JP2005026634A - Aligner and manufacturing method of semiconductor device - Google Patents

Aligner and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2005026634A
JP2005026634A JP2003270911A JP2003270911A JP2005026634A JP 2005026634 A JP2005026634 A JP 2005026634A JP 2003270911 A JP2003270911 A JP 2003270911A JP 2003270911 A JP2003270911 A JP 2003270911A JP 2005026634 A JP2005026634 A JP 2005026634A
Authority
JP
Japan
Prior art keywords
liquid
stage
exposure
nozzle
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003270911A
Other languages
Japanese (ja)
Inventor
Tomohiro Sugiyama
知広 杉山
Rikio Ikeda
利喜夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003270911A priority Critical patent/JP2005026634A/en
Publication of JP2005026634A publication Critical patent/JP2005026634A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure exposure having an original refractive index of liquid by suppressing the occurrence of the turbulence of the liquid due to the movement of a stage in a liquid-immersion type aligner. <P>SOLUTION: In an aligner performing exposure in such a state that liquid E is interposed between an optical outgoing end in a lens L and a wafer W that is an object for exposure, there are provided a stage 10 mounting the wafer W and performing relative movement to the lens L in performing exposure, a tank 11 for dipping the entire wafer W mounted on the stage 10 in the liquid E, liquid ejection nozzles N1 and N2 ejecting the liquid E same as the liquid E for generating the flow of the liquid E located between the wafer W on the stage 10 and the optical outgoing end in the lens L, and a control means controlling the ejection of the liquid E from the liquid ejection nozzles N1 and N2 at a speed corresponding to the travel speed of the stage 10 along the traveling direction of the stage 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板の表面全体を液体で浸した状態でステージを移動させながら露光を行う液侵式の露光装置および半導体装置の製造方法に関する。   The present invention relates to a liquid immersion type exposure apparatus that performs exposure while moving a stage in a state where the entire surface of a substrate is immersed in a liquid, and a method for manufacturing a semiconductor device.

現在、光リソグラフィの光源はKrFから移行しArF技術が主流となってきている。このような中、近年デバイスパターンの高集積化が進み、要求されるスペックが光リソグラフィとしての限界に近づいている状況である。また、次世代のリソグラフィとしてF2リソグラフィの技術開発が進められている。しかしながらF2リソグラフィは現行設備を新規に置き換える事が前提となり莫大なコストが掛かるという問題がある。   Currently, the light source for photolithography has shifted from KrF, and ArF technology has become the mainstream. Under these circumstances, device patterns are highly integrated in recent years, and the required specifications are approaching the limits of optical lithography. In addition, F2 lithography technology is being developed as the next generation lithography. However, F2 lithography has the problem of enormous costs because it is premised on the replacement of existing facilities.

そこで、ArFを用いたImmersion Lithography技術が考えられている。Immersion Lithographyとは、レンズと露光対象である基板(例えば、ウエハ)との間に液体(代表的には純水)を介在させることで液体の屈折率を利用し、High NA化を可能とする方法である。これにより、現行光源でF2と同等の微細技術が可能になると考えられている。すなわち、現行設備を改造する程度の範囲内で次世代の技術を集約できる能力がある(例えば、特許文献1参照。)。   Therefore, Immersion Lithography technology using ArF is considered. Immersion Lithography uses a liquid (typically pure water) between the lens and the substrate to be exposed (for example, a wafer) to make use of the refractive index of the liquid and enable high NA. Is the method. This is expected to enable the same fine technology as F2 with current light sources. In other words, it has the ability to consolidate next-generation technologies within the range of remodeling existing facilities (see, for example, Patent Document 1).

国際公開第99/49504号パンフレットInternational Publication No. 99/49504 Pamphlet

しかしながら、Immersion Lithographyの液浸技術としては、液体に対しての制御が必要である。すなわち、液体といっても温度・粘性・乱流等の問題が存在するため、全てにおいて詳細な制御が必要と考える。この液体の制御を行わないと液体本来の屈折率が得られず、High NA化を達成することは不可能である。   However, the immersion technique of Immersion Lithography requires control over the liquid. That is, even if it is a liquid, there are problems such as temperature, viscosity, turbulence, etc., so it is considered that detailed control is necessary for all of them. Unless this liquid is controlled, the original refractive index of the liquid cannot be obtained, and it is impossible to achieve a high NA.

