JP2005041386A - Steering controlling device for vehicle - Google Patents

Steering controlling device for vehicle Download PDF

Info

Publication number
JP2005041386A
JP2005041386A JP2003278742A JP2003278742A JP2005041386A JP 2005041386 A JP2005041386 A JP 2005041386A JP 2003278742 A JP2003278742 A JP 2003278742A JP 2003278742 A JP2003278742 A JP 2003278742A JP 2005041386 A JP2005041386 A JP 2005041386A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
surface friction
yaw rate
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003278742A
Other languages
Japanese (ja)
Inventor
Tokihiko Akita
時彦 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2003278742A priority Critical patent/JP2005041386A/en
Publication of JP2005041386A publication Critical patent/JP2005041386A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a road surface friction adaptive control by a simple constitution without newly providing a special sensor or the like to at least one of steering controls for the front wheels and the rear wheels of a vehicle. <P>SOLUTION: At a feed forward control section FF, a first target value is calculated in response to a norm yaw rate and a norm lateral acceleration based on a front wheel rudder angle (steering angle). At the same time, at a feed back control section FB, an (actual) yaw rate and an actual lateral acceleration are respectively compared with the norm yaw rate and the norm lateral acceleration, and a second target value is calculated based on a yaw rate deviation and a lateral acceleration deviation of the comparison result. In addition, at a road surface friction estimating section ES, respective sections are adjusted in response to a set road surface friction corresponding gain, based on a correlation between yaw rate identified models of the front wheel and rear wheel rudder angles and the (actual) yaw rate, and the road surface friction adaptive control is performed. Then, an actuator is controlled by a rear wheel rudder angle servo control section SC based on a target rear wheel rudder angle for which the second target value is added to the first target value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両の操舵制御装置に関し、特に、フィードバック制御によって前輪及び後輪の少なくとも一方の車輪の舵角を制御する操舵制御装置に係る。   The present invention relates to a vehicle steering control device, and more particularly to a steering control device that controls a steering angle of at least one of a front wheel and a rear wheel by feedback control.

近時、車両の実状態量が所定の目標状態量に追従するようにフィードバック制御を行う制御系によって、車両前方及び後方の少なくとも一方の車輪の舵角を制御する車両の操舵制御装置が注目されている。例えば後輪操舵制御装置として、下記の特許文献1に記載のように、前輪舵角に対する目標後輪舵角のゲインの設定工数を大幅に短縮可能な後輪操舵制御装置が提案されている。同特許文献1においては、前輪舵角に対する後輪舵角の伝達関数を設定するにあたり、車両の運動を表現する特定物理量に着目し、前輪舵角に対する特定物理量の理論伝達関数の所定の特性パラメータに可変定数入力手段により入力された各々の可変定数を乗算してなる伝達関数を目標伝達関数とし、前輪舵角に対する特定物理量の等価伝達関数を前輪舵角に対する後輪舵角の伝達関数と前輪舵角に対する特定物理量の理論伝達関数と後輪舵角に対する特定物理量の理論伝達関数とにより表現したときに、等価伝達関数が目標伝達関数と等価になるように、前輪舵角に対する後輪舵角の伝達関数を逆演算し、これにより設定された前輪舵角に対する後輪舵角の伝達関数に基づいて目標後輪舵角を演算することとしている。   Recently, a vehicle steering control device that controls the steering angle of at least one of the front and rear wheels of a vehicle by a control system that performs feedback control so that the actual state amount of the vehicle follows a predetermined target state amount has been attracting attention. ing. For example, as a rear wheel steering control device, a rear wheel steering control device has been proposed that can significantly reduce the man-hours for setting the gain of the target rear wheel steering angle with respect to the front wheel steering angle, as described in Patent Document 1 below. In the patent document 1, when setting the transfer function of the rear wheel steering angle with respect to the front wheel steering angle, attention is paid to a specific physical quantity expressing the motion of the vehicle, and predetermined characteristic parameters of the theoretical transfer function of the specific physical quantity with respect to the front wheel steering angle are set. The transfer function obtained by multiplying each variable constant input by the variable constant input means is the target transfer function, and the equivalent transfer function of the specific physical quantity with respect to the front wheel steering angle is the transfer function of the rear wheel steering angle with respect to the front wheel steering angle and the front wheel The rear wheel steering angle relative to the front wheel steering angle so that the equivalent transfer function is equivalent to the target transfer function when expressed by the theoretical transfer function of the specific physical amount relative to the steering angle and the theoretical transfer function of the specific physical amount relative to the rear wheel steering angle. And the target rear wheel steering angle is calculated based on the transfer function of the rear wheel steering angle with respect to the set front wheel steering angle.

一方、車両走行路面の路面摩擦を推定する手段として、下記の特許文献2には、車両挙動が限界に達する前に、車両走行路面の摩擦係数を良好な精度で容易に推定し得る路面摩擦係数推定装置が提案されている。この装置は、操舵角検出手段が検出した操舵角に対する操舵トルク検出手段が検出した操舵トルクの特性を演算し、その演算結果に基づき車輪が接地する路面の摩擦係数を推定するように構成されている。   On the other hand, as means for estimating the road surface friction of the vehicle traveling road surface, the following Patent Document 2 describes a road surface friction coefficient that can easily estimate the friction coefficient of the vehicle traveling road surface with good accuracy before the vehicle behavior reaches the limit. An estimation device has been proposed. This device is configured to calculate the characteristic of the steering torque detected by the steering torque detection means with respect to the steering angle detected by the steering angle detection means, and to estimate the friction coefficient of the road surface on which the wheel contacts the ground based on the calculation result. Yes.

更に、下記の特許文献3には車両のスリップ制御装置が提案され、「横加速度に基づく第1路面μと車体前後加速度に基づく第2路面μとの2種類の路面μを推定して、所定の選択条件にしたがって選択されたすなわちより正確に実際の路面μを反映する方の路面μにしたがってスリップ制御が行われる」旨記載されている。しかし、同特許文献3には、「車両のスピン時すなわち横すべりやドリフト走行しているようなとき、従動輪がロックしているようなとき、駆動輪のスリップが極めて大きいとき等の特定運転状態のときは、いずれにしても路面μの推定を正確に行なうことはむずかしくなるので、この特定運転状態とされる前の路面μすなわち前回選択された路面μを今回の路面μとして選択するのが好ましい」と記載されている。   Further, a slip control device for a vehicle is proposed in Patent Document 3 below, and “a first road surface μ based on lateral acceleration and a second road surface μ based on vehicle body longitudinal acceleration are estimated and predetermined. The slip control is performed according to the road surface μ that is selected according to the selection condition, that is, more accurately reflects the actual road surface μ. However, the patent document 3 states that “a specific driving state such as when the vehicle is spinning, that is, when the vehicle is sliding or drifting, when the driven wheel is locked, or when the slip of the driving wheel is extremely large. In this case, since it is difficult to accurately estimate the road surface μ in any case, it is necessary to select the road surface μ before the specific operation state, that is, the previously selected road surface μ as the current road surface μ. Is preferred. "

