JP2005016396A - Catalyst warming-up system of internal combustion engine - Google Patents

Catalyst warming-up system of internal combustion engine Download PDF

Info

Publication number
JP2005016396A
JP2005016396A JP2003181549A JP2003181549A JP2005016396A JP 2005016396 A JP2005016396 A JP 2005016396A JP 2003181549 A JP2003181549 A JP 2003181549A JP 2003181549 A JP2003181549 A JP 2003181549A JP 2005016396 A JP2005016396 A JP 2005016396A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
catalyst
atmospheric pressure
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003181549A
Other languages
Japanese (ja)
Inventor
Norihisa Nakagawa
徳久 中川
Hiroshi Tanaka
比呂志 田中
Yoshiaki Atsumi
善明 渥美
Yasuyuki Takama
康之 高間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003181549A priority Critical patent/JP2005016396A/en
Publication of JP2005016396A publication Critical patent/JP2005016396A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst warming-up system of an internal combustion engine, in which even when atmospheric pressure surrounding the internal combustion engine is reduced, an exhaust-emission catalyst is properly warmed up to suppress discharge of exhaust gas to the outside without being properly purified by the catalyst. <P>SOLUTION: In the exhaust-emission control system of an internal combustion engine having an exhaust-emission control catalyst in a discharge gas passage, an intake-air flow controller for determining an intake-air flow to the engine on the basis of operation condition of the engine, an atmospheric pressure detector for detecting atmospheric pressure, and an intake-air flow correction means (S103-S106) are provided. In warming-up time of the catalyst, the intake-air flow correction means increase an intake-air flow determined by the intake-air controller in correspondence with decrease in the atmospheric pressure detected by the atmospheric-pressure detector. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路に設けられた排気浄化触媒の暖機を行う触媒暖機システムに関する。
【0002】
【従来の技術】
内燃機関、特に希薄燃焼を行う内燃機関から排出される排気に含まれるNOxを浄化するために、NOxを吸蔵し、還元剤の存在下で吸蔵されたNOxを還元する吸蔵還元型NOx触媒(以下、「NOx触媒」という)等の排気浄化触媒が、排気通路に設けられている。しかし、排気浄化触媒がその浄化能力を効率的に発揮するためには、排気浄化触媒の温度が所定の活性温度以上とする必要がある。特に、内燃機関の冷間始動時においては、排気浄化触媒の温度が気温と同程度にまで低下しているため、十分に排気浄化触媒の温度を活性温度まで上昇させなければ、浄化が十分に行われていない排気が外気へ放出されることとなる。
【0003】
そこで、内燃機関における燃料噴射量や点火時期を調整することで、排気浄化触媒に流入する排気温度を上昇させて、排気浄化触媒の温度を活性温度とする技術が知られている。
【0004】
【特許文献1】
特開平2−102337号公報
【特許文献2】
特開平3−78544号公報
【特許文献3】
特開昭63−124865号公報
【特許文献4】
特開平3−57879号公報
【0005】
【発明が解決しようとする課題】
ここで、内燃機関の置かれる環境下において大気圧が減少した場合、例えば、内燃機関を備える車両が高度の低い土地から高い土地へと移動した場合、空気の密度が低下するため、実際に内燃機関へ吸入される空気量が減少し、排気浄化触媒の暖機を十分に行うことが困難となる。そして、排気浄化触媒の暖機が十分でないと、排気の浄化が良好に行われない。
【0006】
本発明は、上記したような問題に鑑みてなされたものであり、内燃機関の置かれる大気圧が減少した場合にも、十分に排気浄化触媒の暖機を行い、排気浄化触媒による浄化が十分に行われていない排気が外気へ放出されることを抑制する内燃機関の触媒暖機システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記した課題を解決するために、内燃機関の置かれる大気圧の変動に着目した。内燃機関の置かれる大気圧が変動すると、内燃機関の燃焼室に吸入される空気の密度が変動し、例えば内燃機関の吸気絞り弁が所定時間、所定開度の状態で開弁しても、実際に内燃機関への吸入空気量が、本来の空気量と異なる量となり、燃焼室での燃焼状態が当初想定していた状態とならず、排気浄化触媒の暖機が十分に行われない虞があるからである。
【0008】
そこで、内燃機関の排気通路に設けられ、排気を浄化する排気浄化触媒の暖機を行う内燃機関の触媒暖機システムにおいて、前記内燃機関の吸気通路に設けられ、該内燃機関の運転状態に基づいて該内燃機関への吸入空気量を決定する吸入空気量制御手段と、大気圧を検出する大気圧検出手段と、前記排気浄化触媒の暖機時において、前記大気圧検出手段によって検出される大気圧が低くなるに従い前記吸入空気量制御手段によって決定される吸入空気量を増量する補正を行う吸入空気量補正手段と、を備える。
【0009】
上記内燃機関においては、吸入空気量に応じた燃料の燃焼が行われるため、吸入空気量が増量するに従い燃焼に供される燃料の量が増量され、排気温度が上昇し、排気通路設けられた排気浄化触媒の温度も次第に上昇する。
【0010】
ここで、吸入空気量制御手段は、排気浄化触媒の暖機条件や内燃機関に要求される機関出力トルク等の運転状態に基づいて、内燃機関への吸入空気量を決定する。即ち、排気浄化触媒の暖機条件や内燃機関の運転状態に基づいて吸入空気量制御手段により内燃機関への吸入空気量が決定され、その吸入空気量に応じた燃料が内燃機関での燃焼に供されることで、排気温度を排気浄化触媒の暖機に必要な温度としたり、内燃機関に要求される機関出力トルクを発揮したりすることが可能となる。
【0011】
しかし、内燃機関へ吸入される空気の密度は、内燃機関の置かれる大気圧によって変動する。即ち、該大気圧が低くなるに従い空気密度が小さくなり、逆に該大気圧が高くなるに従い空気密度は大きくなる。例えば、該内燃機関を備える車両が低地にいる場合と高地にいる場合では、内燃機関へ吸入される空気の密度は異なる。また内燃機関の置かれる気候によっても、内燃機関へ吸入される空気の密度は異なる。従って、排気浄化触媒の暖機条件や内燃機関の運転状態に基づいて吸入空気量制御手段によって決定された吸入空気量であっても、内燃機関の置かれる大気圧によっては、本来必要とされる吸入空気量と異なる虞がある。特に、内燃機関の置かれる大気圧が低くなると、実際の内燃機関への吸入空気量は減少するため、排気温度が低下し、排気浄化触媒の暖機時においては該排気浄化触媒を十分に暖機することが困難となる。
【0012】
そこで、排気浄化触媒の暖機時においては、吸入空気量補正手段によって、内燃機関への吸入空気量を、該内燃機関の置かれる大気圧に基づいて補正することで、本来排気浄化触媒の暖機に必要な排気温度を形成するための吸入空気量とする。即ち、吸入空気量補正手段は、内燃機関の置かれる大気圧が低くなるに従い吸入空気量制御手段によって決定される吸入空気量を増量する補正を行い、内燃機関の置かれる大気圧が高くなるに従い吸入空気量制御手段によって決定される吸入空気量を減量する補正を行うことで、内燃機関の置かれる大気圧の変動の、排気浄化触媒の暖機への影響を抑制する。
【0013】
これにより、内燃機関の置かれる大気圧が減少した場合にも、十分に排気浄化触媒の暖機を行い、排気浄化触媒による浄化が十分に行われていない排気が外気へ放出されることを抑制することが可能となる。
【0014】
また、排気浄化触媒の暖機に際しては、排気浄化触媒の温度に基づいて、内燃機関への吸入空気量を補正することが好ましい。排気浄化触媒の温度が比較的低い場合には排気浄化触媒に流入する排気の温度は高い方が好ましいが、排気浄化触媒の暖機が進行し該暖機が完了する直前においても、同様に高温の排気が流入すると、排気浄化触媒の温度が過度に上昇し、排気浄化触媒が熱劣化する虞が生じる。
【0015】
そこで、先述の内燃機関の触媒暖機システムにおいて、前記排気浄化触媒の温度を推定する触媒温度推定手段を、更に備える。そして、前記吸入空気量補正手段は、前記排気浄化触媒の暖機時において、前記触媒温度推定手段によって推定される該排気浄化触媒の温度が上昇するに従い、前記大気圧検出手段によって検出される大気圧に従って補正された吸入空気量を減量する補正を行う。
【0016】
これによって、内燃機関の置かれる大気圧に加えて、排気浄化触媒の温度にも基づいて、内燃機関への吸入空気量が補正されるため、排気浄化触媒の暖機により適した量の吸入空気が内燃機関へ吸入され、排気浄化触媒の暖機が十分に行われる。そして、更に、排気浄化触媒の過度な温度上昇が回避される。
【0017】
ここで、先述までの内燃機関の触媒暖機システムにおける吸入空気量補正手段として、前記排気浄化触媒の暖機時における前記内燃機関の吸気通路を流れる吸入空気の流量を増量することで該内燃機関への吸入空気量を増量する手段が挙げられる。即ち、吸気通路を流れる吸入空気の流量を増量することで、単位時間あたりの内燃機関の燃焼室への吸入空気量を増量し、最終的に内燃機関の燃焼室へ吸入される実際の吸入空気量を本来あるべき吸入空気量とすることで、内燃機関の置かれる大気圧の低下による空気密度の低下を補償する。
【0018】
例えば、吸気通路に設けられた吸気絞り弁の開度を調整することで吸気通路の流量が調整される場合には、吸気空気量制御手段によって決定される吸入空気量に対応した吸気絞り弁の開度よりも更に開度を大きくすることで、吸気通路を流れる吸気の流量を増量する。また、吸気絞り弁と並行して、アイドル回転数制御装置(以下、「ISC」という)設けられている場合には、ISCにおけるISCバルブの開度を、本来あるべき開度よりも更に開度を大きくすることで、結果的に吸気通路を流れる吸気の流量を増量する。
