JP2005020077A - 90 degree bent waveguide, waveguide filter element, and high frequency circuit unit - Google Patents

90 degree bent waveguide, waveguide filter element, and high frequency circuit unit Download PDF

Info

Publication number
JP2005020077A
JP2005020077A JP2003178330A JP2003178330A JP2005020077A JP 2005020077 A JP2005020077 A JP 2005020077A JP 2003178330 A JP2003178330 A JP 2003178330A JP 2003178330 A JP2003178330 A JP 2003178330A JP 2005020077 A JP2005020077 A JP 2005020077A
Authority
JP
Japan
Prior art keywords
waveguide
metal member
groove
frequency circuit
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003178330A
Other languages
Japanese (ja)
Inventor
Yoshiro Takahashi
良郎 高橋
Seiji Nishi
清次 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2003178330A priority Critical patent/JP2005020077A/en
Publication of JP2005020077A publication Critical patent/JP2005020077A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized high performance 90° bent waveguide, a waveguide filter element, and a high frequency circuit unit. <P>SOLUTION: The 90° bent waveguide is provided which includes a metallic member 101 formed almost a rectangular solid on the front side of which a groove equivalent to a guide diameter of a first waveguide is formed and on the rear side of which a second waveguide having an opening and orthogonal to the groove; metallic members 102a, 102b fitted to the groove in a way that the end face has a 45-degree tapered face and the 45° tapered face is opposed to the opening of the second waveguide at an orthogonal part between the groove and the second waveguide, and a metallic plate 103 for covering the groove and forming the first waveguide. Further, the high frequency circuit is provided, which comprises an antenna, a high frequency circuit and the waveguide filter element wherein the 90° bent waveguide is formed at an end of the metallic member 101 formed almost the rectangular solid for forming a filter part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,アンテナ,フィルタ素子を内蔵する高周波回路ユニットに関し,特にミリ波周波数領域,及び準ミリ波周波数領域に適する小型化された高周波回路ユニットに関するものである。
【0002】
【従来の技術】
従来,この種の小型高周波回路ユニットの構造には,特許文献1に開示される物があり,パッチアンテナを形成したプリント配線基板上に高周波信号処理回路が形成され,アンテナと高周波信号処理回路とが一体化した構造であった。また,特許文献2にはアンテナを内蔵する半導体モジュールの構造が示されている。上記の従来技術においては,高周波信号処理回路として増幅回路,周波数変換回路,発振器回路が示されている。
【0003】
一方,図11に,従来の個別部品を使用したミリ波周波数領域の無線装置回路構成を示している。その構成は,中間周波回路(図示せず)からの変調信号を局部発振器で生成されるミリ波信号によって周波数変換し,増幅器で増幅した後,通信に不要な周波数帯域をフィルタ素子で除去し,アンテナより空中に放射するものである。ここで,独立した個別回路部品間の接続には,導波管,同軸コネクタ等が使用されている。
【0004】
図11では,導波管出力を有するアンテナ601と,導波管型フィルタ素子602とを導波管端のフランジ611a,611bにて接続し,フィルタ素子の他端に導波管―同軸コネクタ変換器603をフランジにて接続している。同軸コネクタに変換された後は,増幅回路,周波数変換回路を内蔵する回路モジュール604,及び局部発振器605に同軸ケーブル612a,612bで接続される。ここで使用されるフィルタ素子は,無線周波数の有効利用を考慮し,通過帯域外は出来る限り急峻に遮断することが望ましく,かつ挿入損失が小さいことが要求されることから,導波管型フィルタ素子が用いられる。
【0005】
【特許文献1】
特開平3−9602号公報
【特許文献2】
特開平10−79623号公報
【0006】
【発明が解決しようとする課題】
ところで,従来の小型高周波回路ユニットでは,無線装置として必要不可欠なフィルタ素子を内蔵しておらず,もし内蔵可能なフィルタ素子を挙げるとすればストリップラインやマイクロストリップラインを使用した平面回路で構成される小型フィルタのみが適用可能である。しかし,その様な小型平面フィルタは通過帯域外の遮断特性が悪く,かつ挿入損失が大きいため回路特性を劣化させる原因となっていた。また,従来の無線装置構成では,各個別回路部品間の接続に導波管,同軸コネクタ等が使用されているため,小型化に限界があり,市場ニーズの高い小型無線装置を製作することが不可能であり,かつ各接続箇所での反射損失が増加し回路特性劣化の原因となっていた。
【0007】
本発明は,従来の高周波回路ユニットが有する上記問題点に鑑みてなされたものであり,本発明の目的は,小型化され,回路特性に優れた,新規かつ改良された90度ベンド型導波管,導波管型フィルタ素子,及び高周波回路ユニットを提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するため,本発明によれば,電波の伝搬方向を90度曲げる90度ベンド型導波管において;表面に第1の導波管の管径(断面の大きさ)に相当する溝が形成され,第1の導波管と管径が同じである第2の導波管が溝に直交して裏面に開口部を備えている略直方体の第1の金属部材と,端部が45度のテーパ面になっており,溝と第2の導波管との直交部分で45度のテーパ面が第2の導波管の開口部に対向するように溝に嵌め込まれた第2の金属部材と,溝を覆って第1の導波管を完成する第3の金属部材と,を含むことを特徴とする90度ベンド型導波管が提供される。
【0009】
ここで,溝に嵌め込まれた第2の金属部材は,導波管断面の短辺長さをLとした場合,端部に第2の導波管の側面に連なる約0.202Lの長さの垂直面を残して,45度のテーパ面が形成されていることが好ましく,反射特性を改善することができる。この垂直面の長さは,金属部材の加工精度を考慮し,0.096L〜0.308Lの長さで製作されることが好ましい。
【0010】
本発明の90度ベンド型導波管は,従来のλ/4ショート導波管を方形導波管の90度ベンド部に形成した構造に比べて,ベンド部での反射を減らし,伝送特性を良好にすることができる。また,従来の方形導波管を曲げ加工した90度ベンド部構造に比べ,格段に小型化することが可能となる。さらに,加工の容易な形状を有する金属部材を嵌め合わせた構造であるので製造が簡単で,量産に適した,反射特性の良好な小型の90度ベンド型導波管を得ることができる。
【0011】
また,略直方体金属部材の表面に導波管となる溝及び溝内を仕切って複数の小間を形成したフィルタ部を形成し,溝の片端または両端に,上記90度ベンド型導波管を形成することにより,外形を小型化,薄型化した90度ベンド型導波管一体型の導波管型フィルタ素子を提供することができる。また,フィルタ部は,略直方体金属部材の表面から加工し,板状の金属部材で蓋をして完成させる構造なので,精度の良い加工ができ,後工程での調整が不要となり,安価に素子を製造することができる。
【0012】
さらに,上記の90度ベンド型導波管一体型の導波管型フィルタ素子を用い,導波管型フィルタ素子裏面に平面回路から形成されるアンテナや高周波回路基板を一体形成することにより,小型で性能が良く,かつ安価で量産に適した高周波回路ユニットを提供することができる。
【0013】
【発明の実施の形態】
以下に添付図面を参照しながら,本実施形態にかかる90度ベンド型導波管,導波管型フィルタ素子,及び高周波回路ユニットについて詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
【0014】
(第1の実施の形態)
図1(a)は,本実施の形態による90度ベンド型導波管であり,方形導波管の例えば電界面の90度ベンド(Eベンド)部を示す概略説明図である。第1の金属部材である略直方体金属部材101の表面に第1の導波管の管径(断面の大きさ)に相当する溝が形成され,かつその一部に溝と垂直に交わり,略直方体金属部材101の裏面に開口部を有し,第1の導波管と同一の管径を有する第2の導波管を有している。直交する導波管の交わり部に片面に45度のテーパ面(斜面)を有する第2の金属部材である金属部材102a,102bを嵌め込み,その後,溝部を覆う第3の金属部材である金属板103を略直方体金属部材101の溝形成面にネジ止めするなどして,方形導波管のEベンド部を構成している。
【0015】
