JP2005051048A - Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system - Google Patents

Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system Download PDF

Info

Publication number
JP2005051048A
JP2005051048A JP2003281596A JP2003281596A JP2005051048A JP 2005051048 A JP2005051048 A JP 2005051048A JP 2003281596 A JP2003281596 A JP 2003281596A JP 2003281596 A JP2003281596 A JP 2003281596A JP 2005051048 A JP2005051048 A JP 2005051048A
Authority
JP
Japan
Prior art keywords
rsh
func
temperature
solar cell
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003281596A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
淳 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003281596A priority Critical patent/JP2005051048A/en
Publication of JP2005051048A publication Critical patent/JP2005051048A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming an I-V curve which is high in accuracy and general-purpose properties, and to provide a method of evaluating the amount of power generated by a field photovoltaic power generating system by the use of the above I-V curve. <P>SOLUTION: Two methods (one is a monthly temperature coefficient method and the other is a temperature-corrected system output coefficient method) for calculating efficiency obtained by adding a loss caused by a temperature rise to a system output coefficient are developed, and it is made clear that the calculation results obtained through the two methods are very similar to each other. It is found that both methods become more effective when a method of forming an I-V curve through a theoretical formula is employed as a method of forming an I-V curve at an optional insolation intensity and a solar cell temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

太陽電池は、図3のごとく、太陽の光エネルギーを電気エネルギーに直接変換するものである。すなわち光電効果の一種である光起電力効果を応用し、起電力を発生させるものであり、太陽電池中に適当なエネルギーを持った光(光子)が入射すると、自由な電子と正孔が発生する。太陽電池は半導体中のpn接合近傍に達した電子と正孔は、それぞれn型半導体側、p型半導体側に拡散し、両電極部に集まるので、電力が取り出せ、電圧および電流が発生するというわけである。
太陽電池は、結晶シリコン系、非結晶シリコン系、化合物系に大別できる。 結晶シリコン系太陽電池、特に単結晶太陽電池は製造工程が複雑で、製造に大量の電力を必要とするため、コスト低減の研究が進められている。最近、素子構造の工夫などにより、20%を超える変換効率を達成した報告もある。製造工程の少し簡単な多結晶シリコン太陽電池では、太陽電池変換効率は実用上では10%〜15%程度である。非結晶シリコン系太陽電池(アモルファス太陽電池)では、製造工程が簡単で製造エネルギーが少なく、またシリコン材料が少なくてすむため、低コスト太陽電池として有望である。さらに、薄膜で各種の基盤上に形成できるため、広い応用範囲が期待される。効率は実用上では10%程度である。
本発明は、このような太陽電池を使った発電システム(太陽光発電システム)において、フィールドに設置した太陽光発電システムの発電出力、発電量が工場での太陽電池の測定値又は仕様値(それぞれの太陽電池の工場試験値又はその型式の太陽電池の定格値)に比較してどの程度であるかなどを短期間に正確かつ的確に評価する方法、およびそのプログラムを記録したコンピュータ読み取り可能な記録媒体とその評価装置・システムに関する。
As shown in FIG. 3, a solar cell directly converts solar light energy into electric energy. In other words, the photovoltaic effect, which is a type of photoelectric effect, is applied to generate an electromotive force. When light (photons) with appropriate energy enters a solar cell, free electrons and holes are generated. To do. In the solar cell, electrons and holes that reach the vicinity of the pn junction in the semiconductor diffuse to the n-type semiconductor side and the p-type semiconductor side, respectively, and gather at both electrode parts, so that power can be taken out and voltage and current are generated. That is why.
Solar cells can be broadly classified into crystalline silicon, amorphous silicon, and compound. Crystalline silicon solar cells, particularly single crystal solar cells, have a complicated manufacturing process and require a large amount of electric power for manufacturing. Recently, there have been reports that conversion efficiency exceeding 20% has been achieved by devising device structures. In a polycrystalline silicon solar cell with a slightly simpler manufacturing process, the solar cell conversion efficiency is practically about 10% to 15%. An amorphous silicon solar cell (amorphous solar cell) is promising as a low-cost solar cell because the manufacturing process is simple, the manufacturing energy is small, and the silicon material is small. Furthermore, since it can be formed on various substrates with a thin film, a wide range of applications is expected. The efficiency is about 10% in practical use.
In the power generation system (photovoltaic power generation system) using such a solar cell, the present invention provides a measurement value or a specification value (respectively, a solar cell power generation output and a power generation amount of the solar power generation system installed in the field). A method for accurately and accurately evaluating the extent of the comparison with the factory test value of the solar cell or the rated value of the solar cell of that type), and a computer-readable record recording the program The present invention relates to a medium and an evaluation apparatus / system thereof.

太陽光発電システムは、地球環境問題解決の高まりのなか、太陽電池とそのシステム価格の低減、逆潮流に対する電力会社の受入体制の整備、国の助成措置などにより最近の普及が著しい。また、新しい高機能の太陽電池も開発されている。しかし最近では、実際に設置した太陽電池の発電出力や発電量が本来の仕様値ほど得られていないのではないかという疑問を、太陽光発電システムの設置者、設置工事業者などからよく聞く。本発明者らが実際に太陽電池のこれら出力・発電量を調査した結果でも、出力・発電量がかなり小さい事例をよく見かける。
国などの実施するフィールド試験では、「システム出力係数」がよく使われている。「システム出力係数」とは、[ある期間の太陽光発電システムの発電量(KWH)]を[同じ期間のそのシステムに照射された日射量(KWH/ m2)*基準日射強度での太陽電池定格出力(KW/KW/ m2)]で除した値である。また従来から実施されている方法として、一定期間の発電量を、同一期間に測定した日射計による太陽電池受光面の日射量に太陽電池面積を乗じた値で除した「太陽電池変換効率」を求めて評価する方法もある。また、一定期間の積算値で評価するのでなく、それぞれの時点における測定した太陽電池出力を日射強度・太陽電池温度から概略求めた出力値で除して評価することも行なわれている。しかしこれらの方法では、文字通り概略値の評価であり、評価に長期の期間がかかったり、的確な評価値が得られなかったりする。また、これらの技術では評価精度が低いため、出力・発電量不足がみられても、その原因解明とその対策の実施をすることが難しかった。
In recent years, solar power generation systems have been widely spread due to reductions in solar cells and their system prices, the establishment of a power company acceptance system for reverse power flow, and government subsidies. New high-performance solar cells have also been developed. Recently, however, we frequently hear questions from solar power generation system installers and installers that the power generation output and power generation amount of the solar cells actually installed are not as high as the original specifications. Even when the present inventors actually investigated the output / power generation amount of the solar cell, there are many cases where the output / power generation amount is considerably small.
In field tests conducted by countries, etc., “system output coefficient” is often used. “System output coefficient” means [amount of power generated by a photovoltaic power generation system during a certain period (KWH)] [amount of solar radiation irradiated to that system during the same period (KWH / m 2 ) * solar cell at the standard solar radiation intensity Rated output (KW / KW / m 2 )]. In addition, as a conventionally practiced method, the “solar cell conversion efficiency” obtained by dividing the power generation amount for a certain period by the solar cell area multiplied by the solar cell light-receiving surface measured by the pyranometer measured during the same period. There is also a method of seeking and evaluating. Further, instead of evaluating with an integrated value for a certain period, evaluation is performed by dividing a measured solar cell output at each time point by an output value roughly obtained from solar radiation intensity and solar cell temperature. However, these methods literally evaluate the approximate value, and it takes a long period of time for evaluation or an accurate evaluation value cannot be obtained. In addition, since these technologies have low evaluation accuracy, it is difficult to elucidate the cause and implement countermeasures even when power and power generation are insufficient.

そこで最近では、「(太陽電池)I-Vカーブ測定器」が開発され市販されている。この装置では、評価すべき太陽電池を、その接続されたインバータ・負荷などの機器から切離し、模擬負荷(コンデンサ負荷、電子負荷など)を接続し、その負荷の値を高速に自動切替・変化することにより、0.5秒程度以内に40〜50組程度の発生電圧(V)−発生電流(I)値を測定して電圧−電流カーブ(I-Vカーブ)を得、同時に当該太陽電池の温度(以下太陽電池温度又はモジュール温度という)と当該太陽電池受光面の日射強度を得て、これらの値を使い基準状態のI-Vカーブにもどし、メーカー仕様値と比較して、太陽電池の出力を評価するものである。すなわち、この装置の評価の方法は、評価すべき時刻の日射強度・太陽電池温度において測定したI-Vカーブを基準状態(日射強度1kW/m2、太陽電池温度25℃)のI-Vカーブに変換式を使って変換し、太陽電池メーカーが示している仕様値(基準状態における短絡電流(Isc)、開放電圧(Voc)、最適電圧(Vop)、最適電流(Iop)など)、実際は最大出力電力Pmax(Iop*Vop)と比較・評価するものである。そして、評価対象の太陽電池の出力(電力)とその評価結果などをパソコン・マイコンで出力するものである。
太陽電池の出力・発電量の評価では、この「I-Vカーブ測定器」が重要な地位を占めているにもかかわらず、この種装置で市販されている機種は国内外に意外に少なく、またこれら機種のハード面の原理および評価ソフトは類似している。一般的に「I-Vカーブ測定器」による評価方法・装置の課題は次のとおりである。
(1) この装置の評価ソフトの中核部分は、測定時の日射強度、太陽電池温度における発生電圧V−発生電流Iの値(I-Vカーブの値)を、基準状態(日射強度1kW/m2、モジュール温度25℃)の電圧−電流値(I-Vカーブの値)に、変換(換算)する方法(変換式)である。従来から使われている変換式では(図5の表の左欄又は中欄の式)であり、変換式を適用できる日射強度の条件(範囲)が0.8kW/m2程度以上で、日射も安定している場合などに限定されており、実際には評価ができない日射強度条件の場合も多かった。すなわち、汎用的な精度の高い変換式が一般には確立していなかった。
(2) 太陽電池や太陽光発電システムのそれぞれの時刻における出力の評価の他に、一定期間の発電量すなわちKWhで正確に評価する方法が確立していない。
(3) 一般に日射の変動は激しく、0.5秒以内に最高から最低まで日射強度が変動することもみられる。したがって、より高速に電圧−電流の値(I-Vカーブ)を測定する技術が必要であり、この点でも従来の技術では十分とはいえない。
(4) 太陽電池出力を評価する場合、運転中の太陽電池を連系されている太陽電池から切離すことなく太陽電池の出力・発電量を計測し、評価することが望まれる。
Therefore, recently, “(solar cell) IV curve measuring device” has been developed and marketed. In this device, the solar cell to be evaluated is disconnected from the connected inverter, load, etc., connected to a simulated load (capacitor load, electronic load, etc.), and the load value is automatically switched and changed at high speed. By measuring the generated voltage (V) -generated current (I) value of about 40-50 sets within about 0.5 seconds, a voltage-current curve (IV curve) is obtained, and at the same time, the temperature of the solar cell (hereinafter referred to as solar The battery temperature or module temperature) and the solar radiation intensity of the solar cell light receiving surface are obtained, and these values are used to return to the IV curve of the standard state, and compared with the manufacturer's specifications, the output of the solar cell is evaluated. is there. In other words, the method for evaluating this device is to convert the IV curve measured at the solar radiation intensity and solar cell temperature at the time to be evaluated into the IV curve of the standard condition (solar radiation intensity 1 kW / m 2 , solar cell temperature 25 ° C). Conversion values used by solar cell manufacturers (reference circuit short circuit current (Isc), open circuit voltage (Voc), optimum voltage (Vop), optimum current (Iop), etc.)), actual maximum output power Pmax ( Iop * Vop) to compare and evaluate. Then, the output (electric power) of the solar cell to be evaluated and the evaluation result are output by a personal computer / microcomputer.
Despite the fact that this “IV curve measuring instrument” occupies an important position in the evaluation of the output and power generation amount of solar cells, there are surprisingly few models on the market in Japan and overseas. The hardware principle and evaluation software of the model are similar. In general, the problems of the evaluation method and apparatus using the “IV curve measuring device” are as follows.
(1) The core part of the evaluation software of this equipment is the solar radiation intensity at the time of measurement, the generated voltage V-generated current I value (IV curve value) at the solar cell temperature, the reference state (solar radiation intensity 1 kW / m 2 , This is a method (conversion formula) for converting (converting) into a voltage-current value (IV curve value) at a module temperature of 25 ° C. The conversion formula used in the past (the formula in the left or middle column of the table in FIG. 5) is the condition (range) of the solar radiation intensity to which the conversion formula can be applied, and the solar radiation is about 0.8 kW / m 2 or more. It is limited to cases where it is stable, and there are many cases of solar radiation intensity conditions that cannot actually be evaluated. That is, a general-purpose high-accuracy conversion formula has not generally been established.
(2) Besides the evaluation of the output at each time of the solar cell and the photovoltaic power generation system, a method for accurately evaluating the power generation amount for a certain period, that is, KWh has not been established.
(3) In general, the fluctuation of solar radiation is severe, and the solar radiation intensity can be seen to change from highest to lowest within 0.5 seconds. Therefore, a technique for measuring the voltage-current value (IV curve) at a higher speed is necessary, and the conventional technique is not sufficient in this respect.
(4) When evaluating the solar cell output, it is desirable to measure and evaluate the output / power generation amount of the solar cell without disconnecting the solar cell in operation from the connected solar cells.

本発明では以上の事実を考慮しながら、太陽光発電システムの発電量評価が、太陽電池を太陽光発電システムから切離すことなく計測でき、発電量評価することができる方法を中心に考えるため、ここでは「I−Vカーブ測定器」は使用しない方法とする。すなわち、連系状態で評価する方法とする。すなわち、実際の太陽光発電システムは常に運転状態にあり、停止して系統から切離して出力・発電量を評価することは難しい面が多い。そのため、「I-Vカーブ測定器」を使わないで実施できる評価方法が望まれている。一般に、太陽光発電システムを連系状態のままで評価する方法としては前述のように、ある時刻のシステムの出力(発電)と、その時の日射強度と太陽電池温度から計算した出力(発電)の比を求めて評価することが基本となる。そのためには、次の主要技術が必要となるが、いずれも未だに確立していない。   In consideration of the above facts in the present invention, the power generation amount evaluation of the solar power generation system can be measured without disconnecting the solar cell from the solar power generation system, and a method that can evaluate the power generation amount is mainly considered. Here, the “IV curve measuring device” is not used. That is, it is set as the method evaluated in a connection state. That is, an actual solar power generation system is always in an operating state, and it is difficult to stop and disconnect from the system to evaluate the output and power generation amount. Therefore, an evaluation method that can be carried out without using an “IV curve measuring device” is desired. In general, as described above, as a method of evaluating a photovoltaic power generation system in a connected state, the output of the system at a certain time (power generation) and the output calculated from the solar radiation intensity at that time and the solar cell temperature (power generation) It is fundamental to find and evaluate the ratio. To that end, the following main technologies are required, but none of them has been established yet.

太陽電池特性値から任意の日射強度・太陽電池温度におけるI−Vカーブを作成する技術
このようなI−Vカーブが描ければ計算出力(発電)が正確に算出でき基本的には太陽光発電システムの発電量の正確な評価が可能となる。
Technology for creating an IV curve at an arbitrary solar radiation intensity and solar cell temperature from solar cell characteristic values If such an IV curve is drawn, calculation output (power generation) can be accurately calculated, and basically solar power generation Accurate evaluation of system power generation is possible.

(2)激しい日射変動のもとでも、また日射強度や太陽電池温度の大きさに影響されにくく安定した評価ができる技術
激しい日射変動のもとなどでも安定した評価ができることが必要である。
(2) It is necessary to be able to perform a stable evaluation even under intense solar radiation fluctuations, and a technology capable of performing a stable evaluation that is not easily affected by the intensity of solar radiation intensity or solar cell temperature.

(3)その他
できるだけ短期間の測定で評価ができること、および太陽光発電システムがMPPT運転できているかを評価できる技術も必要である。
(3) Others It is also necessary to have a technique that can be evaluated by measuring in the shortest possible time and whether the photovoltaic power generation system is capable of MPPT operation.