【0019】
更に、吸入空気量補正手段として、前記排気浄化触媒の暖機時における前記内燃機関の機関回転速度を増加することで該内燃機関への吸入空気量を増量する手段が挙げられる。即ち、内燃機関の機関回転速度を増加することで、単位時間あたりの内燃機関の燃焼室への吸入空気量を増量し、最終的に内燃機関の燃焼室へ吸入される実際の吸入空気量を本来あるべき吸入空気量とすることで、内燃機関の置かれる大気圧の低下による空気密度の低下を補償する。例えば、前記ISCが備えられている場合には、そのISCにおいてアイドル回転速度を上昇させる。
【0020】
ここで、排気浄化触媒の暖機に際しては、排気温度を上昇させることで、排気浄化触媒を十分に暖機することが可能となる。しかし、吸入空気量補正手段によって吸入空気量を増量する補正を行う場合、吸気通路を流れる吸気の流量や内燃機関の機関回転速度が上昇し、それに伴い騒音が発生する虞がある。そこで、前記吸入空気量補正手段による補正が行われるときに、少なくとも前記大気圧検出手段によって検出される大気圧に基づいて、前記排気浄化触媒の暖機時における前記内燃機関での点火時期を遅角側に移行する。
【0021】
内燃機関の点火時期を遅角側に移行することによって、内燃機関の機関出力に供せられる燃料の燃焼エネルギが減少するために、排気温度が上昇する。そこで、点火時期を遅角側に移行することで排気浄化触媒の温度が上昇するので、吸入空気量補正手段によって吸入空気量を増量する補正を行い、吸気通路を流れる吸気の流量の増量や内燃機関の機関回転速度の上昇量を抑え、騒音が抑制され得る。また、点火時期の遅角側への移行量は、内燃機関の置かれる大気圧に基づくことで、内燃機関の運転状態への影響を考慮しつつ、大気圧の変動に対してより適正な移行量とすることが可能となる。更には、排気浄化触媒の暖機時における該排気浄化触媒の温度上昇に基づいて、点火時期の遅角側への移行量を決定してもよい。これにより、更に、排気浄化触媒の暖機により適した点火時期となり、排気浄化触媒の暖機が十分に行われる。
【0022】
【発明の実施の形態】
<第1の実施の形態>
ここで、本発明に係る内燃機関の触媒暖機システムの実施の形態について図面に基づいて説明する。図1は、本発明が適用される触媒暖機システム、該触媒暖機システムを含む内燃機関1およびその制御系統の概略構成を表すブロック図である。
【0023】
内燃機関1は、4つの気筒2を有し、各気筒2の吸気ポート1aに燃料を噴射する燃料噴射弁11を備えている。燃料噴射弁11は、燃料を所定圧に蓄圧する蓄圧室10と接続されている。また、気筒2には、混合気の点火を行う点火栓3が設けられている。
【0024】
次に、内燃機関1には吸気枝管4が接続されており、吸気枝管4の各枝管は、気筒2の燃焼室と吸気ポート1aを介して連通している。更に、吸気枝管4は吸気管5に接続され、吸気管5の途中には、吸気管5を流れる吸入空気の流量を調整する吸気絞り弁6が設けられている。そして、吸気絞り弁6はアクチュエータ7によって駆動されることで、その開度が調整される。
【0025】
更に、吸気絞り弁6と並行して、内燃機関1のアイドル運転時における機関回転速度を調整するISC9が設けられている。ISC9は、吸気絞り弁6の上流側の吸気管5と下流側の吸気管5を連通するISC通路9aと、ISC通路9aを流れる吸気流量を調整するISCバルブ9bとから構成される。また、ISC通路9aと吸気管5との連結部位より上流側の吸気管5には、吸気管5を流れる吸入空気量を検出するエアフローメータ8が設けられている。
【0026】
一方、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管が排気ポート1bを介して気筒2の燃焼室と連通している。更に、排気枝管12は、排気管13と接続され、この排気管13は、下流にてマフラー(図示略)に接続されている。排気管13の途中には、内燃機関1から排出される排気中のNOxを吸蔵、還元して排気中のNOx浄化を行うNOx触媒14が設けられている。
【0027】
ここで、燃料噴射弁11、吸気絞り弁6を駆動するアクチュエータ7およびISCバルブ9は、電子制御ユニット(以下、「ECU」という)20からの制御信号によって開閉動作を行う。更に、ECU20が、それぞれエアフローメータ8、クランクポジションセンサ21、冷却水温度センサ22、アクセル開度センサ23と電気的に接続され、それぞれによって吸入空気量、内燃機関1のクランクシャフトの回転角、内燃機関1の冷却水温度、アクセル開度が検出される。
【0028】
また、NOx触媒14の上流側の排気管13には排気温度センサ24が設けられている。排気温度センサ24はECU20と電気的に接続され、NOx触媒14に流入する排気の温度が検出される。更に、ECU20は、大気圧センサ25と電気的に接続されており、内燃機関1の置かれる大気圧が検出される。
【0029】
ここで、NOx触媒14によって排気中のNOxが浄化されるにはNOx触媒14の温度が活性温度まで上昇している必要がある。そして、NOx触媒14の温度を活性温度まで昇温される触媒の暖機は十分に行うのが好ましい。NOx触媒14の暖機が十分でないと、NOx触媒14の浄化能力が低下しているため、NOx触媒14によるNOxの浄化が効率的に行われず、エミッションが悪化するためである。
【0030】
NOx触媒14の暖機は高温の排気をNOx触媒14に流入させることで行われる。しかし、内燃機関1の置かれる大気圧が低くなるに従い、吸気管5、吸気枝管4を経て内燃機関1の燃焼室に吸入される吸入空気の密度が低下する。その結果、燃料噴射弁10より噴射される燃料の量が減少するため、内燃機関1の置かれる大気圧が比較的高い場合と比べて、排気温度が低下する。その結果、NOx触媒14の暖機が十分に行われず、エミッションが悪化する虞がある。
【0031】
そこで、内燃機関1の置かれる大気圧の変動にかかわらず、十分なNOx触媒14の暖機を行うための制御(以下、「触媒暖機制御」という)について、図2に基づいて説明する。図2は、触媒暖機制御を示すフローチャートである。触媒暖機制御は、ECU20によって実行される。本実施の形態においては、触媒暖機時にアイドル運転状態にある内燃機関1において、ISC通路9aを流れる空気流量(以下、「ISC流量」という)を補正することで、NOx触媒14の暖機を図る。以下に、詳細を説明する。
【0032】
まずS101では、大気圧センサ25によって、内燃機関1の置かれる大気圧を検出する。S101の処理が終了すると、S102へ進む。
【0033】
S102では、排気温度センサ24によって検出される、NOx触媒14に流入する排気の温度に基づいて、NOx触媒14の温度を検出する。例えば、ECU20内のROMに排気温度センサ24によって検出される排気の温度をパラメータとするNOx触媒14の温度についてのマップを格納し、該マップにアクセスすることで、NOx触媒14の温度が検出される。S102の処理が終了すると、S103へ進む。
【0034】
S103では、S101において検出された大気圧に基づいて、ISC流量用大気圧補正係数(以下、「kqcal」という)を算出する。具体的には、図3に示すグラフに基づいて、kqcalが算出される。図3は、内燃機関1の置かれる大気圧の基準大気圧に対する変動率と、kqcalとの関係を示すグラフである。
【0035】
図3の横軸は、大気圧変動率であり、内燃機関1の置かれる大気圧である大気圧センサ25によって検出される大気圧の、基準大気圧に対する変動率を表す。基準大気圧とは、本実施の形態においては、海抜0mにおける大気圧である。従って、大気圧変動率が1のときは、内燃機関1の置かれる高度は海抜0mであり、その値が1より小さくなるに従い、内燃機関1の置かれる高度が高くなる。また、図3の縦軸は、kqcalを表す。図3に示すように、内燃機関1の置かれる大気圧が低くなるに従い、即ち内燃機関1の置かれる高度が高くなるに従い、kqcalの値は増加する。そして、大気変動率が1のとき、即ち内燃機関1の置かれる大気圧が基準大気圧の場合には、kqcalの値は0となる。S103の処理が終了すると、S104へ進む。
【0036】
S104では、S102において検出されたNOx触媒14の温度に基づいて、ISC流量用触媒温度補正係数(以下、「kcattemp」という)を算出する。具体的には、図4に示すグラフに基づいて、kcattempが算出される。図4は、NOx触媒14の温度と、kcattempとの関係を示すグラフである。
【0037】
図4の横軸は、NOx触媒14の温度を、縦軸は、kcattempを表す。ここで、NOx触媒14の温度がT1以下であるときは、kcattempの値は上限の1であるが、NOx触媒14の温度がT1からT2の範囲に属する場合には、NOx触媒14の温度が高くなるに従いkcattempの値は減少し、NOx触媒14の温度がT2以上となると、kcattempの値は0となる。ここで、温度T2は、NOx触媒14の暖機が完了したと判断されるための、NOx14の最低温度である。また、温度T1は、温度T2より低い値であって、高温の排気がNOx触媒14に流入し続けるとNOx触媒14の温度が過度に上昇すると判断される温度である。S104の処理が終了すると、S105へ進む。
【0038】
S105では、基本ISC流量(以下、「qadd」という)を算出する。例えば、本制御が行われる時点における内燃機関1での複数の制御パラメータの補正量に基づいて、qaddを算出する。即ち、NOx触媒14の暖機時において、アイドル運転状態にある内燃機関1の機関回転速度を安定して維持するために必要な、ISC通路9aを流れる吸入空気の流量を算出する。S105の処理が終了すると、S106へ進む。
【0039】
S106では、S103で算出したkqcalとS104で算出したkcattempに基づいて、S105で算出したqaddの値を補正して、最終ISC流量qcalを算出する。具体的には、以下の式1に基づいて算出する。
【0040】
qcal=qadd*(1+kqcal*kcattemp)・・・(式1)
【0041】
式1においては、kqcalの値とkcattempの値が大きくなるに従い、最終ISC流量であるqcalの値が大きくなる。即ち、内燃機関1の置かれる大気圧が低くなるに従い、またはNOx触媒14の温度が低温であるほど、qcalの値が大きくなる。その結果、内燃機関1への吸入空気量が増加し、排気温度が上昇するため、NOx触媒14の暖機が十分に行われる。
【0042】
ここで、NOx触媒14の暖機が進行して、NOx触媒14の温度が温度T1から温度T2の範囲に属する場合には、qcalの値は徐々に減少し、温度T2となった時点において、qcalの値はqaddの値と同一となる。これにより、暖機時において、NOx触媒14の温度が過度に上昇して、NOx触媒14が熱劣化するのを回避することが可能となる。
【0043】
以上より、本制御によって、内燃機関1の置かれる大気圧が減少した場合にも、十分にNOx触媒14の暖機を行うことが可能となり、以てNOx触媒14による浄化が十分に行われていない排気が外気へ放出されることを抑制することが可能となる。
【0044】
また、本実施の形態においては、内燃機関1の置かれる大気圧またはNOx触媒14の温度に基づいて、ISC通路9aを流れるISC流量を補正するが、同様に内燃機関1の置かれる大気圧またはNOx触媒14の温度に基づいて、吸気絞り弁6の開度を調整し、吸気管5を流れる吸入空気の流量を制御してもよい。即ち、内燃機関の1の置かれる大気圧が低くなるに従い、またはNOx触媒14の温度が低温であるほど、吸気絞り弁6の開度を大きくし、吸気管5を流れる吸入空気の流量を増量する。
【0045】
<第2の実施の形態>
触媒暖機制御の別の実施の形態について、図5に基づいて説明する。図5は、触媒暖機制御を示すフローチャートである。触媒暖機制御は、ECU20によって実行される。本実施の形態においては、触媒暖機時にアイドル運転状態にある内燃機関1の機関回転速度(以下、「アイドル回転速度」という)を補正することで、NOx触媒14の暖機を図る。以下に、詳細を説明する。