特開平2001−334949号公報JP 2001-334949 A 特開平11−287749号公報Japanese Patent Laid-Open No. 11-287749 特開平5−170087号公報JP-A-5-170087

前掲の特許文献1は車両が所望の特性となるように目標状態を設定しその特性となるように後輪操舵制御を行うものであるが、所望の特性は通常路面(ドライアスファルト路等)における特性であり、圧雪路のように条件が変わると却って操作に悪影響を及ぼす場合がある。具体的には、上記所望の特性は通常路面でのステアリング特性を反映しておりヨーレイトゲインは高いが、摩擦の低い路面ではゲインが高いと、運転者によるステアリング操作との共振を惹起するおそれもある。従って、このような場合には別途対策を講ずる必要がある。   The above-mentioned Patent Document 1 sets a target state so that the vehicle has a desired characteristic and performs rear wheel steering control so as to achieve the desired characteristic. The desired characteristic is on a normal road surface (such as a dry asphalt road). This is a characteristic, and if the conditions change like a snowy road, the operation may be adversely affected. Specifically, the desired characteristic reflects the steering characteristic on the normal road surface, and the yaw rate gain is high. However, if the gain is high on the road surface with low friction, there is a possibility of causing resonance with the steering operation by the driver. is there. Therefore, it is necessary to take a separate measure in such a case.

これに対する対策としては、上記の後輪操舵制御における目標状態を路面摩擦(例えば路面摩擦係数μ)に応じて変更し、路面摩擦適応制御を行うことが考えられるが、路面摩擦を正確に推定することは容易ではない。例えば、前掲の特許文献2では、ステアリングホイールを切り増ししたときに、この回転角(ハンドル角)の変化量に対する操舵トルクの変化量を求め、この値から路面の摩擦係数を算出しているが、その前提として操舵トルクの計測が必要であり、新たに操舵トルクセンサを装着する場合にはかなりのコスト上昇となる。   As countermeasures against this, it is conceivable to perform the road surface friction adaptive control by changing the target state in the rear wheel steering control according to the road surface friction (for example, the road surface friction coefficient μ), but accurately estimate the road surface friction. It is not easy. For example, in Patent Document 2 described above, when the steering wheel is increased, the amount of change in the steering torque with respect to the amount of change in the rotation angle (steering wheel angle) is obtained, and the friction coefficient of the road surface is calculated from this value. As a premise, steering torque must be measured, and when a new steering torque sensor is attached, the cost increases considerably.

また、前掲の特許文献3では、車輪のスピン検出時には前回の路面摩擦係数を選択することとしているので、車輪がスピンしていない状態では路面摩擦係数が固定されることになる。特に、後輪操舵制御装置においては、このような状態にあるときにこそ、逐次、正確に路面摩擦状態を検出する必要が生ずる。従って、特許文献3に記載の路面摩擦係数推定手段を後輪操舵制御装置に利用することは妥当ではない。   Further, in Patent Document 3 described above, since the previous road surface friction coefficient is selected at the time of wheel spin detection, the road surface friction coefficient is fixed when the wheel is not spinning. Particularly in the rear wheel steering control device, it is necessary to detect the road surface friction state successively and accurately only in such a state. Therefore, it is not appropriate to use the road surface friction coefficient estimating means described in Patent Document 3 for the rear wheel steering control device.

そこで、本発明は、車両の前輪及び後輪の少なくとも一方の操舵制御に対し、新たに特別なセンサ等を設けることなく簡単な構成で、路面摩擦適応制御を行い得る操舵制御装置を提供することを課題とする。   Therefore, the present invention provides a steering control device capable of performing road surface friction adaptive control with a simple configuration without providing a new special sensor or the like for steering control of at least one of the front and rear wheels of a vehicle. Is an issue.

上記の課題を達成するため、本発明は、車両の実状態量が所定の目標状態量に追従するようにフィードバック制御を行う制御系によって、前記車両前方及び後方の少なくとも一方の車輪の舵角を制御する車両の操舵制御装置において、請求項1に記載のように、前記車両の実状態量を検出する車両状態検出手段と、該車両状態検出手段が検出した前記車両の実状態量を所定の高路面摩擦係数の路面における常用運転域で同定した車両状態モデルを設定し、該車両状態モデルと前記実状態量との相関に基づき、前記車両の走行路面の路面摩擦状態に応じた路面摩擦対応ゲインを設定する路面摩擦推定手段と、該路面摩擦推定手段が設定した前記路面摩擦対応ゲインに基づき、前記制御系に対する規範状態量及びフィードバックゲインの少なくとも一方を調整する調整手段とを備えることとしたものである。   In order to achieve the above object, the present invention provides a control system that performs feedback control so that the actual state quantity of the vehicle follows a predetermined target state quantity, and the steering angle of at least one of the front and rear wheels of the vehicle is set. In the vehicle steering control apparatus to be controlled, as described in claim 1, vehicle state detection means for detecting the actual state quantity of the vehicle, and the actual state quantity of the vehicle detected by the vehicle state detection means Set the vehicle state model identified in the normal driving range on the road surface of the high road surface friction coefficient, and based on the correlation between the vehicle state model and the actual state quantity, the road surface friction corresponding to the road surface friction state of the traveling road surface of the vehicle Based on the road surface friction estimation means for setting the gain and the road surface friction corresponding gain set by the road surface friction estimation means, at least a reference state quantity and a feedback gain for the control system are reduced. It is obtained by a further comprising an adjustment means for adjusting one.

前記路面摩擦推定手段は、請求項2に記載のように、前記車両状態検出手段が検出した前記車両の実状態量を(理想状態での)所定の高路面摩擦係数の路面における常用運転域で同定した車両状態モデルを設定する車両状態モデル設定手段と、該車両状態モデル設定手段が設定したモデルの出力値と前記車両状態検出手段が検出した実状態量との相関値を逐次演算する相関値演算手段と、該相関値演算手段が演算した相関値に基づき、前記車両の走行路面の路面摩擦状態に応じた路面摩擦対応ゲインを設定するゲイン設定手段とを備えたものとするとよい。尚、前記相関値の逐次演算結果にフィルタ処理を行なって平滑化し、フィルタ処理後の相関値に基づき路面摩擦対応ゲインを設定することとしてもよい。   As described in claim 2, the road surface friction estimation means calculates the actual state amount of the vehicle detected by the vehicle state detection means in a normal driving range on a road surface having a predetermined high road surface friction coefficient (in an ideal state). Vehicle state model setting means for setting the identified vehicle state model, and a correlation value for sequentially calculating a correlation value between the output value of the model set by the vehicle state model setting means and the actual state quantity detected by the vehicle state detection means It is preferable to include calculation means and gain setting means for setting a road surface friction corresponding gain according to the road surface friction state of the traveling road surface of the vehicle based on the correlation value calculated by the correlation value calculation means. In addition, it is good also as performing smoothing by performing a filter process to the sequential calculation result of the said correlation value, and setting a road surface friction corresponding | compatible gain based on the correlation value after a filter process.

