JP2005039336A - Interference signal suppression circuit and program - Google Patents

Interference signal suppression circuit and program Download PDF

Info

Publication number
JP2005039336A
JP2005039336A JP2003197223A JP2003197223A JP2005039336A JP 2005039336 A JP2005039336 A JP 2005039336A JP 2003197223 A JP2003197223 A JP 2003197223A JP 2003197223 A JP2003197223 A JP 2003197223A JP 2005039336 A JP2005039336 A JP 2005039336A
Authority
JP
Japan
Prior art keywords
signal
suppression
interference
delay
interference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003197223A
Other languages
Japanese (ja)
Inventor
Toshiyuki Maeyama
利幸 前山
Takashi Inoue
隆 井上
Takeya Yonezawa
健也 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2003197223A priority Critical patent/JP2005039336A/en
Priority to CNB2004100709175A priority patent/CN100382438C/en
Priority to CN2007101071470A priority patent/CN101075839B/en
Publication of JP2005039336A publication Critical patent/JP2005039336A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference signal suppression circuit and a program for improving a suppression quantity of an interference signal due to the sneak path of a transmission signal to a receiving antenna, even if the processing of a repeater apparatus is digitized. <P>SOLUTION: The circuit has an A/D converter for converting a received signal into a digital signal, a delay quantity adding means for adding a predetermined delay quantity to the digital signal, at least an interference signal detecting means for performing correlation arithmetic between the output signal of the A/D converter and the output signal of the delay quantity adding means to detect an interference signal, at least a suppression signal generating means for generating a suppression signal having the same amplitude as that of each interference signal and a phase reverse to that of the interference signal from the interference signal detected in each interference signal detecting means, a suppression signal synthesizing means for synthesizing the suppression signal, and a signal synthesizing means for synthesizing the synthesized suppression signal with the received signal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無線通信に用いられ、同一周波数で受信信号を中継するリピータ装置に関し、特に、同一の周波数で、送信信号が受信アンテナに回り込むことにより生ずる干渉信号を抑圧する機能を備えた干渉信号抑圧回路およびプログラムに関する。
【0002】
【従来の技術】
従来、無線基地局の電波の届きにくいビル内部やトンネル内部若しくは山岳地帯での電波状況を改善するために、リピータ装置(中継装置あるいは無線中継ブースタとも呼ばれている)が用いられている。こうしたリピータ装置は、基本的には受信アンテナにより受信した電波を増幅して送信アンテナを介して送信を行うものであるため、基地局のように専用回線を敷設する必要もなく、設備面でコストを低減できるというメリットがある。
【0003】
ところが、リピータ装置における受信信号と送信信号とは同一の周波数であることから、送信アンテナから放射された送信信号が受信アンテナに回り込むと所望の信号に対して干渉信号となってしまい、結果として、リピータ装置の再送利得が大きな場合には発振を生じさせてしまうという問題がある。このような場合、送信アンテナと受信アンテナを物理的に隔離させてアンテナ間の結合量を小さくする方法も考えられるが、こうした方法では、リピータ装置の設備規模が大きくなって、物理的に実施できない場合等があり、汎用性といった点で問題がある。
【0004】
また、他の方法として,受信信号にCDMA信号における1チップ以上の遅延に相当する所定の遅延量を付加し、遅延を付加した信号を送信信号として出力して、干渉波が到来する遅延において、受信信号と送信信号との相関演算を行って干渉波信号の残差成分を検出し、検出した残差成分に基いて、干渉波信号に対し、逆位相,同振幅そして同遅延となる様に生成した抑圧信号により、送信信号が受信アンテナに回り込むことにより生ずる干渉信号を打ち消すといった技術が知られている(例えば、特許文献1参照。)。この方法によれば、再送された信号が干渉信号として付加された受信信号と送信信号の相関演算を行って干渉信号の残差成分を検出するが、この残差成分の検出の際に、再送する送信信号にCDMA信号における1チップ以上の遅延が付加されているため、リファレンス信号となる送信信号と干渉信号の残差成分との相関以外の信号との相関が低くなり、残差成分を精度良く検出できるといったメリットがある。
【0005】
【特許文献1】
特開2001−196994号公報(第2−5頁、第3図)
【0006】
【発明が解決しようとする課題】
しかしながら、装置全体の小型化を目的に、リピータ装置の回り込み干渉波抑圧処理をデジタル化した場合には、抑圧信号の遅延量に対する分解能がデジタル処理部のサンプリング周波数の逆数である単位時間幅で決まってしまうために、干渉波信号の遅延に対し、抑圧信号の遅延を完全に一致させることが困難となり、結果的に干渉抑圧量の劣化を招いてしまうという問題がある。
【0007】
そこで、本発明は、上述した問題点に鑑みてなされたものであって、リピータ装置の処理をデジタル化した場合にも、送信信号の受信アンテナへの回り込みによる干渉信号の抑圧量を向上させる干渉信号抑圧回路およびプログラムを提供することを目的とする。
【0008】
【課題を解決するための手段】
前記課題を解決するため、本発明は、以下の手段を提案している。
請求項1に係る発明は、受信アンテナから受信した信号をデジタル信号に変換するA/D変換器と、該A/D変換器から出力された信号に所定の遅延量を付加する遅延量付加手段と、該遅延付加手段から出力された信号をアナログ信号に変換するD/A変換器と、該D/A変換器から出力された信号を送信信号として出力する送信手段と、前記A/D変換器の出力信号と該遅延量付加手段の出力信号との相関演算を行って、干渉信号を検出する少なくとも1つの干渉信号検出手段と、該それぞれの干渉信号検出手段において検出された干渉信号から該干渉信号と同振幅、同遅延でかつ、逆位相の抑圧信号を生成する少なくとも1つの抑圧信号生成手段と、該抑圧信号生成手段において生成された抑圧信号を合成する抑圧信号合成手段と、該抑圧合成手段において生成された信号と前記受信信号とを合成する信号合成手段とを備えたことを特徴とする干渉信号抑圧回路を提案している。
【0009】
請求項4に係る発明は、デジタル化された受信信号に所定の遅延量を付加するステップと、該デジタル化された受信信号と該所定の遅延量を付加した信号との相関演算を行って、干渉信号を検出するステップと、該検出された干渉信号からサンプリング周波数の分解能以上の遅延時間で到来する干渉信号に対して、該干渉信号の近傍で、前記サンプリング周波数の逆数である単位時間幅の整数倍に相当する遅延時間に現われる信号と同振幅、同遅延でかつ、逆位相の抑圧信号を生成するステップと、該生成された少なくとも1つの抑圧信号を合成するステップと、該合成された抑圧信号と前記受信した信号とを合成するステップとを実行するプログラムを提案している。
【0010】
この発明によれば、A/D変換器により、受信アンテナから受信されたアナログ信号がデジタル信号に変換される。変換されたデジタル信号は、遅延量付加手段において、所定の遅延量を付加された後、D/A変換器によりアナログ信号に換されて送信アンテナから送信される。一方で、所定の遅延量を付加されたデジタル信号は、デジタル化された受信信号とともに、干渉信号検出手段に入力され、相関演算がなされて干渉信号が生成される。生成されたそれぞれの干渉信号は、抑圧信号生成手段に入力され、干渉信号と同振幅でかつ、逆位相の抑圧信号が生成される。生成された抑圧信号は、抑圧信号合成手段で合成された後、信号合成手段において、デジタル化された受信信号と合成される。
【0011】
請求項2に係る発明は、請求項1に記載された干渉信号抑圧回路について、前記抑圧信号生成手段が前記A/D変換器のサンプリング周波数の分解能以上の遅延時間で到来する干渉信号に対して、該干渉信号の近傍で、前記サンプリング周波数の逆数である単位時間幅の整数倍に相当する遅延時間に現われる信号から抑圧信号を生成することを特徴とする干渉信号抑圧回路を提案している。
【0012】
この発明によれば、抑圧信号生成手段がA/D変換器のサンプリング周波数の分解能以上の遅延時間で到来する干渉信号に対して、干渉信号の近傍で、サンプリング周波数の逆数である単位時間幅の整数倍に相当する遅延時間に現われる信号から抑圧信号を生成する。したがって、A/D変換器の分解能を越える干渉信号に対しても、適切な抑圧信号を生成することができる。
【0013】
請求項3に係る発明は、請求項2に記載された干渉信号抑圧回路について、前記抑圧信号生成手段が前記干渉信号近傍の2つ以上の遅延時間より抑圧信号を生成することを特徴とする干渉信号抑圧回路を提案している。
【0014】
この発明によれば、所望の干渉信号を抑圧するために、所望の干渉信号近傍の2つ以上の遅延時間より抑圧信号を生成することとしていることから、ある幅をもった干渉信号に対しても、大きな抑圧量を期待できる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態に係る干渉信号抑圧回路について図1から図4を参照して詳細に説明する。
図1は、本発明に係る干渉信号抑圧回路を内蔵したリピータ装置を含む通信システムの概要を示している。この通信システムは、基地局1と、リピータ装置2と、端末4とから構成されており、3a、3bは建造物を示し、リピータ装置が設置された環境としては、周囲に建物が立ち並ぶなど電波状態が好ましくない場所である。リピータ装置は、受信した電波と同一の周波数でこれを増幅した後、送信アンテナを介して放射する。
【0016】
しかし、送信アンテナから送信された電波は、そのすべてが端末4に到達するわけではなく、送信信号の一部は、送信アンテナから直接、受信アンテナに到来し、一部は、建造物3a、3bで反射されたのち、受信アンテナに到来して、これらの信号が干渉信号となる。また、これらの信号は、その伝搬経路によって受信アンテナへの到来時間が異なる性質を持っている。
【0017】
図2は、こうした干渉信号の到来時間の一例を示すものであり、図の横軸は時間を、縦軸は干渉信号の強度を示しており、横軸の目盛りは、デジタル信号処理部のサンプリング周波数の逆数である単位時間幅を示している。この図においては、図1の伝搬経路▲1▼、▲2▼あるいは▲3▼に対応して、干渉信号が3波到来しており、到来時間はそれぞれτ1、τ2、τ3となっている。また、これらの干渉信号は、ある幅を持った信号として観測される。図2の点線は、到来する干渉信号をアナログ的に描いたものである。
【0018】
一般に、リピータ装置で扱われる信号をアナログで処理する場合には、これらの干渉信号の遅延時間やレベルを検出し、これらと逆位相でかつ、同振幅の信号を上記の干渉信号に干渉信号と同じ遅延で足し合わせれば、干渉信号を打ち消すことができる。しかし、信号の処理をデジタルで行おうとすると、デジタル信号処理部のサンプリング周波数の逆数である単位時間幅で遅延時間が決定されてしまうため、干渉信号の遅延時間を誤差なく正確に再現することは、極めて困難である。そこで、本発明においては、1つの干渉信号を低減させるために、2つの異なる遅延量の抑圧信号を用いることを特徴としている。すなわち、図2の例でいえば、遅延時間τ1の干渉信号を低減するために、t11およびt12のタイミングをもつ2つの抑圧信号を用いる。
【0019】
次に、本発明の実施形態に係るリピータ装置およびリピータ装置内の干渉信号抑圧回路の構成および作用について説明する。
リピータ装置は、図3に示すように、基地局向けアンテナ11と、アンテナ共用器12と、移動局向けアンテナ13と、上り回線、下り回線用に、低雑音増幅器14a、14bと、周波数変換器15a、15b、15c、15dと、干渉抑圧装置16a、16bと、高出力増幅器17a、17bとを備えている。