本発明はこのような課題を解決するために成されたものである。すなわち、本発明は、光学レンズ部における光出射端と露光対象となる基板との間に液体を介在させた状態で露光を行う露光装置において、基板を載置するとともに、露光を行う際に光学レンズ部との間で相対的な移動を行うステージと、ステージに載置される基板の全体を液体で浸すための槽と、ステージ上の基板と光学レンズ部における光出射端との間にある液体の流れを生成するため液体と同じ液体を噴出するノズルと、ステージの移動方向に沿ってそのステージの移動速度と対応した速度でノズルから液体を噴出する制御を行う制御手段とを備えている。   The present invention has been made to solve such problems. That is, according to the present invention, in an exposure apparatus that performs exposure in a state where a liquid is interposed between a light emitting end of an optical lens unit and a substrate to be exposed, the substrate is placed and optically exposed when performing exposure. A stage that moves relative to the lens unit, a tank for immersing the entire substrate placed on the stage with a liquid, and the substrate on the stage and the light exit end of the optical lens unit A nozzle for ejecting the same liquid as the liquid to generate a liquid flow, and a control means for controlling the ejection of the liquid from the nozzle at a speed corresponding to the moving speed of the stage along the moving direction of the stage. .

また、本発明は、ステージ上に載置した基板の表面全体を液体で浸した状態で、ステージを移動させながら基板上に配置した光学レンズ部から光を出射して露光を行う工程を含む半導体装置の製造方法において、ステージを移動させながら露光を行うにあたり、そのステージの移動速度と対応した速度で基板上の液体の流れを生成するようにしている。   The present invention also includes a step of performing exposure by emitting light from an optical lens unit disposed on the substrate while moving the stage while the entire surface of the substrate placed on the stage is immersed in a liquid. In the manufacturing method of the apparatus, when performing exposure while moving the stage, the flow of the liquid on the substrate is generated at a speed corresponding to the moving speed of the stage.

このような本発明では、基板全体を液体で浸した状態でステージの移動を行いながら露光を行うにあたり、ステージの移動方向に沿って、かつステージの移動速度に対応した速度でノズルから液体を噴出するため、ステージの移動とともに基板上の液体が移動する状態となり、ステージの移動による液体の乱流を抑制できるようになる。   In the present invention, when exposure is performed while moving the stage while the entire substrate is immersed in the liquid, the liquid is ejected from the nozzle along the moving direction of the stage and at a speed corresponding to the moving speed of the stage. Therefore, the liquid on the substrate moves with the movement of the stage, and the turbulent flow of liquid due to the movement of the stage can be suppressed.

本発明では、基板全体を液体で浸した状態でステージを移動させながら露光を行う場合でも、ステージの移動による基板上の液体の乱流を抑制できるため、液体の屈折率を最大限に活用した高精度な露光を実現することが可能となる。   In the present invention, even when exposure is performed while moving the stage in a state where the entire substrate is immersed in the liquid, the turbulent flow of the liquid on the substrate due to the movement of the stage can be suppressed, so that the refractive index of the liquid is utilized to the maximum. High-precision exposure can be realized.

以下、本発明の実施の形態を図に基づき説明する。図1、図2は、本実施形態に係る露光装置を説明する模式図であり、図1はウエハ載置状態、図2は液体注入状態を示している。すなわち、この露光装置は、露光対象の基板であるウエハWの全体を液体(例えば、純水)Eによって浸した状態で露光を行ういわゆる液侵式の露光装置である。したがって、液体Eを溜めるための槽11内にウエハWおよびこれを載置するためのステージ10が配置されている。また、光学系であるレンズLの光出射端(先端)も液体Eに浸かるよう構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are schematic views for explaining an exposure apparatus according to the present embodiment. FIG. 1 shows a wafer mounting state, and FIG. 2 shows a liquid injection state. That is, this exposure apparatus is a so-called immersion type exposure apparatus that performs exposure in a state where the entire wafer W, which is a substrate to be exposed, is immersed in a liquid (for example, pure water) E. Therefore, the wafer W and the stage 10 for mounting the wafer W are disposed in the tank 11 for storing the liquid E. The light exit end (tip) of the lens L, which is an optical system, is also configured to be immersed in the liquid E.

