ignition timing is set, the basic ignition timing is corrected based on the difference between the actual compression ratio and the basic compression ratio, and the corrected ignition timing is controlled.

かかる構成によると、基本圧縮比に対応した1つのマップを用意し、該マップから設定した基本点火時期を基本圧縮比と実圧縮比との隔たりに基づいて簡易な補正演算を行って応答性良く点火時期を設定することができる。   According to such a configuration, one map corresponding to the basic compression ratio is prepared, and the basic ignition timing set from the map is subjected to simple correction calculation based on the difference between the basic compression ratio and the actual compression ratio, thereby improving the response. Ignition timing can be set.

以下、図面に基づき、本発明の実施形態について説明する。
図1は、実施形態における可変圧縮比機構付き内燃機関のシステム構成図である。
内燃機関1の吸気通路55のコンプレッサ53上流には、吸入空気量を検出するエアフロメータ2が配置され、コンプレッサ53の下流に介装されるインタークーラ3の下流側に、過給圧を検出する吸気圧センサ4が配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of an internal combustion engine with a variable compression ratio mechanism according to an embodiment.
An air flow meter 2 for detecting the intake air amount is disposed upstream of the compressor 53 in the intake passage 55 of the internal combustion engine 1, and a supercharging pressure is detected downstream of the intercooler 3 interposed downstream of the compressor 53. An intake pressure sensor 4 is arranged.

また、機関1のクランク角を検出するクランク角センサ5と、排気中の酸素濃度を検出する酸素センサ6と、機関水温を検出する水温センサ7と、ノッキングを検出するノッキングセンサ8と、スロットル弁9の開度を検出するスロットル開度センサ10と、インタークーラ3出口部で吸気温を検出する吸気温センサ60の他、後述する可変圧縮比機構100の制御軸42の回転量,軸方向位置等によって実圧縮比を検出する圧縮比センサ61と、を備えており、これらのセンサ類の検出信号及びバッテリ電圧VBの信号が、機関コントロールモジュール(ECM)11に入力される。   Also, a crank angle sensor 5 that detects the crank angle of the engine 1, an oxygen sensor 6 that detects the oxygen concentration in the exhaust, a water temperature sensor 7 that detects the engine water temperature, a knocking sensor 8 that detects knocking, and a throttle valve In addition to the throttle opening sensor 10 that detects the opening of 9 and the intake air temperature sensor 60 that detects the intake air temperature at the outlet of the intercooler 3, the rotation amount and axial position of the control shaft 42 of the variable compression ratio mechanism 100 described later And a compression ratio sensor 61 for detecting an actual compression ratio by means of the above. The detection signals of these sensors and the signal of the battery voltage VB are input to the engine control module (ECM) 11.

前記内燃機関1は、過給機としてターボ過給機51を備えている。
このターボ過給機51は、排気通路54に位置するタービン52と吸気通路55に位置するコンプレッサ53とを同軸状に配置した構成であり、運転条件に応じて過給圧を制御するために、タービン52の上流側から排気の一部をバイパスさせる排気バイパス弁56を備えている。
The internal combustion engine 1 includes a turbocharger 51 as a supercharger.
The turbocharger 51 has a configuration in which a turbine 52 located in an exhaust passage 54 and a compressor 53 located in an intake passage 55 are coaxially arranged. In order to control the supercharging pressure in accordance with operating conditions, An exhaust bypass valve 56 for bypassing a part of the exhaust from the upstream side of the turbine 52 is provided.

機関1の吸気ポート部には、各気筒毎に燃料噴射弁16が設けられ、該燃料噴射弁16から噴射される燃料によって、燃焼室内に混合気が形成される。
前記燃焼室内に形成された混合気は、点火栓17による火花点火によって着火燃焼し、燃焼排気は、前記タービン52に回転エネルギーを与えた後、触媒19で浄化され、マフラー20を介して排気中に放出される。
A fuel injection valve 16 is provided for each cylinder in the intake port portion of the engine 1, and an air-fuel mixture is formed in the combustion chamber by the fuel injected from the fuel injection valve 16.
The air-fuel mixture formed in the combustion chamber is ignited and burned by spark ignition by the spark plug 17, and the combustion exhaust gas is purified by the catalyst 19 after giving rotational energy to the turbine 52 and is exhausted through the muffler 20. To be released.

