JP2005017410A - Wavelength conversion laser device - Google Patents

Wavelength conversion laser device Download PDF

Info

Publication number
JP2005017410A
JP2005017410A JP2003178835A JP2003178835A JP2005017410A JP 2005017410 A JP2005017410 A JP 2005017410A JP 2003178835 A JP2003178835 A JP 2003178835A JP 2003178835 A JP2003178835 A JP 2003178835A JP 2005017410 A JP2005017410 A JP 2005017410A
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
harmonic
laser device
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003178835A
Other languages
Japanese (ja)
Other versions
JP4111076B2 (en
Inventor
Kimitada Tojo
公資 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003178835A priority Critical patent/JP4111076B2/en
Priority to US10/848,432 priority patent/US7103075B2/en
Publication of JP2005017410A publication Critical patent/JP2005017410A/en
Application granted granted Critical
Publication of JP4111076B2 publication Critical patent/JP4111076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of a state in which intensity of linearly polarized light, being desired output light, is not properly controlled with a wavelength of fundamental light incident on a wavelength conversion element. <P>SOLUTION: When the fundamental light emitted from an optical resonator consisting of a semiconductor amplifying element 1 and an optical fiber 3 is made incident on the wavelength conversion element 5, the wavelength conversion element 5 emits second harmonic light thereof. A polarizer 52 transmits only an extraordinary ray component of the second harmonic light. A beam splitter 56 makes a part of the extraordinary ray component passed through the polarizer 52 branch and a photometric element 57 measures intensity of the branched extraordinary ray component. A laser control part 60 drives the semiconductor amplifying element 1 based on a signal Sd from the photometric element 57. Even when harmonic light containing extraordinary and ordinary ray components is emitted from the wavelength conversion element, output intensity of the extraordinary ray component is adequately controlled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、波長変換レーザ装置に関し、さらに詳しくは、所望の出力光である直線偏波光の強度を適正に制御できなくなる状態が生じるのを防止した波長変換レーザ装置に関する。
【0002】
【従来の技術】
従来、レーザダイオードと、グレーティング部を内部に形成した光ファイバとを組み合わせ、波長を安定化した半導体レーザモジュールが公知である(例えば、特許文献1参照。)。
また、グレーティング部で波長を固定したレーザ光を波長変換素子で高調波光へと波長変換する技術が公知である(例えば、特許文献2参照。)。
さらに、波長変換素子から出力された高調波光の一部をビームスプリッタで分岐し、分岐した光の強度を検出器で測定し、測定結果に基づき半導体レーザの駆動電流を調整して、レーザ光の出力を制御する技術が公知である(例えば、特許文献3参照。)。
【0003】
【特許文献1】
特許第3120828号公報
【特許文献2】
特許第3223648号公報
【特許文献3】
特開2000−138405号公報
【0004】
【発明が解決しようとする課題】
本願発明者は、半導体レーザで赤色から近赤外域のレーザ光を発振し、グレーティング部を内部に形成した光ファイバを用いて波長を安定化させ、光ファイバから出たレーザ光を基本波として非線形光学結晶に周期的分極反転構造を形成した波長変換素子で第2高調波を発生させ、近紫外域または可視域のレーザ光を得る波長変換レーザ装置を開発してきた。そして、バイオエンジニアリング分野や計測分野では直線偏波が求められることが多いため、異常光の基本波に対して異常光の第2高調波を発生させるように波長変換素子の結晶軸と偏波の方向を配置して、直線偏光の第2高調波を発生させていた。また、波長変換素子から出力された高調波光の一部をビームスプリッタで分岐し、分岐した光の強度を検出器で測定し、測定結果に基づき半導体レーザの駆動電流を調整して、出力光の強度を制御していた。
しかし、基本波の波長によっては、所望の出力光である直線偏波光の強度を適正に制御できなくなる状態が生じる問題点があった。
そこで、本発明の目的は、所望の出力光である直線偏波光の強度を適正に制御できなくなる状態が生じるのを防止した波長変換レーザ装置を提供することにある。
【0005】
【課題を解決するための手段】
第1の観点では、本発明は、半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出射する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記高調波光の異常光成分のみを透過する偏光子と、該偏光子を透過した前記異常光成分の一部を分岐させる光分岐手段と、分岐した前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき分岐した前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置を提供する。
【0006】
本願発明者が鋭意研究したところ、非線形光学結晶に周期的分極反転構造を形成した波長変換素子で異常光の第2高調波と同時に常光の第2高調波も発生しうることが判った。それを次に説明する。
周期的分極反転構造は、結晶の自発分極を疑似位相整合条件を満たすように周期的に反転させた構造である(例えば、“J. A. Armstrong et. al, Phys. Rev., 127, p1918, 1962年”、“栗村, 固体物理29, No. 1, p75, 1994年”等参照。)。
疑似位相整合条件は、分極反転周期Λが、次式を満たすことである。
Λ=2m×λ/4{n(2ω)−n(ω)} …(1)
ここで、m=1,2,3,…、、n(ω)は基本波の屈折率、n(2ω)は第2高調波の屈折率である。
【0007】
通常、変換効率が(1/m)に比例することから、m=1が用いられる。また、例えばTEモードで伝播する異常光の基本波TE(ω)をTEモードで伝播する異常光の第2高調波TE(2ω)に波長変換する場合、屈折率n(ω),n(2ω)として、異常光の屈折率ne(ω),ne(2ω)が用いられる。
図4の(a)に、この場合の基本波TE(ω)の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示す。なお、波長変換素子として、周期的分極反転構造を有するMgO:LiNbOを用いている。
【0008】
次に、m=1で、例えばTEモードで伝播する異常光の基本波TE(ω)をTMモードで伝播する常光の第2高調波TM(2ω)に波長変換する場合、(1)式で、m=1、屈折率n(ω),n(2ω)としてそれぞれ異常光の屈折率ne(ω),常光の第2高調波の屈折率no(2ω)を用いればよい。
図4の(b)に、この場合の基本波TE(ω)の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示す。
【0009】