前記相関値演算手段は、請求項3に記載のように、相関係数、二乗誤差の積分値、及び誤差の絶対値の積分値の少なくとも一つを前記相関値として、所定の時間間隔で逐次演算するように構成することができる。また、請求項4に記載のように、前記車両状態検出手段は、前記車両の実状態量として、前記車両の前輪舵角及び後輪舵角、並びにヨーレイト及び横加速度の少なくとも一方を検出するように構成し、前記車両状態モデル設定手段は、前記車両前方の車輪及び後方の車輪に対し、ヨーレイト及び横加速度の少なくとも一方で同定し前輪舵角同定モデル及び後輪舵角同定モデルを設定するように構成するとよい。   According to a third aspect of the present invention, the correlation value calculation means sequentially uses at least one of a correlation coefficient, a square error integral value, and an error absolute value integral value as the correlation value at predetermined time intervals. It can be configured to operate. According to a fourth aspect of the present invention, the vehicle state detection means detects at least one of a front wheel steering angle and a rear wheel steering angle, a yaw rate, and a lateral acceleration of the vehicle as the actual state quantity of the vehicle. The vehicle state model setting means is configured to identify at least one of yaw rate and lateral acceleration and set a front wheel steering angle identification model and a rear wheel steering angle identification model for the front wheels and the rear wheels of the vehicle. It is good to configure.

そして、前記調整手段は、請求項5に記載のように、前記規範状態量として、前記車両に対する規範ヨーレイト及び規範横加速度の少なくとも一方を設定し、前記路面摩擦対応ゲインに基づいて調整するように構成するとよい。   And, as described in claim 5, the adjusting means sets at least one of a standard yaw rate and a standard lateral acceleration for the vehicle as the standard state quantity, and adjusts based on the road surface friction corresponding gain. Configure.

本発明は上述のように構成されているので以下の効果を奏する。即ち、請求項1に記載の車両の操舵制御装置においては、路面摩擦推定手段にて、車両の実状態量を所定の高路面摩擦係数の路面における常用運転域で同定した車両状態モデルを設定し、この車両状態モデルと実状態量との相関に基づき走行路面の路面摩擦状態に応じた路面摩擦対応ゲインを設定し、この路面摩擦対応ゲインに基づき、制御系に対する規範状態量及びフィードバックゲインの少なくとも一方を調整するように構成されているので、新たに特別なセンサ等を設けることなく既存のセンサのみによって、路面摩擦に応じた最適な制御、即ち路面摩擦適応制御を比較的少ない演算量で実現することができ、滑りやすい路面等における不具合を解消することができる。   Since this invention is comprised as mentioned above, there exist the following effects. That is, in the vehicle steering control apparatus according to claim 1, the vehicle surface model in which the actual state quantity of the vehicle is identified in the normal driving range on the road surface having a predetermined high road surface friction coefficient is set by the road surface friction estimating means. Based on the correlation between the vehicle state model and the actual state amount, a road surface friction corresponding gain according to the road surface friction state of the traveling road surface is set. Based on the road surface friction corresponding gain, at least the reference state amount and the feedback gain for the control system are set. Since it is configured to adjust one, optimal control according to road surface friction, that is, road surface friction adaptive control is realized with a relatively small amount of computation by using only existing sensors without providing a special sensor or the like. It is possible to eliminate problems on slippery road surfaces and the like.

前記路面摩擦推定手段は、請求項2に記載のように車両状態モデル設定手段、相関値演算手段及びゲイン設定手段を備えたものとし、車両状態モデル出力値と実状態量との相関値を逐次演算し、その相関値に基づき路面摩擦対応ゲインを設定するように構成されているので、走行路面の路面摩擦状態に応じた適切な路面摩擦対応ゲインを容易に設定することができる。前記相関値演算手段において、請求項3に記載のように、前記相関値として、所定の時間間隔で逐次演算する前記相関値として相関係数、二乗誤差の積分値、及び誤差の絶対値の積分値の少なくとも一つを用い、これらを所定の時間間隔で逐次演算する構成すれば、相関値を容易に演算することができ、ひいては路面摩擦を容易且つ正確に推定することができ、これに基づき適切に規範状態量等を調整することができる。   The road surface friction estimation means includes vehicle state model setting means, correlation value calculation means, and gain setting means as described in claim 2, and sequentially calculates the correlation value between the vehicle state model output value and the actual state quantity. Since it is configured to calculate and set the road surface friction corresponding gain based on the correlation value, an appropriate road surface friction corresponding gain according to the road surface friction state of the traveling road surface can be easily set. In the correlation value calculating means, as described in claim 3, as the correlation value, a correlation coefficient, an integral value of a square error, and an integral of an absolute value of an error are calculated as the correlation value sequentially calculated at a predetermined time interval. If at least one of the values is used and these are sequentially calculated at predetermined time intervals, the correlation value can be easily calculated, and the road surface friction can be estimated easily and accurately. The normative state quantity etc. can be adjusted appropriately.

また、前記車両状態量検出手段を請求項4に記載のように構成すれば、既存のセンサのみによって容易に車両の実状態量を検出することができる。そして、前記調整手段は、請求項5に記載のように、規範状態量として規範ヨーレイト及び規範横加速度の少なくとも一方を設定することとすれば、簡単な構成とすることができ、安価な装置を提供することができる。   Further, if the vehicle state quantity detection means is configured as described in claim 4, the actual state quantity of the vehicle can be easily detected by using only existing sensors. Further, as described in claim 5, the adjustment means can be configured simply by setting at least one of the standard yaw rate and the standard lateral acceleration as the standard state quantity, and an inexpensive device can be provided. Can be provided.

以下、本発明の望ましい実施形態を図面を参照して説明する。図1は本発明の一実施形態に係る車両の操舵制御装置の構成を示すもので、車両1において、ステアリングホイール2の操作に応じて前輪3,3が操舵されると共に、これに応じて後輪4,4の舵角がアクチェータ5によって制御され、四輪操舵制御システム(4WS)が構成されている。前輪3,3の操舵角であるステアリング角(ハンドル角)は前輪舵角センサ6によって検出され、その検出信号に基づき前輪舵角δfが求められるように構成されている。一方、アクチュエータ5はコントローラ10によって駆動制御され、アクチュエータ5に連結された後輪4,4が操舵されるように構成されており、その操舵角が後輪舵角センサ7によって検出され、その検出信号に基づき後輪舵角δrが求められるように構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a vehicle steering control device according to an embodiment of the present invention. In the vehicle 1, front wheels 3 and 3 are steered in response to an operation of a steering wheel 2, and rear wheels are accordingly moved. The steering angles of the wheels 4 and 4 are controlled by the actuator 5 to constitute a four-wheel steering control system (4WS). A steering angle (steering wheel angle), which is the steering angle of the front wheels 3 and 3, is detected by the front wheel steering angle sensor 6, and the front wheel steering angle δf is obtained based on the detection signal. On the other hand, the actuator 5 is driven and controlled by the controller 10, and the rear wheels 4 and 4 connected to the actuator 5 are steered. The steering angle is detected by the rear wheel steering angle sensor 7, and the detection is performed. The rear wheel steering angle δr is obtained based on the signal.

