JP2005024310A - Inertia sensor - Google Patents

Inertia sensor Download PDF

Info

Publication number
JP2005024310A
JP2005024310A JP2003187758A JP2003187758A JP2005024310A JP 2005024310 A JP2005024310 A JP 2005024310A JP 2003187758 A JP2003187758 A JP 2003187758A JP 2003187758 A JP2003187758 A JP 2003187758A JP 2005024310 A JP2005024310 A JP 2005024310A
Authority
JP
Japan
Prior art keywords
vibration
coriolis force
inertial sensor
axis
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003187758A
Other languages
Japanese (ja)
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2003187758A priority Critical patent/JP2005024310A/en
Publication of JP2005024310A publication Critical patent/JP2005024310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor for independently measuring angular velocities at the same time by using a piezoelectric vibration-type inertia sensor when exciting one sensor element to turn it centering around two axes orthogonal to its vibrating direction. <P>SOLUTION: When turning the sensor element centering around two axes orthogonal to an axis parallel to the vibrating direction with a vibration part of the sensor element unidirectionally excited, the sizes of Coriolis force generated by the respective turns are independently detected by this biaxial detection-type inertia sensor. Stretching vibration is used as a mode of excited vibration and bending vibration is used as a vibration mode when detecting Coriolis force. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
圧電振動式慣性センサにおいて、ひとつのセンサ素子を励振させ、その振動方向と直交する2軸を中心に回転させたとき、その角速度を独立して同時に測定する慣性センサに関する。
【0002】
【従来の技術】
従来より多く用いられる素子の一例として音叉型センサ素子を図5に示す。これは、音叉型センサ素子の振動部2枝(2)の一方に励振用電極を付加し、これに交流電圧を印加することで2枝は共振状態となり、音叉型センサ素子は固有の振動周波数をもって一方向に振動を開始する。この状態で、振動方向に平行な第1軸と直交する、第2軸を中心に回転を加えたとき、更に直交する第3軸方向に発生するコリオリ力の大きさを、電荷量として振動部2枝の他方に具備した検出用電極により検出するものである。
【0003】
この方法では、回転軸(第2軸)をひとつしか取れず、複数の軸を中心に回転している角速度を計測するには、それぞれの軸に合わせて回転軸の数だけセンサが必要となる。
【0004】
これら慣性センサは、圧電振動式角速度センサ(PVG)と呼ばれ、一軸方向に速度Vsin(t)を持って振動している質量mの物体に、この振動方向と直交する第2軸を中心として加速度を伴って回転運動を与えると、加速度系に現れる慣性力(見かけの力)のひとつとして、コリオリ力Fcが発生する。この時、角速度をΩとすると、
Fc=2mΩVsin(t) ・・・ (1式)
で表すことができる。1式から、コリオリ力は角速度の大きさに比例することが判る。