また、本実施形態の内燃機関1には、図2に示す構成の可変圧縮比機構100が備えられている。
機関1のクランク軸31は、複数のジャーナル部32とクランクピン部33とカウンタウエィト部31aとを備えており、図示せぬシリンダブロックの主軸受に、ジャーナル部32が回転自在に支持されている。
Further, the internal combustion engine 1 of the present embodiment is provided with a variable compression ratio mechanism 100 having the configuration shown in FIG.
The crankshaft 31 of the engine 1 includes a plurality of journal portions 32, a crankpin portion 33, and a counterweight portion 31a, and the journal portion 32 is rotatably supported by a main bearing of a cylinder block (not shown). .

上記クランクピン部33は、ジャーナル部32から所定量偏心しており、ここにロアーリンク34が回転自在に連結されている。
上記ロアーリンク34は、略中央の連結孔に上記クランクピン部33が嵌合している。
アッパーリンク35は、下端側が連結ピン36によりロアーリンク34の一端に回動可能に連結され、上端側がピストンピン37によりピストン38に回動可能に連結されている。
The crankpin portion 33 is eccentric from the journal portion 32 by a predetermined amount, and a lower link 34 is rotatably connected thereto.
In the lower link 34, the crank pin portion 33 is fitted in a substantially central connecting hole.
The upper link 35 has a lower end side rotatably connected to one end of the lower link 34 by a connecting pin 36, and an upper end side rotatably connected to a piston 38 by a piston pin 37.

上記ピストン38は、燃焼圧力を受け、シリンダブロックのシリンダ39内を往復動する。
制御リンク40は、上端側が連結ピン41によりロアーリンク34の他端に回動可能に連結され、下端側が制御軸42を介して機関本体例えばシリンダブロックの適宜位置に回動可能に連結されている。
The piston 38 receives combustion pressure and reciprocates in the cylinder 39 of the cylinder block.
The upper end side of the control link 40 is rotatably connected to the other end of the lower link 34 by a connecting pin 41, and the lower end side is rotatably connected to an appropriate position of an engine body, for example, a cylinder block via a control shaft 42. .

詳しくは、制御軸42は、小径部42bを中心として回転するように機関本体に支持されており、この小径部42bに対し偏心している大径部42aに、上記制御リンク40下端部が回転可能に嵌合している。
上記のような可変圧縮比機構100においては、上記制御軸42がアクチュエータ43によって回動されると、小径部42bに対して偏心している大径部42aの軸中心位置、特に、機関本体に対する相対位置が変化する。
Specifically, the control shaft 42 is supported by the engine body so as to rotate about the small diameter portion 42b, and the lower end portion of the control link 40 is rotatable on the large diameter portion 42a that is eccentric to the small diameter portion 42b. Is fitted.
In the variable compression ratio mechanism 100 as described above, when the control shaft 42 is rotated by the actuator 43, the axial center position of the large-diameter portion 42a that is eccentric with respect to the small-diameter portion 42b, particularly relative to the engine body. The position changes.

これにより、制御リンク40の下端の揺動支持位置が変化する。
そして、上記制御リンク40の揺動支持位置が変化すると、ピストン38の行程が変化し、ピストン上死点(TDC)におけるピストン38の位置が高くなったり低くなったりする。
これにより、機関圧縮比を吸気行程中においても変えることが可能となる。
Thereby, the rocking | fluctuation support position of the lower end of the control link 40 changes.
When the swing support position of the control link 40 changes, the stroke of the piston 38 changes, and the position of the piston 38 at the piston top dead center (TDC) increases or decreases.
As a result, the engine compression ratio can be changed even during the intake stroke.

かかる構成の内燃機関において、前記機関コントロールモジュール(ECM)11は、前記可変圧縮比機構による圧縮比の制御を行いつつ以下のように点火時期制御を実行する。
図3は、点火時期制御の第1の実施形態におけるフローを示す。
ステップ(図ではSと記す。以下同様)1では、クランク角センサ5によって検出される機関回転速度Ne、燃料噴射量Tp等の運転状態検出値を読み込む。
In the internal combustion engine having such a configuration, the engine control module (ECM) 11 performs ignition timing control as follows while controlling the compression ratio by the variable compression ratio mechanism.
FIG. 3 shows a flow in the first embodiment of ignition timing control.
In step (denoted as S in the figure, the same applies hereinafter) 1, operation state detection values such as the engine rotational speed Ne and the fuel injection amount Tp detected by the crank angle sensor 5 are read.

