JP2005014074A - Reflowing plant - Google Patents

Reflowing plant Download PDF

Info

Publication number
JP2005014074A
JP2005014074A JP2003185395A JP2003185395A JP2005014074A JP 2005014074 A JP2005014074 A JP 2005014074A JP 2003185395 A JP2003185395 A JP 2003185395A JP 2003185395 A JP2003185395 A JP 2003185395A JP 2005014074 A JP2005014074 A JP 2005014074A
Authority
JP
Japan
Prior art keywords
temperature
cooling
reflow
flux
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003185395A
Other languages
Japanese (ja)
Inventor
Fumihiro Yamashita
文弘 山下
Kiyoshi Douyu
清志 堂囿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Tamura FA System Corp
Original Assignee
Tamura Corp
Tamura FA System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Tamura FA System Corp filed Critical Tamura Corp
Priority to JP2003185395A priority Critical patent/JP2005014074A/en
Priority to PCT/JP2004/008876 priority patent/WO2005000513A1/en
Publication of JP2005014074A publication Critical patent/JP2005014074A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflowing plant by which the temperature in a reflow heating part of a furnace body can be lowered in a short time, and the sticking of flux gas in the reflow heating part can be prevented. <P>SOLUTION: In the outside of a furnace body 11 reflow-heating a work W at a reflow heating part 13, a circulation system 26 of discharging a high temperature atmosphere from the reflow heating part 13 to the outside and thereafter returning the same to the furnace body 11 is provided. In the circulation system 26, a cooling means 28 of cooling a high temperature atmosphere is allowed to be existed. The cooling means 28 comprises a cooling condenser 31 of receiving the feed of cooling water and liquefying flux in a vaporized state. The flow rate of the cooling water to be fed to the cooling condenser 31 is controlled by a motor operated valve 36 operated in accordance with an electric signal. The temperature of circulation wind after being passed through the cooling condenser 31 is detected by a temperature sensor 41. A temperature indication controller 42 which receives the detected temperature of the circulation wind from the temperature sensor 41 controls the flow rate of the cooling water in the motor operated valve 36 in such a manner that the detected temperature is controlled to the one set by the temperature indication controller 42. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高温雰囲気を冷却するリフロー装置に関する。
【0002】
【従来の技術】
ワークをリフロー加熱する炉体のリフロー加熱部内に、高温雰囲気を冷却する冷却手段を設け、リフロー加熱時のワーク温度プロファイルを、より細かく制御できるようにしたリフロー装置がある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−188466号公報(第1頁、図1)
【0004】
【発明が解決しようとする課題】
このような炉体のリフロー加熱部内に冷却手段を設けたものは、炉体内でフラックスが凝縮して固化し、炉体内などに付着するおそれがある。
【0005】
本発明は、このような点に鑑みなされたもので、炉体のリフロー加熱部内の温度を短時間で下げることができるとともに、リフロー加熱部内でのフラックスガスの付着を防止できるリフロー装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
請求項1に記載された発明は、ワークをリフロー加熱するリフロー加熱部を有する炉体と、この炉体の外部に設けられ上記リフロー加熱部から高温雰囲気を外部へ取出した後炉体に戻す循環系と、この循環系に介在され高温雰囲気を冷却する冷却手段とを具備したリフロー装置であり、上記炉体の外部に設けられた上記循環系に上記リフロー加熱部内の高温雰囲気を冷却する上記冷却手段を介在させたので、ワークに応じて、上記リフロー加熱部内の雰囲気温度を短時間で下げることができるとともに、このときに、上記炉体の外部に設けられた上記循環系で高温雰囲気を冷却するので、この冷却時に雰囲気中のフラックスが液化して炉体内に付着するおそれを防止できる。
【0007】
請求項2に記載された発明は、請求項1記載のリフロー装置において、雰囲気温度の下げ幅が任意に設定可能の所望温度以上のときに、上記冷却手段の冷却能力を通常より大きくする制御手段を具備したものであり、雰囲気温度の下げ幅が大きいときに、上記制御手段が上記冷却手段の冷却能力を通常より大きくするので、リフロー加熱部内の高温雰囲気温度を短時間で自動的に下げることができる。
【0008】
請求項3に記載された発明は、請求項1または2記載のリフロー装置において、上記冷却手段により冷却された循環風から凝縮されたフラックスを回収するフラックス回収手段を具備したものであり、上記フラックス回収手段により、炉体内の高温雰囲気中に含まれるフラックスを回収でき、その際、上記炉体の外部の循環系で高温雰囲気を冷却するので、液化したフラックスが炉体内に付着することを防止できる。
【0009】
請求項4に記載された発明は、請求項1乃至3のいずれか記載のリフロー装置における冷却手段が、冷却水の供給を受けて気化状態のフラックスを液化する冷却コンデンサと、この冷却コンデンサに供給される冷却水の流量を調整する流量調整弁と、上記冷却コンデンサを通過した後の循環風の温度を検出する温度センサと、この温度センサにより検出される循環風の温度を設定された温度に制御するように上記流量調整弁の冷却水の流量を調節する温度調節手段とを具備したものであり、上記炉体内の雰囲気温度下げ制御およびフラックス回収制御において、上記冷却コンデンサを通過した後の循環風の温度を上記温度センサで検出し、上記温度調節手段に設定された温度を目標値として、この温度調節手段は、温度センサの検出温度が設定温度に一致するように流量調整弁を調整して冷却水の循環量を制御することで、循環風の温度を高精度にフィードバック制御でき、使用するはんだ付け材料によるフラックスガス液化温度の相違に対応できる。
【0010】
請求項5に記載された発明は、請求項1乃至4のいずれか記載のリフロー装置における循環系が、循環風中のフラックスを除去するフィルタと、このフィルタの下流側に設けられた送風手段とを具備したものであり、上記フィルタによりフラックスミストなどを除去した循環風が上記送風手段に吸込まれるので、この送風手段にフラックスが付着するおそれを防止できる。
【0011】
請求項6に記載された発明は、請求項1乃至5記載のリフロー装置における循環系が、冷却手段より下流側に配設された加熱ユニットを具備したものであり、加熱ユニットにより、炉体のリフロー加熱部に戻される循環風を加熱してリフロー加熱部の雰囲気温度まで昇温させることで、リフロー加熱部内の温度変化を軽減できる。
【0012】
【発明の実施の形態】
以下、本発明を、図1および図2に示された第1の実施の形態、図3に示された第2の実施の形態を参照しながら詳細に説明する。
【0013】
先ず、図1および図2に示された第1の実施の形態を説明すると、図2に示されるように、リフロー装置は、炉体11の内部に、ワークWを予加熱するためのプリヒート加熱部12と、ワークWをリフロー加熱するためのリフロー加熱部13と、ワークWを冷却するためのワーク冷却部14とが設けられている。これらのプリヒート加熱部12、リフロー加熱部13およびワーク冷却部14を貫通するように、ワークWを両側の無端チェンに係合して搬送するコンベヤ15が配設されている。
【0014】
プリヒート加熱部12は、コンベヤ15の上側および下側にヒータ16、ファン17および温度センサ18を有し、ヒータ16からの輻射熱およびファン17で比較的低温の熱風となった雰囲気によりワークWが予加熱され、また、リフロー加熱部13は、コンベヤ15の上側および下側にプリヒート加熱部12より高温に加熱されるヒータ21、ファン22および温度センサ23を有し、ヒータ21からの輻射熱およびファン22で比較的高温の熱風となった高温雰囲気によりワークWが本加熱され、さらに、ワーク冷却部14は、コンベヤ15の上側および下側にファン24を有し、このファン24からの冷風によりリフロー加熱後のワークWが冷却される。
【0015】
そして、プリヒート加熱部12およびリフロー加熱部13の雰囲気温度は、各温度センサ18,23によりそれぞれ検出され、これらの検出温度が、設定された目標温度となるように各ヒータ16,21への通電量がそれぞれ制御される。
【0016】
例えば、図1に示されるように、リフロー加熱部13の雰囲気温度制御系は、雰囲気温度を検出する各温度センサ23が制御手段としてのコントローラ25に接続され、このコントローラ25は、各温度センサ23による検出温度が、目標となる設定温度と一致するように各ヒータ21への通電量をそれぞれ制御する。
【0017】
この図1に示されるように、リフロー加熱部13を有する炉体11の外部に、リフロー加熱部13から高温雰囲気を外部へ取出した後、炉体11に戻す循環系26が設けられている。
【0018】
この循環系26は、炉体11の上部から引出された複数の管路27中にリフロー高温雰囲気を冷却する冷却手段28が介在されている。
【0019】
この冷却手段28は、上記管路27に冷却コンデンサ31のコンデンサ本体32に開口された複数の循環風入口33がそれぞれ接続され、この冷却コンデンサ31のコンデンサ本体32内に、冷却水の供給を受けて気化状態のフラックスを液化する冷却コイル34が配設され、この冷却コンデンサ31の冷却コイル34に冷却水を供給する管路35中に、冷却水の流量を電気信号に応じて調整する流量調整弁としての電動弁36が設けられている。
【0020】