ここで評価に関する従来の技術と課題を十分理解するために、太陽電池の基本的な技術を述べるとともに、太陽電池の特性と特性曲線、および評価の方法に関して説明する。
図5は太陽電池の出力特性曲線である、電圧−電流曲線(I-Vカーブ)を示しており、横軸は電圧V、縦軸は電流Iを示している。また破線は電圧−電力曲線(P-Vカーブ)を示しており、横軸は電圧V、縦軸は電力P(V*I)である。
太陽電池の出力電力は、電圧Vと電流Iの積であり、この太陽電池の出力が最大となる点が、最大出力点(Pmax)と呼ばれている。最大出力点Pmaxにおける電流Iおよび電圧Vのそれぞれの値は、最適電流Iopおよび最適電圧Vopと呼ばれている。そして、電流が零のときの電圧Vを解放電圧Vocとまた、電圧が零のときの電流Iを短絡電流Iscという。
太陽電池は、その個々の特性の違いにより、また受光する光の日射強度や太陽電池温度により、その発生電圧と発生電流の曲線であるI-Vカーブが異なってくる。そこで太陽電池の特性値は、基準日射強度(1kW/m2)で基準太陽電池温度(25℃)の状態(「基準状態」という)における短絡電流Isc、最適電流Iop、最適電圧Vop、開放電圧Vocおよび、太陽電池直列抵抗Rs、温度が1℃変化したときの短絡電流Iscの変動値α(A/℃)、温度が1℃変化したときの開放電圧Vocの変動値β(V/℃)、曲線補正因子Kで示される。なお、太陽電池の特性値は、日射強度1kW/m2で太陽電池55℃の状態(「動作状態」ともいう)での短絡電流Isc、最適電流Iop、最適電圧Vop、開放電圧Vocなどで示されることもある。
また、太陽電池の出力特性値は、前述のごとく一般に、日射強度が1kW/m2で太陽電池温度が25℃(場合によっては55℃を含むことがある)の状態がメーカーから与えられる。このため、太陽電池温度が25℃や55℃以外の場合や、日射強度が1kW/m2以外の場合には、評価対象の太陽電池の出力や発電量が太陽電池本来の出力や発電量に比較してどの程度であるかわからない。つまり、太陽電池温度が基準温度と異なる値、例えば38℃で、日射強度が基準日射強度と異なる値、例えば700W/m2の場合には、I-Vカーブのデータは基準状態のI-Vカーブを日射強度700W/m2、太陽電池温度38℃に変換できなければ評価対象の太陽電池の出力がどの程度の評価値であるかわからない。このように、太陽電池の出力・発電量の評価では、基準状態のI-Vカーブを任意の日射強度、任意の太陽電池温度のI-Vカーブに変換する式、あるいは任意の日射強度、任意の太陽電池温度で測定したI-Vカーブを基準状態(日射強度1kW/m2、太陽電池温度25℃)のI-Vカーブに正確に変換する式が不可欠である。前記のとおり日射強度がごく限られた条件(800〜850W/m2程度以上で安定しているとき)においては、基準状態のI-Vカーブのデータに戻す式として、従来からJIS C 8913などで示されている変換式が一般に適用されている(図4の表の左欄又は中欄の変換式。これらの式はIEAでも示されている式で、米国製の「I-V測定器」にも適用されている。)しかし、このように、ごく限られた日射強度条件などで適用でき、精度に問題がある変換式では太陽電池出力評価には実質的に十分役立たない。また、この変換式の適用にあたって基準状態での特性値であるα,β,Rs,Kを種々の日射強度・太陽電池温度条件のもとでそのまま式の中に使えるかどうかという課題もある。
Here, in order to fully understand the conventional technology and problems related to evaluation, the basic technology of the solar cell will be described, and the characteristics and characteristic curves of the solar cell and the evaluation method will be described.
FIG. 5 shows a voltage-current curve (IV curve), which is an output characteristic curve of the solar cell, in which the horizontal axis indicates the voltage V and the vertical axis indicates the current I. Moreover, the broken line has shown the voltage-power curve (PV curve), the horizontal axis is the voltage V, and a vertical axis | shaft is the electric power P (V * I).
The output power of the solar cell is the product of the voltage V and the current I, and the point at which the output of the solar cell is maximum is called the maximum output point (Pmax). The values of current I and voltage V at maximum output point Pmax are called optimum current Iop and optimum voltage Vop. The voltage V when the current is zero is called the release voltage Voc, and the current I when the voltage is zero is called the short-circuit current Isc.
The IV curve, which is the curve of the generated voltage and generated current, differs depending on the difference in individual characteristics of the solar cell, and the solar radiation intensity of the received light and the solar cell temperature. Therefore, the characteristic values of the solar cell are the short-circuit current Isc, the optimum current Iop, the optimum voltage Vop, and the open-circuit voltage at the reference solar cell temperature (25 ° C) at the reference solar radiation intensity (1 kW / m 2 ) (referred to as “reference state”). Voc, solar cell series resistance Rs, fluctuation value α (A / ° C) of short-circuit current Isc when temperature changes by 1 ° C, fluctuation value β (V / ° C) of open-circuit voltage Voc when temperature changes by 1 ° C , Indicated by a curve correction factor K. The characteristic values of solar cells are indicated by short-circuit current Isc, optimum current Iop, optimum voltage Vop, open circuit voltage Voc, etc., when solar radiation is 1 kW / m 2 and the solar cell is 55 ° C. (also referred to as “operating state”). Sometimes.
Further, as described above, the output characteristic value of the solar cell is generally given by the manufacturer in a state where the solar radiation intensity is 1 kW / m 2 and the solar cell temperature is 25 ° C. (may include 55 ° C. in some cases). For this reason, when the solar cell temperature is other than 25 ° C or 55 ° C, or when the solar radiation intensity is other than 1 kW / m 2 , the output or power generation amount of the solar cell to be evaluated is the original output or power generation amount of the solar cell. I don't know how much it compares. In other words, when the solar cell temperature is a value different from the reference temperature, for example 38 ° C., and the solar radiation intensity is different from the standard solar radiation intensity, for example 700 W / m 2 , the IV curve data represents the solar radiation intensity in the standard state. Unless it can be converted to 700 W / m 2 and a solar cell temperature of 38 ° C., it is not known how much the output of the solar cell to be evaluated is. As described above, in the evaluation of the output / power generation amount of the solar cell, the formula for converting the IV curve in the reference state into the arbitrary solar radiation intensity, the IV curve of the arbitrary solar cell temperature, or the arbitrary solar radiation intensity, the arbitrary solar cell temperature. The formula to accurately convert the IV curve measured in step 1 into the IV curve of the standard condition (insolation intensity 1kW / m 2 , solar cell temperature 25 ° C) is indispensable. As described above, under the condition where the solar radiation intensity is extremely limited (when stable at about 800 to 850 W / m 2 or more), the formula for returning to the IV curve data in the standard state is conventionally shown in JIS C 8913 etc. The conversion formulas used are generally applied (the conversion formulas in the left column or middle column of the table in FIG. 4. These formulas are also shown in the IEA, and are also applied to “IV measuring instruments” made in the United States. However, in this way, the conversion formula that can be applied under very limited conditions of solar radiation intensity and has a problem with accuracy is not substantially useful for solar cell output evaluation. In addition, there is a problem whether α, β, Rs, and K, which are characteristic values in the reference state, can be used in the equation as they are under various solar radiation intensity and solar cell temperature conditions when applying this conversion equation.

また、発電電力量の評価に必要な、基準状態の特性値Isc,Iop,Vop,Vocなどから基準状態のI-Vカーブを描く方法も1部にはあったが(図7)、理論式によるI-Vカーブ作成方法はその適用と応用に関しては、十分には未だ確立されていない。
さらに、太陽電池の特性値である直列抵抗Rsに関しては、太陽電池温度による影響が大きいため、太陽電池温度の関数として表わす式が知られている。例えば、(財)日本品質保証機構では、
Rs={1+3.3717*10-3(T−298)+9.7058*10-5(T−298)2}*Rs'
の式(図6)により、太陽電池温度25℃(絶対温度298K)の直列抵抗値Rs'から太陽電池温度T(絶対温度)での直列抵抗Rsの値を推定することを提案している。しかし、この式はある限定された太陽電池などを使って測定した実験式であり汎用的な式とは言い難いとともに、部分的な解決の試みでしかない。
There was also a method of drawing the IV curve of the reference state from the characteristic values Isc, Iop, Vop, Voc, etc. of the reference state, which is necessary for the evaluation of the amount of generated power (Fig. 7). The curve creation method has not been sufficiently established for its application and application.
Furthermore, the series resistance Rs, which is a characteristic value of the solar cell, is greatly influenced by the solar cell temperature, and thus an expression expressed as a function of the solar cell temperature is known. For example, the Japan Quality Assurance Organization
Rs = {1 + 3.3717 * 10-3 (T−298) + 9.7058 * 10−5 (T−298) 2 } * Rs ′
It is proposed that the value of the series resistance Rs at the solar cell temperature T (absolute temperature) is estimated from the series resistance value Rs ′ at the solar cell temperature of 25 ° C. (absolute temperature 298 K). However, this equation is an empirical equation measured using a limited solar cell and is not a general-purpose equation, and is only a partial solution.

上記「従来の技術」の中で技術の現状と共に一般的な課題についても述べたが、ここでは、本発明が解決しようとする課題を中心に整理して述べる。
その第1は、前述のように測定した日射強度・太陽電池温度における太陽電池の電圧−電流カーブ(I-Vカーブ)を基準状態(日射強度1kW/m2、太陽電池温度25℃)に変換して比較評価する正確かつ汎用的な変換式がまだ十分確立してないという課題である。またその逆に、基準状態での特性値(Isc,Iop,Vop,Voc,α,β,Rs,K)から測定時の日射強度・太陽電池温度における電圧−電流カーブ(I-Vカーブ)を求める正確かつ汎用的な式の確立もできていない。
具体的事例で示すと、現在一般に使用されている任意の日射強度・太陽電池温度条件のI-Vカーブを基準状態のI-Vカーブに変換する変換式(図4の表の左又は中央の欄の変換式)は、前述のように日射強度が800〜850W/m2程度以下の場合には、計算精度が悪いという欠点などがある。このため、測定時の日射強度が800〜850W/m2程度より大きい場合でなければ、実測したI-Vカーブを標準状態のI-Vカーブに変換することができないという課題が指摘されている。すなわち、「I-Vカーブ測定器」を使った評価では、測定した測定時日射強度・太陽電池温度条件におけるI-V,P-Vカーブと太陽電池の基本特性値から求めたI-V,P-Vカーブを測定時条件で十分な精度で比較・評価することができなかった。本発明は、この課題を解決するため、精度・汎用性の高いI-Vカーブの作成方法と、これを使った評価の方法をを提案するものである。
In the above-mentioned “conventional technology”, general problems as well as the current state of the technology have been described, but here, the problems to be solved by the present invention will be mainly described.
The first is to convert the solar cell voltage-current curve (IV curve) at the solar radiation intensity and solar cell temperature measured as described above into the standard state (solar radiation intensity 1 kW / m 2 , solar cell temperature 25 ° C.). The problem is that an accurate and general-purpose conversion formula for comparative evaluation has not yet been established. Conversely, the voltage-current curve (IV curve) at the solar radiation temperature and solar cell temperature at the time of measurement is accurately determined from the characteristic values (Isc, Iop, Vop, Voc, α, β, Rs, K) in the reference state. Moreover, a general formula has not been established.
As a specific example, a conversion formula that converts an IV curve of any solar radiation intensity / solar cell temperature condition that is generally used today into an IV curve of the reference state (the conversion formula in the left or center column of the table in FIG. 4) ) Has a disadvantage that the calculation accuracy is poor when the solar radiation intensity is about 800 to 850 W / m 2 or less as described above. For this reason, the subject that the actually measured IV curve cannot be converted into the IV curve in the standard state is pointed out unless the solar radiation intensity at the time of measurement is greater than about 800 to 850 W / m 2 . In other words, in the evaluation using the “IV curve measuring device”, the IV and PV curves obtained from the measured IV and PV curves and the basic characteristics of the solar cells under the measured solar radiation intensity and solar cell temperature conditions are sufficient under the measurement conditions. It was not possible to compare and evaluate with high accuracy. In order to solve this problem, the present invention proposes a method for creating an IV curve with high accuracy and versatility, and an evaluation method using the method.

第2は、基準状態の特性値(Isc,Iop,Vop,Vocなど)から基準状態のI-Vカーブを描く方法が十分確立していないことである。そのため、測定時日射強度・太陽電池温度条件のI-Vカーブを正確・汎用的に描くことができなかったため、実際に設置された太陽電池の出力やその積算値である発電量を正確・汎用的に評価できなかった。また、その方法が十分確立していないため、太陽光発電システムの年間発電量のシミュレーション計算が正確にできず、太陽光発電システムの設計・運用が十分に実施できにくかったということもある。また、図4の下欄に記載の式にかわる、より理論的な方法を探る動きもあった。例えば、変換式として太陽電池基本式を使い、その基本特性値(Io,Rs,Rshなど)に日射強度・太陽電池温度を使った関数であらわし、この値を基本特性式に適用し解いてI-Vカーブを求める方法である。この方法では、太陽電池の特性値である直列抵抗Rs、並列抵抗Rshなどは太陽電池温度による影響が大きいため、これらの値を太陽電池温度の関数としてあらわしているが、Rs,Rshなどは、前記のとおり特定種類の太陽電池などを使った限られた条件のもとで測定して得られた値である。そのため、汎用的で正確な方法とは言い難く、これらの値を使って求めた計算結果にも課題があった。
他の理論的な方法として、太陽電池基本式を非線形の方程式として解く方法(電気学会論文1(伊賀:「太陽電池の光照射状態での電圧−電流特性を用いたI-Vカーブ作成法とその活用」、電学論116巻、10号、1996))が発表されているが、前述の太陽電池特性値(Isc,Iop,Vop,Voc)から基準状態のI-Vカーブを描く方法、基準状態以外の条件(太陽電池温度40℃、55℃など)のI-Vカーブの作成方法、Rsの求め方、基本特性値(IL,Co,n,Rsh,Rsなど)の曲線補間の方法などにまだ課題があった。
Second, a method for drawing an IV curve in a reference state from characteristic values (Isc, Iop, Vop, Voc, etc.) in the reference state has not been sufficiently established. For this reason, the IV curve of solar radiation intensity during measurement and solar cell temperature conditions could not be drawn accurately and universally, so the output of the actually installed solar battery and the power generation amount that is the integrated value were accurately and universally used. Could not be evaluated. In addition, since the method has not been well established, the simulation calculation of the annual power generation of the solar power generation system could not be performed accurately, and it was difficult to fully implement the design and operation of the solar power generation system. There was also a movement to search for a more theoretical method instead of the equation shown in the lower column of FIG. For example, a solar cell basic equation is used as a conversion formula, and the basic characteristic values (Io, Rs, Rsh, etc.) are expressed as functions using solar radiation intensity and solar cell temperature, and this value is applied to the basic characteristic equation and solved. This is a method for obtaining a curve. In this method, the series resistance Rs, the parallel resistance Rsh, etc., which are the characteristic values of the solar cell, are greatly affected by the solar cell temperature, so these values are expressed as a function of the solar cell temperature, but Rs, Rsh, etc. As described above, this is a value obtained by measurement under limited conditions using a specific type of solar cell or the like. For this reason, it is difficult to say that the method is general-purpose and accurate, and there is a problem with the calculation results obtained using these values.
Another theoretical method is to solve the basic formula of the solar cell as a nonlinear equation (The Institute of Electrical Engineers of Japan 1 (Iga: “Method of creating an IV curve using the voltage-current characteristics of a solar cell in the light irradiation state and its application) ”Electronics, Vol. 116, No. 10, 1996)), but the method of drawing the IV curve of the reference state from the aforementioned solar cell characteristic values (Isc, Iop, Vop, Voc), other than the reference state There are still problems with the IV curve creation method of conditions (solar cell temperature 40 ° C, 55 ° C, etc.), how to obtain Rs, and the method of curve interpolation of basic characteristic values (IL, Co, n, Rsh, Rs, etc.). It was.