図1(b)は導波管Eベンド部の断面構造を示す説明図である。本実施の形態では,45度のテーパ面(斜面)を有する金属部材102a,102bに対し,以下の加工を行ない,導波管Eベンド部での反射特性の改善を図っている。先ず方形導波管の管径短辺の長さをLとし,45度のテーパ面(斜面)を有する金属部材102a,102bに約0.202Lの長さの垂直面を残して45度のテーパ面(斜面)を形成する。この長さは,0.202L±0.106L(0.096L〜0.308L)の長さに形成することが好ましい。その後,垂直面が方形導波管の管径長辺と同一面を形成するように略直方体金属部材101に形成された溝部に嵌め込む。ここで,図1(a),(b)に記載された矢印は,電波の伝搬方向を示している。
【0016】
この様な構造の金属部材102は,例えば方形導波管がWR15の時,導波管の管径短辺長は1.88mmであるから,形成すべき垂直面は0.38±0.2mmで,既存の加工精度で十分加工できるものである。また,金属部材102の厚みは導波管短辺長さに等しく,幅は導波管長辺長さに等しく加工されている。
【0017】
図12は従来の導波管Eベンド部の構造を示す説明図であり,略直方体金属部材201の表面に方形導波管の管径に相当する形状の溝が形成され,導波管の交わり部に金属部材202を嵌め込み,図12のDの長さがλ/4(λ:伝搬波長)の導波管(ショート導波管)を導波管Eベンド部に形成し,金属板203にて溝部を覆い,方形導波管のEベンド部を構成している。
【0018】
図2のグラフは本実施の形態の方形導波管Eベンドと図12に示す従来の方形導波管Eベンドとの伝送特性のシミュレーション結果を比較したものである。明らかに本実施の形態の方形導波管Eベンド構造の方が広帯域(50〜75GHz)に渡ってベンド部反射が少ない(−20dB以下)ことを示している。
【0019】
また,従来の方形導波管を有限な曲率(例えばR=0.5インチ)で曲げ加工したEベンドに比べ,本実施の形態は格段に小さい方形導波管Eベンドを得ることが出来る。以上のように,本実施の形態の方形導波管Eベンド構造を用いれば,簡便な方法にてベンド部反射の非常に少ない,外形的にも小さな方形導波管Eベンドを得ることが出来る。
【0020】
(第2の実施の形態)
図3は,第2の実施の形態による導波管型フィルタ素子の構造を示す説明図であり,導波管フィルタ部の例えば両端に,第1の実施の形態で示した導波管Eベンド部を有している。
【0021】
第1の金属部材である略直方体金属部材301表面に方形導波管の管径に相当する形状の溝を形成し,さらに溝内に中央部にスリットを有する薄い仕切りが形成されており,所定の周波数をフィルタリングする小間304が形成されている。またフィルタ部両端の溝には,第1の実施の形態と同様に,溝に垂直に交わり略直方体金属部材301裏面に開口部が形成された,同一の管径を有する導波管を有している。また溝と導波管の直交部に,第1の実施の形態と同様の垂直面及び45度のテーパ面(斜面)を有する第2の金属部材である金属部材302a,302bを嵌め込み,その後,開口するフィルタ部の形成された略直方体金属部材301表面を覆う第3の金属部材である金属板303をネジ止めする等して,導波管型フィルタ素子を形成している。
【0022】
ここで,フィルタ部についてさらに説明する。図4に3段フィルタの形状例を示す。溝内の仕切り(管内突起)のピッチP1,P2や突起間スペースS1,S2がフィルタ特性を左右するパラメータとなる。各パラメータの数値算出には電磁界シミュレータを使用し,結果として得られるフィルタ特性を見ながら,各パラメータの値を調整して値を決める。
【0023】
従来の導波管フィルタの製造では,各パラメータの設計値に加工するために高い加工精度が必要であり,設計値との周波数のズレやフィルタ帯域内の伝送損失ばらつきが生じてしまうため,加工後にフィルタ特性を補正することを目的に微調整が必要となる。しかし本実施の形態のフィルタでは,略直方体金属部材の表面からミーリング加工によって設計形状に即した溝を高精度に形成することができ,最後にフィルタ部を金属板で覆いフィルタ素子を完成するので,再度の微調整工程を不要にすることができる。
【0024】
本実施の形態の導波管型フィルタ素子の動作は,略直方体金属部材301裏面に導波管が貫通して形成された一方の開口部から電波を入力し,第1の実施の形態で説明したEベンド部を通して,略直方体金属部材301のフィルタ形成面方向に電波を90度曲げ,所定のフィルタ特性を示す小間304を通過の後,再度Eベンド部を通して裏面のもう1方の開口部に電波を導いている。
【0025】
以上のように第2の実施の形態によれば,第1の実施の形態に詳細を説明した方形導波管Eベンド構造を用いることで,非常に小型,かつ薄い導波管型フィルタ素子を形成することが可能となった。更に,フィルタを形成するスリットを有する薄い仕切り板をすべて表面から精度良く加工することができる為,従来の導波管型フィルタ素子のように製造後の微調整等の工程も必要無くなり安価に導波管型フィルタ素子を製造することが可能となった。また,全ての加工が略直方体金属部材表面から行なえるので,切削加工に困らず射出成形法等を利用しても製造でき,高精度導波管フィルタの量産にも好適な構造となる。
【0026】
(第3の実施の形態)
図4〜図6は,第3の実施の形態として,第2の実施の形態による導波管型フィルタ素子にアンテナを一体形成した高周波ユニットの構造を示す説明図である。図4(a)は,本実施の形態の高周波ユニットを示す概略断面図であり,第2の実施の形態と同様,第1の金属部材である略直方体金属部材401と,導波管フィルタ部の両端の導波管溝に嵌め込まれる第2の金属部材である金属部材402a,402bと,溝の表面を覆う第3の金属部材である金属板403と,アンテナが形成される2つの配線板405,406とから構成されている。本実施の形態においては,さらに,配線板405,406を略直方体金属部材401とで挟持する第4の金属部材である配線板押さえ部404を含んでいる。
【0027】
また,配線板押さえ部404には,フィルタリングされて導波管を通じて略直方体金属部材401の裏面の開口部から出力される電波を受信する配線板405,406に形成された導波管/平面回路変換部の反射特性を改善するため,λ/4(λ:伝搬波長)の長さの導波管(以後ショート導波管とする),及びアンテナからの電波放射を妨害しない領域に貫通口が形成された配線板押さえ部404を含んでいる。
【0028】
次に,各部品の詳細を説明しながら,アンテナ及び導波管型フィルタ素子の一体型の高周波ユニットの動作について説明する。図4(b)は,略直方体金属部材401の斜視図である。第2の実施の形態と同様に略直方体金属部材401の表面より導波管フィルタを成す導波管溝,並びに所定のフィルタ特性を示す小間410を作るために,導波管の中央部にスリットを持つ仕切りが形成されている。略直方体金属部材401の両端にはEベンド部が形成され,一方は略直方体金属部材401を裏面に貫通する導波管へ,他方は略直方体金属部材401の表面から外部方向に電波を反射する構造としている。
【0029】
ここで用いられるEベンド構造は第1の実施の形態と同様であるので説明を省略する。フィルタ部を覆う金属板403には,外部方向から導波管に電波を導入する開口部411が形成されている。上記構造により略直方体金属部材401は以下の様に動作する。開口部411より入射した電波は,金属部材402bで形成されたEベンド部によりフィルタ部に伝達され,所定の周波数特性にフィルタリングされた後,金属部材402aで形成されたEベンド部により略直方体金属部材401の裏面の開口部412に出力される。
【0030】
次に,アンテナ及び導波管/平面回路変換部を形成する配線板405,406の構造について図5(c),(d)を参照して説明する。配線板405の1方の面には金属導体413が全面に形成され,略直方体金属部材401の開口部412に対応した箇所に導体開口部414を有する。また,他方の面には,導体開口部414の裏面部分より平面回路配線416が形成され,略方形導体のパッチアンテナ415に接続されている。パッチアンテナ415以外の部分は配線板405の誘電体基材417が露出している。
【0031】
一方,配線板406には,パッチアンテナ415を中心としてアンテナからの電波放射を阻害しない領域に開口部420を有し,配線板405との対向面には誘電体基材421が露出し,誘電体基材421が露出した面の裏面には金属導体419が全面に形成され,開口部412に対応した箇所に導体開口部418が形成されている。
【0032】
次に配線板405,406の動作について説明する。導波管の開口部412より出た電波は,2つの導体開口部414,418に挟まれて導体開口部414,418内に突出した平面回路配線416に伝達される。その後,金属導体413,419と平面回路配線416で形成するストリップライン及び開口部420内のマイクロストリップラインを通して,パッチアンテナ415に伝達され空間に放射される。
【0033】
次に,構造部材である配線板押さえ部404について図6を参照して説明する。配線板押さえ部404は,パッチアンテナ415部を中心としてアンテナからの電波放射を阻害しない領域に開口部423を有し,略直方体金属部材401と共に配線板405,406を挟持し,ネジ等(図示せず)により配線板405,406を密着させる。また,開口部412に対応した場所にショート導波管422を形成し,導波管開口部412からの電波を平面回路配線416に伝達する導波管/平面回路変換部の反射特性を改善している。
【0034】
以上の様に,第3の実施の形態によれば,第2の実施の形態で説明した小型な導波管型フィルタ素子と,アンテナを一体化することにより,高周波ユニットの大幅な小型化,薄型化が達成出来る。また,導波管フィルタを用いることで回路損失の低減が図れる。さらに,製造方法も簡単で調整工程も必要無くなる等により高周波ユニットの低コスト化が図れる。従って,今後のミリ波,準ミリ波帯の無線器の小型化,回路特性の向上,価格の低減という効果が得られる。
【0035】
(第4の実施の形態)
図7〜図10は,第2の実施の形態にて説明した導波管型フィルタ素子とアンテナ,及び高周波回路を一体に形成した第4の実施の形態の高周波回路ユニットについて示した説明図である。まず,図7(a)は,第4の実施の形態の高周波ユニットの概略断面図である。
【0036】
第2の実施の形態と同様に溝が形成された第1の金属部材である略直方体金属部材501と,溝に嵌め込まれた第2の金属部材である金属部材502a,502bと,溝表面を覆う第3の金属部材である金属板503と,アンテナが形成される2つの配線板505,506と,高周波回路基板507とから構成されている。本実施の形態においては,さらに,配線板505,506を略直方体金属部材501とで挟持し,配線板505,506に形成された導波管/平面回路変換部及び平面回路/導波管変換部のショート導波管を形成した第4の金属部材である配線板押さえ部504,と配線板押さえ部504に取り付けられ,高周波回路基板507部をカバーする高周波回路収納部蓋508とを含んでいる。
【0037】
次に,図7(a)の各構成要素の詳細を説明しながら本実施の形態の高周波ユニットの動作について説明する。図7(b)は略直方体金属部材501の斜視図である。略直方体の略直方体金属部材表面に,導波管溝と所定のフィルタ特性を示す小間510を形成するため,導波管の中央部にスリットを持つ仕切り薄板とが形成されている。
【0038】