【0046】
S201およびS202においては、先述したS101およびS102と同様に、内燃機関1の置かれる大気圧の検出、およびNOx触媒14の温度の検出が行われる。S202の処理が終了後、S203へ進む。S203では、冷却水温度センサ22によって、内燃機関1の冷却水温度が検出される。S203の処理が終了すると、S204へ進む。
【0047】
S204では、S201において検出された大気圧に基づいて、最終アイドル回転速度用大気圧補正係数(以下、「kntcal」という)を算出する。具体的には、先述した図3に示すグラフと同様に表される、内燃機関1の置かれる大気圧の基準大気圧に対する変動率と、kntcalとの関係に基づいて、kntcalが算出される。S204の処理が終了すると、S205へ進む。
【0048】
S205では、S202において検出されたNOx触媒14の温度に基づいて、最終アイドル回転速度用触媒温度補正係数(以下、「kcattemp2」という)を算出する。具体的には、先述した図4に示すグラフと同様に表される、NOx触媒14の温度と、kcattemp2との関係に基づいて、kcattemp2が算出される。S205の処理が終了すると、S206へ進む。
【0049】
S206では、S203において検出された冷却水温度に基づいて、アイドル回転速度補正量(以下、「dlnt」という)を算出する。具体的には、図6に示すグラフに基づいて、dlntが算出される。図6は、冷却水温度と、dlntとの関係を示すグラフである。図6の横軸は、内燃機関1の冷却水温度を、縦軸は、dlntを表す。ここで、冷却水温度が80℃以上となると、NOx触媒14の暖機は完了したとみなされ、dlntの値は0となる。S206の処理が終了すると、S207へ進む。
【0050】
S207では、S204で算出したkntcalとS205で算出したkcattemp2に基づいて、S206で算出したdlntの値を補正し、最終アイドル回転速度(以下、「ntcal」という)として算出する。具体的には、以下の式2に基づいて算出する。
【0051】
ntcal=ntb+dlnt*(1+kntcal*kcattemp2)・・・(式2)
【0052】
式2において、ntbは、基本アイドル回転速度を表し、例えば内燃機関1を備える車両のシフト位置によって決まる基本となるアイドル回転速度である。従って、内燃機関1がアイドル運転状態にあるときの内燃機関1のアイドル回転速度は、この基本アイドル回転速度ntbと冷却水温度から算出される補正回転速度dlntとの和で表される回転速度である。即ち、冷却水温度が低いほどアイドル回転速度を上昇させることで、内燃機関1の暖機を促進する。
【0053】
そして、更に、NOx触媒14の暖機時における内燃機関1のアイドル運転状態においては、補正回転速度dlntをkntcalとkcattemp2に基づいて補正する。即ち、kntcalの値とkcattemp2の値が大きくなるに従い、最終アイドル回転速度ntcalの値が大きくなる。即ち、内燃機関1の置かれる大気圧が低くなるに従い、またはNOx触媒14の温度が低温であるほど、ntcalの値が大きくなる。その結果、内燃機関1への吸入空気量が増加し、排気温度が上昇するため、NOx触媒14の温度が十分に行われる。
【0054】
以上より、本制御によって、内燃機関1の置かれる大気圧が減少した場合にも、十分にNOx触媒14の暖機を行うことが可能となり、以てNOx触媒14による浄化が十分に行われていない排気が外気へ放出されることを抑制することが可能となる。
【0055】
<第3の実施の形態>
触媒暖機制御の別の実施の形態について、図7に基づいて説明する。図7は、触媒暖機制御を示すフローチャートである。触媒暖機制御は、ECU20によって実行される。尚、図7に示す触媒暖機制御のフローチャートにおいて、図5に示す触媒暖機制御のフローチャート中の処理と同一の処理については、図5と同一の参照番号を付すことにより、その説明を省略もしくは簡略する。本実施の形態においては、触媒暖機時に内燃機関1のアイドル回転速度を補正するとともに、内燃機関1での点火時期を補正することで、NOx触媒14の暖機を図る。以下に、詳細を説明する。
【0056】
S203の処理が終了すると、S301へ進む。S301では、内燃機関1の負荷率を検出する。ここで、内燃機関1の負荷率とは、吸気管5を流れる最大吸気量に対する、エアフローメータ8によって検出される現時点での吸気量の比率をいう。S301の処理が終了すると、S302へ進む。
【0057】
S302では、S201において検出された大気圧に基づいて、点火時期用大気圧補正係数(以下、「kacat」という)を算出する。具体的には、先述した図3に示すグラフと同様に表される、内燃機関1の置かれる大気圧の基準大気圧に対する変動率と、kacatとの関係に基づいて、kacatが算出される。S302の処理が終了すると、S303へ進む。
【0058】
S303では、S202において検出されたNOx触媒14の温度に基づいて、点火時期用触媒温度補正係数(以下、「kcattemp3」という)を算出する。具体的には、先述した図4に示すグラフと同様に表される、NOx触媒14の温度と、kcattemp3との関係に基づいて、kcattemp3が算出される。S303の処理が終了すると、S304へ進む。
【0059】
S304では、S203において検出された冷却水温度とS301で検出された内燃機関1の負荷率に基づいて、内燃機関1での点火時期の基本遅角量(以下、「acatb」という)を算出する。具体的には、図8に示すグラフに基づいて、acatbが算出される。図8は、内燃機関1の冷却水温度と、acatbとの関係を示すグラフである。図8の横軸は、内燃機関1の冷却水温度を、縦軸は、acatbを表す。また、図8中の線L1、L2、L3は内燃機関の負荷率が20%、40%、60%のときの冷却水温度に対するacatbの変化をそれぞれ表す。従って、負荷率が20%のときは、acatbの値は0となり、点火時期は遅角側へ移行されない。また、負荷率が高くなるに従い、遅角量が増える。S304の処理が終了すると、S305へ進む。
【0060】
S305では、S302で算出したkacatとS303で算出したkcattemp3に基づいて、S304で算出したacatbの値を補正し、最終遅角量(以下、「acat」という)として算出する。具体的には、以下の式3に基づいて算出する。
【0061】
acat=acatb*(1+kacat*kcattemp3)・・・(式3)
【0062】
式3においては、kacatの値とkcattemp3の値が大きくなるに従い、最終遅角量acatの値が大きくなる。即ち、内燃機関1の置かれる大気圧が低くなるに従い、またはNOx触媒14の温度が低温であるほど、内燃機関1での点火時期が遅角側に移行する。その結果、排気温度が上昇し、以てNOx触媒14の温度が上昇する。S305の処理が終了すると、S204、S205の処理が順次行われる。S205の処理が終了すると、S306へ進む。
【0063】
S306では、S206とほぼ同様に、アイドル回転速度補正量を算出する。ただし、その算出にあたっては、S305によって算出された点火時期の遅角側への移行による排気温度の上昇を加味する。即ち、点火時期を遅角側に移行することによってNOx触媒14に流入する排気の温度は上昇するため、最終的なアイドル回転速度を、点火時期を遅角側に移行しない場合に比べ、それほど上昇させる必要がない。そこで、図6に示す冷却水温度との関係から得られるdlntから、点火時期の遅角量acatに相当する回転速度分を減算した値を、アイドル回転速度補正量dlnt2として算出する。S306の処理が終了すると、S307へ進む。
【0064】
S307では、S207と同様に、S306で算出したdlnt2の値を補正し、最終アイドル回転速度(以下、「ntcal2」という)として算出する。具体的には、以下の式4に基づいて算出する。
【0065】
ntcal2=ntb+dlnt2*(1+kntcal*kcattemp2)・・・(式4)
【0066】
これにより、内燃機関1の置かれる大気圧が低くなるに従い、またはNOx触媒14の温度が低温であるほど、内燃機関1への吸入空気量が増加し、排気温度が上昇するため、NOx触媒14の温度が十分に行われる。
【0067】
以上より、本制御によって、内燃機関1の置かれる大気圧が減少した場合にも、その大気圧の減少に応じてアイドル回転速度が上昇されるため、十分にNOx触媒14の暖機を行うことが可能となり、以てNOx触媒14による浄化が十分に行われていない排気が外気へ放出されることを抑制することが可能となる。更に、内燃機関1での点火時期を遅角側に移行することで、NOx触媒14の温度をある程度上昇させることが可能となるため、NOx触媒14の暖機に要するアイドル回転速度の上昇量を減ずることが可能となる。その結果、アイドル回転速度の上昇に伴う騒音を低減することが可能となる。
【0068】
また、本実施の形態においては、触媒暖機時のアイドル回転速度を決定する前に内燃機関1での点火時期を遅角側に移行することで、アイドル回転数速度の上昇量を減ずるが、図2に示す触媒暖機制御においてISC流量の補正を行う前に、同様に内燃機関1での点火時期を遅角側に移行することで、ISC流量の増量を抑制することも可能である。これにより、ISC流量の増量による騒音を低減することが可能となる。
【0069】
【発明の効果】
本発明は、内燃機関の排気通路に設けられた排気浄化触媒の暖機を行う内燃機関の触媒暖機システムにおいて、内燃機関の置かれる大気圧を考慮して、内燃機関への吸入空気量を補正する。これにより、内燃機関の置かれる大気圧が減少した場合にも、十分に排気浄化触媒の暖機を行い、排気浄化触媒による浄化が十分に行われていない排気が外気へ放出されることを抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る触媒暖機システムおよび該触媒暖機システムを含む内燃機関およびその制御系統の概略構成を表すブロック図である。
【図2】本発明の実施の形態に係る触媒暖機システムにおける、触媒の暖機を行う制御を示すフローチャートである。
【図3】本発明の実施の形態に係る触媒暖機システムにおいて、内燃機関の置かれる大気圧の基準大気圧に対する変動率と、ISC流量用大気圧補正係数との関係を示すグラフである。
【図4】本発明の実施の形態に係る触媒暖機システムにおいて、触媒温度と、ISC流量用触媒温度補正係数との関係を示すグラフである。
【図5】本発明の実施の形態に係る触媒暖機システムにおける、触媒の暖機を行う制御を示す第2のフローチャートである。
【図6】本発明の実施の形態に係る触媒暖機システムにおいて、内燃機関の冷却水温度と、アイドル回転速度補正量との関係を示すグラフである。
【図7】本発明の実施の形態に係る触媒暖機システムにおける、触媒の暖機を行う制御を示す第3のフローチャートである。
【図8】本発明の実施の形態に係る触媒暖機システムにおいて、内燃機関の冷却水温度と、内燃機関での点火時期の基本遅角量との関係を示すグラフである。
【符号の説明】
1・・・・内燃機関
3・・・・点火栓
4・・・・吸気枝管
5・・・・吸気管
6・・・・吸気絞り弁
8・・・・エアフローメータ
9・・・・アイドル回転数制御装置(ISC)
12・・・・排気枝管
13・・・・排気管
14・・・・NOx触媒
20・・・・ECU
22・・・・冷却水温度センサ
24・・・・排気温度センサ
25・・・・大気圧センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst warm-up system for warming up an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine.
[0002]
[Prior art]