ステップ2では、上記機関回転速度Ne、燃料噴射量Tpに基づいて、図4に示すマップからの参照等により基本圧縮比CR(base)を設定する。
ステップ3では、圧縮比センサ62により検出される実圧縮比CR(actual)を読み込む。
ステップ4では、機関回転速度Ne及び燃料噴射量Tp等の負荷に基づいて、図5に示すマップからの参照等により、基本点火時期ADV(base)を設定する。
In step 2, the basic compression ratio CR (base) is set based on the engine rotational speed Ne and the fuel injection amount Tp by referring to the map shown in FIG.
In step 3, the actual compression ratio CR (actual) detected by the compression ratio sensor 62 is read.
In step 4, the basic ignition timing ADV (base) is set based on loads such as the engine speed Ne and the fuel injection amount Tp by referring to the map shown in FIG.

ステップ5では、次式のように、前記実圧縮比CR(actual)と基本圧縮比CR(base)との偏差ΔCRを算出する。
ΔCR=CR(actual)−CR(base)
ステップ6では、前記圧縮比偏差ΔCRが0であるか否かを判定する。
ΔCR=0のときは、ステップ7へ進んで圧縮比偏差による点火時期の補正係数αを0に設定する。すなわち、実圧縮比が目標値に一致していれば、点火時期を補正する必要がないのでα=0とすることにより補正を停止する。
In step 5, a deviation ΔCR between the actual compression ratio CR (actual) and the basic compression ratio CR (base) is calculated as in the following equation.
ΔCR = CR (actual) -CR (base)
In step 6, it is determined whether or not the compression ratio deviation ΔCR is zero.
When ΔCR = 0, the routine proceeds to step 7 where the ignition timing correction coefficient α due to the compression ratio deviation is set to zero. That is, if the actual compression ratio matches the target value, there is no need to correct the ignition timing, so correction is stopped by setting α = 0.

ΔCR≠0のときは、ステップ8へ進んでΔCR>0であるかを判定する。
ΔCR>0のときは、実圧縮比が目標値より高くノッキング発生傾向が増大しているので、ステップ9へ進んでノッキングを抑制するべく、点火時期を遅角補正するための補正係数αretを設定する。
ΔCR<0のときは、実圧縮比が目標値より低くノッキング発生傾向が減少しているので、ステップ10へ進んで出力を増加するべく、点火時期を進角補正するための補正係数αadvを設定する。
When ΔCR ≠ 0, the process proceeds to step 8 to determine whether ΔCR> 0.
When ΔCR> 0, since the actual compression ratio is higher than the target value and the tendency to knocking increases, the process proceeds to step 9 to set a correction coefficient αret for correcting the ignition timing to retard the knocking. To do.
When ΔCR <0, the actual compression ratio is lower than the target value and the tendency to knocking is decreasing. Therefore, the correction coefficient αadv for correcting the ignition timing is set so as to proceed to step 10 and increase the output. To do.

ここで、後述する理由により、前記遅角補正用の補正係数αret、進角補正用の補正係数αadv共に、負の値に設定されている。
ステップ11では、前記圧縮比偏差ΔCRと上記のように設定した点火時期補正係数αを用いて、点火時期補正量ΔADVを次式のように設定する。
ΔADV=α×ΔCR
ここで、点火時期補正量ΔADVは、進角量として設定される。ΔCR>0である遅角補正時は、正のΔCRに負の補正係数αretを乗じてΔADVが負の値となって、遅角補正が行われ、ΔCR<0である進角補正時は、負のΔCRに負の補正係数αadvを乗じてΔADVが正の値となって、進角補正が行われる。
Here, for reasons that will be described later, both the retardation correction coefficient αret and the advance correction coefficient αadv are set to negative values.
In step 11, the ignition timing correction amount ΔADV is set as follows using the compression ratio deviation ΔCR and the ignition timing correction coefficient α set as described above.
ΔADV = α × ΔCR
Here, the ignition timing correction amount ΔADV is set as an advance amount. At the time of retardation correction where ΔCR> 0, the positive ΔCR is multiplied by a negative correction coefficient αret, ΔADV becomes a negative value, the retardation correction is performed, and at the time of advance correction where ΔCR <0, Multiplying negative ΔCR by a negative correction coefficient αadv makes ΔADV a positive value, and advance angle correction is performed.