次に、m=2で、例えばTEモードで伝播する異常光の基本波TE(ω)をTMモードで伝播する常光の第2高調波TM(2ω)に波長変換する場合、(1)式で、m=2、屈折率n(ω),n(2ω)として異常光の屈折率ne(ω),常光の第2高調波の屈折率no(2ω)を用いればよい。
図4の(c)に、この場合の基本波TE(ω)の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示す。
【0010】
図4から判るように、波長変換素子の分極反転周期Λが5.3[μm]付近であって且つ基本波TE(ω)の波長λが980[nm]付近に、(a)と(c)とが交差するポイントPがある。このことは、TEモードで伝播する異常光の基本波TE(ω)が、m=1で異常光の第2高調波TE(2ω)に波長変換されるのと同時に、m=2で常光の第2高調波TM(2ω)に波長変換されることを意味している。
なお、m=2の疑似位相整合時には、分極反転周期中の分極反転部と非反転部との光軸方向の長さの比(デューティ比)が1のときは、第2高調波は生じない(前出、”栗村,固体物理”参照。)のであるが、実際にはデューティ比を厳密に1にして分極反転構造を作成することは困難であるため、上に述べたようなことが生じるのである。
また、ポイントPは、波長変換素子の屈折率の微妙なばらつきや、分極反転周期や導波路構造の不均一性によって、ある程度の幅を持ったものとなる。また、波長変換素子の温度変化によっても変動する。
【0011】
また、本願発明者が鋭意研究したところ、波長変換素子の温度変化に対して、出力光に含まれる異常光成分の変化と常光成分の変化とが異なることを確認した。それを次に説明する。
すなわち、図5に示すように、980[nm]の基本波を波長変換した場合490[nm]の出力光に含まれる異常光成分P(2ωe)は、24℃付近に最大ピークをもつ曲線で変化した。他方、出力光に含まれる常光成分P(2ωo)は、温度が上がるほど小さくなった。
つまり、波長変換素子の温度変動によって、異常光成分と常光成分の強度が変動するだけでなく、偏光比すなわち異常光成分と常光成分の比も変動することが判った。
しかし、一般にビームスプリッタは偏光性を有するため、偏光比が変動すると、ビームスプリッタにおける反射光と透過光の強度比が変動する。従って、反射光を基に出力光の制御を行っても、適正な制御はできなくなる。
【0012】
かくして、出力光の一部をビームスプリッタなどの光分岐素子で分岐し、分岐した光の強度を検出器で測定し、測定結果に基づき半導体レーザの駆動電流を調整して、レーザ光の出力を制御した場合、上記の図4,図5の例では、波長変換素子の分極反転周期Λが5.3[μm]付近であって且つ基本波の波長が980[nm]付近になると、異常光成分と常光成分とが出力光に含まれることになり、常光成分の影響を受けて、所望の出力光である異常光の強度を一定に制御できなくなる状態が生じる。
そこで、上記第1の観点による波長変換レーザ装置では、波長変換素子から出射した高調波の異常光成分のみを偏光子によって透過し出力すると共に、異常光成分の一部を分岐し強度を測定して出力を制御するようにした。これにより、波長変換素子から異常光成分と常光成分とが出力されても、所望の出力光である異常光の強度を一定に制御できなくなる状態が生じるのを防止できる。
【0013】
第2の観点では、本発明は、上記構成の波長変換レーザ装置において、前記波長変換素子から出射された前記高調波光のビーム形状を整形するビーム整形プリズムを含み、前記偏光子と該ビーム整形プリズムとは一体に構成されていることを特徴とする波長変換レーザ装置を提供する。
上記第2の観点による波長変換レーザ装置では、例えばビーム整形プリズムの傾斜面に偏光膜を施すことにより、偏光子とビーム整形プリズムとを一体に構成する。これにより、偏光子とビーム整形プリズムとを別体に構成するよりも、構成を単純化できる。
【0014】
第3の観点では、本発明は、半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出力する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記高調波光の一部を分岐させる光分岐手段と、分岐した前記高調波光の異常光成分のみを透過する偏光子と、前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置を提供する。
上記第3の観点による波長変換レーザ装置では、波長変換素子から出射した高調波の異常光成分のみを偏光子によって透過し、その強度を測定して出力を制御するようにした。これにより、波長変換素子から異常光成分と常光成分とが出力されても、所望の出力光である異常光の強度を一定に制御できなくなる状態が生じるのを防止できる。
【0015】
【発明の実施の形態】
以下、図に示す実施形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
【0016】
−第1の実施形態−
図1は、第1の実施形態にかかる波長変換レーザ装置100を示す構成説明図である。
この波長変換レーザ装置100は、光反射面1aと光出射面1bとこれらの面で挟まれた領域に電流を注入することによりレーザ光を発生する半導体光増幅素子1と、半導体光増幅素子1が載置される載置板33と、載置板33を介して半導体光増幅素子1を温度制御するためのペルチエ素子34と、半導体光増幅素子1で発生したレーザ光を集光するレンズ2と、内部にグレーティング部6を形成した光ファイバ3と、光ファイバ3から出射した光を集光するレンズ4と、波長変換素子5を含みレンズ4を介して入射された光の第2高調波光を出力する波長変換部50と、グレーティング部6を挟む2カ所で光ファイバ3を保持する第1固定部14及び第2固定部15を有するグレーティング部伸張機構20と、これらを格納する筐体10と、グレーティング部6の温度Tiを検知するための感温素子31と、波長変換部50内の温度Tcを検知するための感温素子32と、波長変換部50に入射する光の波長帯域に波長変換部50の変換可能波長帯域が適合するように温度Tiに応じて温度Tcを制御する温度制御部40と、レーザ制御部60とを備えている。
【0017】
半導体光増幅素子1は、例えば波長が975[nm]〜1015[nm]の範囲の光を発生し増幅する。光反射面1aには発生した光に対して高反射率となるコーティングが施され、光出射面1bには発生した光に対して低反射率となるコーティングが施されている。
【0018】
光ファイバ3の入射側の端面3aは、半導体光増幅素子1から出射した光がより多く入射するように、テーパ状またはくさび状に加工されていることが好ましい。この場合、レンズ2はなくてもよい。
【0019】
グレーティング部6は、光ファイバ3の一部に屈折率が周期的に変動するような加工を施して形成されている。例えば、エキシマレーザ等の紫外レーザをビームスプリッタで2光束に分け、異なる光路を通した後、光ファイバ上に重ね合わせて照射し、干渉縞を発生させ、紫外線強度に応じて生じる光ファイバのフォトリフラクティブ効果により、干渉縞と同じ間隔で周期的に屈折率を変動させることにより形成されている。グレーティング部6の周期,長さを適宜設定することにより、帯域幅や中心波長および反射率を自由に設定できる。
【0020】
グレーティング部6は、ある波長帯域の光のみ反射する。例えば、975[nm]〜1015[nm]の間に中心波長λiを持ち、約0.5[nm]の帯域幅を持つ光のみを反射する。帯域幅は、グレーティング部6の長さで決まり、中心波長λiは、屈折率が変動する周期をグレーティング部伸張機構20で調節することで調整できる。
【0021】
グレーティング部伸張機構20は、ベース21と、そのベース21上をスライドしうる移動ナット22と、その移動ナット22に螺合しているネジ棒23と、そのネジ棒23を手動または工具を用いて回転させうる操作部24とを具備している。そして、第1固定部14はベース21に設けてあり、第2固定部15は移動ナット22に設けてある。第1固定部14および第2固定部15は、接着剤または半田付けなどにより、光ファイバ3を固定的に保持している。
【0022】
操作部24を回してネジ棒23を回すと、移動ナット22がベース21上をスライドし、第1固定部14と第2固定部15の間隔が変わる。これにより、グレーティング部6が伸縮し、屈折率が変動する周期が変わる。これにより、光ファイバ3から波長変換素子5へと出射する光を、波長変換素子5の波長変換可能帯域に合わせることが出来る。
【0023】
半導体光増幅素子1とグレーティング部6とで光共振器が構成される。すなわち、半導体光増幅素子1を出射した光は、レンズ2で集光され、光ファイバ3の入射側端面3aに入射される。光ファイバ3に入射した光は、グレーティング部6で決定される波長帯域の光が反射され、半導体光増幅素子1へ戻り、半導体光増幅素子1で増幅され、再び半導体光増幅素子1を出射し、光ファイバ3に入射する。これが繰り返されることにより、グレーティング部6で決定される波長帯域の光が光ファイバ3の出射側端面3bから出射される。端面3bは、反射戻り光を抑止するため、例えば8°に傾斜して研磨されている。また、端面3bは、反射防止膜を施すことが好ましい。
【0024】
光ファイバ3の出射側端面3bから出射された光は、レンズ4で波長変換部50内の波長変換素子5の端面5aに集光される。レンズ4には、反射防止膜が施されている。
【0025】
波長変換素子5は、例えば、LiNbO,MgO:LiNbO,LiTaO,MgO:LiTaO,KNbO,KTiOPO、あるいはこれらに分極反転処理を施したものに、光導波路を形成したものである。波長変換素子5は、例えば波長が975[nm]〜1015[nm]の光が入射することにより、その第2高調波である波長が487.5[nm]〜507.5[nm]の光を発生する。
【0026】
感温素子31で検知した温度は、筐体10内のグレーティング部6の近傍の温度であるが、グレーティング部6の温度Tiとみなす。