An NOx storage reduction catalyst that stores NOx and reduces the stored NOx in the presence of a reducing agent in order to purify NOx contained in exhaust gas discharged from an internal combustion engine, particularly an internal combustion engine that performs lean combustion (hereinafter referred to as NOx catalyst). An exhaust purification catalyst such as “NOx catalyst” is provided in the exhaust passage. However, in order for the exhaust purification catalyst to exhibit its purification ability efficiently, the temperature of the exhaust purification catalyst needs to be equal to or higher than a predetermined activation temperature. In particular, when the internal combustion engine is cold-started, the temperature of the exhaust purification catalyst is reduced to the same level as the air temperature. Therefore, if the temperature of the exhaust purification catalyst is not sufficiently raised to the activation temperature, the purification is sufficiently performed. Exhaust that has not been performed is discharged to the outside air.
[0003]
Therefore, a technique is known in which the temperature of the exhaust purification catalyst is set to the activation temperature by adjusting the fuel injection amount and ignition timing in the internal combustion engine to increase the exhaust temperature flowing into the exhaust purification catalyst.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-102337
[Patent Document 2]
Japanese Patent Laid-Open No. 3-78544
[Patent Document 3]
JP-A-63-124865
[Patent Document 4]
JP-A-3-57879
[0005]
[Problems to be solved by the invention]
Here, when the atmospheric pressure decreases in an environment where the internal combustion engine is placed, for example, when a vehicle equipped with the internal combustion engine moves from a low altitude land to a high land, the air density decreases, The amount of air sucked into the engine decreases, and it becomes difficult to sufficiently warm up the exhaust purification catalyst. If the exhaust purification catalyst is not warmed up sufficiently, exhaust purification is not performed well.
[0006]
The present invention has been made in view of the above-described problems, and even when the atmospheric pressure at which the internal combustion engine is placed decreases, the exhaust purification catalyst is sufficiently warmed up and sufficiently purified by the exhaust purification catalyst. It is an object of the present invention to provide a catalyst warm-up system for an internal combustion engine that suppresses exhaust gas not being discharged to the outside air.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention focuses on fluctuations in atmospheric pressure at which an internal combustion engine is placed. When the atmospheric pressure at which the internal combustion engine is placed fluctuates, the density of the air sucked into the combustion chamber of the internal combustion engine fluctuates.For example, even if the intake throttle valve of the internal combustion engine opens at a predetermined opening for a predetermined time, Actually, the intake air amount to the internal combustion engine becomes an amount different from the original air amount, the combustion state in the combustion chamber does not become the originally assumed state, and the exhaust purification catalyst may not be sufficiently warmed up. Because there is.
[0008]
Therefore, in a catalyst warm-up system for an internal combustion engine that is provided in an exhaust passage of the internal combustion engine and warms up an exhaust purification catalyst that purifies exhaust gas, it is provided in the intake passage of the internal combustion engine and is based on the operating state of the internal combustion engine. The intake air amount control means for determining the intake air amount to the internal combustion engine, the atmospheric pressure detection means for detecting the atmospheric pressure, and the atmospheric pressure detection means when the exhaust purification catalyst is warmed up. Intake air amount correction means for performing correction to increase the intake air amount determined by the intake air amount control means as the air pressure decreases.
[0009]
In the internal combustion engine, fuel is combusted according to the amount of intake air. Therefore, as the amount of intake air increases, the amount of fuel used for combustion increases, the exhaust temperature rises, and an exhaust passage is provided. The temperature of the exhaust purification catalyst also gradually increases.
[0010]
Here, the intake air amount control means determines the intake air amount to the internal combustion engine based on the operating condition such as the warm-up condition of the exhaust purification catalyst and the engine output torque required for the internal combustion engine. That is, the intake air amount control means determines the intake air amount to the internal combustion engine based on the warm-up condition of the exhaust purification catalyst and the operating state of the internal combustion engine, and the fuel corresponding to the intake air amount is combusted in the internal combustion engine. By being provided, it becomes possible to set the exhaust temperature to a temperature necessary for warming up the exhaust purification catalyst or to exhibit the engine output torque required for the internal combustion engine.