ステップ12では、次式のように、前記ステップ4で算出した基本点火時期ADV(base)に、前記点火時期補正量ΔADVを加算して、最終的な点火時期ADVを算出する。
ADV=ADV(base)+ΔADV
ステップ13では、上記点火時期ADVに点火信号を出力して点火するように制御する。
In step 12, the final ignition timing ADV is calculated by adding the ignition timing correction amount ΔADV to the basic ignition timing ADV (base) calculated in step 4 as shown in the following equation.
ADV = ADV (base) + ΔADV
In step 13, the ignition signal ADv is output at the ignition timing ADV to control the ignition.

図6は、負荷(燃料噴射量Tp)変化に対する圧縮比と点火時期の変化を示し、前記基本圧縮比CR(base)が低負荷域では高圧縮比High、高負荷域では低圧縮比Lowに設定され、中負荷域では負荷の増大に応じて高圧縮比Highから低圧縮比Lowにリニアに減少する。一方、点火時期は、基本圧縮比CR(base)に対応した基本点火時期ADV(base)に対し、低負荷域及び中負荷域で実圧縮比CR(actual)が基本圧縮比CR(base)より低いとき(ΔCR<0)は、点線に示すように進角側に補正され、中負荷域及び高負荷域で基本圧縮比CR(base)より高いとき(ΔCR>0)は、鎖線に示すように遅角側に補正される。   FIG. 6 shows changes in the compression ratio and ignition timing with respect to changes in the load (fuel injection amount Tp). The basic compression ratio CR (base) is set to a high compression ratio High when the load is low, and to a low compression ratio Low when the load is high. In the middle load range, linearly decreases from a high compression ratio High to a low compression ratio Low as the load increases. On the other hand, with respect to the ignition timing ADV (base) corresponding to the basic compression ratio CR (base), the actual compression ratio CR (actual) is lower than the basic compression ratio CR (base) in the low and medium load ranges. When it is low (ΔCR <0), it is corrected to the advance side as shown by the dotted line, and when it is higher than the basic compression ratio CR (base) in the middle load region and high load region (ΔCR> 0), it is shown by the chain line. Will be corrected to the retard side.

図7は、圧縮比偏差ΔCRと点火時期補正量ΔADVの関係を示す。
図8は、スロットル開度をステップ的に増大させた加速時の各種状態の変化を示し、スロットル開度の増大に応じて基本圧縮比CR(base)がHighから低圧縮比Lowにステップ的に減少し、圧縮比偏差ΔCRはステップ的に増大した後、徐々に減少し、点火時期補正量ΔADVは、圧縮比偏差ΔCRの変化に応じてステップ的に遅角補正された後、徐々に遅角補正量が減少する。
FIG. 7 shows the relationship between the compression ratio deviation ΔCR and the ignition timing correction amount ΔADV.
FIG. 8 shows changes in various states during acceleration when the throttle opening is increased stepwise, and the basic compression ratio CR (base) is stepped from high to low compression ratio Low as the throttle opening increases. The compression ratio deviation ΔCR increases stepwise and then gradually decreases, and the ignition timing correction amount ΔADV is gradually retarded after the stepwise delay correction is performed in accordance with the change of the compression ratio deviation ΔCR. The amount of correction decreases.