【0020】
基地局向けアンテナ11は、基地局との間で電波の送受信を行うためのアンテナであり、移動局向けアンテナ13は、移動局との間で電波の送受信を行うためのアンテナである。アンテナ共用器12は、基地局から受信した電波を下り回線に供給し、基地局に対して送信する上り回線からの信号を基地局向けアンテナ11に供給するための装置であり、同様のアンテナ共用器12が移動局向けアンテナ13にも備えられている。
【0021】
低雑音増幅器14a、14bは、基地局向けアンテナ11または移動局向けアンテナ13を介して受信した微弱な電波を増幅する低雑音の増幅器である。周波数変換器15a、15b、15c、15dは、受信したRF信号を周波数変換して直交変換してIQ(In−Phase Quadrature Phase)ベースバンド信号を生成する。また、上記と逆の処理を行って、IQベースバンド信号を直交変調し周波数変換してRF信号に変換する。高出力増幅器17a、17bは、送信する電波を増幅する増幅度の高い増幅器である。
【0022】
また、本発明の実施形態に係るリピータ装置内の干渉信号抑圧回路は、図4に示すように、A/D変換器21と、チップ遅延器22と、D/A変換器23と、加算器24と、位相振幅制御器25a、25b、25cと、相関積分器26a、26b、26cと、遅延器27a、27b、27cとを備えている。
【0023】
A/D変換器21は、アナログ信号を所定のサンプリング周波数によりデジタル信号に変換する変換器であり、本実施形態においては、図示しない受信アンテナで受信した信号をデジタル信号に変換して次段へ供給する。D/A変換器23は、A/D変換器21と逆の作用を有する変換器であって、デジタル信号をアナログ信号に変換する。本実施形態においては、デジタル化された受信信号に所定の遅延量を付加した信号をアナログ信号に変換して、これを送信信号として図示しない送信アンテナから出力する。
【0024】
チップ遅延器22は、所望する受信信号と送信アンテナと受信アンテナの間を回り込む干渉信号の相関を減らすために、再送時にCDMA(CDMA:Code Division Multiple Access)信号の1チップ以上の遅延を付加するための遅延回路である。相関積分器26a、26b、26cは、チップ遅延器22を通過した信号をリファレンス信号とし、所望波と干渉波の合成された信号から干渉波の振幅と位相を検出するための演算回路である。但し、演算を有効に機能させるためには,予め干渉波の遅延を知っておく必要があるため、各相関積分器26a、26b、26cおよび位相振幅制御器25a、25b、25cには、対応する遅延器27a、27b、27cが設けられており、この遅延器27a、27b、27cで干渉波の遅延に相当する遅延を与えられた信号が入力される。
【0025】
位相振幅制御器25a、25b、25cは、前述のリファレンス信号を干渉波と同振幅で、かつ逆位相となる抑圧信号を生成するための回路であり、抑圧信号を生成するための制御信号は相関積分器26a、26b、26cより作られる。加算器24は、干渉波を含んだ所望波に位相振幅制御器25a、25b、25cにおいて生成された干渉抑圧信号を加算する回路である。
【0026】
本発明の実施形態に係る干渉信号抑圧回路の作用について説明すると、受信アンテナにおいて受信されたRF信号は、周波数変換器15aでIQベースバンド信号に変換され、このIQベースバンド信号が、A/D変換器21に入力されてデジタル信号に変換される。デジタル信号に変換されたIQベースバンド信号は、複数コピーされてそれぞれの相関積分器26a、26b、26cに分配される。なお、従来のアナログ方式では、信号を分配する際に、分配損が発生し、レベルの劣化を生じていたが、デジタル方式の場合には、上述のように、信号をコピーすることにより分配を行うため、アナログ方式のような分配損を招くこともない。
【0027】
各相関積分器26a、26b、26cには、分配されたデジタル受信信号とチップ遅延器22において遅延が付加されたデジタル信号が入力され、分配されたデジタル受信信号から回りこみによる干渉信号のレベルと位相とが検出される。なお、このとき個々の相関積分器26a、26b、26cの相関積分における遅延量は異なっており、こうすることによって、検出対象である干渉信号の遅延にあわせた遅延量で相関積分が行われる。
【0028】
具体的には、回り込みによる干渉信号は、送信アンテナから放射された電波が受信アンテナに到来することにより生ずるが、このときに、伝搬経路に応じた遅延が発生する。これを、図2において、t1あるいはt2のように表す。この遅延時間の検出方法としては、デジタル信号処理部のサンプリング周波数の逆数である単位時間(図1の横軸の目盛り)ごとに相関演算を行い、干渉信号がある遅延時間では相関が得られ、干渉信号が無い遅延時間では相関が得られないことを利用して干渉信号の遅延時間を検出する方法がある。
【0029】
相関積分器26a、26b、26cで検出された干渉信号の位相および振幅に関する情報は、位相振幅制御器25a、25b、25cに入力され、干渉信号と逆位相でかつ同振幅の抑圧信号が生成され、これらの信号が加算器24で合成された後、この合成された抑圧信号がさらに加算器24において、A/D変換器21においてデジタル化された受信信号と合成される。
【0030】
図5は、本発明を計算機を用いてシミュレーションにより実施した結果を示したものである。この図において、横軸は周波数、縦軸は干渉信号の抑圧量を示しており、また、図中、上側の線が干渉信号に対して20nsecずれた遅延を有する干渉抑圧信号1波によって干渉信号を抑圧した場合を、下側の線が干渉信号に対して±10nsecずれた遅延を有する干渉抑圧信号2波によって干渉信号を抑圧した場合を示している。この図によれば、例えば、4MHzの周波数帯域をもつ信号に対して、10dB以上の干渉抑圧量の向上が期待できることがわかる。
【0031】
以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本実施形態においては、サンプリング周波数から得られる遅延分解能以上の遅延で到来する干渉信号をこの干渉信号近傍の遅延の刻みの2つ以上の信号から生成した抑圧信号により抑圧する例について説明したが、遅延刻みに極めて近い遅延を持つ干渉波が到来した場合には、その近傍の1つの信号から抑圧信号を生成してもよい。
【0032】
【発明の効果】
以上のように、この発明によれば、検出した干渉信号に対して、デジタル信号処理部のサンプリング周波数から決まる遅延の刻みにより、完全に同じ遅延量が設定できない場合であっても、干渉信号の抑圧量を向上させることができるという効果がある。
【図面の簡単な説明】
【図1】干渉信号抑圧回路を内蔵したリピータ装置を含む通信システムの概要を示した図である。
【図2】干渉信号の到来時間を示した概念図である。
【図3】リピータ装置の構成図である。
【図4】本実施形態に係る干渉抑圧回路の構成図である。
【図5】本実施形態の計算機によるシミュレーション結果を示した図である。
【符号の説明】
1・・・基地局、2・・・リピータ装置、3a、3b・・・建造物、4・・・端末、11・・・基地局向けアンテナ、12・・・アンテナ共用器、13・・・移動局向けアンテナ、14a、14b・・・低雑音増幅器、15a、15b、15c、15d・・・周波数変換器、16a、16b・・・干渉抑圧装置、17a、17b・・・高出力増幅器、21・・・A/D変換器、22・・・チップ遅延器、23・・・D/A変換器、24・・・加算器、25a、25b、25c・・・位相振幅制御器、26a、26b、26c・・・相関積分器、27a、27b、27c・・・遅延器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a repeater device that is used in wireless communication and relays a received signal at the same frequency, and in particular, an interference signal having a function of suppressing an interference signal generated by a transmitted signal wrapping around a receiving antenna at the same frequency. The present invention relates to a suppression circuit and a program.
[0002]
[Prior art]
Conventionally, a repeater device (also called a relay device or a wireless relay booster) has been used to improve the radio wave conditions in buildings, tunnels, or mountainous areas where radio base station radio waves are difficult to reach. Such a repeater device basically amplifies the radio wave received by the receiving antenna and transmits it through the transmitting antenna. Therefore, there is no need to install a dedicated line like a base station, and the cost in terms of equipment is low. There is an advantage that can be reduced.
[0003]
However, since the reception signal and the transmission signal in the repeater device have the same frequency, if the transmission signal radiated from the transmission antenna wraps around the reception antenna, it becomes an interference signal with respect to the desired signal. If the repeater device has a large retransmission gain, there is a problem of causing oscillation. In such a case, a method of reducing the amount of coupling between the antennas by physically separating the transmission antenna and the reception antenna is conceivable. However, such a method increases the equipment scale of the repeater device and cannot be physically implemented. In some cases, there is a problem in terms of versatility.
[0004]
As another method, a predetermined delay amount corresponding to a delay of one chip or more in the CDMA signal is added to the received signal, and a signal with the added delay is output as a transmission signal. Correlation between the received signal and the transmitted signal is performed to detect the residual component of the interference wave signal. Based on the detected residual component, the interference wave signal has the opposite phase, the same amplitude, and the same delay. A technique is known in which an interference signal generated when a transmission signal wraps around a reception antenna is canceled by a generated suppression signal (see, for example, Patent Document 1). According to this method, the residual component of the interference signal is detected by performing a correlation operation between the received signal added with the retransmitted signal as an interference signal and the transmission signal, and the retransmission is performed when the residual component is detected. Since a delay of one chip or more in the CDMA signal is added to the transmission signal to be transmitted, the correlation between the signal other than the correlation between the transmission signal serving as the reference signal and the residual component of the interference signal is lowered, and the residual component is accurately detected. There is an advantage that it can be detected well.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-196994 (page 2-5, FIG. 3)
