JP2005061246A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2005061246A
JP2005061246A JP2003207896A JP2003207896A JP2005061246A JP 2005061246 A JP2005061246 A JP 2005061246A JP 2003207896 A JP2003207896 A JP 2003207896A JP 2003207896 A JP2003207896 A JP 2003207896A JP 2005061246 A JP2005061246 A JP 2005061246A
Authority
JP
Japan
Prior art keywords
power supply
purification reactor
purification
plasma
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003207896A
Other languages
Japanese (ja)
Inventor
Masaru Kakihana
大 垣花
Jiro Tsuchiya
次郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003207896A priority Critical patent/JP2005061246A/en
Priority to US10/915,380 priority patent/US20050039441A1/en
Priority to EP04019564A priority patent/EP1508677A1/en
Priority to CN200410057790.3A priority patent/CN1584301A/en
Publication of JP2005061246A publication Critical patent/JP2005061246A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Plasma Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for appropriately eliminating PM (particulate matters) exhausted from an internal combustion engine such as a diesel engine. <P>SOLUTION: This exhaust emission control device has a plasma assist PM purifying reactor 10; PM accumulated amount detecting means 1, 2, 3 for detecting the accumulated amount of PM in the PM purifying reactor 10; a power supply means 7 for supplying electric power to the PM purifying reactor 10; and a power supply control means 5 for controlling the power supply means 7 based on signals from the PM accumulated amount detecting means 1, 2, 3. In the exhaust emission control device, when the PM accumulated amount detected by the PM accumulated amount detecting means 1, 2, 3 exceeds a prescribed amount, the power supply control means 5 controls the power supply means 7 to start the supply of electric power to the PM purifying reactor 10 or to increase the electric power supplied to the PM purifying reactor 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関等からの排気の浄化装置に関するものであって、特にディーゼルエンジンから排出される粒子状物質(パティキュレート:以下「PM」という。)を除去するための排気浄化装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンは、自動車、特に大型車に多く搭載されているが、その排気中の窒素酸化物、一酸化炭素、炭化水素等とともに、PMの排出を低減することが強く望まれてきている。そのため、エンジンの改良又は燃焼条件の最適化等により根本的にPMを低減する技術開発だけでなく、排気中のPMを効率的に除去する技術の確立が望まれている。
【0003】
しかしながら単にディーゼルパティキュレートフィルター(以下「DPF」という。)で排気中のPMを捕集する手法では、使用時間が経過するにつれ、捕集されたPMによりフィルターが目詰まりを起こし、通気抵抗が増加し、エンジンに負担をかける結果となる。
【0004】
そこで従来から、ヒータ等によってDPFを加熱して、堆積したPMを強制的に燃焼させることが行われてきた。
【0005】
また近年ではより効率的な方法として、DPFによって捕集したPMの燃焼除去のために、放電によるプラズマエネルギーを使用することが提案されている。例えば特許文献1では、DPFとプラズマ発生装置とを組み合わせて、プラズマによってNO及び活性酸素を発生させ、捕集したPMの酸化を促進することを提案している。またここでは、DPFの温度が低いときにプラズマを発生させて、PMの酸化を促進することを提案している。
【0006】
また特許文献2では、排気中の有害物質であるHC、CO、及びNOの浄化に関して触媒装置とプラズマ発生装置とを組み合わせ、エンジン回転数、触媒温度等に基づいて必要最小限の電力をプラズマ発生装置に供給することが提案されている。