尚、本実施形態においては、前輪舵角δfがステアリング角(ハンドル角)と一対一で対応する構成であるが、前輪3,3をステアリングホイール2から機械的に分離し、独立して制御するように構成した場合(例えば、所謂ステアバイワイヤ)には、前輪舵角δfとステアリング角(ハンドル角)が一対一で対応しなくなる。この場合には、これらの回転角がそれぞれ別々に検出され、前輪舵角が後輪舵角と同様、独立して制御されることになるが、この場合も本実施形態と同様に制御することができる。   In the present embodiment, the front wheel rudder angle δf has a one-to-one correspondence with the steering angle (handle angle), but the front wheels 3 and 3 are mechanically separated from the steering wheel 2 and controlled independently. When configured in this manner (for example, so-called steer-by-wire), the front wheel steering angle δf and the steering angle (steering wheel angle) do not correspond one to one. In this case, these rotation angles are detected separately, and the front wheel rudder angle is controlled independently in the same manner as the rear wheel rudder angle, but in this case as well, the same control as in this embodiment is performed. Can do.

更に、前輪3,3及び後輪4,4の各車輪には車輪速度センサ11が配設され、これらがコントローラ10に接続されており、各車輪の回転速度、即ち車輪速度に比例するパルス信号がコントローラ10に入力されるように構成されている。また、車両のヨーレイトγを検出するヨーレイトセンサ12、車両の横加速度gyを検出する横加速度センサ13等が搭載されており、夫々コントローラ10に接続されている。而して、これらによって、車両1の実状態量としてヨーレイトγ及び横加速度gyを検出する車両状態検出手段が構成されている。尚、本実施形態においては、モード切替スイッチ14がコントローラ10に接続されており、四輪操舵制御と通常の二輪(前輪)操舵制御とが切替可能とされている。   Further, a wheel speed sensor 11 is disposed on each of the front wheels 3 and 3 and the rear wheels 4 and 4, and these are connected to the controller 10, and a pulse signal proportional to the rotational speed of each wheel, that is, the wheel speed. Is input to the controller 10. A yaw rate sensor 12 for detecting the yaw rate γ of the vehicle, a lateral acceleration sensor 13 for detecting the lateral acceleration gy of the vehicle, and the like are mounted and connected to the controller 10. Thus, these constitute vehicle state detection means for detecting the yaw rate γ and the lateral acceleration gy as the actual state quantities of the vehicle 1. In the present embodiment, the mode changeover switch 14 is connected to the controller 10 so that four-wheel steering control and normal two-wheel (front wheel) steering control can be switched.

上記コントローラ10内には操舵制御用のCPU、ROM及びRAM(図示せず)が配設されており、これらによって、前輪舵角δf(ステアリング角)に基づきフィードフォワード制御で制御する項と、前輪舵角δfに基づき、規範車両状態を表す規範状態量(規範ヨーレイト及び規範横加速度)を計算し、実車両状態を表す実状態量(ヨーレイトγ及び横加速度gy)との差をフィードバック制御する項とを加えたものを目標後輪舵角とし、後輪操舵用のアクチュエータ5をサーボ制御するという基本システムが構成されている。   In the controller 10, a CPU, ROM and RAM (not shown) for steering control are arranged. By these, a term controlled by feedforward control based on a front wheel steering angle δf (steering angle), and a front wheel A term for calculating a reference state quantity (reference yaw rate and reference lateral acceleration) representing the reference vehicle state based on the steering angle δf, and feedback-controlling a difference from the actual state quantity (yaw rate γ and lateral acceleration gy) showing the actual vehicle state. A basic system is configured in which the target rear wheel steering angle is set as the target and the rear wheel steering actuator 5 is servo-controlled.

本実施形態においては、コントローラ10内に路面摩擦推定手段(これは車両状態モデル設定手段、相関値演算手段及びゲイン設定手段を有する)及び調整手段が構成されており、路面摩擦推定手段にて、車両の実状態量を所定の高路面摩擦係数の路面における常用運転域で同定した車両状態モデルが設定され、この車両状態モデルと実状態量との相関に基づき、車両の走行路面の路面摩擦状態に応じた路面摩擦対応ゲインが設定され、この路面摩擦対応ゲインに基づき、調整手段により、規範状態量(規範ヨーレイト及び規範横加速度)及び/又はフィードバックゲインが調整される。   In the present embodiment, a road surface friction estimation means (which includes a vehicle state model setting means, a correlation value calculation means, and a gain setting means) and an adjustment means are configured in the controller 10, and in the road surface friction estimation means, A vehicle state model in which the actual state quantity of the vehicle is identified in the normal driving range on the road surface having a predetermined high road surface friction coefficient is set, and based on the correlation between the vehicle state model and the actual state quantity, the road surface friction state of the traveling road surface of the vehicle is set. A road surface friction corresponding gain is set according to the road surface friction, and based on this road surface friction corresponding gain, the adjustment means adjusts the reference state quantity (reference yaw rate and reference lateral acceleration) and / or the feedback gain.

具体的には、図2の制御ブロック図に示すように構成されており、フィードフォワード制御部FFにて、前輪舵角センサ6によって検出された前輪舵角δf(ステアリング角)に基づき、且つこれに基づいて演算部RY及びRGで演算される規範ヨーレイトγr及び規範横加速度gyrに応じて、第1の目標値が演算される。このフィードフォワード制御部FFの処理と並行して、フィードバック制御部FBにおいて、フィードバック制御が実行される。即ち、ヨーレイトセンサ12及び横加速度センサ13で検出された(実)ヨーレイトγ及び横加速度gyが、夫々規範ヨーレイトγr及び規範横加速度gyrと比較され、比較結果のヨーレイト偏差及び横加速度偏差に基づき、フィードバック制御部FBにおいて第2の目標値が演算される。   Specifically, it is configured as shown in the control block diagram of FIG. 2, and based on the front wheel steering angle δf (steering angle) detected by the front wheel steering angle sensor 6 in the feedforward control unit FF, The first target value is calculated according to the standard yaw rate γr and the standard lateral acceleration gyr calculated by the calculation units RY and RG based on the above. In parallel with the processing of the feedforward control unit FF, feedback control is executed in the feedback control unit FB. That is, the (actual) yaw rate γ and the lateral acceleration gy detected by the yaw rate sensor 12 and the lateral acceleration sensor 13 are compared with the standard yaw rate γr and the standard lateral acceleration gyr, respectively, and based on the yaw rate deviation and lateral acceleration deviation of the comparison result, The second target value is calculated in the feedback control unit FB.