感温素子32で検知した温度は、波長変換部50の内部空間の温度であるが、波長変換素子5の温度Tcとみなす。
感温素子31および32は、例えばサーミスタである。
【0027】
温度制御部40は、ペルチエ素子41と、グレーティング部6の温度Tiを電圧Viに変換する変換回路42と、波長変換素子5の温度Tcを電圧Vcに変換する変換回路43と、電圧Viに基準電圧Voを加算した電圧Vsを出力する加算回路44と、電圧Vsと電圧Vcの差に基づいてペルチエ素子41の駆動電流Ipを出力する駆動回路45とを有している。
そこで、次の関係がある。
Vi=A1・Ti …(2)
Vc=A2・Tc …(3)
Vs=Vi+Vo …(4)
Ip=A3・(Vs−Vc) …(5)
なお、A1,A2,A3は、変換係数である。
【0028】
また、グレーティング部6の温度Tiおよび波長変換素子5の温度Tcが共に基準温度Toの時に、光ファイバ3から波長変換素子5に入射する基本波の波長帯域の中心波長λioと波長変換素子5で波長変換可能な波長帯域の中心波長λcoとが一致するなら、(1)〜(4)式で、Ti=Tc=To,Ip=0となるから、整理すれば、次の関係がある。
0=A3・(A1・To+Vo−A2・To) …(6)
【0029】
図2は、温度制御部40の制御ループを示すブロック図である。
ブロックB1は、変換回路42,変換回路43,加算回路44,駆動回路45の変換関数を表している。この変換関数は、(2)〜(6)式より導くことが出来る。
ブロックB2は、ペルチエ素子41における電流−温度変換関数を表している。この電流−温度変換関数は、A4を変換係数として、次式で表されるものとする。
Tc=A4・Ip …(7)
【0030】
(2)〜(7)式より、次式が導かれる。
ΔTc=k・ΔTi …(8)
ただし、
ΔTc=Tc−To …(9)
ΔTi=Ti−To …(10)
k=A1・A3・A4/(1+A2・A3・A4) …(11)
とする。
【0031】
ここで、光ファイバ3から波長変換素子5に入射する基本波の波長帯域の温度係数がδλi[nm/℃]であり、波長変換素子5の変換可能波長帯域の温度係数がδλc[nm/℃]であるとき、
k=δλi/δλc
又は、
k≒δλi/δλc
が成立するように、変換係数A1〜A4を定める。
例えば、δλi=0.01[nm/℃],δλc=0.06[nm/℃]であれば、
k=1/6
又は、
k=0.1〜0.2
が成立するように、変換係数A1〜A4を定める。
【0032】
このように温度Tiに応じて温度Tcが制御されているため、温度Tiにおけるグレーティング部6の反射波長帯域に、温度Tcにおける波長変換素子5の変換可能波長帯域が常に適合している。
【0033】
図1に戻り、波長変換部50は、入射光(基本波)の第2高調波光を出力する波長変換素子5と、出力された第2高調波光をコリメートするレンズ51と、レンズ51から出射した第2高調波から異常光成分のみを透過させる偏光子52と、偏光子52から出射した光のビーム形状を楕円形から円形に整形するプリズム53および54と、第2高調波成分のみを透過し基本波成分を吸収または反射するフィルタ55と、フィルタ55から出射した光の一部を分岐し他を透過するビームスプリッタ56と、分岐した光の強度を表す測光信号Sdを出力する測光素子57と、これらを格納した筐体11と、筐体11内(特に、波長変換素子5)を温度制御するためのペルチエ素子41とを具備している。
【0034】
波長変換素子5の入射側端面5aおよび出射側端面5bは、反射戻り光を抑制する観点から、例えば10°に傾斜して研磨されている。端面5aおよび5bは、反射防止膜が施されていることが好ましい。
【0035】
プリズム53および54は、20°〜45°の頂角を有するくさび形のプリズムのペアである。プリズム53および54の取り付け角度を独立に調整することにより、波長変換素子5の導波路の個体差による楕円率のばらつきを補正し、出射光のビーム形状を円形に出来る。
【0036】
構造を単純にする観点から、偏光子52を、プリズム53または54と一体に構成してもよい。例えば、偏光子52を備える代わりに、プリズム53または54の少なくとも1つの面に偏光膜を形成する。偏光膜は、プリズム53,54の傾斜面が若干の偏光性を有することから、レーザ光が浅い角度で入射する面、例えばプリズム53の第1面に施すのが効果的である。
【0037】
測光素子57は、例えば、GaAsP系のフォトダイオードである。
【0038】
レーザ制御部60は、測光素子57からの測光信号Sdに基づき、測光素子57に入射する光の強度が所定値になるように駆動電流Idを出力して、半導体光増幅素子1を駆動する。こうして、波長変換レーザ装置100から出力される第2高調波の異常光成分の強度が適正に制御される。
【0039】
第1の実施形態にかかる波長変換レーザ装置100によれば、バイオエンジニアリング分野や計測分野で求められる異常光成分のみの直線偏光を出力することが出来る。また、常光成分に影響されずに、出力を適正に制御することが出来る。
【0040】
−第2の実施形態−
図4は、第2の実施形態にかかる波長変換レーザ装置200を示す構成説明図である。
この波長変換レーザ装置200は、レンズ51とプリズム53の間に偏光子が挿入されておらず、その代わりに、ビームスプリッタ56と測光素子57の間に偏光子58が挿入されている他は、第1の実施形態にかかる波長変換レーザ装置100と同様の構成である。
【0041】
この波長変換レーザ装置200では、ビームスプリッタ56で分岐された光の異常光成分のみが、偏光子58を透過して、測光素子57に到達する。このため、異常光成分のみによって出力が制御される。
【0042】
第2の実施形態にかかる波長変換レーザ装置200によれば、出力光には異常光成分と常光成分とが含まれるが、バイオエンジニアリング分野や計測分野で求められる異常光成分の出力強度は適正に制御できる。また、偏光子による出力ロスや収差を生じない利点がある。
【0043】
【発明の効果】
本発明の波長変換レーザ装置によれば、波長変換素子から異常光成分と常光成分とを含む高調波光が出射されても、バイオエンジニアリング分野や計測分野で求められる異常光成分の出力強度を適正に制御できる。
【図面の簡単な説明】
【図1】第1の実施形態にかかる波長変換レーザ装置100を示す構成説明図である。
【図2】第1の実施形態にかかる温度制御部の制御ループを示すブロック図である。
【図3】第2の実施形態にかかる波長変換レーザ装置200を示す構成説明図である。
【図4】基本波の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示すグラフである。
【図5】第2高調波出力に含まれる異常光成分および常光成分の温度変化を示したグラフである。
【符号の説明】
1 半導体光増幅素子
2,4,51 レンズ
3 光ファイバ
5 波長変換素子
6 グレーティング部
10,11 筐体
20 グレーティング部伸張機構
31,32 感温素子
34,41 ペルチエ素子
40 温度制御部
50 波長変換部
52,58 偏光子
53,54 プリズム
55 フィルタ
56 ビームスプリッタ
57 測光素子
60 レーザ制御部
100,200 波長変換レーザ装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength conversion laser device, and more particularly to a wavelength conversion laser device that prevents a situation in which the intensity of linearly polarized light, which is desired output light, cannot be properly controlled.
[0002]
[Prior art]
Conventionally, a semiconductor laser module in which a laser diode and an optical fiber having a grating portion formed therein are combined to stabilize the wavelength is known (see, for example, Patent Document 1).
Further, a technique for converting the wavelength of laser light whose wavelength is fixed by a grating portion into harmonic light by a wavelength conversion element is known (for example, see Patent Document 2).
Further, a part of the harmonic light output from the wavelength conversion element is branched by a beam splitter, the intensity of the branched light is measured by a detector, and the driving current of the semiconductor laser is adjusted based on the measurement result, and the laser light A technique for controlling the output is known (for example, see Patent Document 3).
[0003]
[Patent Document 1]
Japanese Patent No. 3120828 [Patent Document 2]