【0007】
【特許文献1】
特開2002−276333号公報
【特許文献2】
特開2002−129949号公報
【0008】
【発明が解決しようとする課題】
プラズマを利用するこれらの従来技術では、エンジンの始動時のようにDPFの温度が低いときにも、捕集したPMを効率的に酸化除去することができる。しかしながらDPFの温度が低い場合以外にも、エンジン内の燃焼状態の変動によって多量のPMがDPFに堆積する場合もある。
【0009】
この場合のように一度多量のPMが堆積すると、プラズマの形成が不安定になり、PMの酸化能力が低下し、これが次のPMの堆積をもたらすという連鎖的な悪循環を起こす。
【0010】
また、この堆積した多量のPMを一度に燃焼除去すると多量の熱が発生する。この多量の熱はDPFの寿命を短くし、また場合によってはDPFを破損させる。
【0011】
この問題は特許文献2でのように、DPF温度だけでなく、エンジン回転数等の条件にも基づいて制御を行うことによって部分的に解決される。しかしながら、エンジン内の燃焼状態の変動は必ずしも予想可能なものではない。従ってエンジン回転数等の条件に基づく制御を加えたとしても、堆積したPMの適切な除去のためにはまだ不充分な場合がある。
【0012】
【課題を解決するための手段】
本発明の排気浄化装置は、プラズマアシストPM浄化リアクター(又は単に「PM浄化リアクター」という。)、PM浄化リアクター内のPM堆積量を検知するPM堆積量検知手段、PM浄化リアクターに電力を供給する電源手段、及びPM堆積量検知手段からの信号に基づいて電源手段を制御する電源制御手段を有する排気浄化装置である。ここでこの排気浄化装置では、PM堆積量検知手段で検知されたPM堆積量が所定量を超えたときに、電源制御手段が電源手段を制御して、PM浄化リアクターへの電力の供給を開始させ、又はPM浄化リアクターに供給する電力を増加させることを特徴とする。
【0013】
本発明の特徴によれば、エンジン回転数のようなパラメータと関連付けられる「PM発生量」ではなく、PM浄化リアクター内の「PM堆積量」に基づいて電力供給を制御することによって、予想外に堆積した多量のPMがもたらすプラズマ発生の不安定化及び急激な燃焼といった欠点を防げることができる。また当然に、常に一定の電力を供給する場合と比較して、少ない電気エネルギーでPMを除去することができる。
【0014】
本発明の1つの態様では、PM堆積量検知手段が、PM浄化リアクター前後の差圧を測定する差圧計を有する。
【0015】
この態様によれば、プラズマアシストPM浄化リアクターの前後の差圧から、PM浄化リアクターでの圧損を求め、これに基づいてPM堆積量を比較的正確に検知することができる。これは、PM浄化リアクターでの圧損がPM堆積量の増加関数であることによる。
【0016】
また、ヒータ等によってDPFを加熱してPMを燃焼除去する場合、主に触媒との接触面においてPMが燃焼除去される。従って図4(a)に示すように、基材15上の触媒13にPM11が過剰に堆積すると、触媒13との接触面付近のPMのみが燃焼し、接触面から離れた位置ではSOF(可溶性有機成分)のみが燃焼して、図4(b)の様に触媒13から浮いた形でPM11が存在することがあり得る。この図4(b)の場合には、圧損とPM堆積量との関係が図4(a)の場合とは異なっており、PM浄化リアクターの圧損からPM堆積量を判断することが困難な場合もあり得る。
【0017】
これに対して、プラズマアシストPM浄化リアクターでPMを燃焼除去する場合、PMの燃焼除去は、DPF等のセル内の負極側セル壁から放出される電子、並びにプラズマが発生させた活性なNO及び/又は活性酸素によって、堆積したPMの表面層部分からも行われる。また電圧の印加によるPMへの通電は、触媒/PM接触面以外でもPMの通電燃焼を促進する。
【0018】
従って、プラズマアシストPM浄化リアクターでPMを燃焼除去する場合、ヒータ等でDPFを加熱してPMを強制燃焼させる場合と比較して、圧損に基づくPMの堆積量の検知が容易になる。
【0019】
【発明の実施の形態】
以下では本発明を図に示した実施形態に基づいて具体的に説明するが、これらの図は本発明を構成する排気浄化装置の概略を示す図であり、本発明はこれらの実施形態に限定されるものではない。
【0020】
図1は本発明の排気浄化装置の全体構成を表す模式的な構成図である。この図1に示す排気浄化装置では、エンジン(ENG)からの排気は、プラズマアシストPM浄化リアクター10と、随意の図示していない他の排気浄化装置、例えばプラズマアシストPM浄化リアクター10の下流のNO吸蔵還元触媒とを、矢印9で示す方向に通過して、大気中に放出される。
【0021】
この排気浄化装置においては、エンジンの排気下流にPM浄化リアクター10が配置されている。このPM浄化リアクター10の前後の差圧計1、信号線2及び計算手段3を含むPM堆積量検知手段は、信号線4によって電源制御手段5に接続されている。この計算手段3は当然にECUであってもよい。この電源制御手段5は、制御線6によって電源手段7に接続されており、この電源手段7は電力線8によってPM浄化リアクター10に接続されている。
【0022】
電源制御手段5は、PM浄化リアクター10のPM堆積量検知手段1、2、3で検知されるPM堆積量に基づいて、電源手段7を制御する。ここではこのPM堆積量検知手段1、2、3によって検知されたPM堆積量が所定量を超えたときに、電源制御手段5が制御線6を通じて電源手段7を制御して、電源手段7がPM浄化リアクター10への電力の供給を開始するようにし、又は電源手段7がPM浄化リアクター10に供給する電力を増加させるようにする。
【0023】
尚、ここではプラズマアシストPM浄化リアクター10のPM堆積量を検知する検知手段として、差圧計1、信号線2及び計算手段3を含むPM堆積量検知手段を使用しているが、任意の他の手段によってPM浄化リアクター10のPM堆積量を測定することができる。従って例えばPM浄化リアクターの電気抵抗、重量、黒化度、又はNO若しくはOの濃度(これらはPM燃焼に用いられるので、PM堆積量が増加すると濃度が低下する)の変化によって、PM堆積量を検知することもできる。
【0024】