さらに、冷却コンデンサ31のコンデンサ本体32に開口された複数の循環風出口37に、管路38がそれぞれ接続され、これらの管路38を接続するТ形管継手部39に、冷却コンデンサ31を通過した後の循環風の温度を検出する温度センサ41が接続され、この温度センサ41は温度調節手段としての温度指示調節計42に接続されている。
【0021】
この温度指示調節計42から引出され制御ライン43は、電動弁36の作動部36aに接続され、温度センサ41より検出される循環風の温度を、この温度指示調節計42で指示設定された温度に制御するように、電動弁36で絞られた冷却水の流量を調節する機能を備えている。
【0022】
前記コントローラ25は、リフロー加熱部13の雰囲気温度の下げ幅が任意に設定可能の所望温度(例えば10℃)以上のときに、冷却手段28の電動弁36を最大限(100%)開弁させて、冷却コンデンサ31の冷却能力を通常運転時より大きくする運転すなわち冷却運転を開始する制御手段であり、このコントローラ25の制御ライン44が、温度指示調節計42に接続されている。
【0023】
すなわち、コントローラ25は、リフロー加熱部13の設定温度の設定値を任意に定可能の所望温度(例えば10℃)以上下げる設定変更時に、自動的に冷却運転を開始し、一方、リフロー加熱部13の検出温度と設定温度との誤差が、任意に設定可能な所定温度(例えば5℃)以内になった時点で、自動的に冷却運転を停止させる機能を備えている。
【0024】
冷却コンデンサ31のコンデンサ本体32の底部には液化フラックス回収口45が設けられ、この液化フラックス回収口45に管路46を介して、冷却コンデンサ31により冷却された循環風から凝縮された液化フラックスを回収するフラックス回収手段としてのフラックス回収用タンク47が接続されている。
【0025】
さらに、この循環系26は、循環用の専用ブロワユニット51を有しており、前記Т形管継手部39は、このブロワユニット51に接続されている。このブロワユニット51は、循環風中の液化されなかったフラックスミストや塵埃を除去するフィルタ52と、このフィルタ52の下流側に設けられた送風手段としてのブロワ53とが、一体化されたものである。
【0026】
このブロワ53の吹出口部54は、管路55を経て炉体11の下部に接続されている。
【0027】
次に、図1に示された実施の形態の作用を説明する。
【0028】
基本動作は、ブロワ53の吸引力により、炉体11のリフロー加熱部13より高温雰囲気を抜き出し、冷却コンデンサ31を通過させることで気化しているフラックス成分を凝縮させ、液化したフラックスはフラックス回収用タンク47に溜め、フラックス除去された循環風は、フィルタ52およびブロワ53を経て、リフロー加熱部13に戻す。
【0029】
(冷却運転)
ワークWの変更などにともなって、コントローラ25への入力操作で、リフロー加熱部13の設定温度を10℃(任意設定可能)以上下げる設定変更がなされた場合は、コントローラ25からの信号を受けた温度指示調節計42が、自動的に冷却運転を開始する。
【0030】
この冷却運転では、冷却時間を短縮するために、冷却水量制御用の電動弁36を出力100%すなわち全開状態とし、冷却効率を高める。
【0031】
そして、リフロー加熱部13の検出温度と、コントローラ25での設定温度との誤差が、5℃(任意設定可能)以内になった時点で、冷却運転を自動的に停止させる。
【0032】
このようにして、冷却運転では、リフロー加熱部13内の温度を短時間で自動的に下げる。
【0033】
この冷却運転時に、冷却手段28のフラックス回収能力は最大になる。
【0034】
(通常運転時)
冷却運転時以外の通常運転時には、冷却コンデンサ31を通過した循環風の温度を温度センサ41で検出し、この検出温度が温度指示調節計42にて設定された温度と等しくなるように、温度指示調節計42は電動弁36により冷却水の循環量を絞り制御する。
【0035】
これにより、冷却コンデンサ31の冷却能力が冷却運転時ほど高くなることはないが、フラックスを凝縮させて回収するには十分な温度まで循環風の温度を下げることができる。
【0036】
このような制御系により、循環風内のフラックスガスの凝縮温度すなわち液化温度が、使用するはんだ付け材料(ソルダペースト)により相違することに対応する。
【0037】
次に、図1に示された実施の形態の効果を説明する。
【0038】
炉体11の外部に設けられた循環系26にリフロー加熱部13内の高温雰囲気を冷却する冷却手段28を介在させたので、ワークWに応じて設定されるリフロー加熱部13内の雰囲気温度を短時間で大幅に下げることができる。
【0039】
このとき、炉体11の外部に設けられた循環系26の冷却手段28で高温雰囲気を冷却するので、この冷却時に雰囲気中のフラックスが液化して炉体11内に付着するおそれを防止できる。
【0040】
雰囲気温度の下げ幅が大きい場合に、コントローラ25が冷却手段28の冷却作用を最大限に機能させるので、リフロー加熱部13内の高温雰囲気温度を短時間で自動的に下げることができる。
【0041】
フラックス回収用タンク47により、炉体11内の高温雰囲気中に含まれるフラックスを回収でき、液化したフラックスが炉体11の内壁に付着することを防止できる。
【0042】
炉体11内の雰囲気温度下げ制御およびフラックス回収制御において、冷却コンデンサ31を通過した後の循環風の温度を温度センサ41で検出し、温度指示調節計42に設定された温度を目標値として、この温度指示調節計42は、温度センサ41の検出温度が設定温度に一致するように電動弁36を調整して冷却水の循環量を制御することで、循環風の温度を高精度にフィードバック制御でき、使用するはんだ付け材料によるフラックスガス液化温度の相違に対応できる。
【0043】
フィルタ52によりフラックスミストなどを除去した循環風がブロワ53に吸込まれるので、このブロワ53にフラックスが付着するおそれを防止できる。
【0044】
次に、図3に示された第2の実施の形態を説明する。なお、図1に示された第1の実施の形態と同様の部分には、同一符号を付して、その説明を省略する。
【0045】
循環系26の冷却手段28より下流側には、加熱ユニット61が配設されている。
【0046】
すなわち、この加熱ユニット61は、ブロワ53の各吹出口部54に各管路55を介して加熱タンク62の入口部63がそれぞれ接続され、この加熱タンク62の内部には循環風を加熱するためのヒータ64が設けられ、さらに、加熱タンク62に接続されたТ形管継手部65に温度センサ66が設けられ、この温度センサ66は、ヒータ64を制御するための温度指示調節計67に接続されている。
【0047】
この温度指示調節計67は、温度センサ66により検出された循環風の温度が、この温度指示調節計67にて指示設定された温度と等しくなるようにヒータ64の通電量を制御する。また、Т形管継手部65は、管路55により炉体11の下部に接続されている。
【0048】
そして、ブロワ53の吸込力によりリフロー加熱部13より高温雰囲気を抜き出し、冷却コンデンサ31を通過させるときに、循環風中のフラックス成分を凝縮させて回収し、さらにフィルタ52およびブロワ53を経た循環風を、加熱ユニット61の加熱タンク62内で温度上昇させてから、リフロー加熱部13に戻す。
【0049】
その際、コントローラ25への入力操作で、リフロー加熱部13の設定温度を10℃(任意設定可能)以上下げる設定変更がなされたときは、コントローラ25から出力された信号により、温度指示調節計42が、自動的に冷却手段28の冷却運転を開始し、冷却水量制御用の電動弁36を全開状態に制御する。
【0050】
この冷却運転時、加熱ユニット61は機能させず、フィルタ52およびブロワ53を経た循環風は、加熱タンク62内で加熱することなく、リフロー加熱部13に戻される。
【0051】
一方、リフロー加熱部13の検出温度と設定温度との誤差が、任意に設定可能な所定温度(例えば5℃)以内になった時点で、コントローラ25は、自動的に冷却運転を停止させ、温度指示調節計42を通じて冷却水量制御用の電動弁36を絞り制御する。
【0052】
そして、通常運転時は、コントローラ25から冷却手段28の温度指示調節計42を通じて冷却水量制御用の電動弁36を絞り制御するとともに、加熱ユニット61の温度指示調節計67に制御信号を送信して、フラックス回収のために低下させた循環風の温度を、リフロー加熱部13の設定温度に上昇復帰させてから、リフロー加熱部13に戻すようにする。
【0053】
このように、フラックス回収処理後、温度低下した循環風を炉体11のリフロー加熱部13(高温部)に戻すに当って、加熱ユニット61により循環風を加熱して、リフロー加熱部13内の雰囲気温度まで昇温させることで、リフロー加熱部13内の温度変化を軽減させることができる。
【0054】
【発明の効果】
請求項1記載の発明によれば、炉体の外部に設けられた循環系にリフロー加熱部内の高温雰囲気を冷却する冷却手段を介在させたので、ワークに応じて、リフロー加熱部内の雰囲気温度を短時間で下げることができるとともに、このときに、炉体の外部に設けられた循環系で高温雰囲気を冷却するので、この冷却時に雰囲気中のフラックスが液化して炉体内に付着するおそれを防止できる。
【0055】
請求項2記載の発明によれば、雰囲気温度の下げ幅が大きいときに、制御手段が冷却手段の冷却能力を通常より大きくするので、リフロー加熱部内の高温雰囲気温度を短時間で自動的に下げることができる。
【0056】
請求項3記載の発明によれば、フラックス回収手段により、炉体内の高温雰囲気中に含まれるフラックスを回収でき、その際、炉体の外部の循環系で高温雰囲気を冷却するので、液化したフラックスが炉体内に付着することを防止できる。
【0057】
請求項4記載の発明によれば、炉体内の雰囲気温度下げ制御およびフラックス回収制御において、冷却コンデンサを通過した後の循環風の温度を温度センサで検出し、温度調節手段に設定された温度を目標値として、この温度調節手段は、温度センサの検出温度が設定温度に一致するように流量調整弁を調整して冷却水の循環量を制御することで、循環風の温度を高精度にフィードバック制御でき、使用するはんだ付け材料によるフラックスガス液化温度の相違に対応できる。
【0058】
請求項5記載の発明によれば、フィルタによりフラックスミストなどを除去した循環風が送風手段に吸込まれるので、この送風手段にフラックスが付着するおそれを防止できる。
【0059】
請求項6記載の発明によれば、加熱ユニットにより、炉体のリフロー加熱部に戻される循環風を加熱してリフロー加熱部の雰囲気温度まで昇温させることで、リフロー加熱部内の温度変化を軽減できる。
【図面の簡単な説明】
【図1】本発明に係るリフロー装置の第1の実施の形態を示す回路図である。
【図2】同上リフロー装置の概要を示す断面図である。
【図3】本発明に係るリフロー装置の第2の実施の形態を示す回路図である。
【符号の説明】
W ワーク
11 炉体
13 リフロー加熱部
25 制御手段としてのコントローラ
26 循環系
28 冷却手段
31 冷却コンデンサ
36 流量調整弁としての電動弁
41 温度センサ
42 温度調節手段としての温度指示調節計
47 フラックス回収手段としてのフラックス回収用タンク
52 フィルタ
53 送風手段としてのブロワ
61 加熱ユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reflow apparatus for cooling a high temperature atmosphere.
[0002]
[Prior art]
There is a reflow apparatus in which a cooling means for cooling a high-temperature atmosphere is provided in a reflow heating section of a furnace body for reflow heating a work so that the work temperature profile during reflow heating can be more finely controlled (see, for example, Patent Document 1). ).
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-188466 (first page, FIG. 1)
[0004]
[Problems to be solved by the invention]
In the case where the cooling means is provided in the reflow heating section of the furnace body, the flux is condensed and solidified in the furnace body and may adhere to the furnace body.
[0005]
This invention is made in view of such a point, and provides the reflow apparatus which can lower | hang the temperature in the reflow heating part of a furnace body in a short time, and can prevent adhesion of the flux gas in a reflow heating part. It is for the purpose.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a furnace body having a reflow heating section for reflow heating the work, and a circulation which is provided outside the furnace body and is taken out from the reflow heating section and then returned to the furnace body. A reflow apparatus comprising a cooling system for cooling a high-temperature atmosphere interposed in the circulation system, and the cooling for cooling the high-temperature atmosphere in the reflow heating unit in the circulation system provided outside the furnace body Since the means is interposed, the atmosphere temperature in the reflow heating section can be lowered in a short time according to the work, and at this time, the high temperature atmosphere is cooled by the circulation system provided outside the furnace body. Therefore, it is possible to prevent the flux in the atmosphere from being liquefied and adhering to the furnace body during this cooling.
[0007]
According to a second aspect of the present invention, in the reflow apparatus according to the first aspect, the control means for making the cooling capacity of the cooling means larger than usual when the lowering range of the ambient temperature is equal to or higher than a desired settable temperature. When the reduction range of the ambient temperature is large, the control means increases the cooling capacity of the cooling means more than usual, so the high temperature ambient temperature in the reflow heating section can be automatically reduced in a short time. Can do.
[0008]
A third aspect of the present invention is the reflow apparatus according to the first or second aspect, further comprising a flux recovery means for recovering the flux condensed from the circulating air cooled by the cooling means. The recovery means can recover the flux contained in the high-temperature atmosphere in the furnace body, and at that time, the high-temperature atmosphere is cooled in the circulation system outside the furnace body, so that the liquefied flux can be prevented from adhering to the furnace body. .
[0009]
According to a fourth aspect of the present invention, the cooling means in the reflow apparatus according to any one of the first to third aspects receives a supply of cooling water and liquefies the vaporized flux and supplies the cooling condenser A flow rate adjusting valve for adjusting the flow rate of the cooling water, a temperature sensor for detecting the temperature of the circulating air after passing through the cooling condenser, and the temperature of the circulating air detected by the temperature sensor at a set temperature. A temperature adjusting means for adjusting the flow rate of the cooling water of the flow rate adjusting valve so as to control the circulation after passing through the cooling capacitor in the atmospheric temperature lowering control and flux recovery control in the furnace body. The temperature of the wind is detected by the temperature sensor, and the temperature set in the temperature adjusting means is set as a target value. By adjusting the flow rate adjustment valve to match the temperature and controlling the circulation rate of the cooling water, the temperature of the circulating air can be feedback-controlled with high accuracy, and the flux gas liquefaction temperature varies depending on the soldering material used. it can.
[0010]
According to a fifth aspect of the present invention, there is provided a filter in which the circulation system in the reflow device according to any one of the first to fourth aspects removes a flux in the circulating air, and a blowing means provided on the downstream side of the filter. Since the circulating air from which the flux mist and the like have been removed by the filter is sucked into the air blowing means, it is possible to prevent the flux from adhering to the air blowing means.
[0011]
According to a sixth aspect of the present invention, the circulation system in the reflow apparatus according to the first to fifth aspects comprises a heating unit disposed downstream of the cooling means. The temperature change in the reflow heating unit can be reduced by heating the circulating air returned to the reflow heating unit and raising the temperature to the ambient temperature of the reflow heating unit.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the first embodiment shown in FIGS. 1 and 2 and the second embodiment shown in FIG.
[0013]
First, the first embodiment shown in FIGS. 1 and 2 will be described. As shown in FIG. 2, the reflow apparatus is preheated to preheat the workpiece W inside the furnace body 11. A part 12, a reflow heating part 13 for reflow heating the work W, and a work cooling part 14 for cooling the work W are provided. A conveyor 15 is disposed so as to pass through the preheat heating unit 12, the reflow heating unit 13, and the workpiece cooling unit 14 and engage and convey the workpiece W to endless chains on both sides.
[0014]
The preheat heating unit 12 includes a heater 16, a fan 17, and a temperature sensor 18 on the upper side and the lower side of the conveyor 15. The reflow heating unit 13 has a heater 21, a fan 22, and a temperature sensor 23 that are heated to a higher temperature than the preheat heating unit 12 on the upper side and the lower side of the conveyor 15. Radiant heat from the heater 21 and the fan 22 are heated. The workpiece W is heated by a high-temperature atmosphere that has become a relatively high-temperature hot air. Further, the workpiece cooling unit 14 has fans 24 on the upper side and the lower side of the conveyor 15, and reflow heating is performed by the cold air from the fan 24. The subsequent workpiece W is cooled.
[0015]
The ambient temperatures of the preheat heating unit 12 and the reflow heating unit 13 are detected by the temperature sensors 18 and 23, respectively, and energization of the heaters 16 and 21 is performed so that these detected temperatures become set target temperatures. Each amount is controlled.
[0016]
For example, as shown in FIG. 1, in the ambient temperature control system of the reflow heating unit 13, each temperature sensor 23 that detects the ambient temperature is connected to a controller 25 as a control unit, and the controller 25 includes each temperature sensor 23. The energization amount to each heater 21 is controlled so that the detected temperature according to accords with the target set temperature.
[0017]
As shown in FIG. 1, a circulation system 26 is provided outside the furnace body 11 having the reflow heating section 13, after a high temperature atmosphere is taken out from the reflow heating section 13 and then returned to the furnace body 11.
[0018]
In the circulation system 26, cooling means 28 for cooling the reflow high-temperature atmosphere is interposed in a plurality of pipe lines 27 drawn from the upper part of the furnace body 11.
[0019]
In the cooling means 28, a plurality of circulating air inlets 33 opened in the condenser body 32 of the cooling condenser 31 are connected to the pipe line 27, respectively, and the cooling water is supplied into the condenser body 32 of the cooling condenser 31. The cooling coil 34 for liquefying the vaporized flux is disposed, and the flow rate adjustment for adjusting the flow rate of the cooling water in accordance with the electric signal in the pipe 35 for supplying the cooling water to the cooling coil 34 of the cooling capacitor 31. A motorized valve 36 is provided as a valve.
[0020]
Furthermore, pipes 38 are connected to a plurality of circulating air outlets 37 opened in the condenser main body 32 of the cooling condenser 31, and the cooling condenser 31 is passed through a Т-shaped pipe joint portion 39 connecting these pipes 38. Then, a temperature sensor 41 for detecting the temperature of the circulating air is connected, and this temperature sensor 41 is connected to a temperature indicating controller 42 as temperature adjusting means.
[0021]
The control line 43 drawn from the temperature indicating controller 42 is connected to the operating portion 36a of the motor operated valve 36, and the temperature of the circulating air detected by the temperature sensor 41 is set by the temperature indicating controller 42. The function of adjusting the flow rate of the cooling water throttled by the motor-operated valve 36 is provided.
[0022]
The controller 25 opens the motor-operated valve 36 of the cooling means 28 to the maximum (100%) when the lowering range of the ambient temperature of the reflow heating unit 13 is equal to or higher than a desired temperature (for example, 10 ° C.) that can be arbitrarily set. Thus, the control means 44 is a control means for starting the operation for increasing the cooling capacity of the cooling condenser 31 compared with the normal operation, that is, the cooling operation.
[0023]
That is, the controller 25 automatically starts the cooling operation at the time of a setting change that lowers the set value of the set temperature of the reflow heating unit 13 by a desired temperature (for example, 10 ° C.) that can be arbitrarily determined, while the reflow heating unit 13 Is provided with a function of automatically stopping the cooling operation when an error between the detected temperature and the set temperature falls within a predetermined temperature (for example, 5 ° C.) that can be arbitrarily set.
[0024]
A liquefied flux recovery port 45 is provided at the bottom of the condenser main body 32 of the cooling capacitor 31, and the liquefied flux condensed from the circulating air cooled by the cooling capacitor 31 is connected to the liquefied flux recovery port 45 via a conduit 46. A flux recovery tank 47 is connected as a flux recovery means for recovery.
[0025]
Further, the circulation system 26 has a dedicated blower unit 51 for circulation, and the Т-shaped pipe joint portion 39 is connected to the blower unit 51. This blower unit 51 is an integrated unit of a filter 52 that removes flux mist and dust that has not been liquefied in the circulating air, and a blower 53 that is provided on the downstream side of the filter 52 as a blowing means. is there.
[0026]
The blower outlet 54 of the blower 53 is connected to the lower part of the furnace body 11 through a pipe 55.
[0027]
Next, the operation of the embodiment shown in FIG. 1 will be described.
[0028]
The basic operation is to extract the high temperature atmosphere from the reflow heating unit 13 of the furnace body 11 by the suction force of the blower 53 and to condense the vapor component vaporized by passing through the cooling capacitor 31, and the liquefied flux is used for flux recovery. The circulating air collected in the tank 47 and flux-removed is returned to the reflow heating unit 13 through the filter 52 and the blower 53.
[0029]
(Cooling operation)
In response to a change in the workpiece W, when a setting change is made to lower the set temperature of the reflow heating unit 13 by 10 ° C. (optional setting) or more by an input operation to the controller 25, a signal from the controller 25 is received. The temperature indicating controller 42 automatically starts the cooling operation.
[0030]
In this cooling operation, in order to shorten the cooling time, the motor-operated valve 36 for controlling the amount of cooling water is set to 100% output, that is, fully opened to increase the cooling efficiency.
[0031]
Then, the cooling operation is automatically stopped when the error between the detected temperature of the reflow heating unit 13 and the set temperature in the controller 25 is within 5 ° C. (can be arbitrarily set).
[0032]
Thus, in the cooling operation, the temperature in the reflow heating unit 13 is automatically lowered in a short time.
[0033]
During this cooling operation, the flux recovery capability of the cooling means 28 is maximized.
[0034]
(During normal operation)
During normal operation other than during cooling operation, the temperature of the circulating air that has passed through the cooling condenser 31 is detected by the temperature sensor 41, and the temperature indication is set so that this detected temperature is equal to the temperature set by the temperature indication controller 42. The controller 42 controls the circulating amount of the cooling water by using the electric valve 36.
[0035]
As a result, the cooling capacity of the cooling condenser 31 does not increase as much as during the cooling operation, but the temperature of the circulating air can be lowered to a temperature sufficient to condense and collect the flux.
[0036]
With such a control system, it corresponds to the fact that the condensation temperature, that is, the liquefaction temperature, of the flux gas in the circulating air differs depending on the soldering material (solder paste) used.
[0037]
Next, the effect of the embodiment shown in FIG. 1 will be described.
[0038]
Since the cooling means 28 for cooling the high-temperature atmosphere in the reflow heating unit 13 is interposed in the circulation system 26 provided outside the furnace body 11, the ambient temperature in the reflow heating unit 13 set according to the workpiece W is set. It can be lowered significantly in a short time.
[0039]
At this time, since the high temperature atmosphere is cooled by the cooling means 28 of the circulation system 26 provided outside the furnace body 11, it is possible to prevent the flux in the atmosphere from being liquefied and adhering to the furnace body 11 during this cooling.
[0040]
When the reduction range of the atmospheric temperature is large, the controller 25 allows the cooling function of the cooling means 28 to function to the maximum extent, so that the high temperature atmospheric temperature in the reflow heating unit 13 can be automatically reduced in a short time.
[0041]
The flux recovery tank 47 can recover the flux contained in the high-temperature atmosphere in the furnace body 11 and prevent the liquefied flux from adhering to the inner wall of the furnace body 11.
[0042]
In the atmospheric temperature lowering control and flux recovery control in the furnace body 11, the temperature of the circulating air after passing through the cooling capacitor 31 is detected by the temperature sensor 41, and the temperature set in the temperature indicating controller 42 is set as a target value. This temperature indicating controller 42 adjusts the motor-operated valve 36 so that the temperature detected by the temperature sensor 41 matches the set temperature, and controls the circulation amount of the cooling water, thereby feedback controlling the temperature of the circulating air with high accuracy. It is possible to cope with differences in flux gas liquefaction temperature depending on the soldering material used.
[0043]
Since the circulating air from which the flux mist and the like have been removed by the filter 52 is sucked into the blower 53, the possibility of flux adhering to the blower 53 can be prevented.
[0044]
Next, the second embodiment shown in FIG. 3 will be described. In addition, the same code | symbol is attached | subjected to the part similar to 1st Embodiment shown by FIG. 1, and the description is abbreviate | omitted.
[0045]
A heating unit 61 is disposed downstream of the cooling unit 28 in the circulation system 26.
[0046]
That is, the heating unit 61 is connected to the air outlets 54 of the blower 53 via the pipes 55, respectively, and the inlet 63 of the heating tank 62 is connected to the inside of the heating tank 62 to heat the circulating air. Further, a temperature sensor 66 is provided in the Т-shaped pipe joint portion 65 connected to the heating tank 62, and this temperature sensor 66 is connected to a temperature indicating controller 67 for controlling the heater 64. Has been.
[0047]
The temperature indicating controller 67 controls the energization amount of the heater 64 so that the temperature of the circulating air detected by the temperature sensor 66 becomes equal to the temperature set by the temperature indicating controller 67. Further, the Т-shaped pipe joint portion 65 is connected to the lower portion of the furnace body 11 by a pipe line 55.
[0048]
Then, when the high-temperature atmosphere is extracted from the reflow heating unit 13 by the suction force of the blower 53 and passes through the cooling condenser 31, the flux component in the circulating wind is condensed and collected, and the circulating wind passed through the filter 52 and the blower 53. Is raised in the heating tank 62 of the heating unit 61 and then returned to the reflow heating unit 13.
[0049]
At that time, when a setting change is made to lower the set temperature of the reflow heating unit 13 by 10 ° C. (optional setting) or more by an input operation to the controller 25, the temperature indicating controller 42 is output by a signal output from the controller 25. However, the cooling operation of the cooling means 28 is automatically started, and the motor control valve 36 for controlling the cooling water amount is controlled to be fully opened.
[0050]
During this cooling operation, the heating unit 61 does not function, and the circulating air that has passed through the filter 52 and the blower 53 is returned to the reflow heating unit 13 without being heated in the heating tank 62.
[0051]
On the other hand, when the error between the detected temperature of the reflow heating unit 13 and the set temperature falls within a predetermined temperature (for example, 5 ° C.) that can be arbitrarily set, the controller 25 automatically stops the cooling operation, The motor control valve 36 for controlling the cooling water amount is controlled to be throttled through the instruction controller 42.
[0052]
During normal operation, the controller 25 controls the motor control valve 36 for controlling the amount of cooling water through the temperature indicating controller 42 of the cooling means 28 and transmits a control signal to the temperature indicating controller 67 of the heating unit 61. Then, the temperature of the circulating air lowered for flux recovery is returned to the reflow heating unit 13 after returning to the set temperature of the reflow heating unit 13.
[0053]
As described above, after returning the circulating air whose temperature has decreased after the flux recovery process to the reflow heating unit 13 (high temperature part) of the furnace body 11, the circulating air is heated by the heating unit 61, and the inside of the reflow heating unit 13 is heated. By raising the temperature to the ambient temperature, the temperature change in the reflow heating unit 13 can be reduced.
[0054]
【The invention's effect】
According to the first aspect of the present invention, since the cooling means for cooling the high-temperature atmosphere in the reflow heating unit is interposed in the circulation system provided outside the furnace body, the ambient temperature in the reflow heating unit is set according to the work. It can be lowered in a short time, and at this time, the high temperature atmosphere is cooled by a circulation system provided outside the furnace body, so that the flux in the atmosphere can be prevented from liquefying and adhering to the furnace body during this cooling. it can.
[0055]
According to the second aspect of the present invention, the control means increases the cooling capacity of the cooling means more than usual when the decrease range of the atmospheric temperature is large. Therefore, the high temperature atmosphere temperature in the reflow heating section is automatically reduced in a short time. be able to.
[0056]
According to the third aspect of the present invention, the flux recovery means can recover the flux contained in the high temperature atmosphere in the furnace body, and at this time, the high temperature atmosphere is cooled in the circulation system outside the furnace body. Can be prevented from adhering to the furnace.
[0057]
According to the fourth aspect of the invention, in the atmospheric temperature lowering control and the flux recovery control in the furnace body, the temperature of the circulating air after passing through the cooling condenser is detected by the temperature sensor, and the temperature set in the temperature adjusting means is determined. As a target value, this temperature adjustment means feeds back the temperature of the circulating air with high accuracy by adjusting the flow rate adjustment valve so that the detected temperature of the temperature sensor matches the set temperature and controlling the circulating amount of cooling water. It can be controlled and can cope with the difference in the liquefaction temperature of the flux gas depending on the soldering material used.
[0058]
According to the fifth aspect of the present invention, since the circulating air from which the flux mist and the like have been removed by the filter is sucked into the blowing means, it is possible to prevent the flux from adhering to the blowing means.
[0059]
According to the sixth aspect of the present invention, the temperature change in the reflow heating unit is reduced by heating the circulating air returned to the reflow heating unit of the furnace body to the ambient temperature of the reflow heating unit by the heating unit. it can.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of a reflow apparatus according to the present invention.
FIG. 2 is a sectional view showing an outline of the reflow apparatus.
FIG. 3 is a circuit diagram showing a second embodiment of the reflow apparatus according to the present invention.
[Explanation of symbols]
W Work 11 Furnace 13 Reflow heating section 25 Controller 26 as control means Circulation system 28 Cooling means 31 Cooling capacitor 36 Electric valve 41 as flow rate adjusting valve Temperature sensor 42 Temperature indicating controller 47 as temperature adjusting means 47 As flux collecting means Flux recovery tank 52 Filter 53 Blower 61 as blowing means Heating unit

Claims (6)

ワークをリフロー加熱するリフロー加熱部を有する炉体と、
この炉体の外部に設けられ上記リフロー加熱部から高温雰囲気を外部へ取出した後炉体に戻す循環系と、
この循環系に介在され高温雰囲気を冷却する冷却手段と
を具備したことを特徴とするリフロー装置。
A furnace body having a reflow heating section for reflow heating the workpiece;
A circulation system that is provided outside the furnace body and returns to the furnace body after taking out the high temperature atmosphere from the reflow heating unit, and
A reflow apparatus comprising cooling means interposed in the circulation system for cooling a high temperature atmosphere.
雰囲気温度の下げ幅が任意に設定可能の所望温度以上のときに、上記冷却手段の冷却能力を通常より大きくする制御手段
を具備したことを特徴とする請求項1記載のリフロー装置。
2. The reflow apparatus according to claim 1, further comprising a control unit that increases the cooling capacity of the cooling unit when the atmospheric temperature is not lower than a desired temperature that can be arbitrarily set.
上記冷却手段により冷却された循環風から凝縮されたフラックスを回収するフラックス回収手段
を具備したことを特徴とする請求項1または2記載のリフロー装置。
3. A reflow apparatus according to claim 1, further comprising a flux collecting means for collecting the flux condensed from the circulating air cooled by the cooling means.
冷却手段は、
冷却水の供給を受けて気化状態のフラックスを液化する冷却コンデンサと、
この冷却コンデンサに供給される冷却水の流量を調整する流量調整弁と、
上記冷却コンデンサを通過した後の循環風の温度を検出する温度センサと、
この温度センサにより検出される循環風の温度を設定された温度に制御するように上記流量調整弁の冷却水の流量を調節する温度調節手段と
を具備したことを特徴とする請求項1乃至3のいずれか記載のリフロー装置。
The cooling means is
A cooling condenser that receives the supply of cooling water and liquefies the vaporized flux,
A flow rate adjusting valve for adjusting the flow rate of cooling water supplied to the cooling condenser;
A temperature sensor for detecting the temperature of the circulating air after passing through the cooling condenser;
4. A temperature adjusting means for adjusting the flow rate of the cooling water of the flow rate adjusting valve so as to control the temperature of the circulating air detected by the temperature sensor to a set temperature. The reflow apparatus in any one of.
循環系は、
循環風中のフラックスを除去するフィルタと、
このフィルタの下流側に設けられた送風手段と
を具備したことを特徴とする請求項1乃至4のいずれか記載のリフロー装置。
The circulatory system is
A filter that removes the flux in the circulating wind;
The reflow device according to any one of claims 1 to 4, further comprising a blowing unit provided on a downstream side of the filter.
循環系は、冷却手段より下流側に配設された加熱ユニットを具備した
ことを特徴とする請求項1乃至5のいずれか記載のリフロー装置。
The reflow apparatus according to any one of claims 1 to 5, wherein the circulation system includes a heating unit disposed downstream of the cooling means.
JP2003185395A 2003-06-27 2003-06-27 Reflowing plant Pending JP2005014074A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003185395A JP2005014074A (en) 2003-06-27 2003-06-27 Reflowing plant
PCT/JP2004/008876 WO2005000513A1 (en) 2003-06-27 2004-06-24 Reflow device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185395A JP2005014074A (en) 2003-06-27 2003-06-27 Reflowing plant