Japanese Patent No. 3223648 [Patent Document 3]
JP 2000-138405 A [0004]
[Problems to be solved by the invention]
The inventor of the present application oscillates laser light from the red to the near infrared region with a semiconductor laser, stabilizes the wavelength by using an optical fiber in which a grating part is formed, and nonlinearly uses the laser light emitted from the optical fiber as a fundamental wave. A wavelength conversion laser device has been developed in which a second harmonic is generated by a wavelength conversion element in which a periodically poled structure is formed in an optical crystal to obtain near-ultraviolet or visible laser light. In the bioengineering field and measurement field, linear polarization is often required, so that the crystal axis of the wavelength conversion element and the polarization of the wavelength conversion element are generated so as to generate the second harmonic of the abnormal light with respect to the fundamental wave of the abnormal light. The direction was arranged to generate the second harmonic of linearly polarized light. In addition, a part of the harmonic light output from the wavelength conversion element is branched by a beam splitter, the intensity of the branched light is measured by a detector, the semiconductor laser drive current is adjusted based on the measurement result, and the output light The intensity was controlled.
However, there is a problem that depending on the wavelength of the fundamental wave, the intensity of linearly polarized light, which is desired output light, cannot be properly controlled.
Accordingly, an object of the present invention is to provide a wavelength conversion laser device that prevents a situation in which the intensity of linearly polarized light, which is desired output light, cannot be properly controlled.
[0005]
[Means for Solving the Problems]
In a first aspect, the present invention provides a semiconductor optical amplifying element, an optical fiber having a grating portion formed therein, and light emitted from an optical resonator composed of the semiconductor optical amplifying element and the optical fiber. A wavelength conversion element in which a periodically poled structure is formed in a nonlinear optical crystal that emits harmonic light of the incident light as light, a polarizer that transmits only the extraordinary light component of the harmonic light, and the light that passes through the polarizer Light branching means for branching a part of the extraordinary light component, photometry means for measuring the intensity of the extraordinary light component branched, and intensity of the extraordinary light component branched based on the measurement result of the photometry means becomes a predetermined value Thus, there is provided a wavelength conversion laser device comprising control means for driving the semiconductor optical amplification element.
[0006]
As a result of intensive studies by the inventor of the present application, it has been found that a second harmonic of ordinary light can be generated simultaneously with the second harmonic of extraordinary light in a wavelength conversion element in which a periodically poled structure is formed in a nonlinear optical crystal. This will be described next.
The periodic domain-inverted structure is a structure in which the spontaneous polarization of the crystal is periodically inverted so as to satisfy the quasi-phase matching condition (for example, “JA Armstrong et. Al, Phys. Rev., 127, p1918). , 1962 "," Kurimura, Solid Physics 29, No. 1, p75, 1994 ").
The quasi phase matching condition is that the polarization inversion period Λ satisfies the following equation.
Λ = 2m × λ / 4 {n (2ω) −n (ω)} (1)
Here, m = 1, 2, 3,..., N (ω) is the refractive index of the fundamental wave, and n (2ω) is the refractive index of the second harmonic.
[0007]
Usually, m = 1 is used because the conversion efficiency is proportional to (1 / m) 2 . For example, when the wavelength of the fundamental wave TE (ω) of the extraordinary light propagating in the TE mode is converted to the second harmonic TE (2ω) of the extraordinary light propagating in the TE mode, the refractive indexes n (ω) and n (2ω ), The refractive indexes ne (ω) and ne (2ω) of extraordinary light are used.