図1に示す本発明の排気浄化装置を使用する1つの態様を、図2を用いて説明する。図2に示すように、エンジンENGをスタートさせ、PM浄化リアクター10に電力を供給し、エンジンから排出されるガスをプラズマアシストPM浄化リアクター10に流通させてPMを捕集する。その後、PM堆積量検知手段1、2、3がPM浄化リアクターに所定量のPMが堆積したことを検知したら、所定期間にわたって又は検知されるPM堆積量が所定量未満になるまで、PM浄化リアクター10に供給する電力を増加させるように、電源制御手段5で電源手段7を制御する。またPM堆積量検知手段1、2、3がPM浄化リアクター10に所定量のPMが堆積していないことを検知した場合には、PM浄化リアクター10に供給する電力を増加させずにそのままの電力を供給し、その後再びPM堆積量検知手段1、2、3でPM堆積量を検知する。
【0025】
尚、ここではエンジンENGのスタート共に電力の供給を開始しているが、常時は電力を供給せずに、所定量を超えるPMが堆積したときに初めて電源手段7が電力を供給するように、電源制御手段5で制御してもよい。また、特許文献2で示されるようなエンジンの運転状態に基づく電力供給の制御、すなわち発生するであろうPMの量に基づく電力供給の制御を、本発明によるPM堆積量による制御と組み合わせて使用することもできる。これによれば、常時はエンジンの運転状態に基づく制御を行いつつ、PM堆積量検知手段で所定量を超えるPMの堆積が検知されたときにのみ、本発明による制御が行われるようにすることができる。
【0026】
本発明で使用するプラズマアシストPM浄化リアクターは、電圧の印加によってプラズマを発生させ、このプラズマがPMの燃焼除去を促進するものであり、例えば特許文献1及び2で示されるようなものでよい。
【0027】
また本発明で使用するプラズマアシストPM浄化リアクターは、図3に示すようなものでよい。このプラズマアシストPM浄化リアクターでは、DPFのようなハニカム構造体25が、メッシュ状電極のような平面電極20a〜20eでサンドイッチ状に挟まれている。ここではPMを含む排気は、矢印9で示す方向でハニカム構造体25内の流路を流通する。
【0028】
平面電極20a〜20eのうち、平面電極20b及び20dは、電源手段7に接続されており、残りの平面電極20a、20c及び20eはアースされている。これらの平面電極20a〜20eは、間にハニカム構造体25が配置されることにより、隣接する平面電極と電気的に絶縁されている。
【0029】
尚、プラズマアシストPM浄化リアクターにおいてPMを捕集するためにはDPFを使用することが一般的であるが、PMを捕集することが可能であれば、ストレートフロー型ハニカム構造体のような他の構造体を使用することもできる。
【0030】
図1で示すPM浄化リアクターの使用においては、平面電極20a、20c及び20eと、それぞれ隣接する平面電極20b及び20dと間に、電源手段7によって電力を供給する。このような複数のハニカム構造体とこれらをサンドイッチ状に挟む電極を有するプラズマアシストPM浄化リアクターの使用によれば、プラズマによってPMの燃焼除去を促進するだけでなく、PMの通電燃焼を促進することもできる。
【0031】
また、本発明で使用するプラズマアシストPM浄化リアクターは、プラズマと通電によってPMの燃焼除去を促進するだけでなく、NO吸蔵還元触媒のようなNO浄化触媒を保持して、NO浄化を含む他の機能も有することができる。
【0032】
ここで提供する印加電圧としては、一般的には5kV以上、好ましくは10kV以上の電圧を使用する。印加電圧のパルス周期は、10ms以下、1ms以下が好ましい。直流電圧、交流電圧、周期的な波形の電圧等をPM浄化リアクターの電極間に印加することができるが、特に直流パルス電圧が、コロナ放電を良好に起こさせることができるために好ましい。直流パルス電圧を用いる場合、印加電圧、パルス幅、パルス周期は、両電極間にコロナ放電を起こすことができる範囲で任意に選択できる。印加電圧の電圧等については、装置の設計や経済性等からの一定の制約を受ける可能性があるが、高電圧且つ短パルス周期の電圧であることがコロナ放電を良好に発生させる点から望ましい。
【0033】
【発明の効果】
本発明によれば、ディーゼルエンジン等の内燃機関からの排気中のPMを適切に除去することができる。
【図面の簡単な説明】
【図1】本発明の1つの実施態様を表す模式図である。
【図2】本発明の排気浄化装置での電力供給の制御を示すフローチャートである。
【図3】実施例で使用できるプラズマアシストPM浄化リアクターの1つの態様を示す正面図である。
【図4】堆積したPMをDPFの加熱により燃焼除去した場合の、PMの形状を示す概念図である。
【符号の説明】
1…差圧計
2…信号線
3…PM堆積量検知手段
4…信号線
5…電源制御手段
6…制御線
7…電源手段
8…電力線
9…排気流れ方向
10…プラズマアシストPM浄化リアクター
11…堆積したPM
13…触媒層
15…基材
20a〜20e…平面電極
25…ハニカム構造体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification device for exhaust gas from an internal combustion engine or the like, and more particularly to an exhaust gas purification device for removing particulate matter (particulate: hereinafter referred to as “PM”) discharged from a diesel engine.
[0002]
[Prior art]