このようにすれば、基本圧縮比に対応する基本点火時期のマップを1個設定し、該マップからの参照と最小限の演算により、実圧縮比に応じた点火時期を容易に設定することができ、応答性の良い高精度な点火時期制御により良好な運転性能を得ることができる。
図9は、点火時期制御の第2の実施形態におけるフローを示す。
第1の実施形態では、ステップ9,10で点火時期補正量αret,αadvとして固定値を設定したが、本実施形態では、ステップ8でΔCR>0であると判定されて遅角補正するときは、ステップ21へ進んで機関回転速度Ne及び燃料噴射量Tp(機関負荷)に基づいて図10の遅角補正用マップから遅角補正用の補正係数αretを参照する。図10では、高回転・高負荷域ほど負の補正係数αret(絶対値)を大きい値に設定してある。そして、このように機関運転状態に応じて可変に求められた点火時期補正係数αretをステップ9で設定する。
In this way, one basic ignition timing map corresponding to the basic compression ratio can be set, and the ignition timing corresponding to the actual compression ratio can be easily set by referring to the map and performing a minimum calculation. In addition, good driving performance can be obtained by highly accurate ignition timing control with good responsiveness.
FIG. 9 shows a flow in the second embodiment of ignition timing control.
In the first embodiment, fixed values are set as the ignition timing correction amounts αret and αadv in steps 9 and 10, but in this embodiment, when it is determined that ΔCR> 0 in step 8 and the retardation is corrected. Then, the process proceeds to step 21, and the correction coefficient αret for correcting the retard angle is referred to from the retard angle correction map of FIG. In FIG. 10, the negative correction coefficient αret (absolute value) is set to a larger value in the higher rotation / high load range. Then, the ignition timing correction coefficient αret variably obtained in accordance with the engine operating state in this way is set in step 9.

また、ステップ8でΔCR<0であると判定されて進角補正するときは、ステップ22へ進んで機関回転速度Ne及び燃料噴射量Tp(機関負荷)に基づいて図11の進角補正用マップから進角補正用の補正係数αadvを参照する。図11では、高回転・高負荷域ほど補正係数αadvを0に設定し、低回転・低負荷域ほど負の補正係数αadv(絶対値)を大きい値に設定してある。そして、このように機関運転状態に応じて可変に求められた点火時期補正係数αadvをステップ10で設定する。   If it is determined in step 8 that ΔCR <0 and the advance angle is corrected, the process proceeds to step 22 where the advance angle correction map of FIG. 11 is based on the engine speed Ne and the fuel injection amount Tp (engine load). To the correction coefficient αadv for the advance angle correction. In FIG. 11, the correction coefficient αadv is set to 0 for the higher rotation / high load range, and the negative correction coefficient αadv (absolute value) is set to a larger value for the lower rotation / low load range. Then, the ignition timing correction coefficient αadv variably obtained in accordance with the engine operating state is set in step 10.

以下、第1の実施形態と同様にして点火制御を行う。
このようにすれば、高回転・高負荷域ほどノッキング発生傾向が大きいので、圧縮比偏差ΔCRが同一であっても、遅角補正係数αret(絶対値)は大きくし、進角補正係数αadv(絶対値)は0または小さくすることによって、ノッキングを十分回避でき、低回転・低負荷域では、遅角補正係数αret(絶対値)を小さくし、進角補正係数αadv(絶対値)を大きくすることによって、十分に出力を確保することができる。
Thereafter, ignition control is performed in the same manner as in the first embodiment.
In this way, since the higher the rotation speed and the higher load region, the greater the tendency for knocking to occur, even if the compression ratio deviation ΔCR is the same, the retardation correction coefficient αret (absolute value) is increased and the advance angle correction coefficient αadv ( By setting the absolute value to 0 or small, knocking can be avoided sufficiently. In the low rotation / low load range, the retard correction coefficient αret (absolute value) is decreased and the advance correction coefficient αadv (absolute value) is increased. As a result, a sufficient output can be secured.

すなわち、第1の実施形態に比較して、機関運転状態に応じてより高精度に点火時期を補正制御することができる。   That is, the ignition timing can be corrected and controlled with higher accuracy in accordance with the engine operating state as compared with the first embodiment.

本発明に係る可変圧縮比機構付き内燃機関のシステム構成図。1 is a system configuration diagram of an internal combustion engine with a variable compression ratio mechanism according to the present invention. 可変圧縮比機構の機構図。The mechanism diagram of a variable compression ratio mechanism. 第1の実施形態での点火時期制御を示すフローチャート。The flowchart which shows the ignition timing control in 1st Embodiment. 機関運転状態に基づいて設定される基本圧縮比の特性を示す線図。The diagram which shows the characteristic of the basic compression ratio set based on an engine driving | running state. 機関運転状態に基づいて設定される基本点火時期の特性を示す線図。The diagram which shows the characteristic of the basic ignition timing set based on an engine operating state. 負荷(燃料噴射量Tp)変化に対する圧縮比と点火時期の変化を示す線図。The diagram which shows the change of the compression ratio and ignition timing with respect to load (fuel injection amount Tp) change. 圧縮比偏差と点火時期補正量の関係を示す線図。The diagram which shows the relationship between compression ratio deviation and ignition timing correction amount. 加速時の各種状態の変化を示す線図。The diagram which shows the change of the various states at the time of acceleration. 第2の実施形態での点火時期制御を示すフローチャート。The flowchart which shows the ignition timing control in 2nd Embodiment. 第2実施形態の点火時期遅角補正用の補正係数を設定したマップ。The map which set the correction coefficient for ignition timing retardation correction of 2nd Embodiment. 第2実施形態の点火時期進角補正用の補正係数を設定したマップ。The map which set the correction coefficient for ignition timing advance angle correction of 2nd Embodiment.