FIG. 4A shows the relationship between the wavelength λ of the fundamental wave TE (ω) and the polarization inversion period Λ satisfying the quasi-phase matching condition in this case. Note that MgO: LiNbO 3 having a periodically poled structure is used as the wavelength conversion element.
[0008]
Next, when m = 1, for example, when the wavelength of the fundamental wave TE (ω) of extraordinary light propagating in the TE mode is converted to the second harmonic TM (2ω) of ordinary light propagating in the TM mode, , M = 1, and refractive indexes n (ω) and n (2ω) may be the refractive index ne (ω) of extraordinary light and the refractive index no (2ω) of the second harmonic of ordinary light, respectively.
FIG. 4B shows the relationship between the wavelength λ of the fundamental wave TE (ω) and the polarization inversion period Λ satisfying the quasi phase matching condition in this case.
[0009]
Next, when m = 2, for example, when the wavelength of the fundamental wave TE (ω) of extraordinary light propagating in the TE mode is converted into the second harmonic TM (2ω) of ordinary light propagating in the TM mode, , M = 2, and the refractive indexes n (ω) and n (2ω) may be the refractive index ne (ω) of extraordinary light and the refractive index no (2ω) of the second harmonic of ordinary light.
FIG. 4C shows the relationship between the wavelength λ of the fundamental wave TE (ω) and the polarization inversion period Λ satisfying the quasi phase matching condition in this case.
[0010]
As can be seen from FIG. 4, when the polarization inversion period Λ of the wavelength conversion element is around 5.3 [μm] and the wavelength λ of the fundamental wave TE (ω) is around 980 [nm], (a) and (c There is a point P where) intersects. This is because the fundamental wave TE (ω) of the extraordinary light propagating in the TE mode is wavelength-converted to the second harmonic TE (2ω) of the extraordinary light at m = 1, and at the same time, the fundamental light TE (ω) at m = 2. It means that the wavelength is converted to the second harmonic TM (2ω).
In addition, at the time of m = 2 pseudo phase matching, when the ratio of the length in the optical axis direction (duty ratio) between the polarization inversion part and the non-inversion part in the polarization inversion period is 1, no second harmonic is generated. (See “Kurimura, Solid State Physics” above.) However, in reality, it is difficult to create a domain-inverted structure with a duty ratio of exactly 1, so the above-mentioned problem occurs. It is.
Further, the point P has a certain width due to subtle variations in the refractive index of the wavelength conversion element, polarization inversion period, and non-uniformity of the waveguide structure. Moreover, it fluctuates also with the temperature change of a wavelength conversion element.
[0011]
In addition, the inventors of the present application diligently studied and confirmed that the change of the extraordinary light component contained in the output light is different from the change of the ordinary light component with respect to the temperature change of the wavelength conversion element. This will be described next.
That is, as shown in FIG. 5, when the fundamental wave of 980 [nm] is wavelength-converted, the extraordinary light component P (2ωe) included in the output light of 490 [nm] is a curve having a maximum peak around 24 ° C. changed. On the other hand, the ordinary light component P (2ωo) contained in the output light became smaller as the temperature increased.
That is, it was found that not only the intensity of the extraordinary light component and the ordinary light component fluctuates due to the temperature fluctuation of the wavelength conversion element, but also the polarization ratio, that is, the ratio of the extraordinary light component to the ordinary light component.
However, since the beam splitter generally has a polarization property, when the polarization ratio changes, the intensity ratio of the reflected light and the transmitted light in the beam splitter changes. Therefore, even if the output light is controlled based on the reflected light, proper control cannot be performed.
[0012]
Thus, a part of the output light is branched by an optical branching element such as a beam splitter, the intensity of the branched light is measured by a detector, and the drive current of the semiconductor laser is adjusted based on the measurement result, and the output of the laser light is adjusted. In the example of FIGS. 4 and 5 described above, when the polarization inversion period Λ of the wavelength conversion element is around 5.3 [μm] and the wavelength of the fundamental wave is around 980 [nm], The component and the ordinary light component are included in the output light, and under the influence of the ordinary light component, a state occurs in which the intensity of the abnormal light that is the desired output light cannot be controlled to be constant.
Therefore, in the wavelength conversion laser device according to the first aspect, only the extraordinary light component of the harmonics emitted from the wavelength conversion element is transmitted and output by the polarizer, and a part of the extraordinary light component is branched to measure the intensity. To control the output. Thereby, even if the extraordinary light component and the ordinary light component are output from the wavelength conversion element, it is possible to prevent a situation in which the intensity of the extraordinary light that is the desired output light cannot be controlled to be constant.
[0013]
In a second aspect, the present invention provides the wavelength conversion laser device having the above-described configuration, including a beam shaping prism that shapes a beam shape of the harmonic light emitted from the wavelength conversion element, and the polarizer and the beam shaping prism. Provides a wavelength conversion laser device characterized by being integrally formed.
In the wavelength conversion laser device according to the second aspect, for example, a polarizer and a beam shaping prism are integrally formed by providing a polarizing film on the inclined surface of the beam shaping prism. Thereby, a structure can be simplified rather than comprising a polarizer and a beam shaping prism separately.
[0014]
In a third aspect, the present invention provides a semiconductor optical amplifying element, an optical fiber having a grating portion formed therein, and light emitted from an optical resonator composed of the semiconductor optical amplifying element and the optical fiber. A wavelength conversion element in which a periodically poled structure is formed in a nonlinear optical crystal that outputs harmonic light of the incident light as light, light branching means for branching a part of the harmonic light, and abnormal light of the branched harmonic light A polarizer that transmits only the component; a photometric means for measuring the intensity of the extraordinary light component; and driving the semiconductor optical amplification element so that the intensity of the extraordinary light component becomes a predetermined value based on a measurement result of the photometric means There is provided a wavelength conversion laser device characterized by comprising a control means.
In the wavelength conversion laser device according to the third aspect, only the extraordinary light component of the harmonics emitted from the wavelength conversion element is transmitted by the polarizer, and the output is controlled by measuring the intensity thereof. Thereby, even if the extraordinary light component and the ordinary light component are output from the wavelength conversion element, it is possible to prevent a situation in which the intensity of the extraordinary light that is the desired output light cannot be controlled to be constant.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
[0016]
-First embodiment-
FIG. 1 is an explanatory diagram illustrating a wavelength conversion laser device 100 according to the first embodiment.