Diesel engines are often installed in automobiles, particularly large vehicles, and it has been strongly desired to reduce PM emissions together with nitrogen oxides, carbon monoxide, hydrocarbons, and the like in the exhaust thereof. Therefore, not only technical development for fundamentally reducing PM by improving the engine or optimizing combustion conditions, but also establishment of technology for efficiently removing PM in exhaust gas is desired.
[0003]
However, in the method of collecting PM in exhaust gas simply with a diesel particulate filter (hereinafter referred to as “DPF”), as the usage time elapses, the filter is clogged by the collected PM and the ventilation resistance increases. This results in a burden on the engine.
[0004]
Therefore, conventionally, the DPF is heated by a heater or the like to forcibly burn the deposited PM.
[0005]
In recent years, as a more efficient method, it has been proposed to use plasma energy by discharge for the combustion removal of PM collected by the DPF. For example, Patent Literature 1 proposes that NO 2 and active oxygen are generated by plasma in combination with a DPF and a plasma generator to promote oxidation of collected PM. Here, it is proposed that plasma is generated when the temperature of the DPF is low to promote the oxidation of PM.
[0006]
The Patent Document 2, HC is a harmful substance in the exhaust, CO, and combining the catalyst system and the plasma generating device with respect to the purification of NO x, plasma minimum necessary power based engine speed, a catalyst temperature etc. It has been proposed to supply the generator.
[0007]
[Patent Document 1]
JP 2002-276333 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-129949
[Problems to be solved by the invention]
In these conventional techniques using plasma, the collected PM can be efficiently oxidized and removed even when the temperature of the DPF is low, such as when the engine is started. However, in addition to the case where the temperature of the DPF is low, a large amount of PM may accumulate on the DPF due to fluctuations in the combustion state in the engine.
[0009]
Once a large amount of PM is deposited as in this case, the formation of plasma becomes unstable, and the oxidation ability of PM is lowered, which causes a chain vicious cycle that leads to the deposition of the next PM.
[0010]
Further, if the accumulated large amount of PM is burned and removed at a time, a large amount of heat is generated. This large amount of heat shortens the life of the DPF and possibly damages the DPF.
[0011]
This problem is partially solved by performing control based not only on the DPF temperature but also on conditions such as the engine speed, as in Patent Document 2. However, fluctuations in the combustion state in the engine are not always predictable. Therefore, even if control based on conditions such as engine speed is added, it may still be insufficient for proper removal of accumulated PM.