Publications (1)

Publication Number Publication Date
JP2005014074A true JP2005014074A (en) 2005-01-20

Family

ID=33549656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185395A Pending JP2005014074A (en) 2003-06-27 2003-06-27 Reflowing plant

Country Status (2)

Country Link
JP (1) JP2005014074A (en)
WO (1) WO2005000513A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160322A (en) * 2005-12-12 2007-06-28 Senju Metal Ind Co Ltd Method for removing fume in reflow furnace, and reflow furnace
WO2008120526A1 (en) * 2007-03-29 2008-10-09 Tamura Corporation Reflow device
JP2009243712A (en) * 2008-03-28 2009-10-22 Nippon Thermoener Co Ltd Hot water supply system
JP2009243713A (en) * 2008-03-28 2009-10-22 Nippon Thermoener Co Ltd Hot water supply system
JP2009285719A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Flux applicator
JP5051231B2 (en) * 2007-08-08 2012-10-17 千住金属工業株式会社 Reflow furnace
WO2020218122A1 (en) * 2019-04-26 2020-10-29 株式会社オリジン Heating device and method for manufacturing soldered object

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381112B2 (en) 2014-10-21 2019-08-13 uBiome, Inc. Method and system for characterizing allergy-related conditions associated with microorganisms
US10366793B2 (en) 2014-10-21 2019-07-30 uBiome, Inc. Method and system for characterizing microorganism-related conditions
US10073952B2 (en) 2014-10-21 2018-09-11 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for autoimmune system conditions
US10789334B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbial pharmacogenomics
US9754080B2 (en) 2014-10-21 2017-09-05 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cardiovascular disease conditions
US10409955B2 (en) 2014-10-21 2019-09-10 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for locomotor system conditions
US10357157B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for conditions associated with functional features
US10388407B2 (en) 2014-10-21 2019-08-20 uBiome, Inc. Method and system for characterizing a headache-related condition
US10410749B2 (en) 2014-10-21 2019-09-10 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions
CN107075588B (en) 2014-10-21 2023-03-21 普梭梅根公司 Methods and systems for microbiome-derived diagnosis and treatment
US9710606B2 (en) 2014-10-21 2017-07-18 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues
US10777320B2 (en) 2014-10-21 2020-09-15 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
US9758839B2 (en) 2014-10-21 2017-09-12 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome functional features
US10265009B2 (en) 2014-10-21 2019-04-23 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome taxonomic features
US9760676B2 (en) 2014-10-21 2017-09-12 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
CN104972218B (en) * 2015-06-11 2017-06-06 德清县新高凌不锈钢材料有限公司 Vacuum brazing stove attemperating unit
DE102016110040A1 (en) * 2016-05-31 2017-11-30 Endress + Hauser Gmbh + Co. Kg Production line for soldering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319391A (en) * 1989-06-16 1991-01-28 Koki:Kk Reflow soldering device
JPH07202405A (en) * 1993-12-28 1995-08-04 Nippon Dennetsu Keiki Kk Soldering equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114278B2 (en) * 1991-10-14 2000-12-04 松下電器産業株式会社 Chisso reflow device
JP2883263B2 (en) * 1993-09-08 1999-04-19 日本電熱計器株式会社 Smoke exhaust equipment in soldering equipment
JPH07212028A (en) * 1994-01-13 1995-08-11 Matsushita Electric Ind Co Ltd Reflowing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319391A (en) * 1989-06-16 1991-01-28 Koki:Kk Reflow soldering device
JPH07202405A (en) * 1993-12-28 1995-08-04 Nippon Dennetsu Keiki Kk Soldering equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160322A (en) * 2005-12-12 2007-06-28 Senju Metal Ind Co Ltd Method for removing fume in reflow furnace, and reflow furnace
WO2008120526A1 (en) * 2007-03-29 2008-10-09 Tamura Corporation Reflow device
JP2008246515A (en) * 2007-03-29 2008-10-16 Tamura Seisakusho Co Ltd Reflow apparatus
JP5051231B2 (en) * 2007-08-08 2012-10-17 千住金属工業株式会社 Reflow furnace
JP2009243712A (en) * 2008-03-28 2009-10-22 Nippon Thermoener Co Ltd Hot water supply system
JP2009243713A (en) * 2008-03-28 2009-10-22 Nippon Thermoener Co Ltd Hot water supply system
JP2009285719A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Flux applicator
WO2020218122A1 (en) * 2019-04-26 2020-10-29 株式会社オリジン Heating device and method for manufacturing soldered object
TWI710423B (en) * 2019-04-26 2020-11-21 日商歐利生股份有限公司 Heating apparatus and method for manufacturing solder joint object
CN113727799A (en) * 2019-04-26 2021-11-30 株式会社欧利生 Heating device and method for manufacturing object subjected to solder bonding

Also Published As

Publication number Publication date
WO2005000513A1 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP2005014074A (en) Reflowing plant
US5259546A (en) Procedure and arrangement for reflow-soldering electronic components onto a printed board
US7380699B2 (en) Method and apparatus for vapour phase soldering
EP2388544A1 (en) Hot air supply device and hot air supply method
EP0682218A1 (en) Method and apparatus for refrigerant reclamation
JP2011137576A (en) Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
CN104180439A (en) High-temperature adjustable temperature dehumidifier and control method thereof
NL1016063C2 (en) A gas transit provided with an indoor heat exchanger associated with a heat pump.
AU2009227990A1 (en) A device and method for utilising surplus cooling of water in a cooling tower
JP7402224B2 (en) Reflow oven cooling system
CA2771157C (en) Waste heat system
JPH07113110A (en) Device for recovering heat in converter and control method thereof
JP2014206329A (en) Exhaust gas treatment device
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
WO2020218122A1 (en) Heating device and method for manufacturing soldered object
JP4062810B2 (en) Control method and apparatus for air preheater bypass damper
JP5043587B2 (en) Metal strip continuous heat treatment equipment
JPS6239646B2 (en)
JP2737192B2 (en) Exhaust gas generated from arc furnace
JP2581294B2 (en) Condenser cooling water heat recovery equipment
KR101672989B1 (en) Steam trap capable of installing on upper side
US20160334163A1 (en) Device for driving and controlling a rotating machine of a processing plant, and processing plant comprising such a drive and control device
CN108139155A (en) Method for the equipment for controlling object temperature and for being controlled the equipment for controlling object temperature
CN209197469U (en) Efficient thermal insulation material preparation oxidation kiln system
KR102659599B1 (en) Apparatus for controlling temperature and humidity of gas, apparatus for supplying fluid and substrate process system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100423

A02 Decision of refusal

Effective date: 20100512

Free format text: JAPANESE INTERMEDIATE CODE: A02