[0006]
[Problems to be solved by the invention]
However, when the sneaking interference wave suppression processing of the repeater device is digitized for the purpose of downsizing the entire device, the resolution for the delay amount of the suppression signal is determined by the unit time width that is the reciprocal of the sampling frequency of the digital processing unit. Therefore, it is difficult to make the delay of the suppression signal completely coincide with the delay of the interference wave signal, resulting in a problem that the amount of interference suppression is deteriorated.
[0007]
Therefore, the present invention has been made in view of the above-described problems, and even when the processing of the repeater device is digitized, the interference that improves the suppression amount of the interference signal due to the wraparound of the transmission signal to the reception antenna. An object is to provide a signal suppression circuit and a program.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention proposes the following means.
The invention according to claim 1 is an A / D converter for converting a signal received from a receiving antenna into a digital signal, and a delay amount adding means for adding a predetermined delay amount to the signal output from the A / D converter. A D / A converter that converts the signal output from the delay adding means into an analog signal, a transmission means that outputs the signal output from the D / A converter as a transmission signal, and the A / D conversion A correlation operation between the output signal of the detector and the output signal of the delay amount adding means, and detecting at least one interference signal detecting means for detecting the interference signal, and the interference signal detected by the respective interference signal detecting means from the interference signal At least one suppression signal generating means for generating a suppression signal having the same amplitude and delay as the interference signal and having an opposite phase; a suppression signal combining means for combining the suppression signal generated by the suppression signal generating means; Proposes an interference signal suppression circuit, characterized in that it comprises a generated signal and a signal combining means for combining said received signal in a combining means.
[0009]
The invention according to claim 4 adds a predetermined delay amount to the digitized reception signal, and performs a correlation operation between the digitized reception signal and the signal to which the predetermined delay amount is added, Detecting an interference signal, and an interference signal arriving at a delay time greater than or equal to the resolution of the sampling frequency from the detected interference signal, in the vicinity of the interference signal, having a unit time width that is the reciprocal of the sampling frequency. A step of generating a suppression signal having the same amplitude and delay as a signal appearing in a delay time corresponding to an integral multiple, and having an opposite phase; a step of combining the generated at least one suppression signal; and the combined suppression A program for executing a signal and a step of combining the received signal is proposed.
[0010]
According to the present invention, the analog signal received from the receiving antenna is converted into a digital signal by the A / D converter. The converted digital signal is added with a predetermined delay amount by the delay amount adding means, then converted into an analog signal by the D / A converter and transmitted from the transmission antenna. On the other hand, the digital signal to which the predetermined delay amount is added is input to the interference signal detection means together with the digitized reception signal, and a correlation operation is performed to generate an interference signal. Each of the generated interference signals is input to a suppression signal generation unit, and a suppression signal having the same amplitude and antiphase as the interference signal is generated. The generated suppression signal is combined by the suppression signal combining unit and then combined with the digitized reception signal by the signal combining unit.
[0011]
The invention according to claim 2 is the interference signal suppression circuit according to claim 1, wherein the suppression signal generation unit is configured to detect an interference signal that arrives with a delay time equal to or higher than the resolution of the sampling frequency of the A / D converter. An interference signal suppression circuit has been proposed in which a suppression signal is generated from a signal that appears in a delay time corresponding to an integral multiple of a unit time width that is the reciprocal of the sampling frequency in the vicinity of the interference signal.
[0012]
According to this invention, with respect to the interference signal that the suppression signal generating means arrives with a delay time equal to or higher than the resolution of the sampling frequency of the A / D converter, the unit time width that is the reciprocal of the sampling frequency is near the interference signal. A suppression signal is generated from a signal appearing at a delay time corresponding to an integral multiple. Accordingly, an appropriate suppression signal can be generated even for an interference signal exceeding the resolution of the A / D converter.
[0013]
The invention according to claim 3 is the interference signal suppression circuit according to claim 2, wherein the suppression signal generation means generates a suppression signal from two or more delay times in the vicinity of the interference signal. A signal suppression circuit is proposed.
[0014]