[0012]
[Means for Solving the Problems]
The exhaust purification apparatus of the present invention supplies power to a plasma assisted PM purification reactor (or simply referred to as “PM purification reactor”), a PM deposition amount detection means for detecting the PM deposition amount in the PM purification reactor, and the PM purification reactor. An exhaust emission control device having a power supply control means for controlling the power supply means based on signals from the power supply means and the PM accumulation amount detection means. Here, in this exhaust purification apparatus, when the PM accumulation amount detected by the PM accumulation amount detection means exceeds a predetermined amount, the power supply control means controls the power supply means and starts supplying power to the PM purification reactor. Or the power supplied to the PM purification reactor is increased.
[0013]
According to a feature of the present invention, unexpectedly by controlling the power supply based on the “PM deposition amount” in the PM purification reactor rather than the “PM generation amount” associated with parameters such as engine speed. It is possible to prevent the disadvantages of unstable plasma generation and rapid combustion caused by a large amount of accumulated PM. Naturally, it is possible to remove PM with less electrical energy compared to the case where constant power is always supplied.
[0014]
In one aspect of the present invention, the PM accumulation amount detection means includes a differential pressure gauge that measures the differential pressure before and after the PM purification reactor.
[0015]
According to this aspect, the pressure loss in the PM purification reactor can be obtained from the differential pressure before and after the plasma-assisted PM purification reactor, and the PM deposition amount can be detected relatively accurately based on this. This is because the pressure loss in the PM purification reactor is an increasing function of the PM deposition amount.
[0016]
Further, when PM is burned and removed by heating the DPF with a heater or the like, PM is burned and removed mainly on the contact surface with the catalyst. Therefore, as shown in FIG. 4A, when PM11 is excessively deposited on the catalyst 13 on the base material 15, only PM near the contact surface with the catalyst 13 burns, and at a position away from the contact surface, SOF (soluble It is possible that only the organic component) burns and PM11 exists in a form floating from the catalyst 13 as shown in FIG. In the case of FIG. 4B, the relationship between the pressure loss and the PM accumulation amount is different from that in FIG. 4A, and it is difficult to determine the PM accumulation amount from the pressure loss of the PM purification reactor. There is also a possibility.
[0017]
On the other hand, when PM is burned and removed by the plasma-assisted PM purification reactor, PM is burned and removed by electrons emitted from the negative cell wall in the cell such as DPF and active NO 2 generated by the plasma. And / or by active oxygen from the surface layer portion of the deposited PM. Also, the energization of the PM by applying a voltage promotes the energization combustion of the PM other than the catalyst / PM contact surface.
[0018]
Therefore, when PM is burned and removed by the plasma-assisted PM purification reactor, it is easier to detect the amount of accumulated PM based on the pressure loss than when the DPF is forcibly burned by heating the DPF with a heater or the like.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the following, the present invention will be specifically described based on the embodiments shown in the drawings. However, these drawings are diagrams showing an outline of an exhaust emission control device constituting the present invention, and the present invention is limited to these embodiments. Is not to be done.
[0020]
FIG. 1 is a schematic configuration diagram showing the overall configuration of the exhaust emission control device of the present invention. In the exhaust gas purification apparatus shown in FIG. 1, exhaust gas from the engine (ENG) is supplied from a plasma-assisted PM purification reactor 10 and an optional other exhaust gas purification apparatus (not shown) such as NO downstream of the plasma-assisted PM purification reactor 10. It passes through the x storage reduction catalyst in the direction indicated by arrow 9 and is released into the atmosphere.
[0021]
In this exhaust purification device, a PM purification reactor 10 is arranged downstream of the engine exhaust. The PM accumulation amount detection means including the differential pressure gauge 1 before and after the PM purification reactor 10, the signal line 2 and the calculation means 3 is connected to the power supply control means 5 by the signal line 4. Naturally, the calculating means 3 may be an ECU. The power supply control means 5 is connected to the power supply means 7 by the control line 6, and the power supply means 7 is connected to the PM purification reactor 10 by the power line 8.
[0022]
The power supply control means 5 controls the power supply means 7 based on the PM accumulation amount detected by the PM accumulation amount detection means 1, 2, 3 of the PM purification reactor 10. Here, when the PM accumulation amount detected by the PM accumulation amount detection means 1, 2, and 3 exceeds a predetermined amount, the power supply control means 5 controls the power supply means 7 through the control line 6, and the power supply means 7 The supply of power to the PM purification reactor 10 is started, or the power supplied from the power supply means 7 to the PM purification reactor 10 is increased.