系統と連系したままで太陽光発電システムの評価が安定して的確にできるには、どのような課題があり(Pmax運転の評価方法、運転電圧での評価方法など)、どのように解決すべきかという課題があった。 What are the issues (e.g., Pmax operation evaluation method, operation voltage evaluation method) and how to solve them in order to enable stable and accurate evaluation of the photovoltaic power generation system while being connected to the grid? There was a problem of kika.

日射変動が激しい等の条件の場合などにおいても、どのような方法なら安定した的確な評価ができるかという課題があった。   Even under conditions such as severe fluctuations in solar radiation, there was a problem of how to make a stable and accurate evaluation.

また、どのような日射条件と太陽電池温度条件の日・時なら安定した評価ができるかも明らかでなかった。 Also, it was not clear what kind of solar radiation conditions and solar cell temperature conditions could be used for stable evaluation.

太陽光発電システムの効率を向上させるため、上記に評価方法をどのように適用して諸損失を分別・解明するかという課題もあった。   In order to improve the efficiency of the photovoltaic power generation system, there was also a problem of how to apply the evaluation method to sort and elucidate various losses.

請求項1記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を算出するために、月別温度係数(%)(=(月間計算システム発電量(KWh))/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)計算に必要な月間計算システム発電量算出に必要な、任意の日射強度・太陽電池温度の太陽電池I−Vカーブを作成する方法として、(1)標準太陽電池のI−Vカーブを変換する方法(「実用的I−Vカーブ作成法」)又は、(2)太陽電池基本式を解く方法(「理論式によるI−Vカーブ作成法」)を使い、温度上昇による損失(%)を算出し、
該システム出力係数に該温度上昇による損失を加えた値により太陽光発電システムの発電量を評価することを特徴とする。
The method for evaluating the power generation amount of the solar power generation system according to claim 1 is:
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
And in order to calculate the loss (%) due to the temperature rise of the solar cell (= (100−monthly temperature coefficient)), the monthly temperature coefficient (%) (= (monthly calculation system power generation amount (KWh)) / month light receiving surface Solar power I of any solar radiation intensity / solar cell temperature required for calculating the amount of solar power generation required for calculating solar radiation (KWh / m 2 ) / solar cell rated capacity (KW / KW / m 2 ) * 100) As a method for creating a -V curve, (1) a method for converting an IV curve of a standard solar cell ("practical IV curve creation method") or (2) a method for solving a solar cell basic formula (" Using the theoretical formula “IV curve creation method”), calculate the loss (%) due to temperature rise,
The power generation amount of the photovoltaic power generation system is evaluated based on a value obtained by adding the loss due to the temperature increase to the system output coefficient.

請求項2記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を該システム出力係数に加えた値により、太陽光発電システムの発電量を評価することを特徴とする方法であり、
月別温度係数(%)(=(月間計算システム発電量(KWh))/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)計算に必要な月間計算システム発電量の算出過程において、任意の日射強度・太陽電池温度の発電量算出のためのI−Vカーブ作成において、
{01}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{02}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{03}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)を選択し、
{04}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),直列抵抗Rsに基準温度での仕様値Rsa,および前記P1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、
{05}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の直列抵抗Rsに値Rsa および前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、つぎに、
{06}前記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)を、非線形解法のプログラムによって算出し、つぎに、
{07}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0)を選択し、
{08}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),直列抵抗Rsに該温度での仕様値Rsb,および前記{07}のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、
{09}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の直列抵抗Rsに第2の温度での値Rsb および前記{07}の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、つぎに、
{10}前記4つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb)を、非線形解法のプログラムによって、算出し、つぎに、
{11}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0)を選択し、
{12}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),直列抵抗Rsに該温度での仕様値Rsc,および前記{11}のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、
{13}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の直列抵抗Rsに第3の温度での値Rsc および前記{11}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、つぎに、
{14}前記4つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc)を、非線形解法のプログラムによって算出し、つぎに、
{15}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{16}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{06}の解A(ILa,Coa,na,Rsha)、前記温度tb(摂氏:Tb=tb+273) における前記{10}の解B(ILb,Cob,nb,Rshb)、前記温度tc(摂氏:Tc=tc+273) における前記{14}の解C(ILc,Coc,nc,Rshc)および、入力値Rsa、Rsb、Rsa、Rsc のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{17}ILmを実測された日射強度EjによりIL‘m=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL‘m,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL‘m,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする。
The method for evaluating the power generation amount of the solar power generation system according to claim 2 is:
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
And the amount of power generation of the photovoltaic power generation system is evaluated by a value obtained by adding a loss (%) due to a temperature rise of the solar cell (= (100-monthly temperature coefficient)) to the system output coefficient. Yes,
Monthly temperature coefficient (%) (= (Monthly calculation system power generation (KWh)) / Monthly light receiving surface solar radiation (KWh / m 2 ) / Solar cell rated capacity (KW / KW / m 2 ) * 100) Necessary for calculation In the process of calculating the monthly calculation system power generation amount, in the creation of an IV curve for calculating the power generation amount of any solar radiation intensity and solar cell temperature,
{01} Voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{02} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
{03} Specification values for solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select point P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca,
{04} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 where T is the reference state temperature Ta (298 K), the series resistance Rs is the specification value Rsa at the reference temperature, and Substituting the values of the points of P1, P2, P3 and IL, Co, n, Rsh as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0,
Formula: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0
{05} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsa and the value of the point P2 (Vopa , Iopa) and IL, Co, n, Rsh as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, then
{06} The four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0 satisfying solution A (ILa, Coa , na, Rsha) is calculated by a nonlinear solution program, then
{07} Similar to the standard state of the solar cell, the short-circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select points P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{08} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the second temperature Tb (313K) at T, the series resistance Rs, the specification value Rsb at the temperature, and Substituting the values of the points P1, P2, and P3 of {07}, IL, Co, n, and Rsh are unknown relations: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0
Formula: Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0
{09} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the series resistance Rs of the second temperature Tb (313K) is set to the value Rsb at the second temperature and the above Substituting the value (Vopb, Iopb) at point P2 of {07}, and making IL, Co, n, and Rsh unknown
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, then
{10} The four relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0 satisfying solution A (Ilb, Cob , nb, Rshb) by a non-linear solution program, then
{11} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell Select points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0) for the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{12} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the third temperature Tc (328 K) at T, the series resistance Rs, the specification value Rsc at the temperature, and Substituting the values of the points P1, P2, and P3 of {11}, IL, Co, n, and Rsh are unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0
Create a relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0
{13} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsc at the third temperature and the series resistance Rs of the third temperature Tc (328 K) and Substituting the value (Vopc, Iopc) of the point P2 of {11} and making IL, Co, n, Rsh unknown
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, then
{14} The above four relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0 satisfying solution A (Ilc, Coc , nc, Rshc) by a non-linear solution program, then
{15} Measured value of solar cell to be evaluated Solar radiation intensity Ej, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and values of generated voltage Vj−generated current Ij under these conditions,
{16} Solution A (ILa, Coa, na, Rsha) of {06} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) in the reference state, the temperature tb ( Celsius: Tb = tb + 273) {10} solution B (ILb, Cob, nb, Rshb), temperature tc (Celsius: Tc = tc + 273), {14} solution C (ILc, Coc, nc, Rshc) ) And curve interpolation at three points for each of the input values Rsa, Rsb, Rsa, Rsc (IL, Co, n, Rsh, Rs), and the characteristic value M at the measured temperature tj (Celsius: Tj = tj + 273) (ILm, Com, nm, Rshm, Rsm) is calculated, then
After correcting {17} ILm with IL'm = Ilm * Ej / Ea by the measured solar radiation intensity Ej, the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. It is characterized by.

請求項3記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を算出するために、月別温度係数(%)(=(月間計算システム発電量(KWh))/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)を計算して該システム出力係数に加算した値により評価することに特徴があり、月間計算システム発電量算出に必要な、任意の日射強度・太陽電池発電量算出におけるI−Vカーブ作成において、
{18}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{19}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{20}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)およびこれら3点とは近接しない任意のP4(V4a,I4a)を選択し、
{21}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),前記P1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、
関係式:Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{22}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、つぎに、
{23}前記5つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha,Rsa)を、非線形解法のプログラムによって算出し、つぎに、
{24}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0), P4(V4b,I4b)を選択し、
{25}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),および前記{07}のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0、
関係式:Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{26}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の前記{24}の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、つぎに、
{27}前記5つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0, Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb,Rsb)を、非線形解法のプログラムによって、算出し、つぎに、
{28}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0), P4(V4c,I4c)を選択し、
{29}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),前記{28}のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{30}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の前記{28}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、つぎに、
{31}前記5つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0, Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc,Rsc)を、非線形解法のプログラムによって算出し、つぎに、
{32}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{33}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{23}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{27}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{31}の解C(ILc,Coc,nc,Rshc,Rsc)のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{34}ILmを実測された日射強度EjによりIL‘m=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL‘m,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL‘,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする。
The method for evaluating the power generation amount of the solar power generation system according to claim 3 is:
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
And in order to calculate the loss (%) due to the temperature rise of the solar cell (= (100−monthly temperature coefficient)), the monthly temperature coefficient (%) (= (monthly calculation system power generation amount (KWh)) / month light receiving surface It is characterized by calculating the solar radiation amount (KWh / m 2 ) / solar cell rated capacity (KW / KW / m 2 ) * 100) and adding it to the system output coefficient. In creating an IV curve for calculation of arbitrary solar radiation intensity and solar cell power generation required for calculation,
{18} Voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{19} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
Specifications of {20} solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select points P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca and any P4 (V4a, I4a) not close to these three points,
{21} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 T of the reference state temperature Ta (298K), the values of the points P1, P2, P3, and P4 Substituting and using IL, Co, n, Rsh, Rs as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0
Formula: Func (V4a, I4a, IL, Co, n, Rsh, Rs, Ta) = 0
{22} Substituting the value (Vopa, Iopa) of the point P2 of the reference state temperature Ta (298 K) into the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0. , IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, then
{23} The five relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Func (V4a, I4a, IL , Co, n, Rsh, Rs, Ta) = 0, a solution A (ILa, Coa, na, Rsha, Rsa) is calculated by a non-linear solution program.
{24} Similar to the standard state of the solar cell, the short circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select the point P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0), P4 (V4b, I4b) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{25} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 and the second temperature Tb (313 K), and the {07} P1, P2, P3, P4 Substituting the values of the points, IL, Co, n, and Rsh are unknown relations: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tb) = 0
{26} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopb, Iopb) of the {24} point P2 of the second temperature Tb (313K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, then
{27} The five relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tb) = 0, a solution A (Ilb, Cob, nb, Rshb, Rsb) is calculated by a nonlinear solution program.
{28} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell Select the points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0), P4 (V4c, I4c) of the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{29} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 and the third temperature Tc (328 K), the {28} P1, P2, P3, P4 Substituting the value of the point and making IL, Co, n, Rsh, Rs unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0
Relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0,
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tc) = 0
{30} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopc, Iopc) of the point P2 of the {28} at the third temperature Tc (328 K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, then
{31} The five relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tc) = 0, a solution A (Ilc, Coc, nc, Rshc, Rsc) is calculated by a nonlinear solution program.
{32} Measured solar radiation intensity to be evaluated Ej, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273) and the values of generated voltage Vj−generated current Ij under these conditions,
{33} Solution A (ILa, Coa, na, Rsha, Rsa) of {23} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {27} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {31} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed for three points, and the characteristic value M (ILm, Com, nm, Rshm, Rsm), then
After correcting {34} ILm by IL'm = Ilm * Ej / Ea by the measured solar radiation intensity Ej, the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL ', Com, nm, Rshm, Rsm, Tj) = 0, and voltage (V) -current (I ) Relationship (about 40-50 points) using a nonlinear solution program, create a voltage (V) -current (I) relationship or an IV curve and PV curve connecting them, and use that curve. Features.

請求項4記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を算出するために、月別温度係数(%)(=(月間計算システム発電量(KWh))/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)を計算し、該システム出力係数に加算した値により評価することを特徴とする方法において、月間計算システム発電量算出に必要な、任意の日射強度・太陽電池温度の発電量算出のためのI−Vカーブ作成において、
{35}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{36}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1a,I1a),P2(V2a,I2a),P3(V3a,I3a),・・・PN(VNa,INa)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{37}該n個の関係式に最も適したIla,Coa,na,Rsha,Rsaを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{38}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1b,I1b),P2(V2b,I2b),P3(V3b,I3b),・・・PN(VNb,Inb)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{39}該n個の関係式に最も適したIlb,Cob,nb,Rshb,Rsbを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{40}太陽電池の基準状態と同様に、第3の太陽電池モジュール温度Tb(328K(tb=55℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1c,I1c),P2(V2c,I2c),P3(V3c,I3c),・・・PN(VNc,Inc)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{41}該n個の関係式に最も適したIlc,Coc,nc,Rshc,Rscを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{42}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{43}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{37}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{39}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{41}の解C(ILc,Coc,nc,Rshc,Rsc) のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{44}ILmを実測された日射強度EjによりIL‘m=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL‘m,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL‘m,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする。
The method for evaluating the power generation amount of the solar power generation system according to claim 4 is:
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
And in order to calculate the loss (%) due to the temperature rise of the solar cell (= (100−monthly temperature coefficient)), the monthly temperature coefficient (%) (= (monthly calculation system power generation amount (KWh)) / month light receiving surface A method for calculating the amount of solar radiation (KWh / m 2 ) / solar cell rated capacity (KW / KW / m 2 ) * 100) and evaluating it by a value added to the system output coefficient. In creating an IV curve for calculating the power generation amount of any solar radiation intensity and solar cell temperature necessary for power generation amount calculation,
{35} Voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{36} n points P1 (V1a, I1a), P2 given by the manufacturer in the standard state of the solar cell (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )) (V2a, I2a), P3 (V3a, I3a),... PN (VNa, INa) to the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Create n relational expressions Func (V, I, IL, Co, n, Rsh, Rs, Ta) = 0
{37} Solving Ila, Coa, na, Rsha, Rsa most suitable for the n relational expressions by a mathematical method such as a least squares problem solution,
{38} n points given by the manufacturer at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of the solar cell P1 (V1b, I1b), P2 (V2b, I2b), P3 (V3b, I3b),... PN (VNb, Inb), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 and create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tb) = 0
{39} Ilb, Cob, nb, Rshb, Rsb most suitable for the n relational expressions are solved by a mathematical method such as a method of least squares, and then
{40} n points given by the manufacturer at the third solar cell module temperature Tb (328K (tb = 55 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of solar cells P1 (V1c, I1c), P2 (V2c, I2c), P3 (V3c, I3c), ... PN (VNc, Inc), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 and create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tc) = 0
{41} Solving Ilc, Coc, nc, Rshc, Rsc most suitable for the n relational expressions by a mathematical method such as a least squares problem solution,
{42} Measured solar radiation intensity Ej to be evaluated, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{43} Solution A (ILa, Coa, na, Rsha, Rsa) of {37} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {39} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {41} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed for three points, and characteristic value M (ILm, Com, at measured temperature tj (Celsius: Tj = tj + 273)) nm, Rshm, Rsm), then
{44} ILm is corrected by IL'm = Ilm * Ej / Ea based on the measured solar radiation intensity Ej, and then the relation: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. It is characterized by.

請求項5記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の計算において、25℃におけるPmaxおよび測定温度おけるPmaxの計算に必要な、任意の日射強度・太陽電池温度の太陽電池I−Vカーブを作成する方法において、標準太陽電池のI−Vカーブを変換する方法(「実用的I−Vカーブ作成法」)又は、太陽電池基本式を解く方法(「理論式によるI−Vカーブ作成法」)を使い算出し、太陽光発電システムの発電量を評価することを特徴とする。
The method for evaluating the power generation amount of the solar power generation system according to claim 5 is:
System output coefficient after temperature correction (= (actual output (KWh)) / irradiance (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system * (Maximum power at 25 ° C. (Pmax) (KW)) / (maximum power at measurement temperature (Pmax) (KW)) * (solar cell rated capacity (KW / KW / m 2 )) / reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) In the calculation of Pmax at 25 ° C. and Pmax at the measurement temperature, the solar cell IV having an arbitrary solar radiation intensity and solar cell temperature In the method of creating a curve, a method of converting an IV curve of a standard solar cell (“practical IV curve creation method”) or a method of solving a basic formula of a solar cell (“IV curve creation by theoretical formula”) Method)) to calculate the amount of power generated by the solar power generation system. Characterized in that it deserves.