槽11には液体Eを注入するための注水口と、槽11内に一定以上の液体Eが溜まらないよう排出するための排水口が設けられている。なお、槽11内の全ての液体Eを排出するためのドレン(図示せず)も設けられている。   The tank 11 is provided with a water injection port for injecting the liquid E and a drain port for discharging the liquid E so that a certain amount or more of the liquid E does not accumulate in the tank 11. A drain (not shown) for discharging all the liquid E in the tank 11 is also provided.

本実施形態の露光装置は、このような液侵式において、ウエハWを載置したステージ10を移動させながら露光を行うスキャナ型となっている。すなわち、ウエハWとレンズLの先端との間に液体Eを介在させた状態でステージ10を所定方向に移動させながら露光を行うものである。   The exposure apparatus according to the present embodiment is a scanner type that performs exposure while moving the stage 10 on which the wafer W is placed in such a liquid immersion type. That is, exposure is performed while moving the stage 10 in a predetermined direction with the liquid E interposed between the wafer W and the tip of the lens L.

このような露光装置において、本実施形態では、レンズLの周辺に液体噴出ノズルN1、N2が配置されている。この液体噴出ノズルN1、N2は、槽11内の液体Eと同じ液体Eを噴出できるもので、レンズLを間にして液体Eを噴出するための開口部が各々対向した状態で配置される。   In such an exposure apparatus, in this embodiment, liquid ejection nozzles N1 and N2 are arranged around the lens L. The liquid ejection nozzles N1 and N2 are capable of ejecting the same liquid E as the liquid E in the tank 11, and are arranged in a state where openings for ejecting the liquid E through the lens L are opposed to each other.

この液体噴出ノズルN1、N2からは、露光の際のステージ10の移動方向に沿って、かつそのステージ10の移動速度と対応した速度(ほぼ等しい速度)で液体Eを噴出して、ウエハWとレンズLの先端部との間に介在する液体Eにステージ10の移動と対応した流れを生成することができる。   The liquid ejection nozzles N1 and N2 eject liquid E along the direction of movement of the stage 10 during exposure and at a speed corresponding to the movement speed of the stage 10 (almost equal speed). A flow corresponding to the movement of the stage 10 can be generated in the liquid E interposed between the front end of the lens L.

各液体噴出ノズルN1、N2には、噴出する液体Eの流量を制御する制御部(図示せず)が設けられている。制御部は各液体噴出ノズルN1、N2独立でも、共通で切り換えて用いてもよい。各液体噴出ノズルN1、N2の液体噴出量はセンサーによって検知され、正確に制御される。   Each liquid ejection nozzle N1, N2 is provided with a control unit (not shown) for controlling the flow rate of the ejected liquid E. The control unit may be used independently or independently by switching the liquid ejection nozzles N1 and N2. The liquid ejection amount of each of the liquid ejection nozzles N1 and N2 is detected by a sensor and accurately controlled.

ここで、制御部による液体噴出ノズルN1、N2からの液体Eの噴出量制御は、例えば以下の式に基づき行われる。   Here, the ejection amount control of the liquid E from the liquid ejection nozzles N1 and N2 by the control unit is performed based on the following formula, for example.

VE=D・v・d
(VEは液体Eの噴出量(m3/s)、DはレンズLの先端における直径(m)、vはステージ10の移動速度(m/s)、dはレンズLの先端とウエハWの表面との間隔(m)である。)
VE = D ・ v ・ d
(VE is the ejection amount (m 3 / s) of the liquid E, D is the diameter (m) at the tip of the lens L, v is the moving speed (m / s) of the stage 10, and d is the tip of the lens L and the wafer W. The distance (m) from the surface.)