[0023]
Here, the PM deposit amount detecting means including the differential pressure gauge 1, the signal line 2 and the calculating means 3 is used as the detection means for detecting the PM deposit amount of the plasma assisted PM purification reactor 10, but any other The amount of PM deposited in the PM purification reactor 10 can be measured by means. Thus, for example, PM deposition due to changes in electrical resistance, weight, blackening degree, or NO 2 or O 2 concentration (which is used for PM combustion, the concentration decreases as the PM deposition amount increases) in the PM purification reactor. The amount can also be detected.
[0024]
One mode of using the exhaust emission control device of the present invention shown in FIG. 1 will be described with reference to FIG. As shown in FIG. 2, the engine ENG is started, electric power is supplied to the PM purification reactor 10, and gas discharged from the engine is circulated to the plasma assist PM purification reactor 10 to collect PM. Thereafter, when the PM accumulation amount detection means 1, 2, and 3 detect that a predetermined amount of PM has accumulated in the PM purification reactor, the PM purification reactor is maintained for a predetermined period or until the detected PM accumulation amount becomes less than the predetermined amount. The power supply control means 5 controls the power supply means 7 so that the power supplied to 10 is increased. Further, when the PM accumulation amount detection means 1, 2, and 3 detect that a predetermined amount of PM is not accumulated in the PM purification reactor 10, the electric power supplied to the PM purification reactor 10 is not increased and the electric power as it is. After that, the PM accumulation amount is detected again by the PM accumulation amount detection means 1, 2, and 3.
[0025]
Here, the power supply is started at the start of the engine ENG. However, the power supply means 7 supplies power only when PM exceeding a predetermined amount is deposited without always supplying power. You may control by the power supply control means 5. FIG. Further, the control of power supply based on the engine operating state as shown in Patent Document 2, that is, the control of power supply based on the amount of PM that will be generated, is used in combination with the control based on the PM deposition amount according to the present invention. You can also According to this, while performing control based on the operating state of the engine at all times, the control according to the present invention is performed only when PM accumulation exceeding a predetermined amount is detected by the PM accumulation amount detection means. Can do.
[0026]
The plasma-assisted PM purification reactor used in the present invention generates plasma by applying a voltage, and this plasma promotes combustion removal of PM. For example, it may be as shown in Patent Documents 1 and 2.
[0027]
The plasma-assisted PM purification reactor used in the present invention may be as shown in FIG. In this plasma assisted PM purification reactor, a honeycomb structure 25 such as DPF is sandwiched between flat electrodes 20a to 20e such as mesh electrodes. Here, the exhaust gas containing PM flows through the flow path in the honeycomb structure 25 in the direction indicated by the arrow 9.
[0028]
Of the planar electrodes 20a to 20e, the planar electrodes 20b and 20d are connected to the power supply means 7, and the remaining planar electrodes 20a, 20c and 20e are grounded. These planar electrodes 20a to 20e are electrically insulated from adjacent planar electrodes by disposing the honeycomb structure 25 therebetween.
[0029]
In order to collect PM in a plasma assisted PM purification reactor, it is common to use DPF. However, if it is possible to collect PM, other components such as a straight flow type honeycomb structure may be used. The structure can also be used.
[0030]
In the use of the PM purification reactor shown in FIG. 1, electric power is supplied by the power supply means 7 between the planar electrodes 20a, 20c and 20e and the adjacent planar electrodes 20b and 20d, respectively. According to the use of the plasma assisted PM purification reactor having such a plurality of honeycomb structures and electrodes sandwiching them, not only the combustion removal of PM is promoted by the plasma but also the current combustion of the PM is promoted. You can also.
[0031]
The plasma-assisted PM purification reactor used in the present invention not only promotes PM combustion removal by plasma and energization, but also holds a NO x purification catalyst such as a NO x storage reduction catalyst for NO x purification. Other functions can also be included.
[0032]
The applied voltage provided here is generally 5 kV or more, preferably 10 kV or more. The pulse period of the applied voltage is preferably 10 ms or less and 1 ms or less. A DC voltage, an AC voltage, a periodic waveform voltage, or the like can be applied between the electrodes of the PM purification reactor. In particular, a DC pulse voltage is preferable because corona discharge can be caused satisfactorily. When a DC pulse voltage is used, the applied voltage, pulse width, and pulse period can be arbitrarily selected as long as corona discharge can occur between both electrodes. The voltage of the applied voltage may be subject to certain restrictions due to device design, economy, etc., but a high voltage and a short pulse period voltage are desirable from the viewpoint of generating corona discharge satisfactorily. .