そして、フィードフォワード制御部FFで演算された第1の目標値に、フィードバック制御部FBで演算された第2の目標値が加算されて、最終的な目標後輪舵角が求められ、この目標後輪舵角に基づき後輪舵角サーボ制御部SCによりアクチュエータ5がサーボ制御される。尚、本実施形態においては、実状態量としてヨーレイトγ及び横加速度gyの両者を用いることとしているが、何れか一方のみとしてもよい。   Then, the final target rear wheel steering angle is obtained by adding the second target value calculated by the feedback control unit FB to the first target value calculated by the feedforward control unit FF. The actuator 5 is servo-controlled by the rear wheel steering angle servo controller SC based on the rear wheel steering angle. In the present embodiment, both the yaw rate γ and the lateral acceleration gy are used as actual state quantities, but only one of them may be used.

更に、本実施形態においては、上記のフィードフォワード制御部FF、フィードバック制御部FB、並びに演算部RY及びRGが、路面摩擦推定部ESによって調整されるように構成されている。即ち、各制御部においては以下に示す[数1]乃至[数4]の制御式で伝達関数が計算され、その中の各係数及び定数が、路面摩擦推定部ESにて後述するように設定される路面摩擦対応ゲインに応じて調整され、路面摩擦適応制御が行われる。   Further, in the present embodiment, the feedforward control unit FF, the feedback control unit FB, and the calculation units RY and RG are configured to be adjusted by the road surface friction estimation unit ES. That is, in each control unit, a transfer function is calculated by the following control equations [Equation 1] to [Equation 4], and coefficients and constants therein are set as described later in the road surface friction estimation unit ES. The road surface friction adaptive control is performed according to the road surface friction corresponding gain.

先ず、フィードフォワード制御部FFにおいては、下記[数1]式の制御伝達関数が設定されている。

Figure 2005041386
ここで、Gbdf(0)及びGbdr(0)はゲイン定数で、n0乃至n2及びd1乃至d3は車速依存係数である。尚、sはラプラス演算子を示す。 First, in the feedforward control unit FF, a control transfer function of the following [Equation 1] is set.
Figure 2005041386
Here, Gbdf (0) and Gbdr (0) are gain constants, and n0 to n2 and d1 to d3 are vehicle speed dependent coefficients. Note that s represents a Laplace operator.

次に、フィードバック制御部FBにおいては、下記[数2]式の制御伝達関数が設定されている。

Figure 2005041386
ここで、nr0乃至nr4、ng0乃至ng4、及びdg0乃至dg4は車速依存係数、γrは規範ヨーレイト、γは(実)ヨーレイト、gyrは規範横加速度、gyは(実)横加速度である。 Next, in the feedback control unit FB, a control transfer function of the following [Equation 2] is set.
Figure 2005041386
Here, nr0 to nr4, ng0 to ng4, and dg0 to dg4 are vehicle speed dependence coefficients, γr is a reference yaw rate, γ is a (real) yaw rate, gyr is a reference lateral acceleration, and gy is a (real) lateral acceleration.

一方、規範ヨーレイト伝達関数は下記[数3]式のように設定されている。

Figure 2005041386
ここで、Grdf(0)及びGrdr(0)はゲイン定数、Tr及びTr'は車速依存係数、ζは減衰係数、ωnは固有周波数である。 On the other hand, the reference yaw rate transfer function is set as in the following [Equation 3].
Figure 2005041386
Here, Grdf (0) and Grdr (0) are gain constants, Tr and Tr ′ are vehicle speed dependent coefficients, ζ is an attenuation coefficient, and ωn is a natural frequency.

また、規範横加速度伝達関数は下記[数4]式のように設定されている。

Figure 2005041386
ここで、Grdfgy(0)及びGrdrgy(0)はゲイン定数、T1,T2,T1',T2'は車速依存係数、ζは減衰係数、ωnは固有周波数である。 The reference lateral acceleration transfer function is set as shown in the following [Equation 4].
Figure 2005041386
Here, Grdfgy (0) and Grdrgy (0) are gain constants, T1, T2, T1 ′ and T2 ′ are vehicle speed dependent coefficients, ζ is an attenuation coefficient, and ωn is a natural frequency.

そして、上記[数1]乃至[数4]式における各係数及び定数は、以下のように路面摩擦推定部ESにて設定される路面摩擦対応ゲインによって可変とされている。この路面摩擦推定部ESにおいては、相関値として相関係数、二乗誤差の積分値、及び誤差の絶対値の積分値の少なくとも一つを所定の時間間隔で逐次演算し、相関値に基づき、走行路面の路面摩擦状態に応じた路面摩擦対応ゲインを設定することとしている。   The coefficients and constants in the above equations [Equation 1] to [Equation 4] are variable depending on the road surface friction corresponding gain set by the road surface friction estimation unit ES as follows. The road surface friction estimation unit ES sequentially calculates at least one of a correlation coefficient, an integral value of a square error, and an integral value of an error absolute value as a correlation value at a predetermined time interval, and travels based on the correlation value. A road surface friction corresponding gain is set according to the road surface friction state of the road surface.

図3は、路面摩擦推定部ESの構成例を示すもので、車両の実状態量として入力する前輪舵角δf及び後輪舵角δrを理想状態(例えば乾燥路)での高路面摩擦係数の路面における常用運転域(線形領域)で同定し、車両状態モデルとしてヨーレイトモデルを設定する車両状態モデル設定手段YMと、この車両状態モデル設定手段YMのモデル出力値と実状態量との相関値を逐次演算し、演算結果に所定のフィルタ処理を行う相関値演算手段CEと、フィルタ処理後の相関値に基づき走行路面の路面摩擦状態に応じた路面摩擦対応ゲインを設定するゲイン設定手段SGによって構成されている。以下、各手段について順次説明する。   FIG. 3 shows a configuration example of the road surface friction estimation unit ES. The front wheel rudder angle δf and the rear wheel rudder angle δr input as the actual state quantity of the vehicle are expressed as the high road surface friction coefficient in an ideal state (for example, a dry road). Vehicle state model setting means YM for identifying the normal driving range (linear area) on the road surface and setting the yaw rate model as the vehicle state model, and the correlation value between the model output value of this vehicle state model setting means YM and the actual state quantity Correlation value calculation means CE that sequentially calculates and performs a predetermined filter process on the calculation result, and gain setting means SG that sets a road surface friction corresponding gain according to the road surface friction state of the traveling road surface based on the correlation value after the filter processing Has been. Hereinafter, each means will be described sequentially.