This wavelength conversion laser device 100 includes a semiconductor optical amplification element 1 that generates laser light by injecting current into a light reflection surface 1a, a light emission surface 1b, and a region sandwiched between these surfaces, and a semiconductor optical amplification device 1 , A Peltier element 34 for controlling the temperature of the semiconductor optical amplifying element 1 via the mounting board 33, and a lens 2 for condensing the laser light generated by the semiconductor optical amplifying element 1. And an optical fiber 3 having a grating portion 6 formed therein, a lens 4 for condensing the light emitted from the optical fiber 3, and a second harmonic light of light incident through the lens 4 including the wavelength conversion element 5. A wavelength converting unit 50 that outputs the optical fiber 3, a grating unit extending mechanism 20 having a first fixing unit 14 and a second fixing unit 15 that hold the optical fiber 3 at two positions sandwiching the grating unit 6, and a housing 10 that stores these. The temperature sensing element 31 for detecting the temperature Ti of the grating section 6, the temperature sensing element 32 for detecting the temperature Tc in the wavelength conversion section 50, and the wavelength in the wavelength band of the light incident on the wavelength conversion section 50 A temperature control unit 40 that controls the temperature Tc according to the temperature Ti and a laser control unit 60 are provided so that the convertible wavelength band of the conversion unit 50 is adapted.
[0017]
The semiconductor optical amplifying element 1 generates and amplifies light having a wavelength in the range of 975 [nm] to 1015 [nm], for example. The light reflecting surface 1a is provided with a coating having a high reflectance with respect to the generated light, and the light emitting surface 1b is provided with a coating having a low reflectance with respect to the generated light.
[0018]
The end surface 3a on the incident side of the optical fiber 3 is preferably processed into a taper shape or a wedge shape so that more light emitted from the semiconductor optical amplifier element 1 enters. In this case, the lens 2 may not be provided.
[0019]
The grating portion 6 is formed by processing a part of the optical fiber 3 so that the refractive index periodically varies. For example, an ultraviolet laser such as an excimer laser is split into two light beams by a beam splitter, passes through different optical paths, and is superimposed and irradiated on an optical fiber to generate interference fringes, and an optical fiber photo produced according to the ultraviolet intensity. It is formed by periodically changing the refractive index at the same interval as the interference fringes by the refraction effect. By appropriately setting the period and length of the grating section 6, the bandwidth, center wavelength, and reflectance can be set freely.
[0020]
The grating unit 6 reflects only light in a certain wavelength band. For example, only light having a center wavelength λi between 975 [nm] and 1015 [nm] and having a bandwidth of about 0.5 [nm] is reflected. The bandwidth is determined by the length of the grating portion 6, and the center wavelength λi can be adjusted by adjusting the period in which the refractive index varies by the grating portion extension mechanism 20.
[0021]
The grating portion extending mechanism 20 includes a base 21, a moving nut 22 that can slide on the base 21, a screw rod 23 that is screwed to the moving nut 22, and the screw rod 23 manually or using a tool. And an operation unit 24 that can be rotated. The first fixed portion 14 is provided on the base 21, and the second fixed portion 15 is provided on the moving nut 22. The 1st fixing | fixed part 14 and the 2nd fixing | fixed part 15 hold | maintain the optical fiber 3 fixedly with an adhesive agent or soldering.
[0022]
When the operating portion 24 is turned and the screw rod 23 is turned, the moving nut 22 slides on the base 21 and the interval between the first fixing portion 14 and the second fixing portion 15 changes. Thereby, the grating part 6 expands and contracts, and the cycle in which the refractive index varies is changed. Thereby, the light emitted from the optical fiber 3 to the wavelength conversion element 5 can be matched with the wavelength convertible band of the wavelength conversion element 5.
[0023]
The semiconductor optical amplifying element 1 and the grating unit 6 constitute an optical resonator. That is, the light emitted from the semiconductor optical amplifying element 1 is collected by the lens 2 and is incident on the incident side end face 3 a of the optical fiber 3. The light incident on the optical fiber 3 is reflected in the wavelength band determined by the grating unit 6, returns to the semiconductor optical amplifier 1, is amplified by the semiconductor optical amplifier 1, and then exits the semiconductor optical amplifier 1 again. , Enters the optical fiber 3. By repeating this, light in the wavelength band determined by the grating section 6 is emitted from the emission side end face 3 b of the optical fiber 3. The end face 3b is polished with an inclination of, for example, 8 ° in order to suppress the reflected return light. The end face 3b is preferably provided with an antireflection film.
[0024]
The light emitted from the emission side end face 3 b of the optical fiber 3 is condensed by the lens 4 onto the end face 5 a of the wavelength conversion element 5 in the wavelength conversion unit 50. The lens 4 is provided with an antireflection film.
[0025]
The wavelength conversion element 5 is, for example, an optical waveguide formed on LiNbO 3 , MgO: LiNbO 3 , LiTaO 3 , MgO: LiTaO 3 , KNbO 3 , KTiOPO 4 , or those subjected to polarization inversion processing. . The wavelength conversion element 5 is, for example, light having a wavelength of 975 [nm] to 1015 [nm] incident thereon, and light having a second harmonic wave having a wavelength of 487.5 [nm] to 507.5 [nm]. Is generated.
[0026]
The temperature detected by the temperature sensing element 31 is a temperature in the vicinity of the grating section 6 in the housing 10, but is regarded as the temperature Ti of the grating section 6.
The temperature detected by the temperature sensing element 32 is the temperature of the internal space of the wavelength conversion unit 50, but is regarded as the temperature Tc of the wavelength conversion element 5.
The temperature sensitive elements 31 and 32 are, for example, thermistors.
[0027]
The temperature control unit 40 includes a Peltier element 41, a conversion circuit 42 that converts the temperature Ti of the grating unit 6 into a voltage Vi, a conversion circuit 43 that converts the temperature Tc of the wavelength conversion element 5 into a voltage Vc, and a reference to the voltage Vi. It has an adder circuit 44 that outputs a voltage Vs obtained by adding the voltage Vo, and a drive circuit 45 that outputs a drive current Ip of the Peltier element 41 based on the difference between the voltage Vs and the voltage Vc.
Therefore, there is the following relationship.
Vi = A1 · Ti (2)
Vc = A2 · Tc (3)
Vs = Vi + Vo (4)
Ip = A3 · (Vs−Vc) (5)
A1, A2, and A3 are conversion coefficients.
[0028]
When the temperature Ti of the grating 6 and the temperature Tc of the wavelength conversion element 5 are both the reference temperature To, the center wavelength λio of the fundamental wavelength band incident from the optical fiber 3 to the wavelength conversion element 5 and the wavelength conversion element 5 If the center wavelength λco of the wavelength band that can be wavelength-matched coincides with Ti (Tc = To, Ip = 0) in the equations (1) to (4), the following relationship can be obtained.
0 = A3 · (A1 · To + Vo−A2 · To) (6)
[0029]
FIG. 2 is a block diagram illustrating a control loop of the temperature control unit 40.
A block B1 represents conversion functions of the conversion circuit 42, the conversion circuit 43, the addition circuit 44, and the drive circuit 45. This conversion function can be derived from equations (2) to (6).