請求項6記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の、1〜3時間程度の平均値により評価することを特徴とする評価方法であり、25℃と測定温度におけるPmaxを算出する過程で、任意の日射強度・太陽電池温度のI−Vカーブ作成において、
{45}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{46}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{47}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)を選択し、
{48}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),直列抵抗Rsに基準温度での仕様値Rsa,および前記P1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、
{49}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の直列抵抗Rsに値Rsa および前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、つぎに、
{50}前記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)を、非線形解法のプログラムによって算出し、つぎに、
{51}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0)を選択し、
{52}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),直列抵抗Rsに該温度での仕様値Rsb,および前記のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、
{53}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の直列抵抗Rsに第2の温度での値Rsb および前記の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、つぎに、
{54}前記4つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb)を、非線形解法のプログラムによって、算出し、つぎに、
{55}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0)を選択し、
{56}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),直列抵抗Rsに該温度での仕様値Rsc,および前記{55}のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、
{57}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の直列抵抗Rsに第3の温度での値Rsc および前記{55}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、つぎに、
{58}前記4つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc)を、非線形解法のプログラムによって算出し、つぎに、
{59}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{60}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{50}の解A(ILa,Coa,na,Rsha)、前記温度tb(摂氏:Tb=tb+273) における前記{54}の解B(ILb,Cob,nb,Rshb)、前記温度tc(摂氏:Tc=tc+273) における前記{58}の解C(ILc,Coc,nc,Rshc)および、入力値Rsa、Rsb、Rsa、Rsc のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{61}ILmを実測された日射強度EjによりIL‘m=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL‘m,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL‘m,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする。
The method for evaluating the power generation amount of the solar power generation system according to claim 6 is:
Temperature-corrected system output coefficient (= (actual output (KWh)) / insolation (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system (Maximum power at 25 ° C. (Pmax) (KW)) / (Maximum power at measurement temperature (Pmax) (KW))) * (Solar cell rated capacity (KW / KW / m 2 )) / Reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) is an evaluation method characterized by an average value of about 1 to 3 hours, and Pmax at 25 ° C. and measurement temperature is calculated. In the process, in the creation of IV curve of arbitrary solar radiation intensity and solar cell temperature,
{45} Voltage V, current I, photovoltaic current IL, solar current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) at 1 kW / m 2 of solar radiation intensity Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{46} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
{47} Specification values for solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select point P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca,
{48} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 where T is the reference state temperature Ta (298K), the series resistance Rs is the specification value Rsa at the reference temperature, and Substituting the values of the points of P1, P2, P3 and IL, Co, n, Rsh as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0,
Formula: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0
{49} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsa and the value of the point P2 (Vopa , Iopa) and IL, Co, n, Rsh as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, then
{50} The above four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0 , na, Rsha) is calculated by a nonlinear solution program, then
{51} Similar to the standard state of the solar cell, the short-circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select points P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{52} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the second temperature Tb (313K) at T, the series resistance Rs, the specification value Rsb at the temperature, and Substituting the values of the points P1, P2, P3, and IL, Co, n, Rsh as unknowns, a relational expression: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0
Formula: Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0
{53} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsb at the second temperature and the series resistance Rs of the second temperature Tb (313K) Substituting the value of point P2 (Vopb, Iopb) and making IL, Co, n, Rsh unknown
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, then
{54} The above four relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0 satisfying solution A (Ilb, Cob , nb, Rshb) by a non-linear solution program, then
{55} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell. Select points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0) for the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{56} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 at a third temperature Tc (328K), a series resistance Rs at the specified value Rsc, and Substituting the values of the points P1, P2, and P3 of {55}, IL, Co, n, and Rsh are unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0
Create a relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0
{57} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the series resistance Rs of the third temperature Tc (328K) has a value Rsc at the third temperature and Substituting the value (Vopc, Iopc) of the point P2 of {55} and making IL, Co, n, Rsh unknown
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, then
{58} The above four relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0 satisfying solution A (Ilc, Coc , nc, Rshc) by a non-linear solution program, then
{59} Measured value of solar cell to be evaluated Solar radiation intensity Ej, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{60} Solution A (ILa, Coa, na, Rsha) of {50} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) in the reference state, the temperature tb ( Celsius: solution B (ILb, Cob, nb, Rshb) of {54} at Tb = tb + 273), solution C (ILc, Coc, nc, Rshc) of {58} at temperature tc (celsius: Tc = tc + 273) ) And curve interpolation at three points for each of the input values Rsa, Rsb, Rsa, Rsc (IL, Co, n, Rsh, Rs), and the characteristic value M at the measured temperature tj (Celsius: Tj = tj + 273) (ILm, Com, nm, Rshm, Rsm) is calculated, then
{61} ILm is corrected by IL'm = Ilm * Ej / Ea based on the measured solar radiation intensity Ej, and then the relationship: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. It is characterized by.

請求項7記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の、1〜3時間程度の平均値により評価することを特徴とする評価方法であり、25℃と測定温度におけるPmaxを算出する過程で、任意の日射強度・太陽電池温度のI−Vカーブ作成おいて
{62}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{63}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{64}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)およびこれら3点とは近接しない任意のP4(V4a,I4a)を選択し、
{65}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),前記P1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、
関係式:Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{66}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、つぎに、
{67}前記5つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha,Rsa)を、非線形解法のプログラムによって算出し、つぎに、
{68}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0), P4(V4b,I4b)を選択し、
{69}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),および前記{51}のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0、
関係式:Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{70}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の前記{68}の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、つぎに、
{71}前記5つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0, Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb,Rsb)を、非線形解法のプログラムによって、算出し、つぎに、
{72}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0), P4(V4c,I4c)を選択し、
{73}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),前記のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{74}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の前記{72}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、つぎに、
{75}前記5つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0, Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc,Rsc)を、非線形解法のプログラムによって算出し、つぎに、
{76}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{77}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{67}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{71}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{75}の解C(ILc,Coc,nc,Rshc,Rsc)のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{78}ILmを実測された日射強度EjによりIL‘m=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL‘m,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL‘m,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする。
The method for evaluating the amount of power generation of the solar power generation system according to claim 7 is:
Temperature-corrected system output coefficient (= (actual output (KWh)) / insolation (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system (Maximum power at 25 ° C. (Pmax) (KW)) / (Maximum power at measurement temperature (Pmax) (KW))) * (Solar cell rated capacity (KW / KW / m 2 )) / Reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) is an evaluation method characterized by an average value of about 1 to 3 hours, and Pmax at 25 ° C. and measurement temperature is calculated. In the process, create an IV curve of arbitrary solar radiation intensity and solar cell temperature. {62} Voltage V, current I, photovoltaic current IL at solar radiation intensity 1kW / m 2 , saturation current temperature coefficient Co, junction constant n , Function including the parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature): Func (V, I, I L, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)- Create (V + Rs * I) / Rsh-I, then
{63} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
Specifications in {64} solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select points P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca and any P4 (V4a, I4a) not close to these three points,
{65} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 is set to the reference state temperature Ta (298K) and the values of the points P1, P2, P3, and P4 to T Substituting and using IL, Co, n, Rsh, Rs as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0
Formula: Func (V4a, I4a, IL, Co, n, Rsh, Rs, Ta) = 0
{66} Substituting the value of the point P2 (Vopa, Iopa) of the reference state temperature Ta (298 K) into the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0 , IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, then
{67} The five relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Func (V4a, I4a, IL , Co, n, Rsh, Rs, Ta) = 0, a solution A (ILa, Coa, na, Rsha, Rsa) is calculated by a non-linear solution program.
{68} Similar to the standard state of the solar cell, the short circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select the point P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0), P4 (V4b, I4b) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{69} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the second temperature Tb (313K), and the {51} P1, P2, P3, P4 Substituting the values of the points, IL, Co, n, and Rsh are unknown relations: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tb) = 0
{70} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopb, Iopb) of the {68} point P2 of the second temperature Tb (313K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, then
{71} The five relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tb) = 0, a solution A (Ilb, Cob, nb, Rshb, Rsb) is calculated by a nonlinear solution program.
{72} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell Select the points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0), P4 (V4c, I4c) of the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{73} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 and the third temperature Tc (328 K), the values of the points of P1, P2, P3, and P4 Where IL, Co, n, Rsh, Rs are unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0
Relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0,
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tc) = 0
{74} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopc, Iopc) of the {72} point P2 at the third temperature Tc (328 K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, then
{75} The five relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tc) = 0, a solution A (Ilc, Coc, nc, Rshc, Rsc) is calculated by a nonlinear solution program.
{76} Measured solar radiation intensity Ej to be evaluated, solar cell module temperature tj (degrees Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{77} Solution A (ILa, Coa, na, Rsha, Rsa) of {67} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {71} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {75} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed at three points, and the characteristic value M (ILm, Com, at measured temperature tj (Celsius: Tj = tj + 273)) nm, Rshm, Rsm), then
After correcting {78} ILm by IL'm = Ilm * Ej / Ea by the measured solar radiation intensity Ej, the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. It is characterized by.

請求項8記載の太陽光発電システムの発電量評価方法は、
対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の、1〜3時間程度の平均値により評価することを特徴とする評価方法であり、25℃と測定温度におけるPmaxを算出する過程で、任意の日射強度・太陽電池温度のI−Vカーブ作成において、
{76}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{77}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1a,I1a),P2(V2a,I2a),P3(V3a,I3a),・・・PN(VNa,INa)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{78}該n個の関係式に最も適したIla,Coa,na,Rsha,Rsaを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{79}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1b,I1b),P2(V2b,I2b),P3(V3b,I3b),・・・PN(VNb,Inb)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{80}該n個の関係式に最も適したIlb,Cob,nb,Rshb,Rsbを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{81}太陽電池の基準状態と同様に、第3の太陽電池モジュール温度Tb(328K(tb=55℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1c,I1c),P2(V2c,I2c),P3(V3c,I3c),・・・PN(VNc,Inc)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{82}該n個の関係式に最も適したIlc,Coc,nc,Rshc,Rscを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{83}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{84}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{78}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{80}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{82}の解C(ILc,Coc,nc,Rshc,Rsc) のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{85}ILmを実測された日射強度EjによりIL‘m=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL‘m,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL‘m,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする。
The method for evaluating the power generation amount of the solar power generation system according to claim 8 is:
Temperature-corrected system output coefficient (= (actual output (KWh)) / insolation (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system (Maximum power at 25 ° C. (Pmax) (KW)) / (Maximum power at measurement temperature (Pmax) (KW))) * (Solar cell rated capacity (KW / KW / m 2 )) / Reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) is an evaluation method characterized by an average value of about 1 to 3 hours, and Pmax at 25 ° C. and measurement temperature is calculated. In the process, in the creation of IV curve of arbitrary solar radiation intensity and solar cell temperature,
{76} Voltage V, current I, photovoltaic current IL at solar intensity 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{77} n points P1 (V1a, I1a), P2 given by the manufacturer in the standard state of the solar cell (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )) (V2a, I2a), P3 (V3a, I3a),... PN (VNa, INa) to the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Create n relational expressions Func (V, I, IL, Co, n, Rsh, Rs, Ta) = 0
{78} Solving Ila, Coa, na, Rsha, Rsa most suitable for the n relational expressions by a mathematical method such as a least squares problem solution,
{79} n points given by the manufacturer at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of solar cells P1 (V1b, I1b), P2 (V2b, I2b), P3 (V3b, I3b),... PN (VNb, Inb), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 and create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tb) = 0
{80} Solving Ilb, Cob, nb, Rshb, Rsb most suitable for the n relational expressions by a mathematical method such as a method of least squares problem,
{81} n points given by the manufacturer at the third solar cell module temperature Tb (328K (tb = 55 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of solar cells P1 (V1c, I1c), P2 (V2c, I2c), P3 (V3c, I3c), ... PN (VNc, Inc), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 to create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tc) = 0
{82} Solving Ilc, Coc, nc, Rshc, Rsc most suitable for the n relational expressions using a mathematical method such as a least squares problem solution,
{83} Measured solar radiation intensity Ej to be evaluated, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{84} Solution A (ILa, Coa, na, Rsha, Rsa) of {78} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {80} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {82} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed for three points, and characteristic value M (ILm, Com, at measured temperature tj (Celsius: Tj = tj + 273)) nm, Rshm, Rsm), then
{85} ILm is corrected by IL'm = Ilm * Ej / Ea by the measured solar radiation intensity Ej, and then the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. It is characterized by.

請求項9記載の太陽光発電システムの発電量評価方法は、
請求項5、6、7、8において評価に使う測定データの条件は、太陽電池温度25℃近辺で日射強度が850W/m2程度以上または、日射強度が1000W/m2
程度で、1〜3時間程度の安定した値が得られたデータで発電量を評価することを特徴とする。
The method for evaluating the amount of power generation of the solar power generation system according to claim 9 is:
The measurement data used for the evaluation in claims 5, 6, 7, and 8 are as follows: the solar radiation temperature is around 25 ° C., the solar radiation intensity is about 850 W / m 2 or more, or the solar radiation intensity is 1000 W / m 2.
In other words, the power generation amount is evaluated by data obtained from a stable value of about 1 to 3 hours.

請求項10記載のコンピュータ読み取り可能な記憶媒体は、
請求項1または請求項2または請求項3または請求項4または請求項5または請求項6または請求項7または請求項8または請求項9の太陽光発電評価方法で処理する処理プログラムを記録することを特徴とする。
A computer-readable storage medium according to claim 10 is provided.
Recording a processing program to be processed by the photovoltaic power generation evaluation method according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, or claim 9. It is characterized by.

請求項11記載の太陽光発電評価装置・システムは、
請求項10記載の記録媒体を動作しうるコンピュータからなることを特徴とする。
The photovoltaic power generation evaluation device / system according to claim 11 is:
A computer capable of operating the recording medium according to claim 10.

ここで本発明に関する用語・機能・技術などについて説明する。   Here, terms, functions, techniques, etc. relating to the present invention will be described.

(1) 「太陽電池温度」は「太陽電池モジュール温度」、「モジュール温度」ともいわれ、通常は太陽電池モジュールのセルに埋込んだ熱電対により測定する。なお、太陽電池はその構成の段階により(太陽電池)セル→(太陽電池)モジュール→(太陽電池)アレイという名称で呼ばれている。 (1) “Solar cell temperature” is also referred to as “solar cell module temperature” or “module temperature”, and is usually measured by a thermocouple embedded in the cells of the solar cell module. The solar cell is called by the name of (solar cell) cell → (solar cell) module → (solar cell) array according to the stage of its configuration.

(2) 太陽電池温度に使っている記号については、小文字で示したt(℃)は摂氏を、大文字で示したT(K(ケルビン))は絶対温度を示す。すなわちT(K)=t(℃)+273である。大文字Tは主に太陽電池基本式の中で使われており、その他の所では小文字tがよく使われている。 (2) Regarding the symbols used for the solar cell temperature, t (° C.) shown in lower case indicates Celsius, and T (K (Kelvin)) shown in upper case indicates absolute temperature. That is, T (K) = t (° C.) + 273. The capital letter T is mainly used in solar cell basic formulas, and the lowercase letter t is often used elsewhere.

(3) 太陽電池出力・発電量に関しては、太陽電池の瞬間の発生電圧Vと瞬間の発生電流Iの積を太陽電池出力(単位W又はKW)と言い、その時間積分値が発電量(電力量)(単位Wh又はKWh)である。 (3) Regarding the solar cell output / power generation amount, the product of the instantaneous generation voltage V of the solar cell and the instantaneous generation current I is called the solar cell output (unit W or KW), and the time integral value is the power generation amount (electric power). Amount) (units Wh or KWh).

(4) 太陽電池基本特性式は次の式である。
I=IL−Co*T3*exp(−mqEg/nKoT)*(exp(q(V+RsI)/nKoT)−1)−(V+RsI)/Rsh
ここに各記号は次のとおりである。
I :出力電流[A] Co :飽和電流温度係数
V :出力電圧[V] Eg :エネルギーギャップ[eV]
IL :光起電流[A] T :太陽電池素子絶対温度[K]
IO :飽和電流[A] Ko :ボルツマン定数[J/K]
Rs :直流抵抗[Ω] q :電子の電荷量[℃]
Rsh :並列抵抗[Ω] n :接合定数
m:1モジュールを構成するセル数(本発明の中では説明省略個所あり)

上記式は半導体の基本特性に基づく式で理論的式である。この式からI-Vカーブ上の各点を求めるには、この式の左辺のIを右辺に移項し
Func(V,I,IL,Co,n,Rsh,Rs,T)
=IL−Co*T3*exp(−qEg/nKoT)*(exp q(V+RsI)/nKoT−1)−(V+RsI)/Rsh−I
の関数をつくり、基本特性値(IL,Co,n,Rsh,Rs)を代入のうえ、V,Iの関係を非線形解法プログラムで解いてI-Vカーブを求めることができる。
(4) The basic characteristic formula of the solar cell is the following formula.
I = IL-Co * T 3 * exp (-mqEg / nKoT) * (exp (q (V + RsI) / nKoT) -1) - (V + RsI) / Rsh
Here, each symbol is as follows.
I: Output current [A] Co: Saturation current temperature coefficient V: Output voltage [V] Eg: Energy gap [eV]
IL: Photovoltaic current [A] T: Solar cell element absolute temperature [K]
IO: Saturation current [A] Ko: Boltzmann constant [J / K]
Rs: DC resistance [Ω] q: Charge amount of electrons [° C.]
Rsh: parallel resistance [Ω] n: junction constant
m: Number of cells constituting a module (there is no description in the present invention)

The above formula is a theoretical formula based on the basic characteristics of the semiconductor. To find each point on the IV curve from this equation, move I on the left side of this equation to the right side.
Func (V, I, IL, Co, n, Rsh, Rs, T)
= IL-Co * T 3 * exp (-qEg / nKoT) * (exp q (V + RsI) / nKoT-1) - (V + RsI) / Rsh-I
The IV curve can be obtained by substituting the basic characteristic values (IL, Co, n, Rsh, Rs) and solving the relationship between V and I with a nonlinear solution program.

(5) 本発明では特性値については次のとおり使い分けている。
(a) (太陽電池)基本特性値…IL,Co,n,Rsh,Rs
(b) (太陽電池)特性値…Isc,Iop,Vop,Voc,α,β,Rs,K
なお、上記のとおりRsは(1),(2)の両方で使われている。
(5) In the present invention, the characteristic values are properly used as follows.
(a) (Solar cell) Basic characteristic values: IL, Co, n, Rsh, Rs
(b) (Solar cell) Characteristic values: Isc, Iop, Vop, Voc, α, β, Rs, K
As described above, Rs is used in both (1) and (2).

(6) 変換式については次のとおりである。
(a) 「実用的I-Vカーブ変換式」
1=I2+Isc*(E1/E2−1)+α*(t1−t2
1=V2+β*(t1−t2)−Rs*(I1−I2)−K*I1*(t1−t2
(b) 「実用的I-Vカーブ変換式」の逆変換式(逆の適用)
((1)の式のV2,I2について式を解いて変形したものである)
2=I1+Isc*(E2−E1)/E2+α(t2−t1
2=V1+β*(t2−t1)−Rs*(I2−I1)−K*I1*(t2−t1
ここで、(1),(2)は一般に知られているJIS8913,8914,8919の式と形の上では似ているが、以下で述べるように異なる新しい優れた式である。特に(1)の式については特願平6-2626で出願の上、電気学会論文2等で発表している。
また、これらの式で使っている記号は基準状態での電圧値、電流値、日射強度、太陽電池温度をそれぞれV2,I2,E2,T2または任意の条件(測定時条件)での各値をV1,I1,E1,T1とする。
また、Isc:短絡電流(A)
Iop:最適電流(A)
Vop:最適電圧(V)
Voc:開放電圧(V)
α:温度が1℃変化した時のIscの変動値(A/℃)
β:温度が1℃変化した時のVocの変動値(V/℃)
Rs:モジュールの直列抵抗(Ω)
K:曲線補正因子(Ω/℃)である。
そして、図4の下欄(1),(2)式が「実用的I-Vカーブ変換式」に、また図4の右欄の(3),(4)式が「実用的I-Vカーブ変換式」の逆の適用に相当する。
基準状態の電圧−電流値と測定時日射強度・太陽電池温度条件における電圧−電流値の変換式の一覧は前述のとおり図4に示してある。この図は電気学会論文3(伊賀:「実用的I-Vカーブ作成法を使った太陽電池日射計」、電学論D、117巻10号、1997)に掲載されたもので右端の欄および下欄が発明者の式で下欄は前記のように特願平6-2626で論文発表の前に特許申請がされている。一般には、まだ左端又は中央の欄の式が使われ、前記「I-Vカーブ測定器」でも同様に使われている。
(6) The conversion formula is as follows.
(a) “Practical IV curve conversion formula”
I 1 = I 2 + Isc * (E 1 / E 2 −1) + α * (t 1 −t 2 )
V 1 = V 2 + β * (t 1 −t 2 ) −Rs * (I 1 −I 2 ) −K * I 1 * (t 1 −t 2 )
(b) Inverse transformation formula of “practical IV curve transformation formula” (inverse application)
((About V 2, I 2 of formula 1) is a modification by solving the equation)
I 2 = I 1 + Isc * (E 2 −E 1 ) / E 2 + α (t 2 −t 1 )
V 2 = V 1 + β * (t 2 -t 1) -Rs * (I 2 -I 1) -K * I 1 * (t 2 -t 1)
Here, (1) and (2) are similar to JIS8913, 8914, and 8919 formulas that are generally known, but are different and excellent formulas as described below. In particular, the expression (1) was filed in Japanese Patent Application No. 6-2626 and published in IEEJ Paper 2 and others.
In addition, the symbols used in these equations are V 2 , I 2 , E 2 , T 2, or arbitrary conditions (measurement conditions) for the voltage value, current value, solar radiation intensity, and solar cell temperature in the reference state, respectively. Are V 1 , I 1 , E 1 , and T 1 .
Also, Isc: short circuit current (A)
Iop: Optimum current (A)
Vop: Optimum voltage (V)
Voc: Open circuit voltage (V)
α: Fluctuation value of Isc when temperature changes by 1 ° C (A / ° C)
β: Fluctuation value of Voc when temperature changes by 1 ° C (V / ° C)
Rs: Module series resistance (Ω)
K: Curve correction factor (Ω / ° C.).
The lower columns (1) and (2) in FIG. 4 are “practical IV curve conversion equations”, and the right columns (3) and (4) in FIG. 4 are “practical IV curve conversion equations”. It is equivalent to the reverse application of.
The list of voltage-current values in the reference state and the voltage-current value conversion formula in the measurement solar radiation intensity / solar cell temperature condition is shown in FIG. 4 as described above. This figure was published in IEEJ Paper 3 (Iga: “Solar Cell Solar Radiation Meter Using Practical IV Curve Making Method”, Electrical Engineering D, Vol. 117, No. 10, 1997). However, in the inventor's formula, in the lower column, as described above, Japanese Patent Application No. 6-2626 filed a patent application before publication of the paper. In general, the expression in the leftmost or center column is still used, and the same is used in the “IV curve measuring device”.

ここで変換式(1),(2)の適用方法と特徴について、さらに説明を加える。
本発明で使用している(1),(2)式とJIS補正式((3)',(4)')、CEI IECの式、IEEEの式は一見形の上ではよく似ているように見えるが、図4のように電圧V、電流Iの日射強度・太陽電池温度条件が全く異なっているだけでなくIsc,α,β,Rs,Kの日射強度・太陽電池温度条件が全く異なっている。発明者の適用している式((1),(2)式)では、電圧、電流をはじめIsc,α,β,Rs,Kはすべて基準状態(日射強度1KW/m2、太陽電池温度25℃)における値を使っており、このような適用方式は他に見られない。
そして、このような適用をすることにより、本明細書に記載しているように、精度と汎用性よく測定時条件の電圧−電流特性曲線(I-Vカーブ)、電圧−電力特性曲線(P-Vカーブ)を描け、太陽電池の評価や発電量の予測計算に役立つ効果がある。
そこで、この式((1),(2)式)を適用することにより精度と適用性よく、測定時の日射強度・太陽電池温度条件のI-Vカーブ,P-Vカーブが求まるかの理由を次に示す。
(a) 太陽電池メーカーから公表されるのは基準状態のパラメータや特性値であり、その他の日射強度・太陽電池温度におけるこれらの値はほとんど示されない。本発明は基準状態の値を使うことを基本としているため、本発明は適用性が広い。
また、他の方法のように、種々の日射強度・太陽電池温度条件のパラメータや特性値を混合して適用することは演算精度・取扱上好ましくない。
(b) 太陽電池の特性を比較・評価する場合、測定値を加工して基準値と比較するより、基準値を測定時条件に変換して測定値と比較する方が直接的で好ましい評価ができる。
Here, the application method and characteristics of the conversion equations (1) and (2) will be further described.
The expressions (1) and (2) used in the present invention and the JIS correction expressions ((3) 'and (4)'), the CEI IEC expression, and the IEEE expression seem to be very similar on a first glance. As shown in Fig. 4, the solar radiation intensity and solar cell temperature conditions for voltage V and current I are completely different, as well as the solar radiation intensity and solar cell temperature conditions for Isc, α, β, Rs, and K are completely different. ing. In the formulas (1) and (2) applied by the inventor, voltage, current, and Isc, α, β, Rs, and K are all in the standard state (intensity of solar radiation 1 KW / m 2 , solar cell temperature 25 )), And there is no other application method like this.
By applying such a method, as described in this specification, the voltage-current characteristic curve (IV curve) and the voltage-power characteristic curve (PV curve) of the measurement conditions with high accuracy and versatility are provided. This is useful for evaluating solar cells and predicting power generation.
The reason why the IV curve and PV curve of solar radiation intensity and solar cell temperature conditions at the time of measurement can be obtained by applying this formula (Equation (1), (2)) with good accuracy and applicability is as follows. .
(A) The parameters and characteristic values of the standard state are disclosed by the solar cell manufacturer, and these values at other solar radiation intensities and solar cell temperatures are hardly shown. Since the present invention is based on using the value of the reference state, the present invention has wide applicability.
Further, as in other methods, it is not preferable in terms of calculation accuracy and handling to mix and apply various solar radiation intensity and solar cell temperature condition parameters and characteristic values.
(B) When comparing and evaluating the characteristics of solar cells, it is more direct and preferable to convert the reference value to the measurement condition and compare it with the measured value, rather than processing the measured value and comparing it with the reference value. it can.

太陽光発電システムの出力・発電量の評価をする場合、その測定方法からは、大別して,次の2つに分類できる。
(1)太陽光発電システムを連系運転状態から切離して測定
太陽電池をシステムから切離し「I-Vカーブ測定器」を接続し、模擬負荷抵抗値を高速に変えることにより連続的に発生電圧と発生電流値のn組の値(例えば数10組の値)の関係を測定し、太陽電池の電圧−電流カーブ(I-Vカーブ)を作成し、前記基準状態のI−Vカーブに変換するなどして、評価する。
(2)太陽光発電システムを連系運転状態のままで電圧・電流を測定
連係状態のままで日射強度、太陽電池温度、出力電圧・電流などを測定して評価する。
本発明では(2)方法に関する発明である。
When evaluating the output and power generation amount of a photovoltaic power generation system, the measurement method can be broadly classified into the following two types.
(1) Measurement by disconnecting the photovoltaic power system from the interconnected operation state Disconnecting the solar cell from the system, connecting an “IV curve measuring device”, and continuously changing the simulated load resistance value to generate voltage and current Measure the relationship of n sets of values (for example, several tens of sets), create a voltage-current curve (IV curve) of the solar cell, convert it to the IV curve of the reference state, etc. evaluate.
(2) Measuring voltage and current while the photovoltaic power generation system is in a linked operation state Measure and evaluate solar radiation intensity, solar cell temperature, output voltage and current, etc. while in a linked state.
The present invention relates to (2) the method.

請求項1〜4により算出した、「システム出力係数」+「太陽電池温度上昇による損失」の値により、対象太陽光発電システムの諸損失が安定かつ正確に把握できるため、諸損失の解明からシステムの効率向上に結びつく。
請求項1では、評価のために必要な太陽電池I−Vカーブ作成方法に種々の方法が使用できるため、適用性の広い汎用性な評価方法といえる。
請求項2により、太陽電池特性値としてメーカーから、短絡電流Isc、最適電流Iop 、最適電圧Vop 、開放電圧Vocのほかに、太陽電池直列抵抗Rsが与えられることにより、I−Vカーブが作成でき、評価ができる。
請求項3、4により、太陽電池特性値としてメーカーから、短絡電流Isc、最適電流Iop 、最適電圧Vop 、開放電圧Vocと、I−Vカーブ上のこれらの点以外のの1点以上の点がが与えられれば、直列抵抗Rsが与えられなくてもI―Vカーブが作成でき,評価ができる。
請求項5〜8は上記の、「システム出力係数」+「太陽電池温度上昇による損失」の値が直接得られる方法であるとともに、1〜3時間程度の測定値により得られ、短時間の測定値による評価ができる。
請求項5では、評価のために必要な太陽電池I−Vカーブ作成方法に種々の方法が使用できるため、適用性の広い汎用性な評価方法といえる。
請求項6により、太陽電池特性値としてメーカーから、短絡電流Isc、最適電流Iop 、最適電圧Vop 、開放電圧Vocのほかに、太陽電池直列抵抗Rsが与えられることにより、I−Vカーブが作成でき、評価ができる。
請求項7、8により、太陽電池特性値としてメーカーから、短絡電流Isc、最適電流Iop 、最適電圧Vop 、開放電圧Vocと、I−Vカーブ上のこれらの点以外のの1点以上の点がが与えられれば、直列抵抗Rsが与えられなくてもI―Vカーブが作成でき,評価ができる。
請求項9では基準状態に近い日射強度・太陽電池温度条件のデーターを使うことによりメーカーから得られた特性値に誤差があってもその誤差にあまり影響されずに正確な評価が実施できる。
請求項10、11により、本評価方法を実施できる装置・システムが製作でき、実用化に結びつけることができる。
Since various losses of the target photovoltaic power generation system can be grasped stably and accurately based on the value of “system output coefficient” + “loss due to solar cell temperature rise” calculated according to claims 1 to 4, This leads to improved efficiency.
In Claim 1, since various methods can be used for the solar cell IV curve preparation method required for evaluation, it can be said that it is a versatile evaluation method with wide applicability.
According to claim 2, a solar cell characteristic value is given by the manufacturer as a solar cell characteristic value in addition to the short-circuit current Isc, the optimum current Iop, the optimum voltage Vop, and the open-circuit voltage Voc, so that an IV curve can be created. Can be evaluated.
According to claims 3 and 4, the solar cell characteristic value from the manufacturer includes one or more points other than these points on the IV curve, such as short-circuit current Isc, optimum current Iop, optimum voltage Vop, open-circuit voltage Voc. Is given, an IV curve can be created and evaluated even if the series resistance Rs is not given.
Claims 5 to 8 are methods in which the value of “system output coefficient” + “loss due to solar cell temperature rise” can be directly obtained, and can be obtained by a measured value of about 1 to 3 hours. Can be evaluated by value.
In Claim 5, since various methods can be used for the solar cell IV curve preparation method required for evaluation, it can be said that it is a versatile evaluation method with wide applicability.
According to claim 6, an IV curve can be created by providing a solar cell series resistance Rs in addition to the short circuit current Isc, the optimum current Iop, the optimum voltage Vop, and the open circuit voltage Voc from the manufacturer as the solar cell characteristic value. Can be evaluated.
According to claims 7 and 8, the solar cell characteristic value from the manufacturer includes one or more points other than these points on the IV curve, such as short circuit current Isc, optimum current Iop, optimum voltage Vop, open circuit voltage Voc. Is given, an IV curve can be created and evaluated even if the series resistance Rs is not given.
In claim 9, by using the data of the solar radiation intensity and solar cell temperature conditions close to the reference state, even if there is an error in the characteristic value obtained from the manufacturer, an accurate evaluation can be performed without being affected by the error.
According to claims 10 and 11, an apparatus / system capable of carrying out the present evaluation method can be manufactured, and can be linked to practical use.