車両状態モデル設定手段YMにおいては、前輪舵角δfに対するヨーレイトの実際のデータを用いて同定を行い線形モデル表現する前輪舵角入力ヨーレイト同定モデルYM1と、後輪舵角δrに対するヨーレイトの実際のデータを用いて同定を行い線形モデル表現する後輪舵角入力ヨーレイト同定モデルYM2が構成され、両モデルの出力が加算されるように構成されている。尚、本実施形態ではヨーレイトモデルが用いられているが、横加速度モデルを用いることとしてもよく、更に、両者を併用することとしてもよい。   In the vehicle state model setting means YM, the front wheel rudder angle input yaw rate identification model YM1 that performs identification using the actual data of the yaw rate with respect to the front wheel rudder angle δf and represents a linear model, and the actual data of yaw rate with respect to the rear wheel rudder angle δr A rear-wheel steering angle input yaw rate identification model YM2 that is identified by using and is expressed as a linear model is configured, and the outputs of both models are added. Although the yaw rate model is used in the present embodiment, a lateral acceleration model may be used, and both may be used in combination.

上記の前輪舵角入力ヨーレイト同定モデルYM1は下記[数5]式で表される。

Figure 2005041386
また、後輪舵角入力ヨーレイト同定モデルYM2は下記[数6]式で表される。
Figure 2005041386
上記2式において、nf0乃至nf4、df0乃至df4、nr0乃至nr4、及びdr0乃至dr4は車速依存係数、δfは前輪舵角、δrは後輪舵角である。 The front wheel steering angle input yaw rate identification model YM1 is expressed by the following [Equation 5].
Figure 2005041386
The rear wheel steering angle input yaw rate identification model YM2 is expressed by the following [Equation 6].
Figure 2005041386
In the above two formulas, nf0 to nf4, df0 to df4, nr0 to nr4, and dr0 to dr4 are vehicle speed dependent coefficients, δf is a front wheel steering angle, and δr is a rear wheel steering angle.

次に、相関値演算手段CEにおいては、前輪舵角入力ヨーレイト同定モデルYM1と後輪舵角入力ヨーレイト同定モデルYM2の出力が加算され、この加算結果(ヨーレイト)と実状態量(ヨーレイトγ)との相関値として、相関係数、二乗誤差の積分値、及び誤差の絶対値の積分値の少なくとも一つが、所定の時間間隔で逐次演算され、所定のフィルタ処理により一定の時間で平滑化される。   Next, in the correlation value calculation means CE, the outputs of the front wheel steering angle input yaw rate identification model YM1 and the rear wheel steering angle input yaw rate identification model YM2 are added, and the addition result (yaw rate) and the actual state quantity (yaw rate γ) As a correlation value, at least one of a correlation coefficient, an integral value of a square error, and an integral value of an absolute value of an error is sequentially calculated at a predetermined time interval and smoothed at a predetermined time by a predetermined filter process. .

本実施形態では、上記の相関係数が下記[数7]式に基づいて求められる。

Figure 2005041386
In the present embodiment, the correlation coefficient is obtained based on the following [Equation 7].
Figure 2005041386

そして、ゲイン設定手段SGにおいて、相関値―路面μテーブルFT(例えば図4に示すマップ)に基づき上記の相関係数に応じて路面摩擦係数μが設定され、更に、路面μ―ゲインテーブルGT(例えば図5に示すマップ)に基づき路面摩擦係数μに応じて路面摩擦対応ゲインが設定される。而して、図3に示すように、この路面摩擦対応ゲインに基づき、規範状態量(規範ヨーレイト及び規範横加速度)及び/又はフィードバックゲインが調整されると共に、各手段の係数が調整される。   Then, the gain setting means SG sets the road surface friction coefficient μ according to the correlation coefficient based on the correlation value-road surface μ table FT (for example, the map shown in FIG. 4), and further, the road surface μ-gain table GT ( For example, the road surface friction corresponding gain is set according to the road surface friction coefficient μ based on the map shown in FIG. Thus, as shown in FIG. 3, the standard state quantity (standard yaw rate and standard lateral acceleration) and / or feedback gain are adjusted based on the road surface friction corresponding gain, and the coefficient of each means is adjusted.

図6は上記の路面摩擦適応制御のシミュレーション結果の一例を示すもので、この適応制御が行われない従来の四輪操舵制御システム(4WS)の対比例を図7に示す。後者の図7に示すように、従来システムにおいては、例えば低摩擦係数の路面(低μ路)を車両が走行中に、4WSにおける制御ゲインが高い場合には、運転者によるステアリング操作と共振を起こすことがある。即ち、低μ路においては、図7の(a)の最初の立ち上がり時に示すように、ステアリング操作によって前輪舵角(この場合はステアリング角を表す)が変化すると、制御ゲインが高い場合には、後輪舵角、スリップ角、ヨーレイト及び横加速度が図7の(b)乃至(e)に示すように変化することとなる。   FIG. 6 shows an example of the simulation result of the above-described road surface friction adaptive control, and FIG. 7 shows the contrast of a conventional four-wheel steering control system (4WS) in which this adaptive control is not performed. As shown in FIG. 7 of the latter, in the conventional system, for example, when the vehicle is traveling on a low friction coefficient road surface (low μ road) and the control gain at 4WS is high, the steering operation by the driver and resonance are generated. It may happen. That is, on the low μ road, as shown at the first rise of FIG. 7A, when the front wheel steering angle (in this case, the steering angle) is changed by the steering operation, when the control gain is high, The rear wheel rudder angle, slip angle, yaw rate, and lateral acceleration change as shown in FIGS. 7B to 7E.

これに対し、本実施形態によれば、図2のように構成されているので、既存のセンサのみによって上記の路面摩擦適応制御を比較的少ない演算コスト(演算量)で実現することができ、図6の(G)に示すように車両が高摩擦係数の路面(高μ路)から低μ路に移動したときに、制御ゲインが高い場合には、路面摩擦適応制御によって4WSの制御ゲインが低下するように調整される。而して、図6の(B)乃至(E)に示すように、後輪舵角、スリップ角、ヨーレイト及び横加速度が共振を惹起することなく収束し、滑りやすい路面でも安定した走行が確保される。尚、本実施形態とは異なり、前輪3,3をステアリングホイール2から機械的に分離し、独立して制御するように構成した操舵制御装置においても、前輪舵角制御に対し上記と同様の路面摩擦適応制御(図示せず)を適用することができる。   On the other hand, according to this embodiment, since it is configured as shown in FIG. 2, the above-described road surface friction adaptive control can be realized only with existing sensors at a relatively low calculation cost (calculation amount). As shown in FIG. 6G, when the vehicle moves from a road surface with a high friction coefficient (high μ road) to a low μ road, if the control gain is high, the control gain of 4WS is increased by road surface friction adaptive control. Adjusted to decrease. Thus, as shown in FIGS. 6B to 6E, the rear wheel rudder angle, slip angle, yaw rate, and lateral acceleration converge without causing resonance, ensuring stable running even on slippery road surfaces. Is done. Note that, unlike the present embodiment, the same road surface as described above for the front wheel steering angle control also in the steering control device configured to mechanically separate the front wheels 3 and 3 from the steering wheel 2 and to control them independently. Friction adaptive control (not shown) can be applied.

本発明の車両の操舵制御装置の一実施形態を示す構成図である。It is a lineblock diagram showing one embodiment of a steering control device of vehicles of the present invention. 本発明の一実施形態における制御態様を示すブロック図である。It is a block diagram which shows the control aspect in one Embodiment of this invention. 本発明の一実施形態における路面摩擦推定手段の構成例を示すブロック図である。It is a block diagram which shows the structural example of the road surface friction estimation means in one Embodiment of this invention. 本発明の一実施形態において相関係数に応じて路面摩擦係数を設定するマップを示すグラフである。It is a graph which shows the map which sets a road surface friction coefficient according to a correlation coefficient in one Embodiment of this invention. 本発明の一実施形態において路面摩擦係数に応じて路面摩擦対応ゲインを設定するマップを示すグラフである。It is a graph which shows the map which sets the road surface friction corresponding | compatible gain according to a road surface friction coefficient in one Embodiment of this invention. 本発明の一実施形態における路面摩擦適応制御のシミュレーション結果の一例を示すグラフである。It is a graph which shows an example of the simulation result of the road surface friction adaptive control in one embodiment of the present invention. 従来の四輪操舵制御システムにおけるシミュレーション結果の一例を示すグラフである。It is a graph which shows an example of the simulation result in the conventional four-wheel steering control system.

符号の説明Explanation of symbols

1 車両
2 ステアリングホイール
3 前輪
4 後輪
5 アクチュエータ
6 前輪舵角センサ
7 後輪舵角センサ
10 コントローラ
11 車輪速度センサ
12 ヨーレイトセンサ
13 横加速度センサ
14 モード切替スイッチ
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Steering wheel 3 Front wheel 4 Rear wheel 5 Actuator 6 Front wheel rudder angle sensor 7 Rear wheel rudder angle sensor 10 Controller 11 Wheel speed sensor 12 Yaw rate sensor 13 Lateral acceleration sensor 14 Mode change switch

Claims (5)

車両の実状態量が所定の目標状態量に追従するようにフィードバック制御を行う制御系によって、前記車両前方及び後方の少なくとも一方の車輪の舵角を制御する車両の操舵制御装置において、前記車両の実状態量を検出する車両状態検出手段と、該車両状態検出手段が検出した前記車両の実状態量を所定の高路面摩擦係数の路面における常用運転域で同定した車両状態モデルを設定し、該車両状態モデルと前記実状態量との相関に基づき、前記車両の走行路面の路面摩擦状態に応じた路面摩擦対応ゲインを設定する路面摩擦推定手段と、該路面摩擦推定手段が設定した前記路面摩擦対応ゲインに基づき、前記制御系に対する規範状態量及びフィードバックゲインの少なくとも一方を調整する調整手段とを備えたことを特徴とする車両の操舵制御装置。   In a vehicle steering control device for controlling a steering angle of at least one of the front and rear wheels of a vehicle by a control system that performs feedback control so that the actual state quantity of the vehicle follows a predetermined target state quantity, Vehicle state detection means for detecting an actual state quantity; and a vehicle state model in which the actual state quantity of the vehicle detected by the vehicle state detection means is identified in a normal driving range on a road surface having a predetermined high road surface friction coefficient, Based on the correlation between the vehicle state model and the actual state quantity, road surface friction estimation means for setting a road surface friction corresponding gain according to the road surface friction state of the traveling road surface of the vehicle, and the road surface friction set by the road surface friction estimation means A vehicle steering system comprising: an adjusting unit that adjusts at least one of a reference state quantity and a feedback gain for the control system based on a corresponding gain. Control device. 前記路面摩擦推定手段は、前記車両状態検出手段が検出した前記車両の実状態量を所定の高路面摩擦係数の路面における常用運転域で同定した車両状態モデルを設定する車両状態モデル設定手段と、該車両状態モデル設定手段が設定したモデルの出力値と前記車両状態検出手段が検出した実状態量との相関値を逐次演算する相関値演算手段と、該相関値演算手段が演算した相関値に基づき、前記車両の走行路面の路面摩擦状態に応じた路面摩擦対応ゲインを設定するゲイン設定手段とを備えたことを特徴とする請求項1記載の車両の操舵制御装置。   The road surface friction estimating means sets a vehicle state model setting means for setting a vehicle state model that is identified in a normal driving range on a road surface of a predetermined high road surface friction coefficient, the actual state amount of the vehicle detected by the vehicle state detecting means, Correlation value calculation means for sequentially calculating a correlation value between the output value of the model set by the vehicle state model setting means and the actual state quantity detected by the vehicle state detection means; and the correlation value calculated by the correlation value calculation means The vehicle steering control device according to claim 1, further comprising gain setting means for setting a road surface friction corresponding gain according to a road surface friction state of the traveling road surface of the vehicle. 前記相関値演算手段は、相関係数、二乗誤差の積分値、及び誤差の絶対値の積分値の少なくとも一つを前記相関値として、所定の時間間隔で逐次演算するように構成したことを特徴とする請求項2記載の車両の操舵制御装置。   The correlation value calculating means is configured to sequentially calculate at least one of a correlation coefficient, an integral value of a square error, and an integral value of an absolute value of the error as the correlation value at a predetermined time interval. The vehicle steering control device according to claim 2. 前記車両状態検出手段は、前記車両の実状態量として、前記車両の前輪舵角及び後輪舵角、並びにヨーレイト及び横加速度の少なくとも一方を検出するように構成し、前記車両状態モデル設定手段は、前記車両前方の車輪及び後方の車輪に対し、ヨーレイト及び横加速度の少なくとも一方で同定し前輪舵角同定モデル及び後輪舵角同定モデルを設定するように構成したことを特徴とする請求項2又は3記載の車両の操舵制御装置。   The vehicle state detection unit is configured to detect at least one of a front wheel steering angle and a rear wheel steering angle, a yaw rate and a lateral acceleration of the vehicle as an actual state quantity of the vehicle, and the vehicle state model setting unit includes The front wheel rudder angle identification model and the rear wheel rudder angle identification model are set by identifying at least one of yaw rate and lateral acceleration with respect to the front wheel and the rear wheel of the vehicle. Or the steering control device of the vehicle according to 3. 前記調整手段は、前記規範状態量として、前記車両に対する規範ヨーレイト及び規範横加速度の少なくとも一方を設定し、前記路面摩擦対応ゲインに基づいて調整するように構成したことを特徴とする請求項4記載の車両の操舵制御装置。
5. The adjustment means is configured to set at least one of a reference yaw rate and a reference lateral acceleration for the vehicle as the reference state quantity, and adjust based on the road friction corresponding gain. Vehicle steering control device.
JP2003278742A 2003-07-24 2003-07-24 Steering controlling device for vehicle Pending JP2005041386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278742A JP2005041386A (en) 2003-07-24 2003-07-24 Steering controlling device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278742A JP2005041386A (en) 2003-07-24 2003-07-24 Steering controlling device for vehicle