[0033]
【The invention's effect】
According to the present invention, PM in exhaust from an internal combustion engine such as a diesel engine can be appropriately removed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating one embodiment of the present invention.
FIG. 2 is a flowchart showing control of power supply in the exhaust emission control device of the present invention.
FIG. 3 is a front view showing one embodiment of a plasma-assisted PM purification reactor that can be used in an embodiment.
FIG. 4 is a conceptual diagram showing the shape of PM when accumulated PM is burned and removed by DPF heating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Differential pressure gauge 2 ... Signal line 3 ... PM deposition amount detection means 4 ... Signal line 5 ... Power supply control means 6 ... Control line 7 ... Power supply means 8 ... Power line 9 ... Exhaust flow direction 10 ... Plasma assist PM purification reactor 11 ... Deposition PM
13 ... Catalyst layer 15 ... Base materials 20a to 20e ... Planar electrode 25 ... Honeycomb structure

Claims (2)

プラズマアシストPM浄化リアクター、
前記PM浄化リアクター内のPM堆積量を検知するPM堆積量検知手段、
前記PM浄化リアクターに電力を供給する電源手段、及び
PM堆積量検知手段からの信号に基づいて前記電源手段を制御する電源制御手段、
を有する排気浄化装置であって、前記PM堆積量検知手段で検知されたPM堆積量が所定量を超えたときに、前記電源制御手段が前記電源手段を制御して、前記PM浄化リアクターへの電力の供給を開始させ、又は前記PM浄化リアクターに供給する電力を増加させることを特徴とする、排気浄化装置。
Plasma assisted PM purification reactor,
PM accumulation amount detection means for detecting the PM accumulation amount in the PM purification reactor,
Power supply means for supplying power to the PM purification reactor, and power supply control means for controlling the power supply means based on a signal from the PM accumulation amount detection means,
When the PM accumulation amount detected by the PM accumulation amount detection means exceeds a predetermined amount, the power supply control means controls the power supply means to supply the PM purification reactor to the PM purification reactor. An exhaust gas purification apparatus characterized by starting the supply of electric power or increasing the electric power supplied to the PM purification reactor.
前記PM堆積量検知手段が、前記PM浄化リアクター前後の差圧を測定する差圧計を有する、請求項1に記載の排気浄化装置。The exhaust gas purification apparatus according to claim 1, wherein the PM accumulation amount detection means includes a differential pressure gauge that measures a differential pressure before and after the PM purification reactor.
JP2003207896A 2003-08-19 2003-08-19 Exhaust emission control device Withdrawn JP2005061246A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003207896A JP2005061246A (en) 2003-08-19 2003-08-19 Exhaust emission control device
US10/915,380 US20050039441A1 (en) 2003-08-19 2004-08-11 Exhaust gas purifying apparatus
EP04019564A EP1508677A1 (en) 2003-08-19 2004-08-18 An exhaust gas purifying apparatus
CN200410057790.3A CN1584301A (en) 2003-08-19 2004-08-19 Exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207896A JP2005061246A (en) 2003-08-19 2003-08-19 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2005061246A true JP2005061246A (en) 2005-03-10

Family

ID=34055948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207896A Withdrawn JP2005061246A (en) 2003-08-19 2003-08-19 Exhaust emission control device

Country Status (4)

Country Link
US (1) US20050039441A1 (en)
EP (1) EP1508677A1 (en)
JP (1) JP2005061246A (en)
CN (1) CN1584301A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184862A (en) * 2008-02-05 2009-08-20 Ngk Insulators Ltd Plasma reactor
WO2017002828A1 (en) * 2015-06-30 2017-01-05 ダイハツ工業株式会社 Plasma reactor applied voltage control device and plasma reactor control device
JP2017152341A (en) * 2016-02-26 2017-08-31 ダイハツ工業株式会社 Control apparatus for plasma reactor
CN108643990A (en) * 2018-04-04 2018-10-12 南京理工大学 A kind of diesel engine smoke consuming apparatus based on lower temperature plasma technology

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029524B4 (en) * 2004-06-18 2007-12-06 Robert Bosch Gmbh Method and device for the defined regeneration of sooty surfaces
JP4659097B2 (en) * 2006-08-01 2011-03-30 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Plasma reactor and system for reducing particulate matter in exhaust gas using the same