つぎに、本発明の実施形態を主な図面に基づき説明する。
図1は太陽光発電システムの発電量評価の例であり、「システム出力係数」に「温度上昇による損失(温度特性部分)」を加えた値(請求項1〜4関係)は年間を通してあまり大きい変化がないことがわかる。すなわち、この値により対象とする太陽光発電システムの諸損失の割合がわかる。その発電量の測定位置を変えることにより、諸損失要素の解明につながる。また、×○印(請求項5〜9関係)は上記値と大差がないことがわかり、日射強度・太陽電池温度条件さえ整えば1〜3時間程度の測定でも評価が可能なことがわかる。
図2は理論式によるI−Vカーブ作成法のフロー図である。太陽電池温度25℃の太陽電池特性値(Isc,Vop,Iop,Voc)と25℃のRs、α、β、Kが与えられた場合、および25℃、40℃、55℃における電池特性値(Isc,Vop,Iop,Voc)と25℃のRsが与えられた場合の任意日射強度・温度のI−Vカーブ,P−Vカーブを作成する方法を示している。なお図では示していないが、太陽電池特性値(Isc,Vop,Iop,Voc)と、I−Vカーブ上のこれらの点以外の1以上の点が与えられれば、同様にI−Vカーブを作成することができる。
本発明の請求項1〜9は、各種の入力条件から、ニュートン・ラプソン法にもとづく解法によりI−Vカーブを作成し、評価する方法を示している。また、請求項1および5は「実用的I-Vカーブ作成方法」による方法を含んいる。また、任意の日射強度・太陽電池温度におけるI−Vカーブの作成方法であれば、本請求項で記述した方法に限定されずこの評価方法が適用可能である。
図8は請求項5〜9の内容に関して説明したもので、温度補正後システム出力係数(基準(温度)出力係数)の算出方法を示したものである。図ではI−Vカーブ作成方法として代表的な「理論式によるI−Vカーブ作成法」で示しているが、上記のようにいろいろな方法が適用可能である。図の(1)式で基準温度(25℃)の太陽電池変換効率(「温度補正後変換効率」)と基準温度(25℃)の出力係数の算出方法を示すものである。
Next, an embodiment of the present invention will be described with reference to the main drawings.
Figure 1 shows an example of evaluation of the amount of power generated by a photovoltaic power generation system. The value (related to claims 1 to 4) obtained by adding "loss due to temperature rise (temperature characteristic part)" to "system output coefficient" is very large throughout the year. You can see that there is no change. That is, the ratio of various losses of the target photovoltaic power generation system can be understood from this value. By changing the measurement position of the power generation amount, it leads to the elucidation of various loss factors. Moreover, it can be seen that the mark X (related to claims 5 to 9) is not significantly different from the above values, and that even if the solar radiation intensity / solar cell temperature conditions are adjusted, it can be evaluated even for measurement for about 1 to 3 hours.
FIG. 2 is a flowchart of an IV curve creation method based on a theoretical formula. When the solar cell characteristic value (Isc, Vop, Iop, Voc) at 25 ° C and the Rs, α, β, K at 25 ° C are given, and the battery characteristic value at 25 ° C, 40 ° C, 55 ° C ( Isc, Vop, Iop, Voc) and a method of creating an IV curve and PV curve of arbitrary solar radiation intensity and temperature when Rs of 25 ° C. is given. Although not shown in the figure, if the solar cell characteristic value (Isc, Vop, Iop, Voc) and one or more points other than these points on the IV curve are given, the IV curve is similarly obtained. Can be created.
Claims 1 to 9 of the present invention show a method of creating and evaluating an IV curve from various input conditions by a solution based on the Newton-Raphson method. Claims 1 and 5 include a method based on a “practical IV curve creation method”. Moreover, as long as it is a creation method of the IV curve in arbitrary solar radiation intensity and solar cell temperature, it is not limited to the method described in this claim, This evaluation method is applicable.
FIG. 8 explains the contents of claims 5 to 9 and shows a method of calculating the temperature-corrected system output coefficient (reference (temperature) output coefficient). In the figure, a typical “IV curve creation method based on a theoretical formula” is shown as an IV curve creation method, but various methods can be applied as described above. The calculation method of the solar cell conversion efficiency (“conversion efficiency after temperature correction”) at the reference temperature (25 ° C.) and the output coefficient of the reference temperature (25 ° C.) is shown by equation (1) in the figure.

太陽光発電システムの発電量評価結果の例である。It is an example of the electric power generation amount evaluation result of a solar power generation system. 理論式によるI−Vカーブ作成法のフロー図である。It is a flowchart of the IV curve creation method by a theoretical formula. 太陽電池の発電原理である。This is the power generation principle of solar cells. 測定時日射強度・太陽電池温度条件におけるI-Vカーブの値を基準状態のI-Vカーブの値への変換式((3),(4)式および(3)'、(4)')およびその逆変換式(図の下欄(1),(2)式)の説明の図である(電気学会論文3:「実用的I-Vカーブ作成法を使った太陽電池日射計、電学論D、117巻10号、1997より」。なお、前記のとおりこの表では添字1は測定時日射強度・太陽電池温度条件を添字2は基準状態(日射強度1kw/m2、太陽電池温度25℃)をあらわしており、本発明本文の中の添字1.2の使い方は逆になっているので注意を要する。Conversion formulas ((3), (4) and (3) ', (4)') to the IV curve value in the standard condition IV intensity and solar cell temperature conditions, and vice versa It is a figure of explanation of the formula (lower column (1), (2) formula of the figure) (The Institute of Electrical Engineers of Japan paper 3: “Solar cell pyranometer using the practical IV curve creation method, Electrotechnical D, Vol. 117, 10” No., 1997. ”As mentioned above, in this table, subscript 1 represents the solar radiation intensity and solar cell temperature conditions during measurement, and subscript 2 represents the reference state (solar radiation intensity 1 kw / m 2 , solar cell temperature 25 ° C.). Note that the usage of the subscript 1.2 in the text of the present invention is reversed. 太陽電池出力特性曲線(I-V,P-Vカーブ)の説明図である。It is explanatory drawing of a solar cell output characteristic curve (IV, PV curve). (財)日本品質保証機構などが提案する太陽電池基本特性値(Iph,Io,Rs,Rsh)と太陽電池絶対温度(Tp)の関係式である。この式により異なる温度のこれら基本特性値が計算により求まる。This is a relational expression between solar cell basic characteristic values (Iph, Io, Rs, Rsh) and solar cell absolute temperature (Tp) proposed by the Japan Quality Assurance Organization. By this formula, these basic characteristic values at different temperatures can be obtained by calculation. 太陽電池特性値から測定時日射強度・太陽電池温度条件のI−Vカーブの作成法(「実用的I−Vカーブ作成法」)である。この方法を使うことにより、太陽電池基本式を解かなくても任意の日射強度・太陽電池温度のI−Vカーブが得られる。This is a method for creating an IV curve of the solar radiation intensity and solar cell temperature conditions during measurement from the solar cell characteristic values (“practical IV curve creation method”). By using this method, an IV curve of arbitrary solar radiation intensity and solar cell temperature can be obtained without solving the basic formula of the solar cell. 温度補正後システム出力係数(基準温度の出力係数)の算出フロー図である。It is a calculation flow figure of the system output coefficient (output coefficient of a reference temperature) after temperature correction.

Claims (11)