Publications (1)

Publication Number Publication Date
JP2005041386A true JP2005041386A (en) 2005-02-17

Family

ID=34265061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278742A Pending JP2005041386A (en) 2003-07-24 2003-07-24 Steering controlling device for vehicle

Country Status (1)

Country Link
JP (1) JP2005041386A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074717A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
WO2007074715A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
WO2007074718A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
WO2007074714A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Controller of vehicle
WO2007074713A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
WO2007074716A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
JP2007307972A (en) * 2006-05-17 2007-11-29 Toyota Motor Corp Vehicular steering device
WO2008075552A1 (en) * 2006-12-21 2008-06-26 Jtekt Corporation Steering device for vehicle
EP1977945A1 (en) * 2006-06-30 2008-10-08 HONDA MOTOR CO., Ltd. Vehicle control device
JP2009255855A (en) * 2008-04-21 2009-11-05 Honda Motor Co Ltd Rear wheel toe angle control device
JP2012148771A (en) * 2012-03-15 2012-08-09 Honda Motor Co Ltd Rear wheel toe angle control device
GB2515066A (en) * 2013-06-13 2014-12-17 Nissan Motor Mfg Uk Ltd Steering Wheel Control System for a Vehicle
WO2017119440A1 (en) * 2016-01-08 2017-07-13 Ntn株式会社 Vehicle turning control device
JP2020142598A (en) * 2019-03-05 2020-09-10 トヨタ自動車株式会社 Vehicular steering device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155852B2 (en) 2005-12-27 2012-04-10 Honda Motor Co., Ltd. Vehicle control device
WO2007074717A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
US7987029B2 (en) 2005-12-27 2011-07-26 Honda Motor Co., Ltd. Vehicle control device
WO2007074714A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Controller of vehicle
US8024091B2 (en) 2005-12-27 2011-09-20 Honda Motor Co., Ltd. Vehicle control device
WO2007074716A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
WO2007074713A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
KR100907031B1 (en) 2005-12-27 2009-07-10 혼다 기켄 고교 가부시키가이샤 Vehicle control device
WO2007074715A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
US8086383B2 (en) 2005-12-27 2011-12-27 Honda Motor Co., Ltd. Vehicle control device
KR100907029B1 (en) 2005-12-27 2009-07-10 혼다 기켄 고교 가부시키가이샤 Vehicle control device
US8027775B2 (en) 2005-12-27 2011-09-27 Honda Motor Co., Ltd. Vehicle control device
US8050822B2 (en) 2005-12-27 2011-11-01 Honda Motor Co., Ltd. Controller of vehicle
KR101008320B1 (en) 2005-12-27 2011-01-13 혼다 기켄 고교 가부시키가이샤 Vehicle control device
WO2007074718A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
JP2007307972A (en) * 2006-05-17 2007-11-29 Toyota Motor Corp Vehicular steering device
EP1977945A1 (en) * 2006-06-30 2008-10-08 HONDA MOTOR CO., Ltd. Vehicle control device
EP1977945A4 (en) * 2006-06-30 2009-02-18 Honda Motor Co Ltd Vehicle control device
US8135528B2 (en) 2006-06-30 2012-03-13 Honda Motor Co., Ltd. Vehicle control device
US8155839B2 (en) 2006-12-21 2012-04-10 Jtekt Corporation Steering device for vehicle
WO2008075552A1 (en) * 2006-12-21 2008-06-26 Jtekt Corporation Steering device for vehicle
JP2009255855A (en) * 2008-04-21 2009-11-05 Honda Motor Co Ltd Rear wheel toe angle control device
JP2012148771A (en) * 2012-03-15 2012-08-09 Honda Motor Co Ltd Rear wheel toe angle control device
GB2515066A (en) * 2013-06-13 2014-12-17 Nissan Motor Mfg Uk Ltd Steering Wheel Control System for a Vehicle
WO2017119440A1 (en) * 2016-01-08 2017-07-13 Ntn株式会社 Vehicle turning control device
JP2017121910A (en) * 2016-01-08 2017-07-13 Ntn株式会社 Turning control device of vehicle
US10759282B2 (en) 2016-01-08 2020-09-01 Ntn Corporation Vehicle turning control device
JP2020142598A (en) * 2019-03-05 2020-09-10 トヨタ自動車株式会社 Vehicular steering device
JP7159917B2 (en) 2019-03-05 2022-10-25 トヨタ自動車株式会社 vehicle steering system

Similar Documents

Publication Publication Date Title
JP5008549B2 (en) Tactile control device for vehicles traveling on the road
JP3426000B2 (en) Control method of vehicle stability in curve running
JP4926715B2 (en) Method and apparatus for assisting a vehicle operator in stabilizing a vehicle
JP4166676B2 (en) Method and apparatus for vehicle stability enhancement system
US20110060505A1 (en) Device/method for controlling turning behavior of vehicle
CN111559379B (en) Road friction coefficient estimation using steering system signals
JP2004505855A (en) Method for controlling yaw and lateral dynamics in road vehicles
JP2005041386A (en) Steering controlling device for vehicle
US7315772B2 (en) Motion control apparatus and method for automotive vehicle
JP2004082862A (en) Electric power steering device
JP4280682B2 (en) Vehicle steering device
US11511790B2 (en) Road friction coefficient estimation using steering system signals
JP4530880B2 (en) Vehicle motion state control device
JP2010188854A (en) Lane maintenance assisting device and lane maintenance assisting method
JP2005343315A (en) Vehicular steering device
JP3873588B2 (en) Vehicle autopilot control device
JPH054575A (en) Calculating device for estimated car body speed and the like
JP4956035B2 (en) Vehicle control device
JP2002019631A (en) Steering apparatus and setting method for steering reaction force
KR20170136765A (en) Steering control apparatus and steering control method, and steering-state determination apparatus therefor
CN111572548B (en) Road friction coefficient estimation using steering system signals
JPS60191875A (en) Controlling method of steerage for vehicles
JP4300923B2 (en) Vehicle steering control device
KR20190034831A (en) Rear wheel steering apparatus of vehicle and control method thereof
JP4240013B2 (en) Steering support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310