According to the present invention, in order to suppress a desired interference signal, the suppression signal is generated from two or more delay times in the vicinity of the desired interference signal. However, a large amount of suppression can be expected.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an interference signal suppressing circuit according to an embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 1 shows an outline of a communication system including a repeater device incorporating an interference signal suppression circuit according to the present invention. This communication system is composed of a base station 1, a repeater device 2, and a terminal 4. Reference numerals 3a and 3b denote buildings, and the environment in which the repeater device is installed includes radio waves such as buildings standing around. This is an unfavorable place. The repeater device amplifies it at the same frequency as the received radio wave, and then radiates it through the transmission antenna.
[0016]
However, not all of the radio waves transmitted from the transmission antenna reach the terminal 4, and a part of the transmission signal arrives directly at the reception antenna from the transmission antenna, and part of the building 3a, 3b Then, the signal arrives at the receiving antenna, and these signals become interference signals. Also, these signals have the property that the arrival time at the receiving antenna differs depending on the propagation path.
[0017]
FIG. 2 shows an example of the arrival time of such an interference signal. The horizontal axis of the figure indicates time, the vertical axis indicates the intensity of the interference signal, and the scale on the horizontal axis indicates the sampling of the digital signal processing unit. The unit time width which is the reciprocal of the frequency is shown. In this figure, three interference signals have arrived corresponding to the propagation paths (1), (2), or (3) in FIG. 1, and the arrival times are τ1, τ2, and τ3, respectively. These interference signals are observed as signals having a certain width. The dotted line in FIG. 2 is an analog representation of the incoming interference signal.
[0018]
In general, when signals processed by a repeater device are processed in an analog manner, the delay time and level of these interference signals are detected, and signals having the same phase and the same amplitude as those of the above interference signals are used as interference signals. If they are added together with the same delay, the interference signal can be canceled. However, if the signal processing is to be performed digitally, the delay time is determined by the unit time width that is the reciprocal of the sampling frequency of the digital signal processing unit, so that it is possible to accurately reproduce the delay time of the interference signal without error. It is extremely difficult. In view of this, the present invention is characterized by using suppression signals having two different delay amounts in order to reduce one interference signal. That is, in the example of FIG. 2, two suppression signals having timings t11 and t12 are used to reduce the interference signal having the delay time τ1.
[0019]
Next, the configuration and operation of the repeater device and the interference signal suppression circuit in the repeater device according to the embodiment of the present invention will be described.
As shown in FIG. 3, the repeater apparatus includes a base station antenna 11, an antenna duplexer 12, a mobile station antenna 13, low-noise amplifiers 14a and 14b for uplink and downlink, and a frequency converter. 15a, 15b, 15c, 15d, interference suppression devices 16a, 16b, and high-power amplifiers 17a, 17b.
[0020]
The base station antenna 11 is an antenna for transmitting and receiving radio waves to and from the base station, and the mobile station antenna 13 is an antenna for transmitting and receiving radio waves to and from the mobile station. The antenna duplexer 12 is a device for supplying the radio wave received from the base station to the downlink and supplying the signal from the uplink transmitted to the base station to the antenna 11 for the base station. A device 12 is also provided in the antenna 13 for mobile stations.
[0021]
The low noise amplifiers 14a and 14b are low noise amplifiers that amplify weak radio waves received via the base station antenna 11 or the mobile station antenna 13. The frequency converters 15a, 15b, 15c, and 15d generate an IQ (In-Phase Quadrature Phase) baseband signal by frequency-converting and orthogonally converting the received RF signal. In addition, the reverse process is performed, and the IQ baseband signal is orthogonally modulated, frequency-converted, and converted into an RF signal. The high-power amplifiers 17a and 17b are high-amplification amplifiers that amplify radio waves to be transmitted.
[0022]
Moreover, the interference signal suppression circuit in the repeater apparatus according to the embodiment of the present invention includes an A / D converter 21, a chip delay unit 22, a D / A converter 23, and an adder as shown in FIG. 24, phase amplitude controllers 25a, 25b, and 25c, correlation integrators 26a, 26b, and 26c, and delay units 27a, 27b, and 27c.
[0023]
The A / D converter 21 is a converter that converts an analog signal into a digital signal at a predetermined sampling frequency. In the present embodiment, the A / D converter 21 converts a signal received by a receiving antenna (not shown) into a digital signal and proceeds to the next stage. Supply. The D / A converter 23 is a converter having an operation opposite to that of the A / D converter 21 and converts a digital signal into an analog signal. In the present embodiment, a signal obtained by adding a predetermined delay amount to a digitized reception signal is converted into an analog signal, which is output as a transmission signal from a transmission antenna (not shown).
[0024]
The chip delay unit 22 adds a delay of one chip or more of a CDMA (Code Division Multiple Access) signal at the time of retransmission in order to reduce the correlation between a desired received signal and an interference signal that passes between the transmitting antenna and the receiving antenna. This is a delay circuit. The correlation integrators 26a, 26b, and 26c are arithmetic circuits for detecting the amplitude and phase of the interference wave from the combined signal of the desired wave and the interference wave using the signal that has passed through the chip delay unit 22 as a reference signal. However, in order to make the calculation function effectively, it is necessary to know the delay of the interference wave in advance, so that each of the correlation integrators 26a, 26b, 26c and the phase amplitude controllers 25a, 25b, 25c corresponds. Delay devices 27a, 27b, and 27c are provided, and signals to which a delay corresponding to the delay of the interference wave is given by the delay devices 27a, 27b, and 27c are input.