対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を算出するために、月別温度係数(%)(=月間計算システム発電量(KWh)/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)計算のために必要な月間計算システム発電量の算出にさらに必要な、任意の日射強度・太陽電池温度の太陽電池I−Vカーブを作成する方法として、(1)標準太陽電池のI−Vカーブを変換する方法(「実用的I−Vカーブ作成法」)又は、(2)太陽電池基本式を解く方法(「理論式によるI−Vカーブ作成法」)を使い、温度上昇による損失(%)を算出し、システム出力係数に該温度上昇による損失を加えた値により、
太陽光発電システムの発電量を評価することを特徴とする評価方法
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
Then, in order to calculate the loss (%) due to the temperature rise of the solar cell (= (100−monthly temperature coefficient)), the monthly temperature coefficient (%) (= monthly calculation system power generation amount (KWh) / month light receiving surface solar radiation amount (KWh / m 2 ) / Solar cell rated capacity (KW / KW / m 2 ) * 100) Monthly calculation system required for calculation Solar power of any solar radiation intensity and solar cell temperature necessary for calculation of power generation amount As a method for creating a battery IV curve, (1) a method for converting an IV curve of a standard solar cell ("practical IV curve creation method") or (2) a method for solving a solar cell basic equation (“Theoretical formula IV curve creation method”) is used to calculate the loss (%) due to temperature rise, and the system output coefficient plus the loss due to temperature rise,
Evaluation method characterized by evaluating power generation amount of solar power generation system
対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を該システム出力係数に加えた値により太陽光発電システムの発電量を評価することを特徴とする方法において、
月別温度係数(%)(=(月間計算システム発電量(KWh)/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)の算出に必要な月間計算システム発電量の算出過程で必要な、任意の日射強度・太陽電池温度の発電量算出に必要なI―Vカーブ作成方法において、
{01}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{02}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{03}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)を選択し、
{04}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),直列抵抗Rsに基準温度での仕様値Rsa,および前記P1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、
{05}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の直列抵抗Rsに値Rsa および前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、つぎに、
{06}前記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)を、非線形解法のプログラムによって算出し、つぎに、
{07}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0)を選択し、
{08}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),直列抵抗Rsに該温度での仕様値Rsb,および前記{07}のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、
{09}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の直列抵抗Rsに第2の温度での値Rsb および前記{07}の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、つぎに、
{10}前記4つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb)を、非線形解法のプログラムによって、算出し、つぎに、
{11}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0)を選択し、
{12}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),直列抵抗Rsに該温度での仕様値Rsc,および前記{11}のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、
{13}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の直列抵抗Rsに第3の温度での値Rsc および前記{11}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、つぎに、
{14}前記4つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc)を、非線形解法のプログラムによって算出し、つぎに、
{15}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{16}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{06}の解A(ILa,Coa,na,Rsha)、前記温度tb(摂氏:Tb=tb+273) における前記{10}の解B(ILb,Cob,nb,Rshb)、前記温度tc(摂氏:Tc=tc+273) における前記{14}の解C(ILc,Coc,nc,Rshc)および、入力値Rsa、Rsb、Rsa、Rsc のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{17}ILmを実測された日射強度EjによりIL'm=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL'm,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL'm,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする太陽光発電量評価方法。
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
And, in the method characterized by evaluating the power generation amount of the photovoltaic power generation system by a value obtained by adding a loss (%) due to a temperature rise of the solar cell (= (100−monthly temperature coefficient)) to the system output coefficient,
Necessary for calculating monthly temperature coefficient (%) (= (Monthly calculation system power generation amount (KWh) / Monthly light receiving surface solar radiation amount (KWh / m 2 ) / Solar cell rated capacity (KW / KW / m 2 ) * 100) In the IV curve creation method necessary for calculating the power generation amount of any solar radiation intensity and solar cell temperature, which is necessary in the process of calculating the monthly power generation amount,
{01} Voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{02} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
{03} Specification values for solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select point P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca,
{04} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 where T is the reference state temperature Ta (298 K), the series resistance Rs is the specification value Rsa at the reference temperature, and Substituting the values of the points of P1, P2, P3 and IL, Co, n, Rsh as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0,
Formula: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0
{05} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsa and the value of the point P2 (Vopa , Iopa) and IL, Co, n, Rsh as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, then
{06} The four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0 satisfying solution A (ILa, Coa , na, Rsha) is calculated by a nonlinear solution program, then
{07} Similar to the standard state of the solar cell, the short-circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select points P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{08} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the second temperature Tb (313K) at T, the series resistance Rs, the specification value Rsb at the temperature, and Substituting the values of the points P1, P2, and P3 of {07}, IL, Co, n, and Rsh are unknown relations: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0
Formula: Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0
{09} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the series resistance Rs of the second temperature Tb (313K) is set to the value Rsb at the second temperature and the above Substituting the value (Vopb, Iopb) at point P2 of {07}, and making IL, Co, n, and Rsh unknown
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, then
{10} The four relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0 satisfying solution A (Ilb, Cob , nb, Rshb) by a non-linear solution program, then
{11} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell Select points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0) for the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{12} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the third temperature Tc (328 K) at T, the series resistance Rs, the specification value Rsc at the temperature, and Substituting the values of the points P1, P2, and P3 of {11}, IL, Co, n, and Rsh are unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0
Create a relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0
{13} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsc at the third temperature and the series resistance Rs of the third temperature Tc (328 K) and Substituting the value (Vopc, Iopc) of the point P2 of {11} and making IL, Co, n, Rsh unknown
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, then
{14} The above four relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0 satisfying solution A (Ilc, Coc , nc, Rshc) by a non-linear solution program, then
{15} Measured value of solar cell to be evaluated Solar radiation intensity Ej, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and values of generated voltage Vj−generated current Ij under these conditions,
{16} Solution A (ILa, Coa, na, Rsha) of {06} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) in the reference state, the temperature tb ( Celsius: Tb = tb + 273) {10} solution B (ILb, Cob, nb, Rshb), temperature tc (Celsius: Tc = tc + 273), {14} solution C (ILc, Coc, nc, Rshc) ) And curve interpolation at three points for each of the input values Rsa, Rsb, Rsa, Rsc (IL, Co, n, Rsh, Rs), and the characteristic value M at the measured temperature tj (Celsius: Tj = tj + 273) (ILm, Com, nm, Rshm, Rsm) is calculated, then
After correcting {17} ILm with IL'm = Ilm * Ej / Ea by the measured solar radiation intensity Ej, the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. A method for evaluating the amount of photovoltaic power generation.
対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を算出するために、月別温度係数(%)(=(月間計算システム発電量(KWh)/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)を計算し、システム出力係数に該損失を加えた値により評価することに特徴があり、本計算に必要な月間計算システム発電量の算出過程に必要な、任意の日射強度・太陽電池温度の発電量算出のためのI−Vカーブ作成方法において、
{18}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{19}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{20}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)およびこれら3点とは近接しない任意のP4(V4a,I4a)を選択し、
{21}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),前記P1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、
関係式:Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{22}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、つぎに、
{23}前記5つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha,Rsa)を、非線形解法のプログラムによって算出し、つぎに、
{24}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0), P4(V4b,I4b)を選択し、
{25}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),および前記{07}のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0、
関係式:Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{26}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の前記{24}の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、つぎに、
{27}前記5つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0, Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb,Rsb)を、非線形解法のプログラムによって、算出し、つぎに、
{28}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0), P4(V4c,I4c)を選択し、
{29}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),前記{28}のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{30}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の前記{28}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、つぎに、
{31}前記5つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0, Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc,Rsc)を、非線形解法のプログラムによって算出し、つぎに、
{32}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{33}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{23}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{27}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{31}の解C(ILc,Coc,nc,Rshc,Rsc)のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{34}ILmを実測された日射強度EjによりIL'm=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL'm,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL'm,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成して、該カーブを使用すること
を特徴とする太陽光発電量評価方法。
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
Then, in order to calculate the loss (%) due to the temperature rise of the solar cell (= (100−monthly temperature coefficient)), the monthly temperature coefficient (%) (= (monthly calculation system power generation amount (KWh) / month light receiving surface solar radiation) Amount (KWh / m 2 ) / Solar cell rated capacity (KW / KW / m 2 ) * 100) is calculated, and is evaluated by the value obtained by adding the loss to the system output coefficient. Necessary for this calculation In the IV curve creation method for calculating the power generation amount of any solar radiation intensity and solar cell temperature necessary for the calculation process of the monthly power generation amount,
{18} Voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{19} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
Specifications of {20} solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select points P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca and any P4 (V4a, I4a) not close to these three points,
{21} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 T of the reference state temperature Ta (298K), the values of the points P1, P2, P3, and P4 Substituting and using IL, Co, n, Rsh, Rs as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0
Formula: Func (V4a, I4a, IL, Co, n, Rsh, Rs, Ta) = 0
{22} Substituting the value (Vopa, Iopa) of the point P2 of the reference state temperature Ta (298 K) into the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0. , IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, then
{23} The five relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Func (V4a, I4a, IL , Co, n, Rsh, Rs, Ta) = 0, a solution A (ILa, Coa, na, Rsha, Rsa) is calculated by a non-linear solution program.
{24} Similar to the standard state of the solar cell, the short circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select the point P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0), P4 (V4b, I4b) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{25} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 and the second temperature Tb (313 K), and the {07} P1, P2, P3, P4 Substituting the values of the points, IL, Co, n, and Rsh are unknown relations: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tb) = 0
{26} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopb, Iopb) of the {24} point P2 of the second temperature Tb (313K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, then
{27} The five relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tb) = 0, a solution A (Ilb, Cob, nb, Rshb, Rsb) is calculated by a nonlinear solution program.
{28} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell Select the points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0), P4 (V4c, I4c) of the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{29} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 and the third temperature Tc (328 K), the {28} P1, P2, P3, P4 Substituting the value of the point and making IL, Co, n, Rsh, Rs unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0
Relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0,
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tc) = 0
{30} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopc, Iopc) of the point P2 of the {28} at the third temperature Tc (328 K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, then
{31} The five relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tc) = 0, a solution A (Ilc, Coc, nc, Rshc, Rsc) is calculated by a nonlinear solution program.
{32} Measured solar radiation intensity to be evaluated Ej, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273) and the values of generated voltage Vj−generated current Ij under these conditions,
{33} Solution A (ILa, Coa, na, Rsha, Rsa) of {23} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {27} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {31} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed for three points, and the characteristic value M (ILm, Com, nm, Rshm, Rsm), then
After correcting {34} ILm by IL'm = Ilm * Ej / Ea by the measured solar radiation intensity Ej, the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( I) (approx. 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or IV curve and PV curve connecting it is created and used. This is a method for evaluating the amount of photovoltaic power generation.
対象太陽光発電システムの月ごとのシステム出力係数(%)(=(月間実測システム発電量(KWh))/ (月間受光面日射量(KWh/ m2))/太陽電池定格容量(KW/KW/ m2)*100)を算出し、
そして、太陽電池の温度上昇による損失(%)(=(100−月別温度係数))を算出するために、月別温度係数(%)(=(月間計算システム発電量(KWh))/月間受光面日射量(KWh/ m2)/太陽電池定格容量(KW/KW/ m2)*100)を計算し、システム出力係数に本損失を加えた値により評価することを特徴としており、月間計算システム発電量算出過程にお任意の日射強度・太陽電池温度の発電量の算出に必要な、I−Vカーブ作成方法において、
{35}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{36}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1a,I1a),P2(V2a,I2a),P3(V3a,I3a),・・・PN(VNa,INa)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{37}該n個の関係式に最も適したIla,Coa,na,Rsha,Rsaを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{38}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1b,I1b),P2(V2b,I2b),P3(V3b,I3b),・・・PN(VNb,Inb)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{39}該n個の関係式に最も適したIlb,Cob,nb,Rshb,Rsbを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{40}太陽電池の基準状態と同様に、第3の太陽電池モジュール温度Tb(328K(tb=55℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1c,I1c),P2(V2c,I2c),P3(V3c,I3c),・・・PN(VNc,Inc)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{41}該n個の関係式に最も適したIlc,Coc,nc,Rshc,Rscを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{42}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{43}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{37}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{39}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{41}の解C(ILc,Coc,nc,Rshc,Rsc) のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{44}ILmを実測された日射強度EjによりIL'm=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL'm,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL'm,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする太陽光発電量評価方法。
Monthly system output coefficient (%) of the target solar power generation system (= (Monthly measured system power generation amount (KWh)) / (Monthly light receiving surface solar radiation amount (KWh / m 2 )) / Solar cell rated capacity (KW / KW) / m 2 ) * 100)
And in order to calculate the loss (%) due to the temperature rise of the solar cell (= (100−monthly temperature coefficient)), the monthly temperature coefficient (%) (= (monthly calculation system power generation amount (KWh)) / month light receiving surface Monthly calculation system, characterized by calculating solar radiation (KWh / m 2 ) / solar cell rated capacity (KW / KW / m 2 ) * 100) and evaluating the system output coefficient plus this loss In the IV curve creation method, which is necessary for calculating the amount of generated solar radiation intensity and solar cell temperature during the power generation amount calculation process,
{35} Voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{36} n points P1 (V1a, I1a), P2 given by the manufacturer in the standard state of the solar cell (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )) (V2a, I2a), P3 (V3a, I3a),... PN (VNa, INa) to the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Create n relational expressions Func (V, I, IL, Co, n, Rsh, Rs, Ta) = 0
{37} Solving Ila, Coa, na, Rsha, Rsa most suitable for the n relational expressions by a mathematical method such as a least squares problem solution,
{38} n points given by the manufacturer at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of the solar cell P1 (V1b, I1b), P2 (V2b, I2b), P3 (V3b, I3b),... PN (VNb, Inb), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 and create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tb) = 0
{39} Ilb, Cob, nb, Rshb, Rsb most suitable for the n relational expressions are solved by a mathematical method such as a method of least squares, and then
{40} n points given by the manufacturer at the third solar cell module temperature Tb (328K (tb = 55 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of solar cells P1 (V1c, I1c), P2 (V2c, I2c), P3 (V3c, I3c), ... PN (VNc, Inc), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 and create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tc) = 0
{41} Solving Ilc, Coc, nc, Rshc, Rsc most suitable for the n relational expressions by a mathematical method such as a least squares problem solution,
{42} Measured solar radiation intensity Ej to be evaluated, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{43} Solution A (ILa, Coa, na, Rsha, Rsa) of {37} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {39} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {41} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed for three points, and characteristic value M (ILm, Com, at measured temperature tj (Celsius: Tj = tj + 273)) nm, Rshm, Rsm), then
{44} ILm is corrected by IL'm = Ilm * Ej / Ea based on the measured solar radiation intensity Ej, and then the relation: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. A method for evaluating the amount of photovoltaic power generation.
対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の計算において、25℃におけるPmaxおよび測定温度おけるPmaxの計算に必要な、任意の日射強度・太陽電池温度の太陽電池I−Vカーブを作成する方法として、(1)標準太陽電池のI−Vカーブを変換する方法(「実用的I−Vカーブ作成法」)又は、(2)太陽電池基本式を解く方法(「理論式によるI−Vカーブ作成法」)を使い算出し、太陽光発電システムの発電量を評価することを特徴とする評価方法 Temperature-corrected system output coefficient (= (actual output (KWh)) / insolation (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system (Maximum power at 25 ° C. (Pmax) (KW)) / (Maximum power at measurement temperature (Pmax) (KW))) * (Solar cell rated capacity (KW / KW / m 2 )) / Reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) In the calculation of Pmax at 25 ° C. and Pmax at the measurement temperature, solar cell IV having any solar radiation intensity and solar cell temperature As a method of creating a curve, (1) a method of converting an IV curve of a standard solar cell (“practical IV curve creation method”) or (2) a method of solving a solar cell basic equation (“theoretical formula”) I-V curve creation method by) ”) Evaluation method and evaluating the coulometric 対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の、1〜3時間程度の平均値により評価することを特徴とする評価方法において、25℃と測定温度におけるPmaxを算出する過程において、
{45}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{46}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{47}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)を選択し、
{48}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),直列抵抗Rsに基準温度での仕様値Rsa,および前記P1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、
{49}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の直列抵抗Rsに値Rsa および前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、つぎに、
{50}前記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)を、非線形解法のプログラムによって算出し、つぎに、
{51}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0)を選択し、
{52}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),直列抵抗Rsに該温度での仕様値Rsb,および前記{07}のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、
{53}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の直列抵抗Rsに第2の温度での値Rsb および前記{07}の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0を作成し、つぎに、
{54}前記4つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rsb,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rsb,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb)を、非線形解法のプログラムによって、算出し、つぎに、
{55}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0)を選択し、
{56}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),直列抵抗Rsに該温度での仕様値Rsc,および前記{55}のP1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、
{57}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の直列抵抗Rsに第3の温度での値Rsc および前記{55}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0を作成し、つぎに、
{58}前記4つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rsc,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rsc,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc)を、非線形解法のプログラムによって算出し、つぎに、
{59}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{60}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{50}の解A(ILa,Coa,na,Rsha)、前記温度tb(摂氏:Tb=tb+273) における前記{54}の解B(ILb,Cob,nb,Rshb)、前記温度tc(摂氏:Tc=tc+273) における前記{58}の解C(ILc,Coc,nc,Rshc)および、入力値Rsa、Rsb、Rsa、Rsc のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{61}ILmを実測された日射強度EjによりIL'm=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL'm,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL'm,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする太陽光発電量評価方法。
Temperature-corrected system output coefficient (= (actual output (KWh)) / insolation (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system (Maximum power at 25 ° C. (Pmax) (KW)) / (Maximum power at measurement temperature (Pmax) (KW))) * (Solar cell rated capacity (KW / KW / m 2 )) / Reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) In the evaluation method characterized by an average value of about 1 to 3 hours, the process of calculating Pmax at 25 ° C. and the measurement temperature In
{45} Voltage V, current I, photovoltaic current IL, solar current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) at 1 kW / m 2 of solar radiation intensity Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{46} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
{47} Specification values for solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select point P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca,
{48} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 where T is the reference state temperature Ta (298K), the series resistance Rs is the specification value Rsa at the reference temperature, and Substituting the values of the points of P1, P2, P3 and IL, Co, n, Rsh as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0,
Formula: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0
{49} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsa and the value of the point P2 (Vopa , Iopa) and IL, Co, n, Rsh as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, then
{50} The above four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0 , na, Rsha) is calculated by a nonlinear solution program, then
{51} Similar to the standard state of the solar cell, the short-circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select points P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{52} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the second temperature Tb (313K) at T, the series resistance Rs, the specification value Rsb at the temperature, and Substituting the values of the points P1, P2, and P3 of {07}, IL, Co, n, and Rsh are unknown relations: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0
Formula: Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0
{53} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value Rsb at the second temperature and the series resistance Rs of the second temperature Tb (313K) Substituting the value (Vopb, Iopb) at point P2 of {07}, and making IL, Co, n, and Rsh unknown
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, then
{54} The above four relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rsb, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rsb, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rsb, Tb) = 0 satisfying solution A (Ilb, Cob , nb, Rshb) by a non-linear solution program, then
{55} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell. Select points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0) for the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{56} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 at a third temperature Tc (328K), a series resistance Rs at the specified value Rsc, and Substituting the values of the points P1, P2, and P3 of {55}, IL, Co, n, and Rsh are unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0
Create a relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0
{57} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the series resistance Rs of the third temperature Tc (328K) has a value Rsc at the third temperature and Substituting the value (Vopc, Iopc) of the point P2 of {55} and making IL, Co, n, Rsh unknown
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, then
{58} The above four relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rsc, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rsc, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rsc, Tc) = 0 satisfying solution A (Ilc, Coc , nc, Rshc) by a non-linear solution program, then
{59} Measured value of solar cell to be evaluated Solar radiation intensity Ej, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{60} Solution A (ILa, Coa, na, Rsha) of {50} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) in the reference state, the temperature tb ( Celsius: solution B (ILb, Cob, nb, Rshb) of {54} at Tb = tb + 273), solution C (ILc, Coc, nc, Rshc) of {58} at temperature tc (celsius: Tc = tc + 273) ) And curve interpolation at three points for each of the input values Rsa, Rsb, Rsa, Rsc (IL, Co, n, Rsh, Rs), and the characteristic value M at the measured temperature tj (Celsius: Tj = tj + 273) (ILm, Com, nm, Rshm, Rsm) is calculated, then
{61} ILm is corrected by IL'm = Ilm * Ej / Ea based on the measured solar radiation intensity Ej, and then the relationship: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. A method for evaluating the amount of photovoltaic power generation.
対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の、1〜3時間程度の平均値により評価することを特徴とする評価方法において、25℃と測定温度におけるPmaxを算出する過程で必要なI-Vカーブ作成において、
{62}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{63}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Div(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{64}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))での仕様値、短絡電流Isca、最適電流Iopa 、最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)およびこれら3点とは近接しない任意のP4(V4a,I4a)を選択し、
{65}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),前記P1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、
関係式:Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{66}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)の前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、つぎに、
{67}前記5つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rs,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0,Div(Vopa,Iopa,IL,Co,n,Rsh,Rs,Ta)= 0、Func(V4a,I4a,IL,Co,n,Rsh,Rs,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha,Rsa)を、非線形解法のプログラムによって算出し、つぎに、
{68}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))での仕様値である、短絡電流Iscb、最適電流Iopb 、最適電圧Vopb 、開放電圧Vocbの点P1(0,Iscb),P2(Vopb,Iopb),P3(Vocb,0), P4(V4b,I4b)を選択し、
{69}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第2の温度Tb(313K),および前記{51}のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0、
関係式:Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{70}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第2の温度Tb(313K)の前記{68}の点P2の値(Vopb,Iopb) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、つぎに、
{71}前記5つの関係式:Func(0,Iscb,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vocb,0,IL,Co,n,Rsh,Rs,Tb)= 0,Func(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0,Div(Vopb,Iopb,IL,Co,n,Rsh,Rs,Tb)= 0, Func(V4b,I4b ,IL,Co,n,Rsh,Rs,Tb)= 0 を満たす解A(Ilb,Cob,nb,Rshb,Rsb)を、非線形解法のプログラムによって、算出し、つぎに、
{72}太陽電池の基準状態と同様に第3の太陽電池モジュール温度Tc(328K(tc=55℃))・日射強度Ec(1kW/m2 ))での仕様値である、短絡電流Iscc、最適電流Iopc 、最適電圧Vopc 、開放電圧Voccの点P1(0,Iscc),P2(Vopc,Iopc),P3(Vocc,0), P4(V4c,I4c)を選択し、
{73}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに第3の温度Tc(328K),前記{11}のP1,P2,P3,P4の点の値を代入し、IL,Co,n,Rsh,Rsを未知数とする
関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{74}前記関数Div(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、第3の温度Tc(328K)の前記{72}の点P2の値(Vopc,Iopc) を代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、つぎに、
{75}前記5つの関係式:Func(0,Iscc,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vocc,0,IL,Co,n,Rsh,Rs,Tc)= 0,Func(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0,Div(Vopc,Iopc,IL,Co,n,Rsh,Rs,Tc)= 0, Func(V4b,I4b,IL,Co,n,Rsh,Rs,Tc)= 0 を満たす解A(Ilc,Coc,nc,Rshc,Rsc)を、非線形解法のプログラムによって算出し、つぎに、
{76}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{77}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{67}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{71}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{75}の解C(ILc,Coc,nc,Rshc,Rsc)のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{78}ILmを実測された日射強度EjによりIL'm=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL'm,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL'm,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする太陽光発電量評価方法。
Temperature-corrected system output coefficient (= (actual output (KWh)) / insolation (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system (Maximum power at 25 ° C. (Pmax) (KW)) / (maximum power at measurement temperature (Pmax) (KW)) * (solar cell rated capacity (KW / KW / m 2 )) / reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) In the evaluation method characterized by an average value of about 1 to 3 hours, the process of calculating Pmax at 25 ° C. and the measurement temperature In creating the IV curve required for
{62} Voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{63} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Div (V, I, IL, Co, n, Rsh, Rs, T) make,
Specifications in {64} solar cells (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )), short circuit current Isca, optimum current Iopa, optimum voltage Vopa, open circuit Select points P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) of voltage Voca and any P4 (V4a, I4a) not close to these three points,
{65} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 is set to the reference state temperature Ta (298K) and the values of the points P1, P2, P3, and P4 to T Substituting and using IL, Co, n, Rsh, Rs as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0,
Relational expression: Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0
Formula: Func (V4a, I4a, IL, Co, n, Rsh, Rs, Ta) = 0
{66} Substituting the value of the point P2 (Vopa, Iopa) of the reference state temperature Ta (298 K) into the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0 , IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, then
{67} The five relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rs, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rs, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Div (Vopa, Iopa, IL, Co, n, Rsh, Rs, Ta) = 0, Func (V4a, I4a, IL , Co, n, Rsh, Rs, Ta) = 0, a solution A (ILa, Coa, na, Rsha, Rsa) is calculated by a non-linear solution program.
{68} Similar to the standard state of the solar cell, the short circuit current Iscb is the specification value at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) , Select the point P1 (0, Iscb), P2 (Vopb, Iopb), P3 (Vocb, 0), P4 (V4b, I4b) of the optimal current Iopb, optimal voltage Vopb, open circuit voltage Vocb,
{69} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the second temperature Tb (313K), and the {51} P1, P2, P3, P4 Substituting the values of the points, IL, Co, n, and Rsh are unknown relations: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tb) = 0
{70} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopb, Iopb) of the {68} point P2 of the second temperature Tb (313K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, then
{71} The five relational expressions: Func (0, Iscb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (Vocb, 0, IL, Co, n, Rsh, Rs, Tb) = 0 , Func (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Div (Vopb, Iopb, IL, Co, n, Rsh, Rs, Tb) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tb) = 0, a solution A (Ilb, Cob, nb, Rshb, Rsb) is calculated by a nonlinear solution program.
{72} The short circuit current Iscc, which is the specification value at the third solar cell module temperature Tc (328 K (tc = 55 ° C)) and solar radiation intensity Ec (1 kW / m 2 )) as in the standard state of the solar cell Select the points P1 (0, Iscc), P2 (Vopc, Iopc), P3 (Vocc, 0), P4 (V4c, I4c) of the optimal current Iopc, optimal voltage Vopc, and open-circuit voltage Vocc,
{73} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 and the third temperature Tc (328 K), the {11} P1, P2, P3, P4 Substituting the value of the point and making IL, Co, n, Rsh, Rs unknowns: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0
Relational expression: Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0,
Formula: Func (V4b, I4b, IL, Co, n, Rsh, Rs, Tc) = 0
{74} When the function Div (V, I, IL, Co, n, Rsh, Rs, T) = 0, the value (Vopc, Iopc) of the {72} point P2 at the third temperature Tc (328 K) , And IL, Co, n, Rsh, Rs as unknowns,
Create the relation: Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, then
{75} The five relational expressions: Func (0, Iscc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (Vocc, 0, IL, Co, n, Rsh, Rs, Tc) = 0 , Func (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Div (Vopc, Iopc, IL, Co, n, Rsh, Rs, Tc) = 0, Func (V4b, I4b, IL , Co, n, Rsh, Rs, Tc) = 0, a solution A (Ilc, Coc, nc, Rshc, Rsc) is calculated by a nonlinear solution program.
{76} Measured solar radiation intensity Ej to be evaluated, solar cell module temperature tj (degrees Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{77} Solution A (ILa, Coa, na, Rsha, Rsa) of {67} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {71} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {75} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed at three points, and the characteristic value M (ILm, Com, at measured temperature tj (Celsius: Tj = tj + 273)) nm, Rshm, Rsm), then
After correcting {78} ILm by IL'm = Ilm * Ej / Ea by the measured solar radiation intensity Ej, the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. A method for evaluating the amount of photovoltaic power generation.
対象太陽光発電システムの一定時間(10分〜1時間程度)の温度補正後システム出力係数(=(実測出力(KWh))/日射量(KWh/ m2)/太陽電池面積(m2)*(25℃における最大電力(Pmax)(KW))/(測定温度における最大電力(Pmax)(KW))*(太陽電池定格容量(KW/KW/m2))/基準日射量(KWh/m2)(=1)/太陽電池面積(m2)*100)の、1〜3時間程度の平均値により評価することを特徴とする評価方法において、25℃と測定温度におけるPmaxを算出する過程に必要なI-Vカーブ作成において、
{76}電圧V、電流I、日射強度1kW/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池モジュール温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{77}太陽電池の基準状態(モジュール温度Ta(298K(ta=25℃))、日射強度Ea(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1a,I1a),P2(V2a,I2a),P3(V3a,I3a),・・・PN(VNa,INa)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Ta)= 0を作成し、
{78}該n個の関係式に最も適したIla,Coa,na,Rsha,Rsaを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{79}太陽電池の基準状態と同様に、第2の太陽電池モジュール温度Tb(313K(tb=40℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1b,I1b),P2(V2b,I2b),P3(V3b,I3b),・・・PN(VNb,Inb)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、
{80}該n個の関係式に最も適したIlb,Cob,nb,Rshb,Rsbを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{81}太陽電池の基準状態と同様に、第3の太陽電池モジュール温度Tb(328K(tb=55℃))・日射強度Eb(1kW/m2 ))でのメーカーから与えられるn個の点P1(V1c,I1c),P2(V2c,I2c),P3(V3c,I3c),・・・PN(VNc,Inc)を、前記の関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0に入れてn個の関係式Func(V,I,IL,Co,n,Rsh,Rs,Tc)= 0を作成し、
{82}該n個の関係式に最も適したIlc,Coc,nc,Rshc,Rscを最小自乗問題解法などの数学的な手法で解いて、つぎに、
{83}評価すべき太陽電池の実測値日射強度Ej,太陽電池モジュール温度tj(摂氏:絶対温度Tj=tj+273)およびこの条件での発生電圧Vj−発生電流Ijの各値を取り込み、
{84}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{78}の解A(ILa,Coa,na,Rsha,Rsa)、前記温度tb(摂氏:Tb=tb+273) における前記{80}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{82}の解C(ILc,Coc,nc,Rshc,Rsc) のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間をして、実測温度tj(摂氏:Tj=tj+273)での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{85}ILmを実測された日射強度EjによりIL'm=Ilm*Ej/Ea により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にIL'm,Com,nm,Rshm,Rsmを代入して、Func(V,I,IL'm,Com,nm,Rshm,Rsm,Tj)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、該カーブを使用すること
を特徴とする太陽光発電量評価方法。
System output coefficient after temperature correction (= (actual output (KWh)) / irradiance (KWh / m 2 ) / solar cell area (m 2 ) * for a certain time (about 10 minutes to 1 hour) of the target photovoltaic power generation system * (Maximum power at 25 ° C. (Pmax) (KW)) / (maximum power at measurement temperature (Pmax) (KW)) * (solar cell rated capacity (KW / KW / m 2 )) / reference solar radiation (KWh / m 2 ) (= 1) / Solar cell area (m 2 ) * 100) In the evaluation method characterized by evaluating for an average value of about 1 to 3 hours, the process of calculating Pmax at 25 ° C. and measurement temperature In creating the IV curve necessary for
{76} Voltage V, current I, photovoltaic current IL at solar intensity 1 kW / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell module temperature T (absolute temperature) Included function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I
{77} n points P1 (V1a, I1a), P2 given by the manufacturer in the standard state of the solar cell (module temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kW / m 2 )) (V2a, I2a), P3 (V3a, I3a),... PN (VNa, INa) to the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Create n relational expressions Func (V, I, IL, Co, n, Rsh, Rs, Ta) = 0
{78} Solving Ila, Coa, na, Rsha, Rsa most suitable for the n relational expressions by a mathematical method such as a least squares problem solution,
{79} n points given by the manufacturer at the second solar cell module temperature Tb (313K (tb = 40 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of solar cells P1 (V1b, I1b), P2 (V2b, I2b), P3 (V3b, I3b),... PN (VNb, Inb), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 and create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tb) = 0
{80} Solving Ilb, Cob, nb, Rshb, Rsb most suitable for the n relational expressions by a mathematical method such as a method of least squares problem,
{81} n points given by the manufacturer at the third solar cell module temperature Tb (328K (tb = 55 ° C)) and solar radiation intensity Eb (1 kW / m 2 )) as in the standard state of solar cells P1 (V1c, I1c), P2 (V2c, I2c), P3 (V3c, I3c), ... PN (VNc, Inc), and the above relation: Func (V, I, IL, Co, n, Rsh , Rs, T) = 0 to create n relations Func (V, I, IL, Co, n, Rsh, Rs, Tc) = 0
{82} Solving Ilc, Coc, nc, Rshc, Rsc most suitable for the n relational expressions using a mathematical method such as a least squares problem solution,
{83} Measured solar radiation intensity Ej to be evaluated, solar cell module temperature tj (Celsius: absolute temperature Tj = tj + 273), and each value of generated voltage Vj−generated current Ij under these conditions,
{84} Solution A (ILa, Coa, na, Rsha, Rsa) of {78} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) at the reference state, the temperature Solution B (ILb, Cob, nb, Rshb, Rsb) of {80} at tb (Celsius: Tb = tb + 273), Solution C (ILc, Coc) of {82} at temperature tc (Celsius: Tc = tc + 273) , nc, Rshc, Rsc) for each (IL, Co, n, Rsh, Rs), curve interpolation is performed for three points, and characteristic value M (ILm, Com, at measured temperature tj (Celsius: Tj = tj + 273)) nm, Rshm, Rsm), then
{85} ILm is corrected by IL'm = Ilm * Ej / Ea based on the measured solar radiation intensity Ej, and then the relationship: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Substituting IL'm, Com, nm, Rshm, Rsm for Func (V, I, IL'm, Com, nm, Rshm, Rsm, Tj) = 0, voltage (V)-current ( The relationship of (I) (about 40-50 points) is obtained by a program of nonlinear solution, and the relationship of voltage (V) -current (I) or the IV curve and PV curve connecting it is created and used. A method for evaluating the amount of photovoltaic power generation.
請求項5、6、7、8において評価に使うデータの条件は、(1)太陽電池温度25℃近辺で、日射強度が850W/m2程度以上または(2)日射強度が1000W/m2
程度で、1〜3時間程度の安定した値が得られたデータなどを使い発電量を評価することを特徴とする太陽光発電量評価方法。
The conditions of the data used for evaluation in claims 5, 6, 7, and 8 are (1) solar cell temperature around 25 ° C. and solar radiation intensity of about 850 W / m 2 or more, or (2) solar radiation intensity of 1000 W / m 2.
A method for evaluating the amount of photovoltaic power generation, characterized in that the amount of power generation is evaluated using data or the like in which a stable value of about 1 to 3 hours is obtained.
請求項1または請求項2または請求項3または請求項4または請求項5または請求項6または請求項7または請求項8または請求項9の太陽光発電評価方法で処理する処理プログラムを記録することを特徴とするコンピュータ読み取り可能な記録媒体。   Recording a processing program to be processed by the photovoltaic power generation evaluation method according to claim 1 or claim 2 or claim 3 or claim 4 or claim 5 or claim 6 or claim 7 or claim 8 or claim 9. A computer-readable recording medium characterized by the above. 請求項10記載の記録媒体を動作しうるコンピュータからなることを特徴とする太陽電池出力評価装置・システム。
A solar cell output evaluation apparatus / system comprising a computer capable of operating the recording medium according to claim 10.
JP2003281596A 2003-07-29 2003-07-29 Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system Pending JP2005051048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281596A JP2005051048A (en) 2003-07-29 2003-07-29 Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281596A JP2005051048A (en) 2003-07-29 2003-07-29 Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system