【0005】
また、圧電センサ素子が、コリオリ力の大きさに応じて発生する機械的歪に対応して電荷発生量が比例することから、この電荷量を電気的に計測する方法で角速度の大きさを検知することが可能となる。
【0006】
そして、これら慣性センサは、ロボット・車両・航空機などに搭載され、移動の状態把握、姿勢制御、移動体の軌跡確認、画像補正処理(手ブレセンサ)などに使用されている。
【0007】
近年では、センシング情報の多様化により、複数の異種のセンサとを組み合わせる「ハイブリッド化」や、省スペース化により複数のセンサ素子をひとつの容器に組込んで、複数の作用軸に対応して計測をする「多軸一体化」(特許文献1、2)などが行われている。
【0008】
【特許文献1】
特開平07−092175号公報
【特許文献2】
特開2000−314744号公報
【0009】
【発明が解決しようとする課題】
従来は、計測精度向上を求め、センサ単体の分解能を重点的に開発されてきた。しかし、近年では、計測情報の多様化や、更なる小型化が要求され、単にひとつの物理量を計測するだけに留まらず、たとえば、加速度センサと角速度センサとを組み合わせ、演算処理により移動体の航跡を読み取ったり、現在位置を判定するなどのセンサのハイブリッド化や、デジタルスチルカメラ(DSC)、カメラ付き携帯端末などの小型製品・省スペース内への採用に対応すべく、小型の角速度センサの要求が高まっている。
【0010】
また、カメラなどを手で保持して撮影する場合、手ブレの発生する軸としては2つの軸が存在する。従って、現在では一台のカメラに2個の角速度センサが搭載されている。これは、著しくスペースを占有することになり、小形の汎用DSCや、カメラ付き携帯端末などに組込むことが困難となっている。
【0011】
【課題を解決するための手段】
今、DSC、カメラ付き携帯端末などは、ますますの高画素化が進行しており、画像品位を向上さる方向にある。その中で、センサが組込め無い為画像補正処理が出来ず、手ブレにより発生する画像の「ぼけ」は画像品位を著しく劣化させる原因となる。
【0012】
本発明が解決しようとするのは、従来の手ブレセンサ一個分と同等か、それ以下の大きさの容器内に、ひとつのセンサ素子を用い、2軸方向の角速度を同時に独立して計測できる角速度センサを提案するもので、小型・省スペース化された製品へも使用することを可能とするものである。
【0013】
そこで本発明は、直方体のセンサ素子の振動部を一方向に励振させた状態で、振動方向に平行な軸と直交する2本の軸を中心に回転させた時、それぞれの回転により発生するコリオリ力の大きさを、それぞれ独立して検出する2軸検出式の慣性センサにおいて、励振振動のモードとして伸縮振動を用い、コリオリ力を検出するときの振動モードとして、屈曲振動を用いたことを特徴とする慣性センサである。
【0014】
そして、直方体のセンサ素子の振動部を一方向に励振させた状態で、振動方向に平行な軸と直交する2本の軸を中心に回転させた時、それぞれの回転により発生するコリオリ力の大きさを、それぞれ独立して検出する2軸検出式の慣性センサにおいて、初期に励振させる振動周波数をF、コリオリ力発生により誘発される振動モードに関与する方向の振動体の固有振動数を、それぞれFf1、Ff2としたとき、Ff1<F<Ff2となることを特徴とするものである。
【0015】
また、直方体のセンサ素子の振動部を一方向に励振させた状態で、振動方向に平行な軸と直交する2本の軸を中心に回転させた時、それぞれの回転により発生するコリオリ力の大きさを、それぞれ独立して検出する2軸検出式の慣性センサにおいて、初期に励振させる振動周波数をF、コリオリ力発生により誘発される振動モードに関与する方向の振動体の固有振動数を、それぞれFf1、Ff2としたとき、
|Ff1−F|/F及び、|Ff2−F|/Fの値が0.011から0.038の範囲にとることで、ひとつのセンサ素子を励振させ、その振動方向と直交する2軸を中心に回転させたとき、2つの屈曲振動モードの縮退現象を回避できると共に、最適な感度に設定することで可能となり、その角速度を独立して同時に測定する慣性センサを得ることができる。
【0016】
【発明の実施の形態】
以下、添付図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。本発明における角速度センサについて、素子材料に圧電結晶である水晶を用いた例について、図を参照しながらその実施例について詳述する。図1は、センサ素子の構成図であり、図中、1は水晶素子、2は支持構造体、3は励振振動用の電極(励振電極)、4は、X軸と平行な回転軸1を中心として回転したときの角速度(Ω1)により発生するコリオリ力を検知するための電極(検出1)、及び、5は、Z軸と平行な回転軸2を中心として回転したときの角速度(Ω2)により発生するコリオリ力を検知するための電極(検出2)を示す。更に、直交座標方位は、水晶結晶の切り出し方位を示す。そしてセンサ素子の形状は直方体である。