[0011]
However, the density of air sucked into the internal combustion engine varies depending on the atmospheric pressure at which the internal combustion engine is placed. That is, the air density decreases as the atmospheric pressure decreases, and conversely, the air density increases as the atmospheric pressure increases. For example, the density of air taken into the internal combustion engine differs between when the vehicle equipped with the internal combustion engine is in a low altitude and when the vehicle is in a high altitude. The density of air taken into the internal combustion engine varies depending on the climate in which the internal combustion engine is placed. Therefore, even the intake air amount determined by the intake air amount control means based on the warm-up condition of the exhaust purification catalyst and the operating state of the internal combustion engine is originally required depending on the atmospheric pressure at which the internal combustion engine is placed. There is a possibility that it differs from the intake air amount. In particular, when the atmospheric pressure at which the internal combustion engine is placed decreases, the actual intake air amount to the internal combustion engine decreases, so the exhaust temperature decreases, and the exhaust purification catalyst is sufficiently warmed when the exhaust purification catalyst is warmed up. It becomes difficult to work.
[0012]
Therefore, when the exhaust purification catalyst is warmed up, the intake air amount correction means corrects the intake air amount to the internal combustion engine based on the atmospheric pressure at which the internal combustion engine is placed, so that the exhaust purification catalyst originally warms up. The amount of intake air used to create the exhaust temperature necessary for the machine. That is, the intake air amount correcting means performs a correction to increase the intake air amount determined by the intake air amount control means as the atmospheric pressure at which the internal combustion engine is placed decreases, and as the atmospheric pressure at which the internal combustion engine is placed increases. By performing the correction for reducing the intake air amount determined by the intake air amount control means, the influence of the fluctuation of the atmospheric pressure where the internal combustion engine is placed on the warm-up of the exhaust purification catalyst is suppressed.
[0013]
As a result, even when the atmospheric pressure at which the internal combustion engine is placed decreases, the exhaust purification catalyst is sufficiently warmed up and the exhaust gas that has not been sufficiently purified by the exhaust purification catalyst is prevented from being released to the outside air. It becomes possible to do.
[0014]
Further, when warming up the exhaust purification catalyst, it is preferable to correct the amount of intake air to the internal combustion engine based on the temperature of the exhaust purification catalyst. When the temperature of the exhaust purification catalyst is relatively low, it is preferable that the temperature of the exhaust gas flowing into the exhaust purification catalyst is high. However, the temperature of the exhaust purification catalyst is also high just before the warm-up of the exhaust purification catalyst proceeds and the warm-up is completed. When the exhaust gas flows in, the temperature of the exhaust purification catalyst rises excessively, and the exhaust purification catalyst may be thermally deteriorated.
[0015]
Therefore, the catalyst warm-up system for the internal combustion engine described above further includes catalyst temperature estimation means for estimating the temperature of the exhaust purification catalyst. The intake air amount correcting means detects the atmospheric pressure detected by the atmospheric pressure detecting means as the temperature of the exhaust purifying catalyst estimated by the catalyst temperature estimating means rises when the exhaust purifying catalyst is warmed up. Correction is performed to reduce the amount of intake air corrected according to the atmospheric pressure.
[0016]
As a result, the amount of intake air to the internal combustion engine is corrected based on the temperature of the exhaust purification catalyst in addition to the atmospheric pressure at which the internal combustion engine is placed. Is sucked into the internal combustion engine, and the exhaust purification catalyst is sufficiently warmed up. Further, an excessive temperature rise of the exhaust purification catalyst is avoided.
[0017]
Here, as the intake air amount correction means in the catalyst warm-up system of the internal combustion engine up to the foregoing, the internal combustion engine is increased by increasing the flow rate of the intake air flowing through the intake passage of the internal combustion engine when the exhaust purification catalyst is warmed up. Means for increasing the amount of intake air into the air. That is, by increasing the flow rate of intake air flowing through the intake passage, the intake air amount into the combustion chamber of the internal combustion engine per unit time is increased, and the actual intake air that is finally sucked into the combustion chamber of the internal combustion engine By setting the amount to be the amount of intake air that should be originally, a decrease in air density due to a decrease in atmospheric pressure in which the internal combustion engine is placed is compensated.
[0018]
For example, when the flow rate of the intake passage is adjusted by adjusting the opening of the intake throttle valve provided in the intake passage, the intake throttle valve corresponding to the intake air amount determined by the intake air amount control means is adjusted. By increasing the opening degree further than the opening degree, the flow rate of the intake air flowing through the intake passage is increased. In addition, when an idle speed control device (hereinafter referred to as “ISC”) is provided in parallel with the intake throttle valve, the opening of the ISC valve in the ISC is further increased from the opening that should be intended. As a result, the flow rate of the intake air flowing through the intake passage is increased.
[0019]
Further, the intake air amount correcting means includes means for increasing the intake air amount to the internal combustion engine by increasing the engine speed of the internal combustion engine when the exhaust purification catalyst is warmed up. That is, by increasing the engine rotation speed of the internal combustion engine, the amount of intake air into the combustion chamber of the internal combustion engine per unit time is increased, and the actual intake air amount finally sucked into the combustion chamber of the internal combustion engine is reduced. By taking the intake air amount that should be originally intended, a decrease in air density due to a decrease in atmospheric pressure in which the internal combustion engine is placed is compensated. For example, when the ISC is provided, the idle rotation speed is increased in the ISC.
[0020]
Here, when warming up the exhaust purification catalyst, it is possible to sufficiently warm up the exhaust purification catalyst by raising the exhaust temperature. However, when the correction for increasing the intake air amount is performed by the intake air amount correction means, the flow rate of the intake air flowing through the intake passage and the engine rotational speed of the internal combustion engine may increase, and noise may be generated accordingly. Therefore, when the correction by the intake air amount correction means is performed, the ignition timing in the internal combustion engine when the exhaust purification catalyst is warmed up is delayed based on at least the atmospheric pressure detected by the atmospheric pressure detection means. Move to the corner.
[0021]
By shifting the ignition timing of the internal combustion engine to the retard side, the combustion energy of the fuel provided to the engine output of the internal combustion engine is reduced, so that the exhaust temperature rises. Therefore, since the temperature of the exhaust purification catalyst rises by shifting the ignition timing to the retarded angle side, correction is performed to increase the intake air amount by the intake air amount correction means, and an increase in the flow rate of intake air flowing through the intake passage or internal combustion The increase amount of the engine rotation speed of the engine can be suppressed, and noise can be suppressed. In addition, the amount of shift of the ignition timing to the retarded angle side is based on the atmospheric pressure at which the internal combustion engine is placed, so that it is more appropriate for the change in atmospheric pressure while taking into account the effect on the operating state of the internal combustion engine. It becomes possible to make it into quantity. Furthermore, the shift amount of the ignition timing to the retard side may be determined based on the temperature increase of the exhaust purification catalyst when the exhaust purification catalyst is warmed up. As a result, the ignition timing is more suitable for warming up the exhaust purification catalyst, and the exhaust purification catalyst is sufficiently warmed up.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
Here, an embodiment of a catalyst warm-up system for an internal combustion engine according to the present invention will be described based on the drawings. FIG. 1 is a block diagram showing a schematic configuration of a catalyst warm-up system to which the present invention is applied, an internal combustion engine 1 including the catalyst warm-up system, and a control system thereof.
[0023]
The internal combustion engine 1 has four cylinders 2 and includes a fuel injection valve 11 that injects fuel into the intake port 1a of each cylinder 2. The fuel injection valve 11 is connected to a pressure accumulation chamber 10 that accumulates fuel at a predetermined pressure. The cylinder 2 is provided with a spark plug 3 for igniting the air-fuel mixture.
[0024]
Next, an intake branch pipe 4 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 4 communicates with a combustion chamber of the cylinder 2 via an intake port 1a. Further, the intake branch pipe 4 is connected to an intake pipe 5, and an intake throttle valve 6 for adjusting the flow rate of intake air flowing through the intake pipe 5 is provided in the middle of the intake pipe 5. The intake throttle valve 6 is driven by an actuator 7 to adjust its opening.
[0025]
Further, in parallel with the intake throttle valve 6, an ISC 9 that adjusts the engine speed during idling of the internal combustion engine 1 is provided. The ISC 9 includes an ISC passage 9a that connects the intake pipe 5 on the upstream side of the intake throttle valve 6 and the intake pipe 5 on the downstream side, and an ISC valve 9b that adjusts the flow rate of intake air flowing through the ISC passage 9a. Further, an air flow meter 8 for detecting the amount of intake air flowing through the intake pipe 5 is provided in the intake pipe 5 upstream of the connection portion between the ISC passage 9 a and the intake pipe 5.
[0026]
On the other hand, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 communicates with the combustion chamber of the cylinder 2 via the exhaust port 1b. Further, the exhaust branch pipe 12 is connected to an exhaust pipe 13, and this exhaust pipe 13 is connected to a muffler (not shown) downstream. In the middle of the exhaust pipe 13, there is provided a NOx catalyst 14 that stores and reduces NOx in the exhaust discharged from the internal combustion engine 1 to purify NOx in the exhaust.
[0027]
Here, the fuel injection valve 11, the actuator 7 that drives the intake throttle valve 6, and the ISC valve 9 are opened and closed by a control signal from an electronic control unit (hereinafter referred to as “ECU”) 20. Further, the ECU 20 is electrically connected to the air flow meter 8, the crank position sensor 21, the coolant temperature sensor 22, and the accelerator opening sensor 23, respectively, and the intake air amount, the rotation angle of the crankshaft of the internal combustion engine 1, the internal combustion engine The cooling water temperature and the accelerator opening of the engine 1 are detected.
[0028]
An exhaust temperature sensor 24 is provided in the exhaust pipe 13 upstream of the NOx catalyst 14. The exhaust gas temperature sensor 24 is electrically connected to the ECU 20 and detects the temperature of the exhaust gas flowing into the NOx catalyst 14. Further, the ECU 20 is electrically connected to the atmospheric pressure sensor 25 and detects the atmospheric pressure at which the internal combustion engine 1 is placed.