[0025]
The phase / amplitude controllers 25a, 25b, and 25c are circuits for generating a suppression signal having the same amplitude as that of the interference wave and the opposite phase of the reference signal, and the control signal for generating the suppression signal is correlated. It is made from the integrators 26a, 26b, and 26c. The adder 24 is a circuit that adds the interference suppression signals generated in the phase amplitude controllers 25a, 25b, and 25c to the desired wave including the interference wave.
[0026]
The operation of the interference signal suppression circuit according to the embodiment of the present invention will be described. An RF signal received by the receiving antenna is converted into an IQ baseband signal by the frequency converter 15a, and the IQ baseband signal is converted into an A / D signal. It is input to the converter 21 and converted into a digital signal. A plurality of IQ baseband signals converted into digital signals are copied and distributed to the respective correlation integrators 26a, 26b and 26c. In the conventional analog method, when distributing the signal, a distribution loss occurs and the level is deteriorated. However, in the case of the digital method, the signal is distributed by copying the signal as described above. Therefore, there is no distribution loss as in the analog method.
[0027]
Each of the correlation integrators 26a, 26b, and 26c receives the distributed digital reception signal and the digital signal to which the delay is added in the chip delay unit 22, and the interference signal level caused by the wraparound from the distributed digital reception signal. Phase is detected. At this time, the delay amounts in the correlation integration of the individual correlation integrators 26a, 26b, and 26c are different. Thus, the correlation integration is performed with a delay amount that matches the delay of the interference signal that is the detection target.
[0028]
Specifically, the interference signal due to the sneaking occurs when the radio wave radiated from the transmitting antenna arrives at the receiving antenna. At this time, a delay corresponding to the propagation path occurs. This is represented as t1 or t2 in FIG. As a method for detecting this delay time, a correlation operation is performed for each unit time (scale on the horizontal axis in FIG. 1) which is the reciprocal of the sampling frequency of the digital signal processing unit, and a correlation is obtained at a delay time with an interference signal. There is a method for detecting the delay time of an interference signal by utilizing the fact that a correlation cannot be obtained with a delay time without an interference signal.
[0029]
Information regarding the phase and amplitude of the interference signal detected by the correlation integrators 26a, 26b, and 26c is input to the phase / amplitude controllers 25a, 25b, and 25c, and a suppression signal having the same phase and the same amplitude as the interference signal is generated. After these signals are combined by the adder 24, the combined suppression signal is further combined by the adder 24 with the received signal digitized by the A / D converter 21.
[0030]
FIG. 5 shows the results of the present invention implemented by simulation using a computer. In this figure, the horizontal axis indicates the frequency, and the vertical axis indicates the amount of interference signal suppression. In the figure, the interference signal is represented by one interference suppression signal having a delay in which the upper line is shifted by 20 nsec from the interference signal. In the case where the interference signal is suppressed, the interference signal is suppressed by two interference suppression signals having a delay in which the lower line is shifted by ± 10 nsec with respect to the interference signal. According to this figure, it can be seen that, for example, an improvement in interference suppression amount of 10 dB or more can be expected for a signal having a frequency band of 4 MHz.
[0031]
As described above, the embodiments of the present invention have been described in detail with reference to the drawings, but the specific configuration is not limited to these embodiments, and includes design changes and the like within a scope not departing from the gist of the present invention. It is. For example, in the present embodiment, an example has been described in which an interference signal that arrives with a delay equal to or higher than the delay resolution obtained from the sampling frequency is suppressed by a suppression signal generated from two or more signals in the vicinity of the interference signal. However, when an interference wave having a delay very close to the delay step arrives, a suppression signal may be generated from one signal in the vicinity thereof.
[0032]
【The invention's effect】
As described above, according to the present invention, even if the same delay amount cannot be set for the detected interference signal due to the delay determined from the sampling frequency of the digital signal processing unit, the interference signal There is an effect that the amount of suppression can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a communication system including a repeater device incorporating an interference signal suppression circuit.
FIG. 2 is a conceptual diagram showing the arrival time of an interference signal.
FIG. 3 is a configuration diagram of a repeater device.
FIG. 4 is a configuration diagram of an interference suppression circuit according to the present embodiment.
FIG. 5 is a diagram showing a simulation result by a computer of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base station, 2 ... Repeater apparatus, 3a, 3b ... Building, 4 ... Terminal, 11 ... Antenna for base stations, 12 ... Antenna duplexer, 13 ... Antennas for mobile stations, 14a, 14b ... low noise amplifiers, 15a, 15b, 15c, 15d ... frequency converters, 16a, 16b ... interference suppression devices, 17a, 17b ... high output amplifiers, 21 ... A / D converter, 22 ... Chip delay, 23 ... D / A converter, 24 ... Adder, 25a, 25b, 25c ... Phase amplitude controller, 26a, 26b , 26c, correlation integrator, 27a, 27b, 27c, delay unit