【0017】
図2は、励振の方向と、角速度印加時のコリオリ力発生により誘起される振動モードを示すもので、描画が煩雑になるため、それぞれの電極は省略してある。そして、図3には図1に記載したセンサ素子断面位置での電極配置をそれぞれ表したものである。図3(a)は図1のA−A断面部の電極配置で、図3(b)は図1のB−B断面部の電極配置で、図3(c)は図1のC−C断面部の電極配置を示すものである。なお電極はそれぞれ2端子構成となり、支持構造体2の表面を経由して外部の回路と接続されている。
【0018】
上記センサ素子において、外部の励振回路(発振回路)と励振用電極3とを接続し、交流電圧を印加すると、水晶素子1はY軸と平行方向に伸縮運動が発生し、縦振動が誘発される。この状態で、回転軸1を中心に角速度Ω1を加えると、コリオリ力が発生し、Y−Z平面と平行な面に沿う様に屈曲振動が誘発される。
【0019】
また、回転軸2を中心に角速度Ω2を加えると、同様にコリオリ力が発生し、X−Y平面と平行な面に沿う様に屈曲振動が誘発される。この屈曲振動の機械歪により発生した電荷(圧電効果)は、それぞれ検出1、及び、検出2の電極に誘導され、支持構造体2の表面を経由して外部にある検出回路に接続される。これら独立した信号は検出回路内で、交流信号として増幅された後、回転方向を判定する手段として励振信号と位相比較・整流された後、直流信号となりセンサ信号として独立して出力される。ここで応用として、ふたつの信号を融合して演算処理をすると、回転軸1、2から形成される平面上の任意の軸の回転による角速度も検知することが可能となる。
【0020】
なお、図4に示すのは本発明の特徴である素子に対して初期に励振させる振動周波数をF、コリオリ力発生により誘発される振動モードに関与する方向の振動体の固有振動数を、それぞれFf1、Ff2としたとき、|Ff1−F|/F及び、|Ff2−F|/Fの値が0.011から0.038の範囲が最適であることを示すグラフである。上記の範囲外で例えば0.011以下の場合には縮退現象が発生してしまい、0.038を越すと著しく感度が低下することを示すものである。本実施例では、支持点としてX軸方向またはZ軸方向を固定するが、支持構造を簡素化するためにY軸の片端を固定しても良い。
【0021】
【発明の効果】
本発明では動作中の本センサ素子に、2方向の回転軸を中心に回転を印加すると、センサ素子には、1つの縦振動と、直交する2つの屈曲振動の合計3種類の振動モードが成立することになる。この屈曲振動の周波数は、励振振動である縦振動周波数に支配的であるが、センサ素子構造上(寸法上)、屈曲振動が成立する2軸の周波数(それぞれの固有周波数)が近似していると、相互振動モードの縮退現象により、他軸の振動を検出するような誤動作が発生する。本発明では、センサ素子が持つ基本的な2つの屈曲振動の周波数を、励振周波数値を境に上下に分離し、振動モードの縮退現象を回避することを可能とし、2振動間の振動モレを無くすことで、精度・確度の高い計測を可能としたものである。
【0022】
なお、この時の離調度(励振振動と、それぞれの屈曲振動との周波数の差)は、縦振動の周波数をF、一方の屈曲振動周波数をFf1、他方の屈曲振動周波数をFf2としたとき、
f1<F<Ff2 ・・・・・(2式)
の条件の下に、
(F−Ff1)/F ・・・・(3式)
及び、
(Ff2−F)/F ・・・・(4式)
の値が、0.011から0.038 の間になるように設定すれば、コリオリ力を効率良く屈曲振動に変換することが可能となる。
【図面の簡単な説明】
【図1】本発明のセンサ素子の外観図である。
【図2】本発明のセンサ素子の角速度印可時の振動モードを示す概念図である。
【図3】図1のそれぞれの振動個所(断面部)での電極配置図である。
【図4】本発明の初期に励振させる振動周波数Fと、コリオリ力発生により誘発される振動モードに関与する方向の振動体の固有振動数Ff1、Ff2の最適領域を示すグラフである。
【図5】従来技術で用いられる音叉型のセンサ素子の一例を示す平面図である。
【符号の説明】
1 センサ素子本体
2 支持構造体
3 励振(縦振動)用電極
4 屈曲振動1の検出電極
5 屈曲振動2の検出電極
[0001]
[Industrial application fields]
The present invention relates to an inertial sensor that measures simultaneously and independently the angular velocity when a single sensor element is excited and rotated about two axes orthogonal to the vibration direction.
[0002]
[Prior art]
A tuning fork type sensor element is shown in FIG. 5 as an example of an element used more than ever. This is because an excitation electrode is added to one of the two vibrating parts (2) of the tuning fork type sensor element, and an AC voltage is applied to this, so that the two branches are in a resonance state. Starts to vibrate in one direction. In this state, when rotation is applied about the second axis that is orthogonal to the first axis that is parallel to the vibration direction, the magnitude of the Coriolis force generated in the third axis direction that is further orthogonal is used as the amount of charge, and the vibration unit Detection is performed by a detection electrode provided on the other of the two branches.
[0003]
In this method, only one rotation axis (second axis) can be taken, and in order to measure the angular velocity rotating around a plurality of axes, sensors are required as many as the number of rotation axes in accordance with each axis. .
[0004]
These inertial sensors are called piezoelectric vibration type angular velocity sensors (PVG), and an object of mass m that vibrates with a velocity Vsin (t) in one axis direction is centered on a second axis orthogonal to the vibration direction. When a rotational motion is given with acceleration, a Coriolis force Fc is generated as one of inertia forces (apparent forces) appearing in the acceleration system. At this time, if the angular velocity is Ω,
Fc = 2mΩVsin (t) (1 set)
Can be expressed as From equation 1, it can be seen that the Coriolis force is proportional to the magnitude of the angular velocity.
[0005]
In addition, since the amount of charge generated in the piezoelectric sensor element is proportional to the mechanical strain generated according to the magnitude of the Coriolis force, the magnitude of the angular velocity is detected by a method that electrically measures the amount of charge. It becomes possible to do.
[0006]
These inertial sensors are mounted on robots, vehicles, airplanes, and the like, and are used for movement state grasping, posture control, moving object trajectory confirmation, image correction processing (camera shake sensor), and the like.
[0007]
In recent years, “hybridization” that combines multiple disparate sensors due to diversification of sensing information, and multiple sensor elements in one container due to space saving, and measurement corresponding to multiple action axes “Multi-axis integration” (Patent Documents 1 and 2) is performed.
[0008]
[Patent Document 1]
JP 07-092175 A [Patent Document 2]
Japanese Patent Laid-Open No. 2000-314744
[Problems to be solved by the invention]
Conventionally, improvement in measurement accuracy has been demanded, and the resolution of a single sensor has been developed with emphasis. However, in recent years, diversification of measurement information and further miniaturization have been demanded, and it is not limited to simply measuring a single physical quantity. For example, an accelerometer and an angular velocity sensor are combined, and the track of a moving object is calculated by arithmetic processing. Of small angular velocity sensors to support hybrid use of sensors, such as reading the current position and determining the current position, and use in small products and space-savings such as digital still cameras (DSC) and mobile terminals with cameras Is growing.
[0010]
In addition, when shooting with a hand held by a camera or the like, there are two axes that cause camera shake. Therefore, at present, two angular velocity sensors are mounted on one camera. This occupies a significant space, making it difficult to incorporate into a small general-purpose DSC or a portable terminal with a camera.
[0011]
[Means for Solving the Problems]
Now, DSCs, mobile terminals with cameras, and the like are becoming increasingly high in pixels, and are in the direction of improving image quality. Among them, image correction processing cannot be performed because the sensor cannot be incorporated, and the “blurring” of the image caused by camera shake causes the image quality to deteriorate significantly.
[0012]
An object of the present invention is to solve the problem of the angular velocity in which the angular velocity in two axes can be measured independently at the same time by using one sensor element in a container having a size equal to or smaller than that of a conventional camera shake sensor. It proposes a sensor that can be used for small and space-saving products.
[0013]
Therefore, the present invention provides a Coriolis generated by each rotation when rotating around two axes orthogonal to an axis parallel to the vibration direction in a state where the vibration part of the rectangular parallelepiped sensor element is excited in one direction. In a 2-axis detection type inertial sensor that detects the magnitude of force independently, stretching vibration is used as an excitation vibration mode, and flexural vibration is used as a vibration mode when detecting Coriolis force. It is an inertial sensor.
[0014]
Then, when the oscillating portion of the rectangular parallelepiped sensor element is excited in one direction, when rotating around two axes orthogonal to the axis parallel to the vibration direction, the magnitude of the Coriolis force generated by each rotation is large. In the two-axis detection type inertial sensor that detects each independently, the vibration frequency to be initially excited is F E , and the natural frequency of the vibrating body in the direction related to the vibration mode induced by the Coriolis force generation, When F f1 and F f2 are set, respectively, F f1 <F E <F f2 is satisfied.
[0015]
In addition, when the oscillating part of the rectangular parallelepiped sensor element is excited in one direction, when rotating around two axes orthogonal to the axis parallel to the vibration direction, the magnitude of the Coriolis force generated by each rotation is large. In the two-axis detection type inertial sensor that detects each independently, the vibration frequency to be initially excited is F E , and the natural frequency of the vibrating body in the direction related to the vibration mode induced by the Coriolis force generation, When F f1 and F f2 respectively,
| F f1 -F E | / F E and, | F f2 -F E | / value of F E is by taking the range of 0.011 to 0.038, is excited to one of the sensor elements, the vibration direction When rotating around two axes perpendicular to the axis, it is possible to avoid the degeneration phenomenon of the two flexural vibration modes, and it is possible by setting the optimum sensitivity, and an inertial sensor that measures the angular velocity independently and simultaneously is obtained. be able to.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. In each figure, the same numerals indicate the same objects. With respect to the angular velocity sensor according to the present invention, an example in which quartz that is a piezoelectric crystal is used as an element material will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a sensor element, in which 1 is a quartz crystal element, 2 is a support structure, 3 is an electrode for excitation vibration (excitation electrode), and 4 is a rotation axis 1 parallel to the X axis. An electrode (detection 1) for detecting the Coriolis force generated by the angular velocity (Ω1) when rotated about the center (Ω1), and 5 are the angular velocity (Ω2) when rotated about the rotation axis 2 parallel to the Z axis. The electrode (detection 2) for detecting the Coriolis force which generate | occur | produces is shown. Further, the orthogonal coordinate direction indicates the cutting direction of the crystal crystal. The shape of the sensor element is a rectangular parallelepiped.
[0017]
FIG. 2 shows the direction of excitation and the vibration mode induced by the generation of Coriolis force when the angular velocity is applied. Since drawing is complicated, each electrode is omitted. FIG. 3 shows the electrode arrangement at the sensor element cross-sectional position shown in FIG. 3A is an electrode arrangement of the AA cross section of FIG. 1, FIG. 3B is an electrode arrangement of the BB cross section of FIG. 1, and FIG. 3C is a CC line of FIG. The electrode arrangement of the cross section is shown. Each electrode has a two-terminal configuration and is connected to an external circuit via the surface of the support structure 2.
[0018]
In the sensor element, when an external excitation circuit (oscillation circuit) and the excitation electrode 3 are connected and an AC voltage is applied, the quartz crystal element 1 expands and contracts in the direction parallel to the Y axis, and longitudinal vibration is induced. The In this state, when an angular velocity Ω1 is applied around the rotation axis 1, a Coriolis force is generated, and bending vibration is induced along a plane parallel to the YZ plane.
[0019]
Further, when the angular velocity Ω2 is applied around the rotation axis 2, a Coriolis force is similarly generated, and bending vibration is induced along a plane parallel to the XY plane. Electric charges (piezoelectric effect) generated by the mechanical strain of the bending vibration are respectively induced in the electrodes of the detection 1 and the detection 2 and connected to a detection circuit outside via the surface of the support structure 2. These independent signals are amplified as AC signals in the detection circuit, then phase-compared and rectified with the excitation signal as means for determining the direction of rotation, and then converted into DC signals and output independently as sensor signals. Here, as an application, if two signals are fused together to perform arithmetic processing, it becomes possible to detect an angular velocity due to rotation of an arbitrary axis on a plane formed by the rotation axes 1 and 2.