液体噴出ノズルN1、N2が2つ設けられているのは、ステージ10が往復移動するためであり、一方に移動する際には液体噴出ノズルN1のみから液体E$を噴出し、他方に移動する際には液体噴出ノズルN2のみから液体Eを噴出することになる。   The two liquid ejection nozzles N1 and N2 are provided because the stage 10 reciprocates. When the stage 10 moves to one side, the liquid E $ is ejected from only the liquid ejection nozzle N1 and moves to the other side. In this case, the liquid E is ejected only from the liquid ejection nozzle N2.

このような液体噴出ノズルN1、N2からのステージ移動に対応した液体Eの噴出によって、ウエハWとレンズLとの間に介在する液体Eの流れとステージ10の移動速度とをほぼ等しくでき、ステージ10の移動と液体Eの移動との相対速度差をなくしてこの間で発生する液体Eの乱流を抑制することが可能となる。   By the ejection of the liquid E corresponding to the stage movement from the liquid ejection nozzles N1 and N2, the flow of the liquid E interposed between the wafer W and the lens L and the moving speed of the stage 10 can be made almost equal. It is possible to eliminate the relative speed difference between the movement of the liquid 10 and the movement of the liquid E, and to suppress the turbulent flow of the liquid E generated between them.

次に、この露光装置を用いた露光方法を説明する。先ず、図1に示すように、ステージ10上にウエハWを載置して真空吸着する。そして、図示しないマスクとのアライメントをとる。   Next, an exposure method using this exposure apparatus will be described. First, as shown in FIG. 1, the wafer W is placed on the stage 10 and vacuum-sucked. Then, alignment with a mask (not shown) is performed.

次いで、注水口からステージ10上に温度制御された液体E(この場合は純水。その他ではアルコールやオイル等)をレンズLの先端部が浸るように注入する。液体Eは一定レベル以上になると排水口から自動的に排出される。   Next, the temperature-controlled liquid E (in this case, pure water; in other cases, alcohol, oil, etc.) is injected from the water injection port so that the tip of the lens L is immersed. When the liquid E reaches a certain level or higher, it is automatically discharged from the drain outlet.

続いて、露光動作を開始する。露光動作の開始とともにレンズL付近にある液体噴出ノズルN1もしくは液体噴出ノズルN2から槽11に入れた液体Eと同じ液体Eを露光領域に向けて噴出させる。その時の流速はステージ10の移動速度と同じとする。   Subsequently, the exposure operation is started. With the start of the exposure operation, the same liquid E as the liquid E placed in the tank 11 is ejected toward the exposure region from the liquid ejection nozzle N1 or the liquid ejection nozzle N2 near the lens L. The flow velocity at that time is the same as the moving speed of the stage 10.

ここで、図3に示すように、露光時にステージ10が一方(図中矢印x1参照)に移動する際には、液体噴出ノズルN1から同じ方向に沿って液体Eを噴出する。このとき液体噴出ノズルN2からは液体Eを噴出しないようにする。   Here, as shown in FIG. 3, when the stage 10 moves to one side (see arrow x1 in the figure) during exposure, the liquid E is ejected from the liquid ejection nozzle N1 along the same direction. At this time, the liquid E is prevented from being ejected from the liquid ejection nozzle N2.

一方、図4に示すように、ステージ10が先とは反対の方向(図中矢印x2参照)に移動する際には、液体噴出ノズルN2から同じ方向に沿って液体Eを噴出する。このとき液体噴出ノズルN1からは液体Eを噴出しないようにする。   On the other hand, as shown in FIG. 4, when the stage 10 moves in the opposite direction (see arrow x2 in the figure), the liquid E is ejected from the liquid ejection nozzle N2 along the same direction. At this time, the liquid E is prevented from being ejected from the liquid ejection nozzle N1.

このように、ステージ10の往復移動の方向および速度に合わせて液体噴出ノズルN1、N2から各々液体Eを噴出することで、レンズLとウエハWとの間で液体Eとステージ10との相対移動速度をなくすことができ、液体Eの乱流発生を最小限に抑制できるようになる。   In this manner, the liquid E is ejected from the liquid ejection nozzles N1 and N2 in accordance with the direction and speed of the reciprocating movement of the stage 10, so that the liquid E and the stage 10 are relatively moved between the lens L and the wafer W. The speed can be eliminated, and the occurrence of turbulent flow of the liquid E can be minimized.