符号の説明Explanation of symbols

1…内燃機関
5…クランク角センサ
7…水温センサ
10…スロットル開度センサ
11…機関コントロールモジュール
16…燃料噴射弁
34…ロアーリンク
35…アッパーリンク
40…制御リンク
42…制御軸
43…アクチュエータ
61…圧縮比センサ
100…可変圧縮比機構
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 5 ... Crank angle sensor 7 ... Water temperature sensor 10 ... Throttle opening sensor 11 ... Engine control module 16 ... Fuel injection valve 34 ... Lower link 35 ... Upper link 40 ... Control link 42 ... Control shaft 43 ... Actuator 61 ... Compression ratio sensor 100... Variable compression ratio mechanism

Claims (7)

可変圧縮比機構を備える火花点火式内燃機関において、
機関運転状態に基づいて基本圧縮比を設定すると共に実圧縮比を検出し、
機関運転状態と前記基本圧縮比とに基づいて基本点火時期を設定し、
前記実圧縮比と前記基本圧縮比との隔たりに基づいて前記基本点火時期を補正し、補正した点火時期に制御することを特徴とする内燃機関の制御装置。
In a spark ignition internal combustion engine having a variable compression ratio mechanism,
Set the basic compression ratio based on the engine operating condition and detect the actual compression ratio,
Set the basic ignition timing based on the engine operating state and the basic compression ratio,
A control apparatus for an internal combustion engine, wherein the basic ignition timing is corrected based on a difference between the actual compression ratio and the basic compression ratio, and the corrected ignition timing is controlled.
前記点火時期の補正は、前記実圧縮比が基本圧縮比よりも高いときは点火時期を遅角補正し、機関の圧縮比が基本圧縮比よりも低いときは点火時期を進角補正することを特徴とする請求項1に記載の内燃機関の制御装置。   The ignition timing is corrected by retarding the ignition timing when the actual compression ratio is higher than the basic compression ratio, and by correcting the advance of the ignition timing when the compression ratio of the engine is lower than the basic compression ratio. The control apparatus for an internal combustion engine according to claim 1, wherein the control apparatus is an internal combustion engine. 前記点火時期の補正は、前記実圧縮比と基本圧縮比の隔たりに対する点火時期補正の程度が、点火時期を遅角補正するときは、点火時期を進角補正するときに比較して大きいことを特徴とする請求項2に記載の内燃機関の制御装置。   The ignition timing correction is such that the degree of ignition timing correction relative to the difference between the actual compression ratio and the basic compression ratio is greater when the ignition timing is retarded than when the ignition timing is advanced. The control apparatus for an internal combustion engine according to claim 2, wherein the control apparatus is an internal combustion engine. 前記点火時期の補正は、前記基本圧縮比が機関の最大圧縮比である場合は、点火時期を進角補正する制御だけを行い、設定された基本圧縮比が機関の最低圧縮比である場合は、点火時期を遅角補正する制御だけを行うことを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の制御装置。   When the basic compression ratio is the maximum compression ratio of the engine, the ignition timing is corrected only by controlling to advance the ignition timing, and when the set basic compression ratio is the minimum compression ratio of the engine. 4. The control device for an internal combustion engine according to claim 1, wherein only the control for correcting the retard of the ignition timing is performed. 前記点火時期の補正は、点火時期の補正の程度が機関の運転条件に応じて設定され、この設定値に基づいて行われることを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の制御装置。   The degree of correction of the ignition timing is set according to engine operating conditions, and the ignition timing is corrected based on the set value. The internal combustion engine control device described. 前記点火時期の補正の程度を補正係数として設定し、実圧縮比が基本圧縮比よりも高いときと、低いときとで、同一の機関運転条件に対してそれぞれ別の補正係数を設定することを特徴とする請求項5に記載の内燃機関の制御装置。   The degree of correction of the ignition timing is set as a correction coefficient, and different correction coefficients are set for the same engine operating condition depending on whether the actual compression ratio is higher or lower than the basic compression ratio. 6. The control device for an internal combustion engine according to claim 5, wherein the control device is an internal combustion engine. 上記可変圧縮比機構は、ピストンにピストンピンを介して連結された第1リンクと、この第1リンクに揺動可能に連結されるとともにクランクシャフトのクランクピン部に回転可能に連結された第2リンクと、上記第2リンクに揺動可能に連結されるとともに機関本体に揺動可能に支持された第3リンクと、を含んで構成されることを特徴とする請求項1〜請求項6のいずれか1つに記載の内燃機関の制御装置。   The variable compression ratio mechanism includes a first link coupled to a piston via a piston pin, and a second link coupled to the first link so as to be swingable and rotatably coupled to a crankpin portion of a crankshaft. 7. The link according to claim 1, further comprising a link and a third link that is swingably connected to the second link and is swingably supported by the engine body. The control apparatus for an internal combustion engine according to any one of the above.
JP2003301308A 2003-08-26 2003-08-26 Ignition timing control device for internal combustion engine with variable compression ratio mechanism Expired - Lifetime JP4277623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301308A JP4277623B2 (en) 2003-08-26 2003-08-26 Ignition timing control device for internal combustion engine with variable compression ratio mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301308A JP4277623B2 (en) 2003-08-26 2003-08-26 Ignition timing control device for internal combustion engine with variable compression ratio mechanism