略直方体金属部材501の両端にEベンド部を形成し,略直方体金属部材501を貫通する導波管の一方から電波を入射し,もう一方から放射する構造としている。ここで用いられる導波管Eベンド部の構造は第1の実施の形態と同様なので,説明を省略する。フィルタ部を覆う蓋である金属板503をネジ等で略直方体金属部材501に固定する。また,略直方体金属部材501の裏面には後述する高周波回路を収容する収納部514,及び円形導波管アンテナのショート導波管に相当する凹部513が形成されている。更に高周波回路の収納部514には,外部より信号,電源を導入するコネクタ類515を取付ける穴が形成されている。
【0039】
上記構造により略直方体金属部材501は,以下の様に動作する。開口部511より入射した電波は,金属部材502bで形成されたEベンド部でフィルタ部に伝達され,所定の周波数特性にフィルタリングされた後,金属部材502aで形成されたEベンド部により略直方体金属部材501のもう一方の開口部512に出力される。
【0040】
次に,アンテナ及び導波管/平面回路変換部を形成する配線板505,506の構造について図8(c),(d)を参照して説明する。配線板505の一方の面には金属導体516が全面に形成され,導波管フィルタ部の開口部511,512に対応した箇所に導体開口部517,518を有する。また,円形導波管アンテナ形成部に対応し導体開口部519が,高周波回路の収納部514に対応して開口部520が形成されている。一方,配線板505の反対側の面には,導体開口部517,518の裏面部分より平面回路配線521,522が形成されており,平面回路配線521,522以外の部分は誘電体基材523が露出している。
【0041】
一方,配線板506には高周波回路の収納部514に対応して開口部525を有し,配線板505との対向面は誘電体基材524が露出し,誘電体基材524の面の裏面には金属導体526が全面に形成され,略直方体金属部材501の開口部511,512に対応した箇所に導体開口部527,528が,円形導波管アンテナ形成部に対応した箇所に導体開口部529が形成されている。
【0042】
次に,配線板505,506の動作について説明する。後述する高周波回路基板507より出力される高周波信号は平面回路配線521に,例えばワイヤボンディング法等により金属細線で伝達される。その後,配線板の金属導体516,526と平面回路配線521で形成されるストリップラインを通して,2つの導体開口部517,527に挟まれ,導体開口部内に突出した平面回路配線521より成る平面回路/導波管変換部で略直方体金属部材501の導波管の開口部511に伝達される。
【0043】
略直方体金属部材501を通過して導波管の開口部512に伝達された高周波信号は2つの導体開口部518,528に挟まれ,導体開口部内に突出した平面回路配線522よりなる導波管/平面回路変換部で平面回路配線522に伝達され,配線板の金属導体516,526と平面回路配線521で形成するストリップラインを通して平面回路配線522他端の円形導波管アンテナに伝達され,空間に放射される。
【0044】
次に,構造部材である配線板押え部504と,高周波回路収納部蓋508について説明する。配線板押え部504は,前述した平面回路/導波管変換部及び導波管/平面回路変換部に対応する場所にショート導波管530,531を形成し,平面回路/導波管変換部及び導波管/平面回路変換部導波管の反射特性を改善している。また,円形導波管アンテナの放射導波管に相当する円筒状の貫通口533,及び高周波回路基板507を収納するキャビティに相当する貫通口532が設けられている。
【0045】
放射導波管に相当する円筒状の貫通口533は,略直方体金属部材501に形成された円形導波管アンテナのショート導波管に相当する凹部513と対向しており,配線板505,506の金属導体516,526に形成した導体開口部519,529とも同一直径を有し,中心を同一とする導体開口部519,529各々に挟持された円形導波管内に突出した平面回路配線522により円形導波管アンテナを構成している。
【0046】
円形導波管アンテナについては,文献S.Nishi,K.Hamaguchi,T.Matui,and H.Ogawa,“Development of millimeter−wave video transmissionsystem II Antenna development”,Technical Digest of Third Tropical Symposium on Millimeter Waves,p207−210,March,2001.に詳細が明記されているが,ここでは説明を省略する。
【0047】
また,高周波回路基板507を収納するキャビティに相当する貫通口532をカバーする高周波回路収納部蓋508が用意され,高周波回路基板507を実装した後,配線板押え部504に,例えばネジ止め等により高周波回路収納部蓋508が固定され,内部の高周波回路基板507を保護,シールドする。
【0048】
最後に,収容される高周波回路基板507について説明する。図9(f)に示すように,高周波回路基板507は各種の能動素子534a,534bや受動部品535を搭載する金属製板よりなり,予めワイヤボンディング法などによる金属細線で,各素子間を接続してあり,半完成品として諸特性を評価できる状態になっている。高周波回路基板507を収納部514に収納し,信号や電源を導入するコネクタ類515と接続し,平面回路配線521と配線して完成する。
【0049】
ここで,高周波回路基板507を収容する方法について図10を用いて詳細に説明する。略直方体金属部材501に形成した収納部514に高周波回路基板507を挿入し,ネジ等で固定する。その後,配線板505,506を重ねて配線板押え部504と略直方体金属部材501とで挟持して固定し,貫通口532から所定配線の結線を行うことにより収容が完成する。
【0050】
上記の収容方法において,略直方体金属部材501に形成した収納部514と高周波回路基板507の隙間を配線板505上の金属導体516で橋渡ししている。更に,配線板505,506に形成した開口部520,525の大きさを,平面回路配線521を形成した配線板505側を小さくすることで平面回路配線521の端部が配線板506より露出する。
【0051】
このような構造により配線板505,506上の金属導体516,526で挟まれたストリップライン構造を有する平面回路配線521は,露出した部分で,配線板505上の金属導体516と平面回路配線521とで構成されるマイクロストリップラインに変換され,高周波回路基板507上の能動素子534a,534bと金属細線で結線することが可能になる。こうして,収納部514と高周波回路基板507の隙間上を金属細線で結線する場合に比べ,特性インピーダンスの変化が少なく,結線部の反射を低減することが可能となる。
【0052】
以上の様に,第4の実施の形態によれば,小型な導波管フィルタと円形導波管アンテナと高周波回路基板を一体化して高周波ユニットの大幅な小型化,薄型化を達成した。また,製造方法も簡単で調整工程も必要無くなること等により,高周波ユニットの低コストが図れる。更に,金属細線での接続箇所の反射を低減し,伝送損失の少ない高周波ユニットを形成することができた。従って,今後のミリ波,準ミリ波帯の無線器の小型化,回路特性の向上,価格の低減という効果が得られる。
【0053】
以上,添付図面を参照しながら本実施形態にかかる90度ベンド型導波管,導波管型フィルタ素子,及び高周波回路ユニットの好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
【0054】
第3の実施の形態では,平面回路によるパッチアンテナを有する高周波ユニットを,第4の実施の形態では円形導波管アンテナを有する高周波ユニットについて説明してきた。しかし,アンテナ形状についてはこれらにとらわれる事は無く各種形状のアンテナが利用可能である。
【0055】
例えば,薄型化を目的に,誘電体を挟持する2導体より成る両面板の一方の導体に電波放射スリットを設け,他方の導体にアンテナへの電力供給口を有するラジアル導波路を用いたアンテナを用いることができる。このアンテナの電力供給口に第2の実施の形態に示す導波管型フィルタ素子の一方の開口部を直接接続する構造とする事で,第3,第4の実施の形態に示す様な導波管/平面回路変換部や,配線板を挟持する為に必要な構造部材も不要とすることができる。
【0056】
【発明の効果】
以上説明したように,本発明によれば,略直方体金属部材に溝を形成し,溝に直交する導波管の直交部に,垂直面と45度のテーパ面を有する金属部材を嵌め込むことにより,反射特性の良好な小型の90度ベンド型導波管を簡単に得ることができ,この90度ベンド型導波管を用いてフィルタ素子やアンテナを一体化することにより,安価,小型で高性能の導波管型フィルタ素子,及び高周波回路ユニットを得ることができる。
【図面の簡単な説明】
【図1】第1の実施の形態にかかる90度ベンド型導波管を示す説明図であり,(a)は全体の構造を概略的に示す説明図であり,(b)は90度ベンド部を詳細に示す説明図である。
【図2】第1の実施の形態にかかる90度ベンド型導波管の90度ベンド部の伝送特性を従来の90度ベンド部と比較する説明図である。
【図3】第2の実施の形態にかかるフィルタ素子を示す説明図であり,(a)は全体の構造を概略的に示す説明図であり,(b)はフィルタ部の構造を示す説明図である。
【図4】第3の実施の形態にかかる高周波ユニットの全体の構造を概略的に示す説明図であり,(a)は各部材の配置を示す説明図であり,(b)はフィルタ素子部を示す説明図である。
【図5】第3の実施の形態にかかる高周波ユニットの全体の構造を概略的に示す説明図であり,(c)は一方の配線板を示す説明図であり,(d)は他方の配線板を示す説明図である。
【図6】第3の実施の形態にかかる高周波ユニットの配線板押さえ部を概略的に示す説明図である。
【図7】第4の実施の形態にかかる高周波ユニットの全体の構造を概略的に示す説明図であり,(a)は各部材の配置を示す説明図であり,(b)はフィルタ素子部を示す説明図である。
【図8】第4の実施の形態にかかる高周波ユニットの全体の構造を概略的に示す説明図であり,(c)は一方の配線板を示す説明図であり,(d)は他方の配線板を示す説明図である。
【図9】第4の実施の形態にかかる高周波ユニットの全体の構造を概略的に示す説明図であり,(e)は配線板押さえ部を示す説明図であり,(f)は高周波回路基板を示す説明図である。
【図10】第4の実施の形態にかかる高周波ユニットの高周波回路基板収納部を示す説明図である。
【図11】従来技術にかかるミリ波帯無線回路装置を示す説明図である。
【図12】従来技術にかかる90度ベンド型導波管の90度ベンド部を示す説明図である。
【符号の説明】
101 略直方体金属部材
102a 金属部材
102b 金属部材
103 金属板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency circuit unit including an antenna and a filter element, and more particularly to a miniaturized high-frequency circuit unit suitable for a millimeter wave frequency region and a quasi-millimeter wave frequency region.
[0002]
[Prior art]
Conventionally, this type of small high-frequency circuit unit has a structure disclosed in Patent Document 1, and a high-frequency signal processing circuit is formed on a printed wiring board on which a patch antenna is formed. Was an integrated structure. Patent Document 2 shows the structure of a semiconductor module incorporating an antenna. In the above prior art, an amplifier circuit, a frequency conversion circuit, and an oscillator circuit are shown as the high-frequency signal processing circuit.
[0003]
On the other hand, FIG. 11 shows a wireless device circuit configuration in the millimeter wave frequency region using conventional individual components. The configuration is such that the modulation signal from the intermediate frequency circuit (not shown) is frequency-converted by a millimeter wave signal generated by a local oscillator, amplified by an amplifier, and then a frequency band unnecessary for communication is removed by a filter element. It radiates from the antenna into the air. Here, a waveguide, a coaxial connector, or the like is used for connection between independent individual circuit components.
[0004]
In FIG. 11, an antenna 601 having a waveguide output and a waveguide filter element 602 are connected by flanges 611a and 611b at the waveguide ends, and a waveguide-coaxial connector conversion is performed at the other end of the filter element. The device 603 is connected by a flange. After being converted to the coaxial connector, it is connected to the circuit module 604 incorporating the amplifier circuit and the frequency conversion circuit, and the local oscillator 605 by coaxial cables 612a and 612b. The filter element used here is a waveguide type filter because it is desirable to cut off the outside of the passband as steeply as possible and to have a small insertion loss in consideration of effective use of radio frequencies. An element is used.
[0005]
[Patent Document 1]
JP-A-3-9602
[Patent Document 2]
JP-A-10-79623
[0006]
[Problems to be solved by the invention]
By the way, the conventional small high-frequency circuit unit does not include a filter element that is indispensable as a wireless device. If a filter element that can be included is used, it is composed of a planar circuit using a stripline or a microstripline. Only small filters are applicable. However, such a small flat filter has a poor cutoff characteristic outside the passband and a large insertion loss, which causes the circuit characteristics to deteriorate. In addition, in the conventional wireless device configuration, waveguides, coaxial connectors, etc. are used for connection between individual circuit components, so there is a limit to miniaturization, and it is possible to manufacture small wireless devices with high market needs. This was impossible, and the reflection loss at each connection point increased, causing deterioration of circuit characteristics.
[0007]
The present invention has been made in view of the above-mentioned problems of conventional high-frequency circuit units, and an object of the present invention is a novel and improved 90-degree bend type waveguide having a reduced size and excellent circuit characteristics. It is to provide a tube, a waveguide type filter element, and a high frequency circuit unit.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, according to the present invention, in a 90-degree bend type waveguide that bends the propagation direction of radio waves by 90 degrees; the surface corresponds to the diameter (cross-sectional size) of the first waveguide. A first metal member having a substantially rectangular parallelepiped shape in which a groove is formed and a second waveguide having the same tube diameter as the first waveguide is provided with an opening on the back surface perpendicular to the groove; Is a 45-degree tapered surface, and the 45-degree tapered surface is fitted into the groove so that the 45-degree tapered surface faces the opening of the second waveguide at an orthogonal portion between the groove and the second waveguide. There is provided a 90-degree bend waveguide characterized in that it includes two metal members and a third metal member that covers the groove to complete the first waveguide.
[0009]
Here, the second metal member fitted in the groove has a length of about 0.202 L connected to the side surface of the second waveguide at the end when the short side length of the waveguide cross section is L. It is preferable that a 45-degree tapered surface is formed, leaving the vertical surface of the film, and reflection characteristics can be improved. The length of the vertical surface is preferably 0.096L to 0.308L in consideration of the processing accuracy of the metal member.
[0010]
The 90-degree bend waveguide of the present invention reduces the reflection at the bend and reduces the transmission characteristics compared to the conventional structure in which the λ / 4 short waveguide is formed on the 90-degree bend of the rectangular waveguide. Can be good. In addition, it can be remarkably reduced in size as compared with a 90-degree bend structure obtained by bending a conventional rectangular waveguide. Furthermore, since a metal member having a shape that can be easily processed is fitted, a small 90-degree bend type waveguide that is easy to manufacture and suitable for mass production and has good reflection characteristics can be obtained.
[0011]
In addition, a groove serving as a waveguide and a filter portion having a plurality of booths are formed on the surface of a substantially rectangular parallelepiped metal member, and the 90-degree bend waveguide is formed at one or both ends of the groove. By doing so, it is possible to provide a 90-degree bend type waveguide-integrated waveguide filter element whose outer shape is reduced in size and thickness. In addition, the filter part is processed from the surface of a substantially rectangular parallelepiped metal member, and is completed by covering with a plate-like metal member, so that it can be processed with high accuracy, no adjustment in the subsequent process is required, and the element is inexpensive. Can be manufactured.
[0012]
Furthermore, by using the above-described 90-degree bend waveguide integrated waveguide filter element, an antenna formed from a planar circuit and a high-frequency circuit board are integrally formed on the back surface of the waveguide filter element, thereby reducing the size. Therefore, it is possible to provide a high-frequency circuit unit that has good performance, is inexpensive and suitable for mass production.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The 90-degree bend waveguide, waveguide filter element, and high-frequency circuit unit according to the present embodiment will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
[0014]
(First embodiment)
FIG. 1A shows a 90-degree bend waveguide according to this embodiment, and is a schematic explanatory view showing, for example, a 90-degree bend (E bend) portion of an electric field surface of a rectangular waveguide. A groove corresponding to the tube diameter (cross-sectional size) of the first waveguide is formed on the surface of a substantially rectangular parallelepiped metal member 101 that is the first metal member, and a part of the groove intersects perpendicularly with the groove. The rectangular parallelepiped metal member 101 has a second waveguide having an opening on the back surface and having the same tube diameter as the first waveguide. Metal plates 102a and 102b, which are second metal members having a taper surface (slope) of 45 degrees on one side, are fitted into intersecting portions of the orthogonal waveguides, and then a metal plate which is a third metal member covering the groove The E-bend portion of the rectangular waveguide is configured by screwing 103 to the groove forming surface of the substantially rectangular parallelepiped metal member 101.
[0015]
FIG. 1B is an explanatory diagram showing a cross-sectional structure of the waveguide E bend portion. In the present embodiment, the following processing is performed on the metal members 102a and 102b having a 45-degree tapered surface (slope) to improve the reflection characteristics at the waveguide E bend. First, assuming that the length of the short side of the rectangular waveguide is L, the metal member 102a, 102b having a 45 degree taper surface (slope) leaves a vertical surface of about 0.202 L and a 45 degree taper. A surface (slope) is formed. This length is preferably 0.202 L ± 0.106 L (0.096 L to 0.308 L). Thereafter, the vertical surface is fitted into a groove formed in the substantially rectangular parallelepiped metal member 101 so as to form the same plane as the long-diameter side of the rectangular waveguide. Here, the arrows described in FIGS. 1A and 1B indicate the propagation directions of radio waves.
[0016]
In the metal member 102 having such a structure, for example, when the rectangular waveguide is WR15, the short side diameter of the waveguide is 1.88 mm. Therefore, the vertical surface to be formed is 0.38 ± 0.2 mm. Therefore, it can be processed sufficiently with the existing processing accuracy. Further, the thickness of the metal member 102 is processed to be equal to the short side length of the waveguide, and the width is processed to be equal to the long side length of the waveguide.
[0017]
FIG. 12 is an explanatory view showing the structure of a conventional waveguide E bend portion. A groove having a shape corresponding to the tube diameter of the rectangular waveguide is formed on the surface of the substantially rectangular parallelepiped metal member 201, and the intersection of the waveguides is shown. The metal member 202 is fitted into the portion, and a waveguide (short waveguide) having a length D of λ / 4 (λ: propagation wavelength) in FIG. 12 is formed in the waveguide E bend portion. And the E-bend portion of the rectangular waveguide is formed.
[0018]
The graph of FIG. 2 compares the simulation results of the transmission characteristics of the rectangular waveguide E bend of the present embodiment and the conventional rectangular waveguide E bend shown in FIG. Obviously, the rectangular waveguide E bend structure of the present embodiment shows less bend reflection (−20 dB or less) over a wide band (50 to 75 GHz).
[0019]
In addition, this embodiment can obtain a significantly smaller rectangular waveguide E bend compared to an E bend obtained by bending a conventional rectangular waveguide with a finite curvature (for example, R = 0.5 inch). As described above, when the rectangular waveguide E bend structure of the present embodiment is used, a rectangular waveguide E bend with very little bend reflection and a small external shape can be obtained by a simple method. .
[0020]
(Second Embodiment)
FIG. 3 is an explanatory diagram showing the structure of the waveguide filter element according to the second embodiment. For example, the waveguide E bend shown in the first embodiment is provided at both ends of the waveguide filter section. Has a part.
[0021]
A groove having a shape corresponding to the tube diameter of the rectangular waveguide is formed on the surface of the substantially rectangular parallelepiped metal member 301 as the first metal member, and a thin partition having a slit at the center is formed in the groove. A booth 304 is formed to filter the frequency of the. Similarly to the first embodiment, the grooves at both ends of the filter section have waveguides having the same tube diameter that intersect perpendicularly to the grooves and have openings formed on the back surface of the substantially rectangular parallelepiped metal member 301. ing. Also, metal members 302a and 302b, which are second metal members having a vertical surface similar to that of the first embodiment and a taper surface (slope) of 45 degrees, are fitted into the orthogonal portion of the groove and the waveguide, and thereafter A waveguide type filter element is formed by, for example, screwing a metal plate 303 as a third metal member covering the surface of the substantially rectangular parallelepiped metal member 301 on which the opening filter portion is formed.
[0022]
Here, the filter unit will be further described. FIG. 4 shows an example of the shape of the three-stage filter. The pitches P1 and P2 of the partitions (in-tube protrusions) and the spaces S1 and S2 between the protrusions are parameters that influence the filter characteristics. An electromagnetic simulator is used to calculate the numerical value of each parameter, and the value is determined by adjusting the value of each parameter while observing the resulting filter characteristics.
[0023]
In the manufacture of conventional waveguide filters, high processing accuracy is required for processing to the design values of each parameter, resulting in frequency deviation from the design values and transmission loss variations within the filter band. Fine adjustment is required later for the purpose of correcting the filter characteristics. However, in the filter of the present embodiment, a groove conforming to the design shape can be formed with high precision from the surface of a substantially rectangular parallelepiped metal member by milling, and finally the filter portion is covered with a metal plate to complete the filter element. , The second fine adjustment step can be eliminated.
[0024]
The operation of the waveguide filter element of the present embodiment is described in the first embodiment by inputting a radio wave from one opening formed through the waveguide on the back surface of the substantially rectangular parallelepiped metal member 301. Through the E-bend portion, the radio wave is bent 90 degrees in the direction of the filter forming surface of the substantially rectangular parallelepiped metal member 301, passes through the booth 304 showing a predetermined filter characteristic, and then passes through the E-bend portion again to the other opening on the back surface Guides radio waves.
[0025]
As described above, according to the second embodiment, by using the rectangular waveguide E bend structure described in detail in the first embodiment, a very small and thin waveguide filter element can be obtained. It became possible to form. Furthermore, since all the thin partition plates having slits for forming the filter can be processed with high precision from the surface, the steps such as fine adjustment after manufacturing are not required as in the case of the conventional waveguide type filter element, leading to low cost. It became possible to manufacture a wave tube type filter element. In addition, since all processing can be performed from the surface of a substantially rectangular parallelepiped metal member, it can be manufactured using an injection molding method or the like without being troubled by cutting, and the structure is suitable for mass production of high-precision waveguide filters.
[0026]
(Third embodiment)
4 to 6 are explanatory views showing the structure of a high frequency unit in which an antenna is integrally formed with a waveguide type filter element according to the second embodiment as a third embodiment. FIG. 4A is a schematic cross-sectional view showing the high-frequency unit according to the present embodiment. As in the second embodiment, a substantially rectangular parallelepiped metal member 401, which is a first metal member, and a waveguide filter section. Metal members 402a and 402b which are second metal members fitted into the waveguide grooves at both ends of the metal plate, a metal plate 403 which is a third metal member covering the surface of the groove, and two wiring boards on which antennas are formed 405 and 406. The present embodiment further includes a wiring board pressing portion 404 that is a fourth metal member that sandwiches the wiring boards 405 and 406 with the substantially rectangular parallelepiped metal member 401.
[0027]
In addition, the wiring board holding portion 404 is a waveguide / planar circuit formed on the wiring boards 405 and 406 that receives radio waves that are filtered and output from the opening on the back surface of the substantially rectangular parallelepiped metal member 401 through the waveguide. In order to improve the reflection characteristics of the converter, a through-hole is formed in a waveguide having a length of λ / 4 (λ: propagation wavelength) (hereinafter referred to as a short waveguide) and in an area that does not interfere with radio wave radiation from the antenna. A formed wiring board pressing portion 404 is included.
[0028]
Next, the operation of the high frequency unit integrated with the antenna and the waveguide type filter element will be described while explaining details of each component. FIG. 4B is a perspective view of a substantially rectangular parallelepiped metal member 401. As in the second embodiment, a slit is formed at the center of the waveguide in order to form a waveguide groove forming a waveguide filter from the surface of the substantially rectangular parallelepiped metal member 401 and a booth 410 exhibiting predetermined filter characteristics. A partition with is formed. E-bend portions are formed at both ends of the substantially rectangular parallelepiped metal member 401, one of which reflects radio waves outward from the surface of the substantially rectangular parallelepiped metal member 401 to the waveguide penetrating the back of the substantially rectangular parallelepiped metal member 401. It has a structure.
[0029]
Since the E-bend structure used here is the same as that of the first embodiment, description thereof is omitted. The metal plate 403 covering the filter portion is formed with an opening 411 for introducing a radio wave into the waveguide from the outside. With the above structure, the substantially rectangular parallelepiped metal member 401 operates as follows. The radio wave incident from the opening 411 is transmitted to the filter unit by the E bend formed by the metal member 402b, filtered to a predetermined frequency characteristic, and then substantially rectangular parallelepiped metal by the E bend formed by the metal member 402a. It is output to the opening 412 on the back surface of the member 401.
[0030]
Next, the structure of the wiring boards 405 and 406 forming the antenna and the waveguide / planar circuit converter will be described with reference to FIGS. A metal conductor 413 is formed on the entire surface of one side of the wiring board 405, and has a conductor opening 414 at a location corresponding to the opening 412 of the substantially rectangular parallelepiped metal member 401. On the other surface, planar circuit wiring 416 is formed from the back surface portion of the conductor opening 414 and connected to a patch antenna 415 having a substantially rectangular conductor. The dielectric base material 417 of the wiring board 405 is exposed at portions other than the patch antenna 415.
[0031]
On the other hand, the wiring board 406 has an opening 420 in a region that does not inhibit radio wave radiation from the antenna centering on the patch antenna 415, and the dielectric substrate 421 is exposed on the surface facing the wiring board 405. A metal conductor 419 is formed on the entire back surface of the surface on which the body substrate 421 is exposed, and a conductor opening 418 is formed at a location corresponding to the opening 412.
[0032]
Next, the operation of the wiring boards 405 and 406 will be described. The radio wave emitted from the opening 412 of the waveguide is transmitted to the planar circuit wiring 416 that is sandwiched between the two conductor openings 414 and 418 and protrudes into the conductor openings 414 and 418. Thereafter, the signal is transmitted to the patch antenna 415 through the strip line formed by the metal conductors 413 and 419 and the planar circuit wiring 416 and the microstrip line in the opening 420 and radiated to the space.
[0033]
Next, the wiring board pressing portion 404 that is a structural member will be described with reference to FIG. The wiring board holding section 404 has an opening 423 in a region that does not inhibit radio wave radiation from the antenna centered on the patch antenna 415, sandwiches the wiring boards 405 and 406 together with the substantially rectangular parallelepiped metal member 401, screws, etc. The wiring boards 405 and 406 are brought into close contact with each other. In addition, a short waveguide 422 is formed at a location corresponding to the opening 412 to improve the reflection characteristics of the waveguide / planar circuit converter that transmits the radio wave from the waveguide opening 412 to the planar circuit wiring 416. ing.
[0034]
As described above, according to the third embodiment, the high-frequency unit can be significantly reduced in size by integrating the antenna with the small waveguide filter element described in the second embodiment. Thinning can be achieved. In addition, circuit loss can be reduced by using a waveguide filter. Furthermore, the cost of the high-frequency unit can be reduced because the manufacturing method is simple and the adjustment process is not necessary. Therefore, it is possible to obtain the effects of future miniaturization of millimeter-wave and quasi-millimeter-wave radios, improvement of circuit characteristics, and price reduction.
[0035]
(Fourth embodiment)
FIGS. 7 to 10 are explanatory views showing the high-frequency circuit unit of the fourth embodiment in which the waveguide filter element, the antenna, and the high-frequency circuit described in the second embodiment are integrally formed. is there. First, FIG. 7A is a schematic cross-sectional view of the high-frequency unit according to the fourth embodiment.
[0036]
As in the second embodiment, a substantially rectangular parallelepiped metal member 501 that is a first metal member having a groove formed therein, metal members 502a and 502b that are second metal members fitted in the groove, and a groove surface It is composed of a metal plate 503 that is a third metal member to be covered, two wiring boards 505 and 506 on which an antenna is formed, and a high-frequency circuit board 507. In the present embodiment, furthermore, the wiring boards 505 and 506 are sandwiched between the substantially rectangular parallelepiped metal members 501, and the waveguide / planar circuit conversion unit and the planar circuit / waveguide conversion formed on the wiring boards 505 and 506 are used. A wiring board pressing part 504, which is a fourth metal member in which a short waveguide is formed, and a high frequency circuit housing part cover 508 attached to the wiring board pressing part 504 and covering the high frequency circuit board 507. Yes.
[0037]
Next, the operation of the high-frequency unit according to the present embodiment will be described while explaining details of each component in FIG. FIG. 7B is a perspective view of a substantially rectangular parallelepiped metal member 501. In order to form a waveguide groove and a booth 510 having predetermined filter characteristics on the surface of a substantially rectangular parallelepiped metal member, a partition thin plate having a slit at the center of the waveguide is formed.
[0038]
E-bend portions are formed at both ends of the substantially rectangular parallelepiped metal member 501 so that radio waves are incident from one of the waveguides penetrating the substantially rectangular parallelepiped metal member 501 and radiated from the other. Since the structure of the waveguide E bend used here is the same as that of the first embodiment, the description thereof is omitted. A metal plate 503 that is a lid covering the filter portion is fixed to the substantially rectangular parallelepiped metal member 501 with a screw or the like. In addition, on the back surface of the substantially rectangular parallelepiped metal member 501, a storage portion 514 that stores a high-frequency circuit to be described later, and a recess 513 corresponding to a short waveguide of a circular waveguide antenna are formed. Further, a hole for attaching a connector 515 for introducing a signal and a power source from the outside is formed in the storage portion 514 of the high frequency circuit.
[0039]
With the above structure, the substantially rectangular parallelepiped metal member 501 operates as follows. The radio wave incident from the opening 511 is transmitted to the filter unit by the E bend formed by the metal member 502b, filtered to a predetermined frequency characteristic, and then substantially rectangular parallelepiped metal by the E bend formed by the metal member 502a. This is output to the other opening 512 of the member 501.
[0040]
Next, the structure of the wiring boards 505 and 506 forming the antenna and the waveguide / planar circuit converter will be described with reference to FIGS. A metal conductor 516 is formed on one surface of the wiring board 505 and has conductor openings 517 and 518 at locations corresponding to the openings 511 and 512 of the waveguide filter portion. Further, a conductor opening 519 is formed corresponding to the circular waveguide antenna forming portion, and an opening 520 is formed corresponding to the housing portion 514 of the high frequency circuit. On the other hand, planar circuit wirings 521 and 522 are formed on the opposite surface of the wiring board 505 from the back surface portions of the conductor openings 517 and 518, and the portions other than the planar circuit wirings 521 and 522 are the dielectric base material 523. Is exposed.
[0041]
On the other hand, the wiring board 506 has an opening 525 corresponding to the housing portion 514 of the high-frequency circuit, and the dielectric substrate 524 is exposed on the surface facing the wiring board 505, and the back surface of the surface of the dielectric substrate 524 A metal conductor 526 is formed on the entire surface, and conductor openings 527 and 528 are formed at positions corresponding to the openings 511 and 512 of the substantially rectangular parallelepiped metal member 501, and conductor openings are formed at positions corresponding to the circular waveguide antenna forming section. 529 is formed.
[0042]
Next, the operation of the wiring boards 505 and 506 will be described. A high-frequency signal output from a high-frequency circuit board 507, which will be described later, is transmitted to the planar circuit wiring 521 by a fine metal wire by, for example, a wire bonding method. After that, through a strip line formed by the metal conductors 516 and 526 of the wiring board and the planar circuit wiring 521, a planar circuit / plane comprising the planar circuit wiring 521 which is sandwiched between the two conductor openings 517 and 527 and protrudes into the conductor opening. It is transmitted to the opening 511 of the waveguide of the substantially rectangular parallelepiped metal member 501 by the waveguide converter.
[0043]
A high-frequency signal transmitted through the substantially rectangular parallelepiped metal member 501 to the waveguide opening 512 is sandwiched between the two conductor openings 518 and 528, and is formed of a planar circuit wiring 522 protruding into the conductor opening. Is transmitted to the planar circuit wiring 522 by the planar circuit converter, and is transmitted to the circular waveguide antenna at the other end of the planar circuit wiring 522 through the strip line formed by the metal conductors 516 and 526 of the wiring board and the planar circuit wiring 521. To be emitted.
[0044]
Next, the wiring board holding part 504 and the high frequency circuit storage part cover 508 which are structural members will be described. The wiring board holder 504 is formed with short waveguides 530 and 531 at locations corresponding to the planar circuit / waveguide converter and the waveguide / planar circuit converter described above. In addition, the reflection characteristics of the waveguide / planar circuit converter waveguide are improved. In addition, a cylindrical through hole 533 corresponding to the radiation waveguide of the circular waveguide antenna and a through hole 532 corresponding to a cavity for housing the high-frequency circuit board 507 are provided.
[0045]
A cylindrical through hole 533 corresponding to the radiation waveguide is opposed to a recess 513 corresponding to a short waveguide of a circular waveguide antenna formed in the substantially rectangular parallelepiped metal member 501, and the wiring boards 505 and 506. The conductor openings 519 and 529 formed in the metal conductors 516 and 526 have the same diameter, and the planar circuit wiring 522 protrudes into the circular waveguide sandwiched between the conductor openings 519 and 529 having the same center. A circular waveguide antenna is configured.
[0046]
For a circular waveguide antenna, reference S.A. Nishi, K .; Hamaguchi, T .; Matui, and H.M. Ogawa, “Development of Millimeter-wave video transmission system II, Antenna Development 10”, “Tenical Dimension of the Thr. The details are clearly described here, but the explanation is omitted here.
[0047]
In addition, a high frequency circuit storage unit cover 508 that covers the through-hole 532 corresponding to the cavity for storing the high frequency circuit board 507 is prepared. A high-frequency circuit storage unit lid 508 is fixed to protect and shield the internal high-frequency circuit board 507.
[0048]
Finally, the high-frequency circuit board 507 accommodated will be described. As shown in FIG. 9 (f), the high-frequency circuit board 507 is made of a metal plate on which various active elements 534a and 534b and passive components 535 are mounted, and the elements are connected in advance by thin metal wires by a wire bonding method or the like. As a semi-finished product, various characteristics can be evaluated. The high-frequency circuit board 507 is accommodated in the accommodating portion 514, connected to connectors 515 for introducing signals and power, and wired with the planar circuit wiring 521 to complete.
[0049]
Here, a method of housing the high-frequency circuit board 507 will be described in detail with reference to FIG. The high-frequency circuit board 507 is inserted into the storage portion 514 formed in the substantially rectangular parallelepiped metal member 501 and fixed with screws or the like. Thereafter, the wiring boards 505 and 506 are overlapped and sandwiched and fixed between the wiring board holding portion 504 and the substantially rectangular parallelepiped metal member 501, and the predetermined wiring is connected through the through-hole 532, thereby completing the accommodation.
[0050]
In the housing method described above, the gap between the housing portion 514 formed in the substantially rectangular parallelepiped metal member 501 and the high-frequency circuit board 507 is bridged by the metal conductor 516 on the wiring board 505. Furthermore, by reducing the size of the openings 520 and 525 formed in the wiring boards 505 and 506 on the side of the wiring board 505 on which the planar circuit wiring 521 is formed, the end of the planar circuit wiring 521 is exposed from the wiring board 506. .
[0051]
With such a structure, the planar circuit wiring 521 having a strip line structure sandwiched between the metal conductors 516 and 526 on the wiring boards 505 and 506 is an exposed portion, and the metal conductor 516 on the wiring board 505 and the planar circuit wiring 521 are exposed. It is possible to connect to the active elements 534a and 534b on the high-frequency circuit board 507 with metal thin wires. In this way, the change in characteristic impedance is small and the reflection of the connection portion can be reduced compared to the case where the gap between the storage portion 514 and the high-frequency circuit board 507 is connected by a thin metal wire.
[0052]
As described above, according to the fourth embodiment, the small-sized waveguide filter, the circular waveguide antenna, and the high-frequency circuit board are integrated to achieve a significant reduction in size and thickness of the high-frequency unit. In addition, the manufacturing method is simple and the adjustment process is not required, so that the cost of the high-frequency unit can be reduced. In addition, it was possible to reduce the reflection of the connection points with fine metal wires and form a high-frequency unit with low transmission loss. Therefore, it is possible to obtain the effects of future miniaturization of millimeter-wave and quasi-millimeter-wave radios, improvement of circuit characteristics, and price reduction.
[0053]
The preferred embodiments of the 90-degree bend waveguide, the waveguide filter element, and the high-frequency circuit unit according to this embodiment have been described above with reference to the accompanying drawings. However, the present invention is not limited to this example. . It will be obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
[0054]
In the third embodiment, a high-frequency unit having a patch antenna using a planar circuit has been described, and in the fourth embodiment, a high-frequency unit having a circular waveguide antenna has been described. However, the antenna shape is not limited to these, and antennas of various shapes can be used.
[0055]
For example, for the purpose of thinning, an antenna using a radial waveguide having a radio wave radiation slit in one conductor of a double-sided board composed of two conductors sandwiching a dielectric and having a power supply port for the antenna in the other conductor. Can be used. By adopting a structure in which one opening of the waveguide type filter element shown in the second embodiment is directly connected to the power supply port of this antenna, the conduction as shown in the third and fourth embodiments is achieved. The wave tube / planar circuit conversion section and the structural members necessary for holding the wiring board can be eliminated.
[0056]
【The invention's effect】
As described above, according to the present invention, a groove is formed in a substantially rectangular parallelepiped metal member, and a metal member having a vertical surface and a 45-degree tapered surface is fitted into the orthogonal portion of the waveguide orthogonal to the groove. Therefore, it is possible to easily obtain a small 90-degree bend type waveguide having good reflection characteristics. By integrating the filter element and the antenna using the 90-degree bend type waveguide, it is possible to reduce the cost and size. A high-performance waveguide filter element and a high-frequency circuit unit can be obtained.
[Brief description of the drawings]
1A and 1B are explanatory views showing a 90-degree bend waveguide according to a first embodiment, wherein FIG. 1A is an explanatory view schematically showing the entire structure, and FIG. It is explanatory drawing which shows a part in detail.
FIG. 2 is an explanatory diagram for comparing transmission characteristics of a 90-degree bend portion of the 90-degree bend waveguide according to the first embodiment with a conventional 90-degree bend portion.
FIGS. 3A and 3B are explanatory views showing a filter element according to a second embodiment, FIG. 3A is an explanatory view schematically showing the entire structure, and FIG. 3B is an explanatory view showing the structure of a filter unit; FIGS. It is.
4A and 4B are explanatory views schematically showing the overall structure of a high-frequency unit according to a third embodiment, wherein FIG. 4A is an explanatory view showing the arrangement of each member, and FIG. 4B is a filter element section; It is explanatory drawing which shows.
FIGS. 5A and 5B are explanatory views schematically showing the entire structure of a high-frequency unit according to a third embodiment, FIG. 5C is an explanatory view showing one wiring board, and FIG. 5D is the other wiring; It is explanatory drawing which shows a board.
FIG. 6 is an explanatory diagram schematically showing a wiring board pressing portion of a high frequency unit according to a third embodiment.
7A and 7B are explanatory views schematically showing the overall structure of a high-frequency unit according to a fourth embodiment, wherein FIG. 7A is an explanatory view showing the arrangement of each member, and FIG. 7B is a filter element section; It is explanatory drawing which shows.
FIGS. 8A and 8B are explanatory views schematically showing the entire structure of a high-frequency unit according to a fourth embodiment, FIG. 8C is an explanatory view showing one wiring board, and FIG. 8D is the other wiring; It is explanatory drawing which shows a board.
FIGS. 9A and 9B are explanatory views schematically showing the entire structure of a high-frequency unit according to a fourth embodiment, FIG. 9E is an explanatory view showing a wiring board pressing portion, and FIG. 9F is a high-frequency circuit board; It is explanatory drawing which shows.
FIG. 10 is an explanatory diagram showing a high-frequency circuit board housing portion of a high-frequency unit according to a fourth embodiment.
FIG. 11 is an explanatory diagram showing a millimeter waveband radio circuit device according to the prior art.
FIG. 12 is an explanatory diagram showing a 90-degree bend portion of a 90-degree bend waveguide according to the prior art.
[Explanation of symbols]
101 cuboid metal member
102a metal member
102b Metal member
103 metal plate

Claims (12)

電波の伝搬方向を90度曲げる90度ベンド型導波管において;
表面に第1の導波管の管径に相当する溝が形成され,前記溝に直交して裏面に開口部を備え,前記第1の導波管と同一の管径を有する第2の導波管が形成された略直方体の第1の金属部材と,
端部に45度のテーパ面を有し,前記溝と前記第2の導波管との直交部で前記45度のテーパ面が前記第2の導波管の前記開口部に対向するように,前記溝に嵌め込まれた第2の金属部材と,
前記溝を覆い,前記第1の導波管を形成する第3の金属部材と,
を含むことを特徴とする90度ベンド型導波管。
In a 90-degree bend waveguide that bends the propagation direction of radio waves by 90 degrees;
A groove corresponding to the tube diameter of the first waveguide is formed on the surface, an opening is formed on the back surface perpendicular to the groove, and the second waveguide has the same tube diameter as the first waveguide. A substantially rectangular parallelepiped first metal member formed with a wave tube;
An end portion has a 45-degree tapered surface, and the 45-degree tapered surface faces the opening of the second waveguide at an orthogonal portion between the groove and the second waveguide. , A second metal member fitted in the groove;
A third metal member covering the groove and forming the first waveguide;
A 90-degree bend waveguide.
前記溝に嵌め込まれた前記第2の金属部材は,導波管断面の短辺長さをLとした場合,端部に前記第2の導波管に連なる約0.202Lの長さの垂直面を残して,45度のテーパ面が形成されていることを特徴とする請求項1に記載の90度ベンド型導波管。The second metal member fitted in the groove has a vertical length of about 0.202 L connected to the second waveguide at the end when the short side length of the cross section of the waveguide is L. The 90-degree bend waveguide according to claim 1, wherein a 45-degree tapered surface is formed with the surface remaining. フィルタ部と90度ベンド型導波管とが一体化形成された導波管型フィルタ素子において;
表面に第1の導波管の管径に相当する溝及び前記溝に前記フィルタ部を成す所定の仕切りが形成され,前記溝の少なくとも一端に,前記溝に直交して裏面に開口部を備え,前記第1の導波管と同一の管径を有する第2の導波管が形成された略直方体の第1の金属部材と,
端部に45度のテーパ面を有し,前記溝と前記第2の導波管との直交部で前記45度のテーパ面が前記第2の導波管の前記開口部に対向するように,前記溝に嵌め込まれた第2の金属部材と,
前記溝を覆い,前記第1の導波管及び前記フィルタ部を形成する第3の金属部材と,
を含むことを特徴とする導波管型フィルタ素子。
In a waveguide filter element in which a filter portion and a 90-degree bend waveguide are integrally formed;
A groove corresponding to the tube diameter of the first waveguide is formed on the front surface, and a predetermined partition forming the filter portion is formed in the groove, and an opening is formed on the back surface at least one end of the groove perpendicular to the groove. , A substantially rectangular parallelepiped first metal member formed with a second waveguide having the same tube diameter as the first waveguide;
An end portion has a 45-degree tapered surface, and the 45-degree tapered surface faces the opening of the second waveguide at an orthogonal portion between the groove and the second waveguide. , A second metal member fitted in the groove;
A third metal member covering the groove and forming the first waveguide and the filter portion;
A waveguide type filter element comprising:
前記溝に嵌め込まれた前記第2の金属部材は,導波管断面の短辺長さをLとした場合,端部に前記導波管に連なる約0.202Lの長さの垂直面を残して,45度のテーパ面が形成されていることを特徴とする請求項3に記載の導波管型フィルタ素子。The second metal member fitted in the groove leaves a vertical surface having a length of about 0.202 L connected to the waveguide at the end when the short side length of the waveguide cross section is L. 4. The waveguide filter element according to claim 3, wherein a tapered surface of 45 degrees is formed. 導波管型フィルタ素子とアンテナとが一体化形成された高周波回路ユニットにおいて;
表面に第1の導波管の管径に相当する溝及び前記溝にフィルタ部を成す所定の仕切りが形成され,前記溝の少なくとも一端に,前記溝に直交して裏面に開口部を備え,前記第1の導波管と同一の管径を有する第2の導波管が形成された略直方体の第1の金属部材と,
端部に45度のテーパ面を有し,前記溝と前記第2の導波管との直交部で前記45度のテーパ面が前記第2の導波管の前記開口部に対向するように,前記溝に嵌め込まれた第2の金属部材と,
前記溝を覆い,前記第1の導波管及び前記フィルタ部を形成する第3の金属部材と,
前記第1の金属部材の裏面に配置され,前記開口部から出力される電波を伝送して放射するアンテナが形成された配線板と,
を含むことを特徴とする高周波回路ユニット。
In a high-frequency circuit unit in which a waveguide filter element and an antenna are integrally formed;
A groove corresponding to the diameter of the first waveguide on the surface and a predetermined partition forming a filter part in the groove are formed, and at least one end of the groove is provided with an opening on the back surface orthogonal to the groove, A substantially rectangular parallelepiped first metal member on which a second waveguide having the same tube diameter as the first waveguide is formed;
An end portion has a 45-degree tapered surface, and the 45-degree tapered surface faces the opening of the second waveguide at an orthogonal portion between the groove and the second waveguide. , A second metal member fitted in the groove;
A third metal member covering the groove and forming the first waveguide and the filter portion;