Claims (4)

受信アンテナから受信した信号をデジタル信号に変換するA/D変換器と、
該A/D変換器から出力された信号に所定の遅延量を付加する遅延量付加手段と、
該遅延付加手段から出力された信号をアナログ信号に変換するD/A変換器と、
該D/A変換器から出力された信号を送信信号として出力する送信手段と、
前記A/D変換器の出力信号と該遅延量付加手段の出力信号との相関演算を行って、干渉信号を検出する少なくとも1つの干渉信号検出手段と、
該それぞれの干渉信号検出手段において検出された干渉信号から該干渉信号と同振幅、同遅延でかつ、逆位相の抑圧信号を生成する少なくとも1つの抑圧信号生成手段と、
該抑圧信号生成手段において生成された抑圧信号を合成する抑圧信号合成手段と、
該抑圧合成手段において生成された信号と前記受信信号とを合成する信号合成手段とを備えたことを特徴とする干渉信号抑圧回路。
An A / D converter that converts a signal received from the receiving antenna into a digital signal;
Delay amount adding means for adding a predetermined delay amount to the signal output from the A / D converter;
A D / A converter for converting the signal output from the delay adding means into an analog signal;
Transmitting means for outputting a signal output from the D / A converter as a transmission signal;
At least one interference signal detecting means for detecting an interference signal by performing a correlation operation between the output signal of the A / D converter and the output signal of the delay amount adding means;
At least one suppression signal generating means for generating a suppression signal having the same amplitude, the same delay and an opposite phase as the interference signal from the interference signals detected by the respective interference signal detecting means;
Suppression signal synthesis means for synthesizing the suppression signal generated by the suppression signal generation means;
An interference signal suppression circuit comprising signal synthesis means for synthesizing the signal generated by the suppression synthesis means and the received signal.
前記抑圧信号生成手段が前記A/D変換器のサンプリング周波数の分解能以上の遅延時間で到来する干渉信号に対して、該干渉信号の近傍で、前記サンプリング周波数の逆数である単位時間幅の整数倍に相当する遅延時間に現われる信号から抑圧信号を生成することを特徴とする請求項1に記載された干渉信号抑圧回路。For an interference signal that the suppression signal generation means arrives with a delay time equal to or greater than the resolution of the sampling frequency of the A / D converter, an integral multiple of a unit time width that is the reciprocal of the sampling frequency in the vicinity of the interference signal The interference signal suppression circuit according to claim 1, wherein a suppression signal is generated from a signal appearing in a delay time corresponding to. 前記抑圧信号生成手段が前記干渉信号近傍の2つ以上の遅延時間より抑圧信号を生成することを特徴とする請求項2に記載された干渉信号抑圧回路。The interference signal suppression circuit according to claim 2, wherein the suppression signal generation means generates a suppression signal from two or more delay times in the vicinity of the interference signal. デジタル化された受信信号に所定の遅延量を付加するステップと、
該デジタル化された受信信号と該所定の遅延量を付加した信号との相関演算を行って、干渉信号を検出するステップと、
該検出された干渉信号からサンプリング周波数の分解能以上の遅延時間で到来する干渉信号に対して、該干渉信号の近傍で、前記サンプリング周波数の逆数である単位時間幅の整数倍に相当する遅延時間に現われる信号と同振幅、同遅延でかつ、逆位相の抑圧信号を生成するステップと、
該生成された少なくとも1つの抑圧信号を合成するステップと、
該合成された抑圧信号と前記受信した信号とを合成するステップとを実行するプログラム。
Adding a predetermined amount of delay to the digitized received signal;
Performing a correlation operation between the digitized received signal and the signal added with the predetermined delay amount to detect an interference signal;
For an interference signal that arrives from the detected interference signal with a delay time equal to or higher than the resolution of the sampling frequency, in the vicinity of the interference signal, a delay time corresponding to an integral multiple of a unit time width that is the reciprocal of the sampling frequency. Generating a suppression signal having the same amplitude and delay as the signal appearing and having an opposite phase;
Combining the generated at least one suppression signal;
A program for executing the step of combining the combined suppression signal and the received signal.
JP2003197223A 2003-07-15 2003-07-15 Interference signal suppression circuit and program Pending JP2005039336A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003197223A JP2005039336A (en) 2003-07-15 2003-07-15 Interference signal suppression circuit and program
CNB2004100709175A CN100382438C (en) 2003-07-15 2004-07-13 Interference signal suppressing loop, program for repeater and repeater
CN2007101071470A CN101075839B (en) 2003-07-15 2004-07-13 Interference signal suppression circuit, program used for relay and relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197223A JP2005039336A (en) 2003-07-15 2003-07-15 Interference signal suppression circuit and program

Publications (1)

Publication Number Publication Date
JP2005039336A true JP2005039336A (en) 2005-02-10

Family

ID=34207443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197223A Pending JP2005039336A (en) 2003-07-15 2003-07-15 Interference signal suppression circuit and program

Country Status (2)

Country Link
JP (1) JP2005039336A (en)
CN (1) CN101075839B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131623A (en) * 2006-11-24 2008-06-05 Rf Window Co Ltd Feedback-interference-signal canceled radio frequency repeater with built-in antenna
JP2009528764A (en) * 2006-09-14 2009-08-06 ソリッドテクノロジーズインコーポレーテッド Reverberation component removal system and reverberation component removal method
JP2009188456A (en) * 2008-02-01 2009-08-20 Sk Telesys Co Ltd Interference removing method and device of radio repeater for mobile communication
JP2009188457A (en) * 2008-02-01 2009-08-20 Sk Telesys Co Ltd Interference-removing device and method of radio repeater for mobile communication
JP2010520718A (en) * 2007-03-02 2010-06-10 クゥアルコム・インコーポレイテッド Closed form calculation of time equalizer weights used in repeater transmitter leakage cancellation system
JP2010135932A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater device and method of suppressing interference signal
JP2010135930A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater device
JP2010135933A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater device and method of suppressing interference signal
JP2010135931A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Method and device for suppressing interference signal, and repeater device
JP2010135935A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater apparatus
WO2012043761A1 (en) 2010-09-30 2012-04-05 株式会社エヌ・ティ・ティ・ドコモ Mobile communication terminal, method for communication with multiple frequencies simultaneously

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007750A (en) * 1999-06-25 2001-01-12 Mitsubishi Electric Corp Radio relay system
JP2001196994A (en) * 2000-01-06 2001-07-19 Kddi Corp Repeater for code division multiple access system
JP2003060629A (en) * 2001-08-22 2003-02-28 Mitsubishi Electric Corp Sampling circuit and radio repeater
JP2003174392A (en) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp Radio repeater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205843A (en) * 1998-01-20 1999-07-30 Nec Mobile Commun Ltd Radio telephone system
JP4409639B2 (en) * 1998-06-10 2010-02-03 日本放送協会 Wraparound canceller
EP1039716B1 (en) * 1999-03-25 2003-04-16 Kabushiki Kaisha Toshiba OFDM transmission signal repeater and receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007750A (en) * 1999-06-25 2001-01-12 Mitsubishi Electric Corp Radio relay system
JP2001196994A (en) * 2000-01-06 2001-07-19 Kddi Corp Repeater for code division multiple access system
JP2003060629A (en) * 2001-08-22 2003-02-28 Mitsubishi Electric Corp Sampling circuit and radio repeater
JP2003174392A (en) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp Radio repeater

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528764A (en) * 2006-09-14 2009-08-06 ソリッドテクノロジーズインコーポレーテッド Reverberation component removal system and reverberation component removal method
JP4782848B2 (en) * 2006-09-14 2011-09-28 ソリッドテクノロジーズインコーポレーテッド Reverberation component removal system and reverberation component removal method
JP2008131623A (en) * 2006-11-24 2008-06-05 Rf Window Co Ltd Feedback-interference-signal canceled radio frequency repeater with built-in antenna
JP2010520718A (en) * 2007-03-02 2010-06-10 クゥアルコム・インコーポレイテッド Closed form calculation of time equalizer weights used in repeater transmitter leakage cancellation system
US8619837B2 (en) 2007-03-02 2013-12-31 Qualcomm Incorporated Use of adaptive antenna array in conjunction with an on-channel repeater to improve signal quality
US8599906B2 (en) 2007-03-02 2013-12-03 Qualcomm Incorporated Closed form calculation of temporal equalizer weights used in a repeater transmitter leakage cancellation system
US8121535B2 (en) 2007-03-02 2012-02-21 Qualcomm Incorporated Configuration of a repeater
US8116239B2 (en) 2007-03-02 2012-02-14 Qualcomm Incorporated Use of a filterbank in an adaptive on-channel repeater utilizing adaptive antenna arrays
JP2009188456A (en) * 2008-02-01 2009-08-20 Sk Telesys Co Ltd Interference removing method and device of radio repeater for mobile communication
JP2009188457A (en) * 2008-02-01 2009-08-20 Sk Telesys Co Ltd Interference-removing device and method of radio repeater for mobile communication
JP2010135933A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater device and method of suppressing interference signal
JP4722992B2 (en) * 2008-12-02 2011-07-13 島田理化工業株式会社 Repeater device
JP4568360B2 (en) * 2008-12-02 2010-10-27 島田理化工業株式会社 Repeater device
JP2010135935A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater apparatus
JP2010135931A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Method and device for suppressing interference signal, and repeater device
JP2010135930A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater device
JP2010135932A (en) * 2008-12-02 2010-06-17 Shimada Phys & Chem Ind Co Ltd Repeater device and method of suppressing interference signal
WO2012043761A1 (en) 2010-09-30 2012-04-05 株式会社エヌ・ティ・ティ・ドコモ Mobile communication terminal, method for communication with multiple frequencies simultaneously

Also Published As

Publication number Publication date
CN101075839B (en) 2011-02-02
CN101075839A (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US8295333B2 (en) Method and system for inter-PCB communication utilizing a spatial multi-link repeater
TW441203B (en) Wireless communication system, transmitter and receiver
US20100136900A1 (en) Radio Relay Device and Method
KR20060005773A (en) Multi-path interference removing for wireless relay system apparatus and method using by same channel frequency
JP2005039336A (en) Interference signal suppression circuit and program
WO2015133252A1 (en) Noise canceller device
JPH11298400A (en) Directional control circuit for adaptive antenna and directional controlling method
JP4417058B2 (en) Repeater device
KR20070012093A (en) Apparatus and method for improving single tone insensitivity of mobile phone
JP2004056315A (en) Path difference measuring method, program for making computer to execute the method, and wireless repeater
US6640112B1 (en) Repeating method for a wireless communication system and apparatus thereof
JP2017130718A (en) Distortion cancellation device and distortion cancellation method
JP2000101494A (en) Radio equipment and its radio reception method
JP6521103B2 (en) Wireless device
JP2005117168A (en) Repeater apparatus
JP3670254B2 (en) Repeater device and control program for repeater device
JP5075101B2 (en) Interference signal suppression method and apparatus, repeater apparatus
KR102372870B1 (en) Relay device obtaining synchronization based on aritifical intelligence and operating method of the relay device
JP5075102B2 (en) Repeater device, interference signal suppressing device and method
KR100744430B1 (en) Radio relay device having multi-antennas for echo cancellation and method thereof
JP2002077004A (en) Channel estimate device and channel estimate method for inverse equalization
KR100780017B1 (en) Performance enhancement method of communication system by using PN code detecting and canceling and signal processing apparatus thereof
JP4777168B2 (en) Wireless signal receiver
JP2000324033A (en) Method and device for repeating identical frequency
JP2003332953A (en) Radio relay apparatus and radio relaying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071009

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406