Publications (2)

Publication Number Publication Date
JP2005069130A true JP2005069130A (en) 2005-03-17
JP4277623B2 JP4277623B2 (en) 2009-06-10

Family

ID=34405966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301308A Expired - Lifetime JP4277623B2 (en) 2003-08-26 2003-08-26 Ignition timing control device for internal combustion engine with variable compression ratio mechanism

Country Status (1)

Country Link
JP (1) JP4277623B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247535A (en) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd Variable compression ratio device for internal combustion engine
JP2009270566A (en) * 2008-04-07 2009-11-19 Honda Motor Co Ltd Control device for internal combustion engine
WO2010073411A1 (en) * 2008-12-25 2010-07-01 トヨタ自動車株式会社 Internal combustion engine controller
JP2010285873A (en) * 2009-06-09 2010-12-24 Nissan Motor Co Ltd Internal combustion engine
CN102966445A (en) * 2011-08-31 2013-03-13 福特环球技术公司 Method and internal combustion engine for a supercharged internal combustion engine
WO2013065397A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Internal-combustion engine control device and control method
CN102966445B (en) * 2011-08-31 2016-11-30 福特环球技术公司 Method and explosive motor for boosting explosive motor
WO2021057304A1 (en) * 2019-09-27 2021-04-01 长城汽车股份有限公司 Control method and device for variable compression ratio engine
WO2021059791A1 (en) * 2019-09-26 2021-04-01 日立Astemo株式会社 Internal combustion engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230522A (en) * 1984-04-27 1985-11-16 Mazda Motor Corp Variable compression-ratio type engine
JPS63230961A (en) * 1987-03-18 1988-09-27 Nissan Motor Co Ltd Ignition timing control device for internal combustion engine
JPH0579440A (en) * 1991-09-19 1993-03-30 Hitachi Ltd Ignition timing control device
JP2002021592A (en) * 2000-07-07 2002-01-23 Nissan Motor Co Ltd Variable compression ratio mechanism of reciprocating internal combustion engine
JP2004156542A (en) * 2002-11-07 2004-06-03 Nippon Soken Inc Internal combustion engine having variable compression ratio mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230522A (en) * 1984-04-27 1985-11-16 Mazda Motor Corp Variable compression-ratio type engine
JPS63230961A (en) * 1987-03-18 1988-09-27 Nissan Motor Co Ltd Ignition timing control device for internal combustion engine
JPH0579440A (en) * 1991-09-19 1993-03-30 Hitachi Ltd Ignition timing control device
JP2002021592A (en) * 2000-07-07 2002-01-23 Nissan Motor Co Ltd Variable compression ratio mechanism of reciprocating internal combustion engine
JP2004156542A (en) * 2002-11-07 2004-06-03 Nippon Soken Inc Internal combustion engine having variable compression ratio mechanism