[0029]
Here, in order for NOx in the exhaust gas to be purified by the NOx catalyst 14, the temperature of the NOx catalyst 14 needs to rise to the activation temperature. Then, it is preferable to sufficiently warm up the catalyst that raises the temperature of the NOx catalyst 14 to the activation temperature. This is because if the NOx catalyst 14 is not sufficiently warmed up, the purification ability of the NOx catalyst 14 is reduced, so that the NOx purification by the NOx catalyst 14 is not performed efficiently, and the emission deteriorates.
[0030]
The NOx catalyst 14 is warmed up by allowing high-temperature exhaust to flow into the NOx catalyst 14. However, as the atmospheric pressure at which the internal combustion engine 1 is placed decreases, the density of the intake air drawn into the combustion chamber of the internal combustion engine 1 through the intake pipe 5 and the intake branch pipe 4 decreases. As a result, the amount of fuel injected from the fuel injection valve 10 decreases, so that the exhaust temperature decreases as compared to the case where the atmospheric pressure in which the internal combustion engine 1 is placed is relatively high. As a result, the NOx catalyst 14 is not sufficiently warmed up, and the emission may be deteriorated.
[0031]
Therefore, control for sufficiently warming up the NOx catalyst 14 (hereinafter referred to as “catalyst warm-up control”) regardless of fluctuations in the atmospheric pressure at which the internal combustion engine 1 is placed will be described with reference to FIG. FIG. 2 is a flowchart showing catalyst warm-up control. The catalyst warm-up control is executed by the ECU 20. In the present embodiment, the NOx catalyst 14 is warmed up by correcting the flow rate of air flowing through the ISC passage 9a (hereinafter referred to as “ISC flow rate”) in the internal combustion engine 1 that is in an idle operation state when the catalyst is warmed up. Plan. Details will be described below.
[0032]
First, in S101, the atmospheric pressure at which the internal combustion engine 1 is placed is detected by the atmospheric pressure sensor 25. When the process of S101 ends, the process proceeds to S102.
[0033]
In S102, the temperature of the NOx catalyst 14 is detected based on the temperature of the exhaust gas flowing into the NOx catalyst 14 detected by the exhaust temperature sensor 24. For example, a map of the temperature of the NOx catalyst 14 using the exhaust gas temperature detected by the exhaust gas temperature sensor 24 as a parameter is stored in the ROM in the ECU 20, and the temperature of the NOx catalyst 14 is detected by accessing the map. The When the process of S102 ends, the process proceeds to S103.
[0034]
In S103, an atmospheric pressure correction coefficient for ISC flow rate (hereinafter referred to as “kqcal”) is calculated based on the atmospheric pressure detected in S101. Specifically, kqcal is calculated based on the graph shown in FIG. FIG. 3 is a graph showing the relationship between the variation rate of the atmospheric pressure in which the internal combustion engine 1 is placed with respect to the reference atmospheric pressure, and kqcal.
[0035]
The horizontal axis of FIG. 3 is the atmospheric pressure fluctuation rate, and represents the fluctuation rate of the atmospheric pressure detected by the atmospheric pressure sensor 25 that is the atmospheric pressure where the internal combustion engine 1 is placed with respect to the reference atmospheric pressure. In the present embodiment, the reference atmospheric pressure is an atmospheric pressure at 0 m above sea level. Therefore, when the atmospheric pressure fluctuation rate is 1, the altitude at which the internal combustion engine 1 is placed is 0 m above sea level, and as the value becomes smaller than 1, the altitude at which the internal combustion engine 1 is placed increases. Moreover, the vertical axis | shaft of FIG. 3 represents kqcal. As shown in FIG. 3, the value of kqcal increases as the atmospheric pressure at which the internal combustion engine 1 is placed decreases, that is, as the altitude at which the internal combustion engine 1 is placed increases. When the atmospheric fluctuation rate is 1, that is, when the atmospheric pressure in which the internal combustion engine 1 is placed is the reference atmospheric pressure, the value of kqcal is 0. When the process of S103 ends, the process proceeds to S104.
[0036]
In S104, an ISC flow rate catalyst temperature correction coefficient (hereinafter referred to as “kcattemp”) is calculated based on the temperature of the NOx catalyst 14 detected in S102. Specifically, kcattemp is calculated based on the graph shown in FIG. FIG. 4 is a graph showing the relationship between the temperature of the NOx catalyst 14 and kcattemp.
[0037]
The horizontal axis of FIG. 4 represents the temperature of the NOx catalyst 14, and the vertical axis represents kcattemp. Here, when the temperature of the NOx catalyst 14 is equal to or lower than T1, the value of kcattemp is 1 at the upper limit. However, when the temperature of the NOx catalyst 14 falls within the range from T1 to T2, the temperature of the NOx catalyst 14 is As the value increases, the value of kcattemp decreases. When the temperature of the NOx catalyst 14 becomes equal to or higher than T2, the value of kcattemp becomes zero. Here, the temperature T2 is the minimum temperature of the NOx 14 for determining that the warming up of the NOx catalyst 14 has been completed. Further, the temperature T1 is a value lower than the temperature T2, and is a temperature at which the temperature of the NOx catalyst 14 is judged to rise excessively if high temperature exhaust gas continues to flow into the NOx catalyst 14. When the process of S104 ends, the process proceeds to S105.
[0038]
In S105, a basic ISC flow rate (hereinafter referred to as “qadd”) is calculated. For example, qadd is calculated based on correction amounts of a plurality of control parameters in the internal combustion engine 1 at the time when this control is performed. That is, the flow rate of the intake air flowing through the ISC passage 9a necessary for stably maintaining the engine speed of the internal combustion engine 1 in the idle operation state when the NOx catalyst 14 is warmed up is calculated. When the process of S105 ends, the process proceeds to S106.
[0039]
In S106, based on the kqcal calculated in S103 and the kcattemp calculated in S104, the qadd value calculated in S105 is corrected to calculate the final ISC flow rate qcal. Specifically, it is calculated based on the following formula 1.
[0040]
qcal = qadd * (1 + kqcal * kcattemp) (Equation 1)
[0041]
In Equation 1, as the value of kqcal and the value of kcattemp increase, the value of qcal, which is the final ISC flow rate, increases. That is, as the atmospheric pressure at which the internal combustion engine 1 is placed decreases, or the temperature of the NOx catalyst 14 decreases, the value of qcal increases. As a result, the amount of intake air to the internal combustion engine 1 increases and the exhaust temperature rises, so that the NOx catalyst 14 is sufficiently warmed up.
[0042]
Here, when the warming-up of the NOx catalyst 14 progresses and the temperature of the NOx catalyst 14 belongs to the range from the temperature T1 to the temperature T2, the value of qcal gradually decreases, and when the temperature reaches the temperature T2, The value of qcal is the same as the value of qadd. As a result, it is possible to avoid the NOx catalyst 14 from being excessively heated during the warm-up and the NOx catalyst 14 being thermally deteriorated.
[0043]
As described above, this control makes it possible to sufficiently warm up the NOx catalyst 14 even when the atmospheric pressure at which the internal combustion engine 1 is placed decreases, and thus the NOx catalyst 14 is sufficiently purified. It is possible to suppress the release of no exhaust to the outside air.
[0044]
In the present embodiment, the ISC flow rate flowing through the ISC passage 9a is corrected based on the atmospheric pressure in which the internal combustion engine 1 is placed or the temperature of the NOx catalyst 14, but similarly the atmospheric pressure in which the internal combustion engine 1 is placed or The flow rate of the intake air flowing through the intake pipe 5 may be controlled by adjusting the opening of the intake throttle valve 6 based on the temperature of the NOx catalyst 14. That is, as the atmospheric pressure at which the internal combustion engine 1 is placed becomes lower or the temperature of the NOx catalyst 14 is lower, the opening of the intake throttle valve 6 is increased and the flow rate of intake air flowing through the intake pipe 5 is increased. To do.
[0045]
<Second Embodiment>
Another embodiment of the catalyst warm-up control will be described with reference to FIG. FIG. 5 is a flowchart showing catalyst warm-up control. The catalyst warm-up control is executed by the ECU 20. In the present embodiment, the NOx catalyst 14 is warmed up by correcting the engine speed of the internal combustion engine 1 that is in an idling state when the catalyst is warmed up (hereinafter referred to as “idle speed”). Details will be described below.
[0046]
In S201 and S202, the atmospheric pressure at which the internal combustion engine 1 is placed and the temperature of the NOx catalyst 14 are detected in the same manner as in S101 and S102 described above. After the process of S202 is completed, the process proceeds to S203. In S203, the coolant temperature sensor 22 detects the coolant temperature of the internal combustion engine 1. When the process of S203 ends, the process proceeds to S204.
[0047]
In S204, an atmospheric pressure correction coefficient for final idle rotation speed (hereinafter referred to as “kntcal”) is calculated based on the atmospheric pressure detected in S201. Specifically, kntcal is calculated based on the relationship between kntcal and the variation rate of the atmospheric pressure in which the internal combustion engine 1 is placed with respect to the reference atmospheric pressure, which is expressed similarly to the graph shown in FIG. 3 described above. When the process of S204 ends, the process proceeds to S205.
[0048]
In S205, based on the temperature of the NOx catalyst 14 detected in S202, a final idle rotational speed catalyst temperature correction coefficient (hereinafter referred to as “kcattemp2”) is calculated. Specifically, kcattemp2 is calculated based on the relationship between the temperature of the NOx catalyst 14 and kcattemp2, which is expressed in the same manner as the graph shown in FIG. When the processing of S205 ends, the process proceeds to S206.
[0049]
In S206, an idle rotation speed correction amount (hereinafter referred to as “dlnt”) is calculated based on the coolant temperature detected in S203. Specifically, dlnt is calculated based on the graph shown in FIG. FIG. 6 is a graph showing the relationship between the cooling water temperature and dlnt. The horizontal axis in FIG. 6 represents the coolant temperature of the internal combustion engine 1, and the vertical axis represents dlnt. Here, when the cooling water temperature becomes 80 ° C. or higher, it is considered that the NOx catalyst 14 has been warmed up, and the value of dlnt becomes zero. When the process of S206 ends, the process proceeds to S207.
[0050]
In S207, based on kntcal calculated in S204 and kcattemp2 calculated in S205, the value of dlnt calculated in S206 is corrected and calculated as the final idle rotation speed (hereinafter referred to as “ntcal”). Specifically, it is calculated based on the following formula 2.
[0051]
ntcal = ntb + dlnt * (1 + kntcal * kcattemp2) (Expression 2)
[0052]
In Expression 2, ntb represents a basic idle rotation speed, and is a basic idle rotation speed determined by, for example, a shift position of a vehicle including the internal combustion engine 1. Therefore, the idle rotation speed of the internal combustion engine 1 when the internal combustion engine 1 is in the idle operation state is a rotation speed represented by the sum of the basic idle rotation speed ntb and the corrected rotation speed dlnt calculated from the coolant temperature. is there. That is, warming up of the internal combustion engine 1 is promoted by increasing the idle rotation speed as the cooling water temperature is lower.
[0053]
Further, in the idling operation state of the internal combustion engine 1 when the NOx catalyst 14 is warmed up, the corrected rotational speed dlnt is corrected based on kntcal and kcattemp2. That is, as the value of kntcal and the value of kcattemp2 increase, the value of the final idle rotation speed ntcal increases. That is, as the atmospheric pressure at which the internal combustion engine 1 is placed decreases or as the temperature of the NOx catalyst 14 decreases, the value of ntcal increases. As a result, the amount of intake air to the internal combustion engine 1 increases and the exhaust gas temperature rises, so that the temperature of the NOx catalyst 14 is sufficiently increased.
[0054]
As described above, this control makes it possible to sufficiently warm up the NOx catalyst 14 even when the atmospheric pressure at which the internal combustion engine 1 is placed decreases, and thus the NOx catalyst 14 is sufficiently purified. It is possible to suppress the release of no exhaust to the outside air.
[0055]
<Third Embodiment>
Another embodiment of the catalyst warm-up control will be described with reference to FIG. FIG. 7 is a flowchart showing catalyst warm-up control. The catalyst warm-up control is executed by the ECU 20. In the flowchart of the catalyst warm-up control shown in FIG. 7, the same processes as those in the flowchart of the catalyst warm-up control shown in FIG. 5 are denoted by the same reference numerals as those in FIG. Or simplify. In the present embodiment, the NOx catalyst 14 is warmed up by correcting the idle rotation speed of the internal combustion engine 1 and correcting the ignition timing in the internal combustion engine 1 when the catalyst is warmed up. Details will be described below.
[0056]
When the process of S203 ends, the process proceeds to S301. In S301, the load factor of the internal combustion engine 1 is detected. Here, the load factor of the internal combustion engine 1 refers to the ratio of the current intake air amount detected by the air flow meter 8 to the maximum intake air amount flowing through the intake pipe 5. When the process of S301 ends, the process proceeds to S302.
[0057]
In S302, an ignition timing atmospheric pressure correction coefficient (hereinafter referred to as “kacat”) is calculated based on the atmospheric pressure detected in S201. Specifically, kacat is calculated based on the relationship between the variation rate of the atmospheric pressure in which the internal combustion engine 1 is placed with respect to the reference atmospheric pressure and kacat, which is expressed in the same manner as the graph shown in FIG. 3 described above. When the process of S302 ends, the process proceeds to S303.
[0058]
In S303, an ignition timing catalyst temperature correction coefficient (hereinafter referred to as “kcattemp3”) is calculated based on the temperature of the NOx catalyst 14 detected in S202. Specifically, kcattemp3 is calculated based on the relationship between the temperature of the NOx catalyst 14 and kcattemp3 expressed in the same manner as the graph shown in FIG. 4 described above. When the process of S303 ends, the process proceeds to S304.
[0059]
In S304, based on the coolant temperature detected in S203 and the load factor of the internal combustion engine 1 detected in S301, a basic retard amount (hereinafter referred to as “acatb”) of the ignition timing in the internal combustion engine 1 is calculated. . Specifically, acatb is calculated based on the graph shown in FIG. FIG. 8 is a graph showing the relationship between the cooling water temperature of the internal combustion engine 1 and acatb. The horizontal axis of FIG. 8 represents the coolant temperature of the internal combustion engine 1, and the vertical axis represents acatb. Further, lines L1, L2, and L3 in FIG. 8 represent changes in acatb with respect to the cooling water temperature when the load factor of the internal combustion engine is 20%, 40%, and 60%, respectively. Therefore, when the load factor is 20%, the value of acatb is 0, and the ignition timing is not shifted to the retard side. Further, the amount of retardation increases as the load factor increases. When the process of S304 ends, the process proceeds to S305.
[0060]
In S305, based on kcat calculated in S302 and kcattemp3 calculated in S303, the value of acatb calculated in S304 is corrected and calculated as a final retardation amount (hereinafter referred to as “acat”). Specifically, it is calculated based on the following Equation 3.
[0061]
acat = acatb * (1 + kacat * kcattemp3) (Formula 3)
[0062]
In Equation 3, the value of the final retardation amount acat increases as the value of kcat and the value of kcattemp3 increase. That is, as the atmospheric pressure at which the internal combustion engine 1 is placed becomes lower or the temperature of the NOx catalyst 14 is lower, the ignition timing in the internal combustion engine 1 shifts to the retard side. As a result, the exhaust temperature rises, and thus the temperature of the NOx catalyst 14 rises. When the process of S305 is completed, the processes of S204 and S205 are sequentially performed. When the processing of S205 ends, the process proceeds to S306.
[0063]
In S306, an idle rotation speed correction amount is calculated in substantially the same manner as S206. However, in the calculation, an increase in exhaust temperature due to the shift of the ignition timing calculated in S305 to the retard side is taken into account. That is, since the temperature of the exhaust gas flowing into the NOx catalyst 14 rises by shifting the ignition timing to the retarded side, the final idle rotation speed increases much compared to the case where the ignition timing does not shift to the retarded side. There is no need to let them. Therefore, a value obtained by subtracting the rotational speed corresponding to the retard amount acat of the ignition timing from dlnt obtained from the relationship with the coolant temperature shown in FIG. 6 is calculated as the idle rotational speed correction amount dlnt2. When the process of S306 ends, the process proceeds to S307.
[0064]
In S307, as in S207, the value of dlnt2 calculated in S306 is corrected and calculated as the final idle rotation speed (hereinafter referred to as “ntcal2”). Specifically, it is calculated based on the following formula 4.
[0065]
ntcal2 = ntb + dlnt2 * (1 + kntcal * kcattemp2) (Expression 4)
[0066]
Thereby, as the atmospheric pressure at which the internal combustion engine 1 is placed becomes lower or the temperature of the NOx catalyst 14 is lower, the amount of intake air to the internal combustion engine 1 increases and the exhaust gas temperature rises. Therefore, the NOx catalyst 14 The temperature is sufficiently performed.
[0067]
As described above, even when the atmospheric pressure at which the internal combustion engine 1 is placed is reduced by this control, the idle rotation speed is increased according to the decrease in the atmospheric pressure, so that the NOx catalyst 14 is sufficiently warmed up. Therefore, it is possible to suppress the exhaust gas that has not been sufficiently purified by the NOx catalyst 14 from being released to the outside air. Furthermore, since the temperature of the NOx catalyst 14 can be raised to some extent by shifting the ignition timing in the internal combustion engine 1 to the retard side, the amount of increase in the idle rotation speed required for warming up the NOx catalyst 14 is reduced. It can be reduced. As a result, it is possible to reduce noise associated with an increase in idle rotation speed.
[0068]
In the present embodiment, the ignition timing in the internal combustion engine 1 is shifted to the retard side before determining the idle rotation speed when the catalyst is warmed up. Before the ISC flow rate is corrected in the catalyst warm-up control shown in FIG. 2, similarly, the ignition timing in the internal combustion engine 1 is shifted to the retard side, so that the increase in the ISC flow rate can be suppressed. This makes it possible to reduce noise due to an increase in the ISC flow rate.
[0069]
【The invention's effect】
The present invention relates to a catalyst warm-up system for an internal combustion engine that warms up an exhaust purification catalyst provided in an exhaust passage of the internal combustion engine, taking into account the atmospheric pressure at which the internal combustion engine is placed, and reducing the amount of intake air to the internal combustion engine. to correct. As a result, even when the atmospheric pressure at which the internal combustion engine is placed decreases, the exhaust purification catalyst is sufficiently warmed up and the exhaust gas that has not been sufficiently purified by the exhaust purification catalyst is prevented from being released to the outside air. It becomes possible to do.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a catalyst warm-up system according to an embodiment of the present invention, an internal combustion engine including the catalyst warm-up system, and a control system thereof.
FIG. 2 is a flowchart showing control for warming up the catalyst in the catalyst warming-up system according to the embodiment of the present invention.
FIG. 3 is a graph showing a relationship between a variation rate of an atmospheric pressure in which an internal combustion engine is placed with respect to a reference atmospheric pressure and an ISC flow rate atmospheric pressure correction coefficient in the catalyst warm-up system according to the embodiment of the present invention.
FIG. 4 is a graph showing the relationship between the catalyst temperature and the ISC flow rate catalyst temperature correction coefficient in the catalyst warm-up system according to the embodiment of the present invention.
FIG. 5 is a second flowchart showing control for warming up the catalyst in the catalyst warming-up system according to the embodiment of the present invention.
FIG. 6 is a graph showing the relationship between the cooling water temperature of the internal combustion engine and the idle rotation speed correction amount in the catalyst warm-up system according to the embodiment of the present invention.
FIG. 7 is a third flowchart showing control for warming up the catalyst in the catalyst warming-up system according to the embodiment of the present invention.
FIG. 8 is a graph showing the relationship between the coolant temperature of the internal combustion engine and the basic retard amount of the ignition timing in the internal combustion engine in the catalyst warm-up system according to the embodiment of the present invention.
[Explanation of symbols]
1 ... Internal combustion engine
3 ... Ignition plug
4 ... Intake branch pipe
5 .... Intake pipe
6 .... Inlet throttle valve
8. Air flow meter
9 .... Idle speed controller (ISC)
12 .... Exhaust branch pipe
13. Exhaust pipe
14 ... NOx catalyst
20 .... ECU
22 .... Cooling water temperature sensor
24 ... Exhaust temperature sensor
25 .... Atmospheric pressure sensor

Claims (5)

内燃機関の排気通路に設けられ、排気を浄化する排気浄化触媒と、
前記内燃機関の吸気通路に設けられ、該内燃機関の運転状態に基づいて該内燃機関への吸入空気量を決定する吸入空気量制御手段と、
大気圧を検出する大気圧検出手段と、
前記排気浄化触媒の暖機時において、前記大気圧検出手段によって検出される大気圧が低くなるに従い前記吸入空気量制御手段によって決定される吸入空気量を増量する補正を行う吸入空気量補正手段と、を備えることを特徴とする内燃機関の触媒暖機システム。
An exhaust purification catalyst that is provided in an exhaust passage of the internal combustion engine and purifies exhaust;
An intake air amount control means which is provided in an intake passage of the internal combustion engine and determines an intake air amount to the internal combustion engine based on an operating state of the internal combustion engine;
Atmospheric pressure detection means for detecting atmospheric pressure;
An intake air amount correction means for performing correction to increase the intake air amount determined by the intake air amount control means as the atmospheric pressure detected by the atmospheric pressure detection means decreases when the exhaust purification catalyst is warmed up; And a catalyst warm-up system for an internal combustion engine.
前記排気浄化触媒の温度を推定する触媒温度推定手段を、更に備え、
前記吸入空気量補正手段は、前記排気浄化触媒の暖機時において、前記触媒温度推定手段によって推定される該排気浄化触媒の温度が上昇するに従い、前記大気圧検出手段によって検出される大気圧に従って補正された吸入空気量を減量する補正を行うことを特徴とする請求項1に記載の内燃機関の触媒暖機システム。
A catalyst temperature estimating means for estimating the temperature of the exhaust purification catalyst;
The intake air amount correction means follows the atmospheric pressure detected by the atmospheric pressure detection means as the temperature of the exhaust purification catalyst estimated by the catalyst temperature estimation means rises when the exhaust purification catalyst warms up. The catalyst warm-up system for an internal combustion engine according to claim 1, wherein correction is performed to reduce the corrected intake air amount.
前記吸入空気量補正手段は、前記排気浄化触媒の暖機時における前記内燃機関の吸気通路を流れる吸入空気の流量を増量することで該内燃機関への吸入空気量を増量することを特徴とする請求項1又は請求項2に記載の内燃機関の触媒暖機システム。The intake air amount correction means increases the intake air amount to the internal combustion engine by increasing the flow rate of the intake air flowing through the intake passage of the internal combustion engine when the exhaust purification catalyst is warmed up. The catalyst warm-up system for an internal combustion engine according to claim 1 or 2. 前記吸入空気量補正手段は、前記排気浄化触媒の暖機時における前記内燃機関の機関回転速度を増加することで該内燃機関への吸入空気量を増量することを特徴とする請求項1又は請求項2に記載の内燃機関の触媒暖機システム。2. The intake air amount correction means increases the intake air amount to the internal combustion engine by increasing the engine speed of the internal combustion engine when the exhaust purification catalyst is warmed up. Item 3. A catalyst warm-up system for an internal combustion engine according to Item 2. 前記吸入空気量補正手段による補正が行われるときに、少なくとも前記大気圧検出手段によって検出される大気圧に基づいて、前記排気浄化触媒の暖機時における前記内燃機関での点火時期を遅角側に移行することを特徴とする請求項3又は請求項4に記載の内燃機関の触媒暖機システム。When the correction by the intake air amount correction means is performed, the ignition timing in the internal combustion engine when the exhaust purification catalyst is warmed up is retarded based on at least the atmospheric pressure detected by the atmospheric pressure detection means The catalyst warm-up system for an internal combustion engine according to claim 3 or 4, wherein
JP2003181549A 2003-06-25 2003-06-25 Catalyst warming-up system of internal combustion engine Withdrawn JP2005016396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181549A JP2005016396A (en) 2003-06-25 2003-06-25 Catalyst warming-up system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181549A JP2005016396A (en) 2003-06-25 2003-06-25 Catalyst warming-up system of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005016396A true JP2005016396A (en) 2005-01-20

Family

ID=34182232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181549A Withdrawn JP2005016396A (en) 2003-06-25 2003-06-25 Catalyst warming-up system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005016396A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754876A2 (en) 2005-08-18 2007-02-21 Kabushiki Kaisha Toyota Jidoshokki Exhaust purifier for diesel engine
JP2007291983A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Catalyst control device for internal combustion engine
US7716915B2 (en) 2006-05-29 2010-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification catalyst warm-up system of an internal combustion engine and method of the same
WO2010079609A1 (en) * 2009-01-09 2010-07-15 トヨタ自動車株式会社 Control device for vehicle
JP2010223111A (en) * 2009-03-24 2010-10-07 Miura Co Ltd Load analyzing method of compressor and installation structure of wind speed sensor used therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754876A2 (en) 2005-08-18 2007-02-21 Kabushiki Kaisha Toyota Jidoshokki Exhaust purifier for diesel engine
EP1754876A3 (en) * 2005-08-18 2008-07-23 Kabushiki Kaisha Toyota Jidoshokki Exhaust purifier for diesel engine
US7454897B2 (en) 2005-08-18 2008-11-25 Kabushiki Kaisha Toyota Jidoshokki Exhaust purifier for diesel engine
JP2007291983A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Catalyst control device for internal combustion engine
JP4736930B2 (en) * 2006-04-26 2011-07-27 トヨタ自動車株式会社 Catalyst control device for internal combustion engine
US7716915B2 (en) 2006-05-29 2010-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification catalyst warm-up system of an internal combustion engine and method of the same
DE102007024401B4 (en) * 2006-05-29 2010-08-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Apparatus for heating a catalyst for cleaning the exhaust gases of an internal combustion engine and method thereof
WO2010079609A1 (en) * 2009-01-09 2010-07-15 トヨタ自動車株式会社 Control device for vehicle
JP2010223111A (en) * 2009-03-24 2010-10-07 Miura Co Ltd Load analyzing method of compressor and installation structure of wind speed sensor used therefor

Similar Documents

Publication Publication Date Title
US9297348B2 (en) Methods and systems for variable displacement engine control
US8607544B2 (en) Methods and systems for variable displacement engine control
US9151216B2 (en) Methods and systems for variable displacement engine control
JP2006138300A (en) Torque control device for internal combustion engine
JP3913864B2 (en) In-cylinder injection fuel control system for internal combustion engine
JP2005188293A (en) Fuel injection control device of internal combustion engine
JP2008208784A (en) Control system for internal combustion engine
JP4778401B2 (en) Control device for internal combustion engine
JP4348705B2 (en) Fuel injection control device for internal combustion engine
JP2008190342A (en) Control device for internal combustion engine
JP2005016396A (en) Catalyst warming-up system of internal combustion engine
JP5278464B2 (en) Fuel injection control device for internal combustion engine
JP2010163916A (en) Torque control device for internal combustion engine
JP2004340065A (en) Control device for hydrogen engine
JP2007040205A (en) Control device for internal combustion engine
JP2010174818A (en) Control device of internal combustion engine
JP4789291B2 (en) Internal combustion engine temperature rising operation control device
JP4178988B2 (en) Start-up control device for compression ignition internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine
JP4115162B2 (en) Exhaust gas purification control device for internal combustion engine
JP4374721B2 (en) Control device for internal combustion engine
JP2004183581A (en) Exhaust emission control device for internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP2005214072A (en) Controller of internal combustion engine
JPH10266886A (en) Fuel cut control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061219