DE102009041090A1 (en) 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Apparatus and method for treating exhaust gas containing soot particles
JP6264169B2 (en) * 2014-04-15 2018-01-24 トヨタ自動車株式会社 Oil removal equipment
JP6256393B2 (en) * 2015-03-17 2018-01-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
CN105797547A (en) * 2016-04-05 2016-07-27 张增增 Low-temperature plasma purifier provided with screen plate electrodes
CN105927326B (en) * 2016-06-17 2020-06-23 浙江大学 Automatic regeneration device and regeneration method for DPF of marine diesel engine
CN106762039A (en) * 2016-12-21 2017-05-31 李光武 A kind of catalytic convention design and automobile exhaust system
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416676C2 (en) * 1994-05-11 2002-11-07 Siemens Ag Device for the detoxification of exhaust gases from mobile systems
JPH08260942A (en) * 1995-03-28 1996-10-08 Hideo Yoshikawa Emission control device
US6038854A (en) * 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
US5827407A (en) * 1996-08-19 1998-10-27 Raytheon Company Indoor air pollutant destruction apparatus and method using corona discharge
GB9715409D0 (en) * 1997-07-23 1997-09-24 Aea Technology Plc Gas purification
GB2351923A (en) * 1999-07-12 2001-01-17 Perkins Engines Co Ltd Self-cleaning particulate filter utilizing electric discharge currents
DE10130163B4 (en) * 2000-11-21 2012-01-12 Siemens Ag Arrangement for reducing carbonaceous particulate emissions from diesel engines
FR2830275B1 (en) * 2001-10-01 2004-06-11 Renault EXHAUST GAS TREATMENT SYSTEM FOR A COMBUSTION ENGINE
FR2830566B1 (en) * 2001-10-04 2004-02-27 Renault EXHAUST GAS TREATMENT SYSTEM FOR A COMBUSTION ENGINE
US7514047B2 (en) * 2003-01-15 2009-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184862A (en) * 2008-02-05 2009-08-20 Ngk Insulators Ltd Plasma reactor
WO2017002828A1 (en) * 2015-06-30 2017-01-05 ダイハツ工業株式会社 Plasma reactor applied voltage control device and plasma reactor control device
JP2017152341A (en) * 2016-02-26 2017-08-31 ダイハツ工業株式会社 Control apparatus for plasma reactor
CN108643990A (en) * 2018-04-04 2018-10-12 南京理工大学 A kind of diesel engine smoke consuming apparatus based on lower temperature plasma technology

Also Published As

Publication number Publication date
US20050039441A1 (en) 2005-02-24
CN1584301A (en) 2005-02-23
EP1508677A1 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP3551156B2 (en) Exhaust gas purification device for internal combustion engine
JPH11336534A (en) Induction heating type emission control device for internal combustion engine
JP2005061246A (en) Exhaust emission control device
JP3897798B2 (en) Exhaust gas purification method and exhaust gas purification device
JP3933625B2 (en) Diesel engine particulate reduction system
WO2005026506A1 (en) Exhaust gas-purifying device
JP4887888B2 (en) Exhaust gas purification device for internal combustion engine
JP2008255812A (en) Exhaust emission control device of internal combustion engine
JP4156276B2 (en) Exhaust purification device
JP4304238B2 (en) Method and apparatus for exhaust gas purification of internal combustion engine
JP2005036712A (en) Exhaust emission control device and exhaust emission control method
JP2004036543A (en) Exhaust emission control device for internal combustion engine
JP2004360512A (en) Exhaust emission control device
JP2004092589A (en) Exhaust emission control device for internal combustion engine
JP4132920B2 (en) PM purification device
JP2010112205A (en) Exhaust emission control device of internal combustion engine
JP2004011592A (en) Exhaust emission control device
JP4735979B2 (en) Exhaust gas purification device and exhaust gas purification method
JP7264111B2 (en) Exhaust purification device
JP2005036671A (en) Exhaust emission control device
JP2004346914A (en) Emission control device
JP7393999B2 (en) Plasma reactor device for exhaust gas purification
JP2006029132A (en) Exhaust emission control device
JP7393998B2 (en) Plasma reactor device for exhaust gas purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071207