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491425B2 (en) * 2006-03-16 2010-06-30 日産自動車株式会社 Variable compression ratio device for internal combustion engine
JP2007247535A (en) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd Variable compression ratio device for internal combustion engine
JP2009270566A (en) * 2008-04-07 2009-11-19 Honda Motor Co Ltd Control device for internal combustion engine
JP5182377B2 (en) * 2008-12-25 2013-04-17 トヨタ自動車株式会社 Control device for internal combustion engine
WO2010073411A1 (en) * 2008-12-25 2010-07-01 トヨタ自動車株式会社 Internal combustion engine controller
CN102265014A (en) * 2008-12-25 2011-11-30 丰田自动车株式会社 Internal combustion engine controller
RU2469201C1 (en) * 2008-12-25 2012-12-10 Тойота Дзидося Кабусики Кайся Internal combustion engine control device
US8818687B2 (en) 2008-12-25 2014-08-26 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine
JP2010285873A (en) * 2009-06-09 2010-12-24 Nissan Motor Co Ltd Internal combustion engine
CN102966445A (en) * 2011-08-31 2013-03-13 福特环球技术公司 Method and internal combustion engine for a supercharged internal combustion engine
CN102966445B (en) * 2011-08-31 2016-11-30 福特环球技术公司 Method and explosive motor for boosting explosive motor
WO2013065397A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Internal-combustion engine control device and control method
CN103857893A (en) * 2011-11-01 2014-06-11 日产自动车株式会社 Internal-combustion engine control device and control method
JPWO2013065397A1 (en) * 2011-11-01 2015-04-02 日産自動車株式会社 Control device and control method for internal combustion engine
US10267239B2 (en) 2011-11-01 2019-04-23 Nissan Motor Co., Ltd. Internal-combustion engine control device and control method
WO2021059791A1 (en) * 2019-09-26 2021-04-01 日立Astemo株式会社 Internal combustion engine control device
DE112020002177T5 (en) 2019-09-26 2022-01-20 Hitachi Astemo, Ltd. Internal combustion engine control device
US11655791B2 (en) 2019-09-26 2023-05-23 Hitachi Astemo, Ltd. Internal combustion engine control device
WO2021057304A1 (en) * 2019-09-27 2021-04-01 长城汽车股份有限公司 Control method and device for variable compression ratio engine

Also Published As

Publication number Publication date
JP4277623B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4175110B2 (en) Internal combustion engine with variable compression ratio mechanism
JP4650321B2 (en) Control device
WO2013065397A1 (en) Internal-combustion engine control device and control method
JP2009068388A (en) Control device for internal combustion engine
JP2005307847A (en) Air amount calculation device for internal combustion engine
JP3358411B2 (en) Rotation speed control device for internal combustion engine
JP4438368B2 (en) Control device for variable compression ratio engine
JP4277623B2 (en) Ignition timing control device for internal combustion engine with variable compression ratio mechanism
JP4655980B2 (en) Control device and control method for internal combustion engine
JP6241412B2 (en) Control device for internal combustion engine
JP4735497B2 (en) Fuel cetane number discrimination system for compression ignition type internal combustion engine
JP2005016381A (en) Start controller for internal combustion engine with variable compression ratio mechanism
JP4400116B2 (en) Ignition control device for internal combustion engine with variable compression ratio mechanism
JP4092473B2 (en) COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP4778879B2 (en) Supercharging pressure control device for internal combustion engine
US10563595B2 (en) Control device of internal combustion engine
JP2005069131A (en) Control device of internal combustion engine with variable compression ratio mechanism
JP2005030253A (en) Control device of internal combustion engine with variable compression ratio mechanism
JP6267280B2 (en) Control device for internal combustion engine
JP4466059B2 (en) Control device for internal combustion engine with variable compression ratio mechanism
JP4736485B2 (en) Control device for internal combustion engine
JP7439655B2 (en) Engine control method and control device
JP4244790B2 (en) Variable compression ratio internal combustion engine and control method thereof
JPWO2019003326A1 (en) Control method and control device for internal combustion engine
JP5467928B2 (en) Ignition timing correction control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080321

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

EXPY Cancellation because of completion of term