[0020]
FIG. 4 shows the characteristic frequency of the vibrating body in the direction related to the vibration mode induced by the generation of Coriolis force, F E , the vibration frequency that is initially excited for the element that is a feature of the present invention. when the F f1, F f2 respectively, | F f1 -F E | / F E and, | that range / F value of E is 0.011 from 0.038 is the optimum | F f2 -F E It is a graph to show. If the ratio is outside the above range, for example 0.011 or less, a degeneracy phenomenon occurs, and if it exceeds 0.038, the sensitivity is significantly reduced. In the present embodiment, the X-axis direction or the Z-axis direction is fixed as the support point, but one end of the Y-axis may be fixed to simplify the support structure.
[0021]
【The invention's effect】
In the present invention, when rotation is applied to the sensor element in operation around the rotation axis in two directions, a total of three types of vibration modes are established for the sensor element: one longitudinal vibration and two orthogonal bending vibrations. Will do. The frequency of this bending vibration is dominant to the longitudinal vibration frequency that is the excitation vibration, but the two-axis frequencies (respective natural frequencies) at which the bending vibration is established are approximated on the sensor element structure (in terms of dimensions). Then, a malfunction that detects the vibration of the other axis occurs due to the degeneracy phenomenon of the mutual vibration mode. In the present invention, the two fundamental vibration frequencies of the sensor element can be separated vertically from the excitation frequency value to avoid the degeneration phenomenon of the vibration mode. By eliminating it, it is possible to measure with high accuracy and accuracy.
[0022]
The degree of detuning (frequency difference between the excitation vibration and each bending vibration) at this time is defined as F E as the frequency of longitudinal vibration, F f1 as one bending vibration frequency, and F f2 as the other bending vibration frequency. When
F f1 <F E <F f2 (2 formulas)
Under the conditions of
(F E -F f1 ) / F E (3 formulas)
as well as,
(F f2 -F E ) / F E (4 formulas)
Is set to be between 0.011 and 0.038, the Coriolis force can be efficiently converted into bending vibration.
[Brief description of the drawings]
FIG. 1 is an external view of a sensor element of the present invention.
FIG. 2 is a conceptual diagram showing a vibration mode when an angular velocity is applied to the sensor element of the present invention.
FIG. 3 is an electrode layout diagram at each vibration location (cross section) of FIG. 1;
A vibration frequency F E which initially excitation of the present invention; FIG is a graph indicating the optimum area of the natural frequency F f1, F f2 direction of the vibrating body involved in the vibration mode induced by Coriolis force generated .
FIG. 5 is a plan view showing an example of a tuning fork type sensor element used in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sensor element main body 2 Support structure 3 Excitation (longitudinal vibration) electrode 4 Detection electrode 5 of bending vibration 1 Detection electrode of bending vibration 2

Claims (5)

直方体のセンサ素子の振動部を一方向に励振させた状態で、振動方向に平行な軸と直交する2本の軸を中心に回転させた時、それぞれの回転により発生するコリオリ力の大きさを、それぞれ独立して検出する2軸検出式の慣性センサにおいて、
励振振動のモードとして伸縮振動を用い、コリオリ力を検出するときの振動モードとして、屈曲振動を用いたことを特徴とする慣性センサ。
When the oscillating part of the rectangular parallelepiped sensor element is excited in one direction, when rotating around two axes orthogonal to the axis parallel to the vibration direction, the magnitude of the Coriolis force generated by each rotation is calculated. In the two-axis detection type inertial sensor that detects each independently,
An inertial sensor characterized by using expansion and contraction vibration as a mode of excitation vibration and bending vibration as a vibration mode when detecting Coriolis force.
請求項1記載の慣性センサにおいて、
初期に励振させる振動周波数をF、コリオリ力発生により誘発される振動モードに関与する振動体の固有振動数を、それぞれFf1、Ff2としたとき、
f1<F<Ff2
となることを特徴とする慣性センサ。
The inertial sensor according to claim 1,
When the vibration frequency to be excited in the initial stage is F E , and the natural frequencies of the vibrating body involved in the vibration mode induced by the Coriolis force generation are F f1 and F f2 , respectively.
F f1 <F E <F f2
An inertial sensor characterized by
直方体で+Xカット水晶を用いたセンサ素子の振動部を一方向に励振させた状態で、Y軸振動方向に平行な軸と直交するX軸とZ軸の2本の軸を中心に回転させた時、それぞれの回転により発生するコリオリ力の大きさを、それぞれ独立して検出する2軸検出式の慣性センサにおいて、
励振振動のモードとして伸縮振動を用い、コリオリ力を検出するときの振動モードとして、屈曲振動を用いたことを特徴とする慣性センサ。
In a state where the vibration part of the sensor element using the + X cut crystal in a rectangular parallelepiped is excited in one direction, the sensor element is rotated around two axes of the X axis and the Z axis perpendicular to the axis parallel to the Y axis vibration direction. In a two-axis detection type inertial sensor that independently detects the magnitude of the Coriolis force generated by each rotation,
An inertial sensor characterized by using expansion and contraction vibration as a mode of excitation vibration and bending vibration as a vibration mode when detecting Coriolis force.
請求項3記載の慣性センサにおいて、
初期に励振させる振動周波数をF、コリオリ力発生により誘発される振動モードに関与する振動体の固有振動数を、それぞれFf1、Ff2としたとき、
f1<F<Ff2
となることを特徴とする慣性センサ。
The inertial sensor according to claim 3, wherein
When the vibration frequency to be excited in the initial stage is F E , and the natural frequencies of the vibrating body involved in the vibration mode induced by the Coriolis force generation are F f1 and F f2 , respectively.
F f1 <F E <F f2
An inertial sensor characterized by
請求項2と請求項4の慣性センサにおいて、
|Ff1−F|/F及び、|Ff2−F|/Fの値が0.011から0.038であることを特徴とする慣性センサ。
The inertial sensor of claim 2 and claim 4,
| F f1 -F E | / F E and, | F f2 -F E | / inertial sensor value of F E is characterized by a 0.038 0.011.
JP2003187758A 2003-06-30 2003-06-30 Inertia sensor Pending JP2005024310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187758A JP2005024310A (en) 2003-06-30 2003-06-30 Inertia sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187758A JP2005024310A (en) 2003-06-30 2003-06-30 Inertia sensor

Publications (1)

Publication Number Publication Date
JP2005024310A true JP2005024310A (en) 2005-01-27

Family

ID=34186504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187758A Pending JP2005024310A (en) 2003-06-30 2003-06-30 Inertia sensor

Country Status (1)

Country Link
JP (1) JP2005024310A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043123A (en) * 2006-08-09 2008-02-21 Olympus Corp Ultrasonic motor and vibration detection method of ultrasonic motor
JP2009058268A (en) * 2007-08-30 2009-03-19 Kyocera Corp Sensor
WO2012040194A1 (en) * 2010-09-20 2012-03-29 Fairchild Semiconductor Corporation Inertial sensor mode tuning circuit
US8710599B2 (en) 2009-08-04 2014-04-29 Fairchild Semiconductor Corporation Micromachined devices and fabricating the same
US8742964B2 (en) 2012-04-04 2014-06-03 Fairchild Semiconductor Corporation Noise reduction method with chopping for a merged MEMS accelerometer sensor
US8754694B2 (en) 2012-04-03 2014-06-17 Fairchild Semiconductor Corporation Accurate ninety-degree phase shifter
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9006846B2 (en) 2010-09-20 2015-04-14 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
US9095072B2 (en) 2010-09-18 2015-07-28 Fairchild Semiconductor Corporation Multi-die MEMS package
US9094027B2 (en) 2012-04-12 2015-07-28 Fairchild Semiconductor Corporation Micro-electro-mechanical-system (MEMS) driver
US9156673B2 (en) 2010-09-18 2015-10-13 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
US9425328B2 (en) 2012-09-12 2016-08-23 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300568A (en) * 1993-04-16 1994-10-28 Canon Inc Angular velocity detection method and vibration gyro
JPH08152328A (en) * 1995-07-04 1996-06-11 Nippondenso Co Ltd Angular speed sensor and its using method
JPH1054721A (en) * 1996-08-12 1998-02-24 Kinseki Ltd Angular velocity sensor
JPH1114364A (en) * 1997-06-19 1999-01-22 Ngk Insulators Ltd Vibratory gyroscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300568A (en) * 1993-04-16 1994-10-28 Canon Inc Angular velocity detection method and vibration gyro
JPH08152328A (en) * 1995-07-04 1996-06-11 Nippondenso Co Ltd Angular speed sensor and its using method
JPH1054721A (en) * 1996-08-12 1998-02-24 Kinseki Ltd Angular velocity sensor
JPH1114364A (en) * 1997-06-19 1999-01-22 Ngk Insulators Ltd Vibratory gyroscope

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043123A (en) * 2006-08-09 2008-02-21 Olympus Corp Ultrasonic motor and vibration detection method of ultrasonic motor
JP2009058268A (en) * 2007-08-30 2009-03-19 Kyocera Corp Sensor
US8739626B2 (en) 2009-08-04 2014-06-03 Fairchild Semiconductor Corporation Micromachined inertial sensor devices
US8710599B2 (en) 2009-08-04 2014-04-29 Fairchild Semiconductor Corporation Micromachined devices and fabricating the same
US9156673B2 (en) 2010-09-18 2015-10-13 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
US10050155B2 (en) 2010-09-18 2018-08-14 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
US9095072B2 (en) 2010-09-18 2015-07-28 Fairchild Semiconductor Corporation Multi-die MEMS package
US9455354B2 (en) 2010-09-18 2016-09-27 Fairchild Semiconductor Corporation Micromachined 3-axis accelerometer with a single proof-mass
WO2012040194A1 (en) * 2010-09-20 2012-03-29 Fairchild Semiconductor Corporation Inertial sensor mode tuning circuit
US9006846B2 (en) 2010-09-20 2015-04-14 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US9599472B2 (en) 2012-02-01 2017-03-21 Fairchild Semiconductor Corporation MEMS proof mass with split Z-axis portions
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US8754694B2 (en) 2012-04-03 2014-06-17 Fairchild Semiconductor Corporation Accurate ninety-degree phase shifter
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US8742964B2 (en) 2012-04-04 2014-06-03 Fairchild Semiconductor Corporation Noise reduction method with chopping for a merged MEMS accelerometer sensor
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US9094027B2 (en) 2012-04-12 2015-07-28 Fairchild Semiconductor Corporation Micro-electro-mechanical-system (MEMS) driver
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9425328B2 (en) 2012-09-12 2016-08-23 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill

Similar Documents

Publication Publication Date Title
JP2005024310A (en) Inertia sensor
JP3399336B2 (en) Detector
JP3549590B2 (en) Acceleration / angular velocity sensor
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
US8833163B2 (en) Angular velocity sensor
JP2007333643A (en) Inertial sensor
EP2913680A1 (en) Electronic device, electronic apparatus, and moving object
KR20110011625A (en) Vibrating micro-mechanical sensor of angular velocity
JP2008180511A (en) Angular velocity sensor
WO2005078389A1 (en) Angular velocity sensor
JPWO2006075764A1 (en) Vibrating gyroscope
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2010071758A (en) Angular velocity sensor element, angular velocity sensor and electronic apparatus
JP4911690B2 (en) Vibrating gyro vibrator
JP2004301734A (en) Inertia sensor
JP4921805B2 (en) Crystal unit for angular velocity sensor
WO2010092806A1 (en) Inertial force sensor and detecting element used for same
JP5050448B2 (en) Angular velocity sensor and electronic device
JP3336451B2 (en) Tuning fork type vibration gyro
JP2002243450A (en) Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP2009192403A (en) Angular velocity and acceleration detector
JPH08334332A (en) Vibration gyro
JP2003194543A (en) Angular velocity sensor
JP2010096695A (en) Vibration gyroscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518