Publications (1)

Publication Number Publication Date
JP2005051048A true JP2005051048A (en) 2005-02-24

Family

ID=34267049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281596A Pending JP2005051048A (en) 2003-07-29 2003-07-29 Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system

Country Status (1)

Country Link
JP (1) JP2005051048A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124287A (en) * 2009-12-08 2011-06-23 Sony Corp Electric power generation volume estimating apparatus, electric power generation volume estimating system, electric power generation amount estimating method, and computer program
JP2015114741A (en) * 2013-12-09 2015-06-22 オムロン株式会社 Solar battery evaluation apparatus, solar battery evaluation method, and photovoltaic power generation system
JPWO2013179655A1 (en) * 2012-05-29 2016-01-18 ユーケーシー エレクトロニクス(ホンコン)カンパニー., リミテッド Photovoltaic power generation monitoring method and solar power generation monitoring system used for the method
CN110781611A (en) * 2019-11-13 2020-02-11 合肥工业大学 Photovoltaic module temperature real-time calculation method based on Lambert W function
CN111626509A (en) * 2020-05-27 2020-09-04 国网河南省电力公司经济技术研究院 Method and system for evaluating effective supply capacity of regional new energy
CN111769802A (en) * 2020-05-09 2020-10-13 安徽工程大学 Method and system for obtaining photovoltaic cell output characteristic curve
CN117761567A (en) * 2024-02-22 2024-03-26 天津瑞芯源智能科技有限责任公司 data analysis method for intelligent ammeter battery current test

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124287A (en) * 2009-12-08 2011-06-23 Sony Corp Electric power generation volume estimating apparatus, electric power generation volume estimating system, electric power generation amount estimating method, and computer program
JPWO2013179655A1 (en) * 2012-05-29 2016-01-18 ユーケーシー エレクトロニクス(ホンコン)カンパニー., リミテッド Photovoltaic power generation monitoring method and solar power generation monitoring system used for the method
JP2015114741A (en) * 2013-12-09 2015-06-22 オムロン株式会社 Solar battery evaluation apparatus, solar battery evaluation method, and photovoltaic power generation system
CN110781611A (en) * 2019-11-13 2020-02-11 合肥工业大学 Photovoltaic module temperature real-time calculation method based on Lambert W function
CN110781611B (en) * 2019-11-13 2024-02-27 合肥工业大学 Real-time calculation method for temperature of photovoltaic module based on Lambert W function
CN111769802A (en) * 2020-05-09 2020-10-13 安徽工程大学 Method and system for obtaining photovoltaic cell output characteristic curve
CN111626509A (en) * 2020-05-27 2020-09-04 国网河南省电力公司经济技术研究院 Method and system for evaluating effective supply capacity of regional new energy
CN111626509B (en) * 2020-05-27 2022-09-09 国网河南省电力公司经济技术研究院 Method and system for evaluating effective supply capacity of regional new energy
CN117761567A (en) * 2024-02-22 2024-03-26 天津瑞芯源智能科技有限责任公司 data analysis method for intelligent ammeter battery current test
CN117761567B (en) * 2024-02-22 2024-04-26 天津瑞芯源智能科技有限责任公司 Data analysis method for intelligent ammeter battery current test

Similar Documents

Publication Publication Date Title
Cristaldi et al. An improved model-based maximum power point tracker for photovoltaic panels
Rahman et al. Generalised model of a photovoltaic panel
Shannan et al. Single-diode model and two-diode model of PV modules: A comparison
Tsai et al. Development of generalized photovoltaic model using MATLAB/SIMULINK
TWI595744B (en) Power generation abnormality detection method and system for photovoltaic panels
Mahmoud et al. Evaluation of shunt model for simulating photovoltaic modules
Averbukh et al. Obtaining small photovoltaic array operational curves for arbitrary cell temperatures and solar irradiation densities from standard conditions data
Salih et al. Performance evaluation of photovoltaic models based on a solar model tester
Jung et al. A mathematical model for cell-to-module conversion considering mismatching solar cells and the resistance of the interconnection ribbon
JP2003133569A (en) Method and apparatus for evaluating output of solar battery in field
El-Saadawi et al. A proposed dynamic model of Photovoltaic-DG system
Rangel-Kuoppa et al. Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 1: a new theoretical procedure and comparison with other methodologies
Leban et al. Selecting the accurate solar panel simulation model
Masmoudi et al. Identification of Internal Parameters of a Mono-Crystalline Photovoltaic Cell Models and Experimental Ascertainment
Sinton et al. Assessing transient measurement errors for high-efficiency silicon solar cells and modules
Jenifer et al. Development of Matlab Simulink model for photovoltaic arrays
Bardizza et al. Metastability in performance measurements of perovskite PV devices: a systematic approach
JP2002270878A (en) Method for evaluating output of solar battery, computer readable data recording medium for recording output evaluation program and apparatus for evaluating output
JP2005051048A (en) Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system
Farret et al. New methodology to determinate photovoltaic parameters of solar panels
Wirateruna et al. Design of Maximum Power Point Tracking Photovoltaic System Based on Incremental Conductance Algorithm using Arduino Uno and Boost Converter
JP2003324207A (en) Method of evaluating output and power generation quantity of solar battery, and computer-readable storage medium storing evaluation program
Hsiao et al. Accuracy improvement of practical PV model
JP2002270877A (en) Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein
Peña et al. A new method for current–voltage curve prediction in photovoltaic modules