Block B <b> 2 represents a current-temperature conversion function in the Peltier element 41. This current-temperature conversion function is expressed by the following equation using A4 as a conversion coefficient.
Tc = A4 · Ip (7)
[0030]
From the equations (2) to (7), the following equation is derived.
ΔTc = k · ΔTi (8)
However,
ΔTc = Tc−To (9)
ΔTi = Ti−To (10)
k = A1, A3, A4 / (1 + A2, A3, A4) (11)
And
[0031]
Here, the temperature coefficient of the wavelength band of the fundamental wave incident on the wavelength conversion element 5 from the optical fiber 3 is δλi [nm / ° C.], and the temperature coefficient of the convertible wavelength band of the wavelength conversion element 5 is δλc [nm / ° C. ]
k = δλi / δλc
Or
k≈δλi / δλc
The conversion coefficients A1 to A4 are determined so that.
For example, if δλi = 0.01 [nm / ° C.] and δλc = 0.06 [nm / ° C.],
k = 1/6
Or
k = 0.1-0.2
The conversion coefficients A1 to A4 are determined so that.
[0032]
Since the temperature Tc is controlled according to the temperature Ti as described above, the convertible wavelength band of the wavelength conversion element 5 at the temperature Tc always matches the reflection wavelength band of the grating section 6 at the temperature Ti.
[0033]
Returning to FIG. 1, the wavelength converter 50 emits the wavelength conversion element 5 that outputs the second harmonic light of the incident light (fundamental wave), the lens 51 that collimates the output second harmonic light, and the lens 51. A polarizer 52 that transmits only the extraordinary light component from the second harmonic, prisms 53 and 54 that shape the beam shape of light emitted from the polarizer 52 from an ellipse to a circle, and only the second harmonic component are transmitted. A filter 55 that absorbs or reflects the fundamental wave component, a beam splitter 56 that branches part of the light emitted from the filter 55 and transmits the other, and a photometric element 57 that outputs a photometric signal Sd representing the intensity of the branched light The housing 11 in which these are housed, and the Peltier element 41 for controlling the temperature inside the housing 11 (in particular, the wavelength conversion element 5) are provided.
[0034]
The incident side end face 5a and the emission side end face 5b of the wavelength conversion element 5 are polished with an inclination of, for example, 10 ° from the viewpoint of suppressing reflected return light. The end faces 5a and 5b are preferably provided with an antireflection film.
[0035]
The prisms 53 and 54 are a pair of wedge-shaped prisms having apex angles of 20 ° to 45 °. By independently adjusting the mounting angles of the prisms 53 and 54, variations in ellipticity due to individual differences in the waveguide of the wavelength conversion element 5 can be corrected, and the beam shape of the emitted light can be made circular.
[0036]
From the viewpoint of simplifying the structure, the polarizer 52 may be configured integrally with the prism 53 or 54. For example, instead of providing the polarizer 52, a polarizing film is formed on at least one surface of the prism 53 or 54. Since the inclined surfaces of the prisms 53 and 54 have a slight degree of polarization, it is effective to apply the polarizing film to the surface on which the laser light is incident at a shallow angle, for example, the first surface of the prism 53.
[0037]
The photometric element 57 is, for example, a GaAsP photodiode.
[0038]
Based on the photometric signal Sd from the photometric element 57, the laser control unit 60 drives the semiconductor optical amplifying element 1 by outputting a drive current Id so that the intensity of light incident on the photometric element 57 becomes a predetermined value. In this way, the intensity of the extraordinary light component of the second harmonic output from the wavelength conversion laser device 100 is appropriately controlled.
[0039]
According to the wavelength conversion laser device 100 according to the first embodiment, it is possible to output linearly polarized light having only abnormal light components required in the bioengineering field and the measurement field. Further, the output can be appropriately controlled without being affected by the ordinary light component.
[0040]
-Second Embodiment-
FIG. 4 is a configuration explanatory view showing a wavelength conversion laser device 200 according to the second embodiment.
In this wavelength conversion laser device 200, a polarizer is not inserted between the lens 51 and the prism 53, but a polarizer 58 is inserted between the beam splitter 56 and the photometric element 57 instead. The configuration is the same as that of the wavelength conversion laser device 100 according to the first embodiment.
[0041]
In this wavelength conversion laser device 200, only the extraordinary light component of the light branched by the beam splitter 56 passes through the polarizer 58 and reaches the photometric element 57. For this reason, the output is controlled only by the abnormal light component.
[0042]
According to the wavelength conversion laser device 200 according to the second embodiment, the output light includes the extraordinary light component and the ordinary light component, but the output intensity of the extraordinary light component required in the bioengineering field and the measurement field is appropriately set. Can be controlled. Further, there is an advantage that no output loss or aberration occurs due to the polarizer.
[0043]
【The invention's effect】
According to the wavelength conversion laser device of the present invention, even if the harmonic light including the extraordinary light component and the ordinary light component is emitted from the wavelength conversion element, the output intensity of the extraordinary light component required in the bioengineering field and the measurement field is appropriately adjusted. Can be controlled.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing a wavelength conversion laser device 100 according to a first embodiment.
FIG. 2 is a block diagram showing a control loop of a temperature control unit according to the first embodiment.
FIG. 3 is an explanatory diagram showing a configuration of a wavelength conversion laser device 200 according to a second embodiment.
FIG. 4 is a graph showing the relationship between the wavelength λ of the fundamental wave and the polarization inversion period Λ that satisfies the quasi phase matching condition.