A wiring board formed on the back surface of the first metal member, on which an antenna for transmitting and radiating radio waves output from the opening is formed;
A high-frequency circuit unit comprising:
前記溝に嵌め込まれた前記第2の金属部材は,導波管断面の短辺長さをLとした場合,端部に前記第2の導波管に連なる約0.202Lの長さの垂直面を残して,45度のテーパ面が形成されていることを特徴とする請求項5に記載の高周波回路ユニット。The second metal member fitted in the groove has a vertical length of about 0.202 L connected to the second waveguide at the end when the short side length of the cross section of the waveguide is L. 6. The high frequency circuit unit according to claim 5, wherein a 45-degree tapered surface is formed with the surface remaining. 前記第1の金属部材の裏面に配置されて前記配線板に金属細線によって接続され,前記配線板に形成された平面回路/導波管変換部を通して出力信号を前記導波管型フィルタ素子に伝達する高周波回路基板を,さらに含むことを特徴とする請求項5または6のいずれかに記載の高周波回路ユニット。Arranged on the back surface of the first metal member, connected to the wiring board by a thin metal wire, and transmits an output signal to the waveguide type filter element through a planar circuit / waveguide converter formed on the wiring board. The high-frequency circuit unit according to claim 5, further comprising a high-frequency circuit board that performs processing. 前記第1の金属部材の裏面には前記高周波回路基板を搭載する高周波回路収納部が形成され,前記高周波回路基板の搭載表面が前記第1の金属部材の裏面と略同一面を形成し,前記高周波回路基板と前記第1の金属部材の裏面との隙間が,前記配線板に形成された金属導体によって橋渡しされることを特徴とする請求項7に記載の高周波回路ユニット。A high-frequency circuit housing portion for mounting the high-frequency circuit board is formed on the back surface of the first metal member, and the mounting surface of the high-frequency circuit board forms substantially the same surface as the back surface of the first metal member, The high-frequency circuit unit according to claim 7, wherein a gap between the high-frequency circuit board and the back surface of the first metal member is bridged by a metal conductor formed on the wiring board. 前記第1の金属部材との間で前記配線板を挟持する第4の金属部材をさらに含むことを特徴とする請求項5,6,7または8のいずれかに記載の高周波回路ユニット。9. The high-frequency circuit unit according to claim 5, further comprising a fourth metal member that sandwiches the wiring board with the first metal member. 10. 前記アンテナは,前記配線板に形成された平面回路より成るパッチアンテナであることを特徴とする請求項5,6,7,8または9のいずれかに記載の高周波回路ユニット。The high-frequency circuit unit according to claim 5, wherein the antenna is a patch antenna including a planar circuit formed on the wiring board. 前記アンテナは,前記配線板に形成された平面回路より成る給電線を通して,前記第4の金属部材に形成された少なくとも1つの放射導波管に導かれる構造のアンテナであることを特徴とする請求項5,6,7,8または9のいずれかに記載の高周波回路ユニット。The antenna is an antenna having a structure that is guided to at least one radiating waveguide formed in the fourth metal member through a feeding line including a planar circuit formed on the wiring board. Item 10. The high-frequency circuit unit according to any one of Items 5, 6, 7, 8, and 9. 前記アンテナは,前記配線板に形成された,誘電体を挟持する2つの導体より成るラジアル導波路を用いたアンテナであることを特徴とする請求項5,6,7,8または9のいずれかに記載の高周波回路ユニット。The antenna according to any one of claims 5, 6, 7, 8 and 9, wherein the antenna is a radial waveguide formed of two conductors sandwiching a dielectric formed on the wiring board. The high frequency circuit unit described in 1.
JP2003178330A 2003-06-23 2003-06-23 90 degree bent waveguide, waveguide filter element, and high frequency circuit unit Pending JP2005020077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178330A JP2005020077A (en) 2003-06-23 2003-06-23 90 degree bent waveguide, waveguide filter element, and high frequency circuit unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178330A JP2005020077A (en) 2003-06-23 2003-06-23 90 degree bent waveguide, waveguide filter element, and high frequency circuit unit

Publications (1)

Publication Number Publication Date
JP2005020077A true JP2005020077A (en) 2005-01-20

Family

ID=34179992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178330A Pending JP2005020077A (en) 2003-06-23 2003-06-23 90 degree bent waveguide, waveguide filter element, and high frequency circuit unit

Country Status (1)

Country Link
JP (1) JP2005020077A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074588A (en) * 2008-09-19 2010-04-02 New Japan Radio Co Ltd Waveguide filter
JP2010157827A (en) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp Waveguide structure, antenna apparatus using the same, and vehicle radar apparatus using waveguide structure or antenna apparatus
JP2010226475A (en) * 2009-03-24 2010-10-07 Japan Radio Co Ltd Single-side corrugated filter
WO2010119776A1 (en) * 2009-04-16 2010-10-21 タイコエレクトロニクスジャパン合同会社 Waveguide
JP2010258892A (en) * 2009-04-27 2010-11-11 Japan Radio Co Ltd Waveguide band-pass filter
CN101895262A (en) * 2010-07-16 2010-11-24 中国兵器工业第二○六研究所 Millimeter waveband signal power amplification and synthesis method
JP2011515030A (en) * 2008-01-30 2011-05-12 アプライド マテリアルズ インコーポレイテッド Integrated microwave waveguide with impedance transition
JP2011176726A (en) * 2010-02-25 2011-09-08 Oki Electric Industry Co Ltd Corner waveguide
US10164307B2 (en) 2015-07-23 2018-12-25 Kabushiki Kaisha Toshiba Waveguide bend formed in a metal block and coupled to a board unit to form a wireless device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536955B2 (en) 2008-01-30 2013-09-17 Applied Materials, Inc. Integrated microwave waveguide block with tapered impedance transition sections
JP2011515030A (en) * 2008-01-30 2011-05-12 アプライド マテリアルズ インコーポレイテッド Integrated microwave waveguide with impedance transition
KR101397646B1 (en) * 2008-01-30 2014-05-22 어플라이드 머티어리얼스, 인코포레이티드 Integrated microwave waveguide with impedance transition
JP2010074588A (en) * 2008-09-19 2010-04-02 New Japan Radio Co Ltd Waveguide filter
JP2010157827A (en) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp Waveguide structure, antenna apparatus using the same, and vehicle radar apparatus using waveguide structure or antenna apparatus
JP4679634B2 (en) * 2008-12-26 2011-04-27 三菱電機株式会社 Waveguide structure, antenna device using the same, and on-vehicle radar device using the waveguide structure or antenna device
JP2010226475A (en) * 2009-03-24 2010-10-07 Japan Radio Co Ltd Single-side corrugated filter
WO2010119776A1 (en) * 2009-04-16 2010-10-21 タイコエレクトロニクスジャパン合同会社 Waveguide
KR101661002B1 (en) * 2009-04-16 2016-10-10 타이코 일렉트로닉스 저팬 지.케이. Waveguide
KR20120011842A (en) * 2009-04-16 2012-02-08 타이코 일렉트로닉스 저팬 지.케이. Waveguide
CN102396102A (en) * 2009-04-16 2012-03-28 泰科电子日本合同会社 Waveguide
JP2010258892A (en) * 2009-04-27 2010-11-11 Japan Radio Co Ltd Waveguide band-pass filter
JP2011176726A (en) * 2010-02-25 2011-09-08 Oki Electric Industry Co Ltd Corner waveguide
CN101895262B (en) * 2010-07-16 2013-06-05 中国兵器工业第二〇六研究所 Millimeter waveband signal power amplification and synthesis method
CN101895262A (en) * 2010-07-16 2010-11-24 中国兵器工业第二○六研究所 Millimeter waveband signal power amplification and synthesis method
US10164307B2 (en) 2015-07-23 2018-12-25 Kabushiki Kaisha Toshiba Waveguide bend formed in a metal block and coupled to a board unit to form a wireless device

Similar Documents

Publication Publication Date Title
US11837787B2 (en) High frequency filter and phased array antenna comprising such a high frequency filter
JP4803172B2 (en) Planar antenna module, triplate type planar array antenna, and triplate line-waveguide converter
JP4988002B2 (en) Wireless communication device
EP2945222A1 (en) A microwave or millimeter wave RF part using pin grid array (PGA) and/or ball grid array (BGA) technologies
US20030122724A1 (en) Planar array antenna
JP3120757B2 (en) Dielectric line device
JPH09107226A (en) Antenna system, its production, and its design method
WO2002058185A1 (en) High frequency circuit element and high frequency circuit module
US6545572B1 (en) Multi-layer line interfacial connector using shielded patch elements
US11303004B2 (en) Microstrip-to-waveguide transition including a substrate integrated waveguide with a 90 degree bend section
US20200266516A1 (en) Transmission line and post-wall waveguide
JP2005020077A (en) 90 degree bent waveguide, waveguide filter element, and high frequency circuit unit
JP2001326506A (en) Array antenna
CN113871880A (en) Coaxial feed microstrip antenna based on strip line
CN103378412A (en) Antenna device
CN113394553B (en) Electronic device
JP2000196344A (en) Antenna device
JPH09246816A (en) Waveguide-microstrip line converter
US7825341B2 (en) Antenna device and shield cover thereof
JP2006081160A (en) Transmission path converter
CN213989196U (en) Antenna assembly and electronic equipment
JPH0722832A (en) Antenna system
JP3286512B2 (en) Antenna device and dielectric unit
JP2002100912A (en) Method for manufacturing waveguide circuit and waveguide circuit
CN117317618A (en) High-efficiency slot antenna subarray based on electromagnetic band gap structure encapsulation and communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807