図5は液体噴出ノズルと露光領域との関係を説明する模式斜視図である。液体噴出ノズルN1、N2における開口の幅D1は、レンズ領域内の露光領域Sの幅よりも広くなっている。これにより、露光領域Sの全体にわたって液体噴出ノズルN1、N2から液体を噴出することができ、露光領域Sでの液体乱流を確実に抑制できるようになる。   FIG. 5 is a schematic perspective view illustrating the relationship between the liquid ejection nozzle and the exposure region. The opening width D1 of the liquid ejection nozzles N1 and N2 is wider than the width of the exposure region S in the lens region. Thereby, the liquid can be ejected from the liquid ejection nozzles N1 and N2 over the entire exposure area S, and liquid turbulence in the exposure area S can be reliably suppressed.

図6は2つの液体噴出ノズルと露光領域との位置関係を説明する模式上面図である。各液体噴出ノズルN1、N2はレンズ領域を間としてステージの移動方向に沿って対向するよう配置されている。   FIG. 6 is a schematic top view illustrating the positional relationship between the two liquid ejection nozzles and the exposure region. The liquid ejection nozzles N1 and N2 are arranged to face each other along the moving direction of the stage with the lens region interposed therebetween.

これにより、ステージが図中矢印x1方向へ移動する際には液体噴出ノズルN1からステージの移動方向に沿った図中矢印x1’の方向へ液体を噴出する。一方、ステージが先とは反対の図中矢印x2方向へ移動する際には液体噴出ノズルN2からステージの移動方向に沿った図中矢印x2’の方向へ液体を噴出する。ステージの往復移動があっても、各液体噴出ノズルN1、N2から各々ステージの移動方向に沿った液体の噴出を行うことができ、露光領域Sの全体において介在する液体の乱流を抑制できるようになる。   Thus, when the stage moves in the direction of the arrow x1 in the figure, the liquid is ejected from the liquid ejection nozzle N1 in the direction of the arrow x1 'in the figure along the moving direction of the stage. On the other hand, when the stage moves in the direction of the arrow x2 in the opposite figure, the liquid is ejected from the liquid ejection nozzle N2 in the direction of the arrow x2 'in the figure along the moving direction of the stage. Even if the stage is reciprocated, liquid can be ejected from the liquid ejection nozzles N1 and N2 along the direction of movement of the stage, and the turbulent liquid flow can be suppressed in the entire exposure region S. become.

なお、上記説明した実施形態では、液体噴出ノズルとして2つを備えるものを例としたが、本発明はこれに限定されず、1つのものであっても可能である。すなわち、露光時のステージ移動方向に合わせて液体噴出ノズルを設けて液体の流れを制御するようにすればよい。   In the above-described embodiment, an example in which two liquid ejection nozzles are provided has been described. However, the present invention is not limited to this, and a single liquid ejection nozzle is also possible. In other words, a liquid ejection nozzle may be provided in accordance with the stage moving direction during exposure to control the liquid flow.

上記説明した露光装置および露光方法は、主として半導体装置の製造方法の一工程として適用されるもので、例えばArFを光源として用いた露光であってもF2光源と同等の微細技術が可能となり、半導体装置における微細パターンの形成技術として利用することが可能である。   The above-described exposure apparatus and exposure method are mainly applied as one step of a semiconductor device manufacturing method. For example, even with exposure using ArF as a light source, a fine technology equivalent to that of an F2 light source is possible. It can be used as a technique for forming a fine pattern in an apparatus.

本実施形態に係る露光装置を説明する模式図(ウエハ載置状態)である。It is a schematic diagram (wafer mounting state) explaining the exposure apparatus which concerns on this embodiment. 本実施形態に係る露光装置を説明する模式図(液体注入状態)である。It is a schematic diagram (liquid injection state) explaining the exposure apparatus which concerns on this embodiment. 露光方法を説明する模式図(その1)である。It is a schematic diagram (the 1) explaining the exposure method. 露光方法を説明する模式図(その2)である。It is a schematic diagram (the 2) explaining the exposure method. 液体噴出ノズルと露光領域との関係を説明する模式斜視図である。It is a model perspective view explaining the relationship between a liquid ejection nozzle and an exposure area | region. 2つの液体噴出ノズルと露光領域との位置関係を説明する模式上面図である。It is a schematic top view explaining the positional relationship between two liquid ejection nozzles and an exposure area.

符号の説明Explanation of symbols

10…ステージ、11…槽、L…レンズ、N1…液体噴出ノズル、N2…液体噴出ノズル、S…露光領域、W…ウエハ   DESCRIPTION OF SYMBOLS 10 ... Stage, 11 ... Tank, L ... Lens, N1 ... Liquid ejection nozzle, N2 ... Liquid ejection nozzle, S ... Exposure area, W ... Wafer

Claims (5)

光学レンズ部における光出射端と露光対象となる基板との間に液体を介在させた状態で露光を行う露光装置において、
前記基板を載置するとともに、露光を行う際に前記光学レンズ部との間で相対的な移動を行うステージと、
前記ステージに載置される前記基板の全体を前記液体で浸すための槽と、
前記ステージ上の前記基板と前記光学レンズ部における光出射端との間にある液体の流れを生成するため前記液体と同じ液体を噴出するノズルと、
前記ステージの移動方向に沿って、かつそのステージの移動速度と対応した速度で前記ノズルから前記液体を噴出する制御を行う制御手段と
を備えることを特徴とする露光装置。
In an exposure apparatus that performs exposure in a state where a liquid is interposed between a light emitting end in an optical lens unit and a substrate to be exposed,
A stage for placing the substrate and performing relative movement with the optical lens unit when performing exposure;
A bath for immersing the entire substrate placed on the stage with the liquid;
A nozzle that ejects the same liquid as the liquid to generate a liquid flow between the substrate on the stage and a light exit end of the optical lens unit;
An exposure apparatus comprising: control means for performing control for ejecting the liquid from the nozzle at a speed corresponding to the moving speed of the stage along the moving direction of the stage.
前記ノズルは第1ノズルと第2ノズルとの2つを備えており、前記ステージの往復移動に対応して前記液体を噴出するよう、前記第1ノズルと前記第2ノズルとが対向配置されている
ことを特徴とする請求項1記載の露光装置。
The nozzle includes two nozzles, a first nozzle and a second nozzle, and the first nozzle and the second nozzle are arranged to face each other so as to eject the liquid in response to the reciprocation of the stage. The exposure apparatus according to claim 1, wherein:
前記ノズルの前記液体が噴出する開口部の幅は、前記ステージを移動させながら行う露光の領域の幅より広くなっている
ことを特徴とする請求項1記載の露光装置。
The exposure apparatus according to claim 1, wherein a width of the opening of the nozzle from which the liquid is ejected is wider than a width of an exposure area that is performed while moving the stage.
ステージ上に載置した基板の表面全体を液体で浸した状態で、前記ステージを移動させながら前記基板上に配置した光学レンズ部から光を出射して露光を行う工程を含む半導体装置の製造方法において、
前記ステージを移動させながら露光を行うにあたり、そのステージの移動方向に沿って、かつ前記ステージの移動速度と対応した速度で前記基板上の液体の流れを生成する工程を含む
ことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device, comprising: exposing a light from an optical lens unit disposed on the substrate while moving the stage while the entire surface of the substrate placed on the stage is immersed in a liquid In
A step of generating a liquid flow on the substrate along the moving direction of the stage and at a speed corresponding to the moving speed of the stage when performing exposure while moving the stage. Device manufacturing method.
前記ステージが往復移動する場合、そのステージの移動方向に合わせて前記基板上の液体の流れを反転させる
ことを特徴とする請求項4記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein when the stage reciprocates, the liquid flow on the substrate is reversed in accordance with the moving direction of the stage.
JP2003270911A 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device Pending JP2005026634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270911A JP2005026634A (en) 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270911A JP2005026634A (en) 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2005026634A true JP2005026634A (en) 2005-01-27

Family

ID=34190737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270911A Pending JP2005026634A (en) 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2005026634A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106836A1 (en) * 2005-03-31 2006-10-12 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
WO2007147304A1 (en) * 2006-06-13 2007-12-27 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for immersion lithography machine
JP2008118102A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus, liquid immersion lithography method and liquid immersion lithography apparatus
JP2008118114A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus and liquid immersion lithography method
JP2011066416A (en) * 2005-04-05 2011-03-31 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2012151513A (en) * 2003-08-29 2012-08-09 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN110088686A (en) * 2016-12-14 2019-08-02 Asml荷兰有限公司 Lithographic equipment and device making method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US10146142B2 (en) 2003-08-29 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9606448B2 (en) 2003-08-29 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9442388B2 (en) 2003-08-29 2016-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012151513A (en) * 2003-08-29 2012-08-09 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US8804097B2 (en) 2003-08-29 2014-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2006106836A1 (en) * 2005-03-31 2006-10-12 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
JP2011066416A (en) * 2005-04-05 2011-03-31 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP4847584B2 (en) * 2006-06-13 2011-12-28 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド Immersion flow field maintenance system for an immersion lithography machine
WO2007147304A1 (en) * 2006-06-13 2007-12-27 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for immersion lithography machine
CN100456138C (en) * 2006-06-13 2009-01-28 上海微电子装备有限公司 Submersible photoetching apparatus soaking liquid flow field maintaining system
US8130365B2 (en) 2006-06-13 2012-03-06 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for an immersion lithography machine
JP2008118114A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus and liquid immersion lithography method
JP2008118102A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus, liquid immersion lithography method and liquid immersion lithography apparatus
JP4742077B2 (en) * 2006-11-03 2011-08-10 台湾積體電路製造股▲ふん▼有限公司 Immersion lithography apparatus, immersion exposure method, and immersion exposure apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN110088686A (en) * 2016-12-14 2019-08-02 Asml荷兰有限公司 Lithographic equipment and device making method
US11372336B2 (en) 2016-12-14 2022-06-28 Asml Netherlands B.V. Lithography apparatus and device manufacturing method
US11774857B2 (en) 2016-12-14 2023-10-03 Asml Netherlands B.V. Lithography apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
JP2005026634A (en) Aligner and manufacturing method of semiconductor device
US10185222B2 (en) Liquid jet and recovery system for immersion lithography
US20060050351A1 (en) Liquid immersion optical tool, method for cleaning liquid immersion optical tool, and method for manufacturing semiconductor device
TWI489221B (en) Apparatus and method for providing fluid for immersion lithography
JP4668235B2 (en) Lithographic apparatus and device manufacturing method
KR100933000B1 (en) Lithographic Apparatus and Device Manufacturing Method
KR101369582B1 (en) Optical arrangement of autofocus elements for use with immersion lithography
US7679718B2 (en) Immersion exposure technique
JP4848003B2 (en) Immersion lithography system with tilted showerhead and immersion lithography method
EP1913447B1 (en) Photolithogaphy system and exposure method comprising retrieval of residual liquid during immersion photolithography
TWI394011B (en) Lithographic apparatus and device manufacturing method
KR101268557B1 (en) A lithographic apparatus and a device manufacturing method
JP2010074187A (en) Lithographic apparatus and device manufacturing method
KR20070077119A (en) Manufacturing method for semiconductor device
JP2007013151A (en) Method of manufacturing lithographic apparatus and device
JP5270700B2 (en) Fluid handling structure, lithographic apparatus and device manufacturing method
KR102044143B1 (en) Exposure device, exposure method, method for manufacturing device, program and recording medium
US20100099050A1 (en) Liquid recovery apparatus, exposure apparatus, and device manufacturing method
JP2006019742A (en) Method and apparatus for immersion lithography
JP5474747B2 (en) Lithographic apparatus and device manufacturing method
JP4164508B2 (en) Exposure apparatus and device manufacturing method
JP5503938B2 (en) Immersion lithography equipment
JP4533416B2 (en) Exposure apparatus and device manufacturing method
JP2009076520A (en) Exposure apparatus
KR20070047132A (en) Method for removing air bubble in immersion lithography