FIG. 5 is a graph showing temperature changes of an extraordinary light component and an ordinary light component included in the second harmonic output.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor optical amplification element 2, 4, 51 Lens 3 Optical fiber 5 Wavelength conversion element 6 Grating part 10, 11 Case 20 Grating part expansion | extension mechanism 31, 32 Temperature sensitive element 34, 41 Peltier element 40 Temperature control part 50 Wavelength conversion part 52, 58 Polarizers 53, 54 Prism 55 Filter 56 Beam splitter 57 Photometric element 60 Laser controller 100, 200 Wavelength conversion laser device

Claims (4)

半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出射する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記高調波光の異常光成分のみを透過する偏光子と、該偏光子を透過した前記異常光成分の一部を分岐させる光分岐手段と、分岐した前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき分岐した前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置。A semiconductor optical amplifier, an optical fiber having a grating portion formed therein, and light emitted from an optical resonator composed of the semiconductor optical amplifier and the optical fiber are used as incident light, and harmonic light of the incident light is emitted. A wavelength conversion element having a periodically poled structure formed in a nonlinear optical crystal, a polarizer that transmits only the extraordinary light component of the harmonic light, and light that branches a part of the extraordinary light component that has passed through the polarizer A branching means; a photometric means for measuring the intensity of the branched abnormal light component; and driving the semiconductor optical amplification element so that the intensity of the abnormal light component branched based on a measurement result of the photometric means becomes a predetermined value. A wavelength conversion laser device comprising a control means. 請求項1に記載の波長変換レーザ装置において、前記波長変換素子から出射された前記高調波光のビーム形状を整形するビーム整形プリズムを含み、前記偏光子と該ビーム整形プリズムとは一体に構成されていることを特徴とする波長変換レーザ装置。The wavelength conversion laser device according to claim 1, further comprising a beam shaping prism that shapes a beam shape of the harmonic light emitted from the wavelength conversion element, wherein the polarizer and the beam shaping prism are integrally configured. A wavelength conversion laser device characterized by comprising: 半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出力する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記高調波光の一部を分岐させる光分岐手段と、分岐した前記高調波光の異常光成分のみを透過する偏光子と、前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置。A semiconductor optical amplifier, an optical fiber having a grating portion formed therein, and light emitted from an optical resonator composed of the semiconductor optical amplifier and the optical fiber is used as incident light, and harmonic light of the incident light is output. A wavelength conversion element in which a periodically poled structure is formed in the nonlinear optical crystal, a light branching unit that branches a part of the harmonic light, a polarizer that transmits only the extraordinary light component of the branched harmonic light, and Photometric means for measuring the intensity of the extraordinary light component; and control means for driving the semiconductor optical amplifier so that the intensity of the extraordinary light component becomes a predetermined value based on the measurement result of the photometry means. A wavelength conversion laser device. 請求項1から請求項3のいずれかに記載の波長変換レーザ装置において、前記波長変換素子は、MgOをドープしたLiNbO結晶に周期的分極反転構造を形成したものであることを特徴する波長変換レーザ装置。4. The wavelength conversion laser device according to claim 1, wherein the wavelength conversion element is formed by forming a periodically poled structure in a LiNbO 3 crystal doped with MgO. 5. Laser device.
JP2003178835A 2003-06-18 2003-06-24 Wavelength conversion laser device Expired - Fee Related JP4111076B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003178835A JP4111076B2 (en) 2003-06-24 2003-06-24 Wavelength conversion laser device
US10/848,432 US7103075B2 (en) 2003-06-18 2004-05-18 Solid laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178835A JP4111076B2 (en) 2003-06-24 2003-06-24 Wavelength conversion laser device

Publications (2)

Publication Number Publication Date
JP2005017410A true JP2005017410A (en) 2005-01-20
JP4111076B2 JP4111076B2 (en) 2008-07-02

Family

ID=34180302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178835A Expired - Fee Related JP4111076B2 (en) 2003-06-18 2003-06-24 Wavelength conversion laser device

Country Status (1)

Country Link
JP (1) JP4111076B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133178A1 (en) * 2007-04-18 2008-11-06 Nikon Corporation Wavelength conversion element, wavelength conversion method, phase matching method, and light source device
JP2009058716A (en) * 2007-08-31 2009-03-19 Seiko Epson Corp Illuminating device, monitoring device and image display device
WO2010111795A1 (en) * 2009-04-03 2010-10-07 Exalos Ag Light source, and optical coherence tomography module
JP2011065079A (en) * 2009-09-18 2011-03-31 Shimadzu Corp Wavelength conversion laser device
JP2022549570A (en) * 2019-09-27 2022-11-28 アーエムエス インターナショナル アーゲー Optical device, photonic detector, and method for manufacturing optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733588B (en) 2020-09-11 2021-07-11 財團法人工業技術研究院 Laser processing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133178A1 (en) * 2007-04-18 2008-11-06 Nikon Corporation Wavelength conversion element, wavelength conversion method, phase matching method, and light source device
US8264766B2 (en) 2007-04-18 2012-09-11 Nikon Corporation Wavelength conversion element, wavelength conversion method, phase matching method, and light source device
US8422120B2 (en) 2007-04-18 2013-04-16 Nikon Corporation Wavelength conversion element, wavelength conversion method, phase matching method, and light source device
JP5354501B2 (en) * 2007-04-18 2013-11-27 株式会社ニコン Wavelength conversion element, wavelength conversion method, phase matching method, and light source device
JP2009058716A (en) * 2007-08-31 2009-03-19 Seiko Epson Corp Illuminating device, monitoring device and image display device
WO2010111795A1 (en) * 2009-04-03 2010-10-07 Exalos Ag Light source, and optical coherence tomography module
US8625650B2 (en) 2009-04-03 2014-01-07 Exalos Ag Light source, and optical coherence tomography module
US8971360B2 (en) 2009-04-03 2015-03-03 Exalos Ag Light source, and optical coherence tomography module
JP2011065079A (en) * 2009-09-18 2011-03-31 Shimadzu Corp Wavelength conversion laser device
JP2022549570A (en) * 2019-09-27 2022-11-28 アーエムエス インターナショナル アーゲー Optical device, photonic detector, and method for manufacturing optical device
JP7386328B2 (en) 2019-09-27 2023-11-24 アーエムエス インターナショナル アーゲー Optical device, photonic detector, and method for manufacturing optical device

Also Published As

Publication number Publication date
JP4111076B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP3385898B2 (en) Tunable semiconductor laser light source
US7796324B2 (en) Wavelength converting apparatus and image displaying apparatus
US7826500B2 (en) Fiber laser and optical device
US7518786B2 (en) Power stabilization of semiconductor laser harmonic frequency conversion modules
KR20080055974A (en) Fiber lasers
US7103075B2 (en) Solid laser apparatus
JP4111076B2 (en) Wavelength conversion laser device
JP5324332B2 (en) Optical frequency comb stabilized light source
US20090161700A1 (en) Fiber laser
JP5557601B2 (en) Laser light source adjustment system
JP4470480B2 (en) Wavelength conversion laser device
Henriksson et al. Tandem PPKTP and ZGP OPO for mid-infrared generation
JP4111075B2 (en) Wavelength conversion laser device
JP4559291B2 (en) Interference signal amplifier
JP4748511B2 (en) Optical device
JP3390493B2 (en) Stabilized harmonic generator
RU2811388C1 (en) Method for stabilizing narrow-band sources of non-classical states of light obtained by intra-cavity generation of spontaneous parametric light scattering, and device for its implementation
JP2000114633A (en) Wavelength conversion solid laser device
JPH05188421A (en) Optical wavelength converting device
JP2013258248A (en) Laser light adjustment method, and laser light source device
CN116526279A (en) Ultra-narrow linewidth laser system
JPH11274643A (en) Variable wavelength semiconductor laser light source
JP2007123635A (en) Laser equipment
JP2007156177A (en) Wavelength converting device and laser device
JP2006156887A (en) Wavelength conversion laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4111076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees