JP2005008705A - Method for producing water-absorbing resin - Google Patents

Method for producing water-absorbing resin Download PDF

Info

Publication number
JP2005008705A
JP2005008705A JP2003172373A JP2003172373A JP2005008705A JP 2005008705 A JP2005008705 A JP 2005008705A JP 2003172373 A JP2003172373 A JP 2003172373A JP 2003172373 A JP2003172373 A JP 2003172373A JP 2005008705 A JP2005008705 A JP 2005008705A
Authority
JP
Japan
Prior art keywords
water
polymerization
monomer
absorbing resin
monomer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003172373A
Other languages
Japanese (ja)
Inventor
Yorimichi Dairoku
頼道 大六
Shinichi Fujino
眞一 藤野
Hiroyoshi Fujimaru
洋圭 藤丸
Makoto Nagasawa
誠 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003172373A priority Critical patent/JP2005008705A/en
Publication of JP2005008705A publication Critical patent/JP2005008705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a water-absorbing resin, by which a water-absorbing resin having a greatly reduced manufacturing cost and transportation cost is molded into an arbitrary shape and is arbitrarily provided with water absorption properties and/or water holding properties in a water-absorbing resin which requires expensive production equipment and many complicated production processes and has difficulty in transportation and storage/molding due to a powdery shape and a method for producing the same and a method for providing a substrate with water absorption properties /water holding properties. <P>SOLUTION: The method for producing a water-absorbing resin comprises polymerizing a monomer composition containing a hydrophilic unsaturated monomer by a natural light. The method for providing a substrate with water absorption properties/water holding properties comprises polymerizing a monomer composition containing a hydrophilic unsaturated monomer on the substrate by a natural light to provide the substrate with water absorption properties and/or water holding properties. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は吸水性樹脂の製造方法、および、基材への吸水性保水性の付与方法に関するものである。
さらに、詳しくは、製造コストおよび輸送コストが飛躍的に削減された吸水性樹脂であって、任意の形状に成型でき、さらに任意に吸水性・保水性を付与できる吸水性樹脂の製造方法、および、基材への吸水性・保水性の付与方法に関するものである。
【0002】
【従来の技術】
近年、紙おむつや生理用ナプキン、いわゆる失禁パットなどの衛生材料には、その構成材として、体液を吸水させることを目的とした吸水性樹脂が幅広く使用されている。これら吸水性樹脂は、紙おむつや生理用ナプキンなどの衛生材料に加えて、農園芸用保水剤(土壌改良剤)、建材(調湿剤、コンクリート改質剤、建材引き抜き用潤滑剤など)、ケーブル用止水剤、水膨潤性シーリング剤(水膨潤ゴム)、保冷剤、芳香剤などの分野に幅広く応用され、近年、その需要や用途はさらに拡大している。
【0003】
かかる吸水性樹脂の一般的な製造方法は、アクリル酸(塩)やアクリルアミドなどの親水性不飽和単量体を重合させて乾燥し、必要により粉砕や分級、表面架橋剤や各種添加剤(改質剤)の添加をへて得られる方法が一般的である。また、得られた吸水性樹脂は平均粒子径で10〜2000μm程度の粉末で製造・保管・輸送ないし使用されることが多い。
【0004】
吸水性樹脂の代表的な重合方法として、水溶液重合ないし逆相件濁重合が主流である。吸水性樹脂の代表的な製造方法特に重合方法として、逆相懸濁重合とは、単量体水溶液を疎水性有機溶媒に懸濁させる重合法であり、例えば、下記の特許文献1〜5などの米国特許に記載されている。また、水溶液重合は分散溶媒を用いずに単量体水溶液を重合する方法であり、例えば、下記の特許文献6〜15などの米国特許や、下記の特許文献16〜19などの欧州特許、下記の特許文献20などの国際特許に記載されている。また、水溶液重合で特に紫外線重合も知られ、例えば、下記の特許文献21〜23などの日本特許に記載されている。
これら吸水性樹脂の製造方法は、巨大な製造設備を必要とし、特に逆相縣濁重合では大量の分散有機溶媒(シクロヘキサンなど)を使用するために防爆設備も必要とした。さらに、重合後にも前記の多数の製造工程や重合自身も窒素気流を必要とするなど、製造現場での酸欠の心配や、吸水性樹脂は設備費やその運転費で高価なものとならざるを得なかった。
また、重合前の単量体(単量体組成物)の比重が1g/cmを遥かに超えるに対して、得られた吸水性樹脂は粉末であるため、粉末間の空隙によりその嵩比重が0.4〜0.8g/cmと小さく、嵩高い吸水性樹脂の輸送費や貯蔵費(倉庫費)が高価なものとなっていた。また、吸水性樹脂が粉末であるために、実使用で基材に建材などに担持する際には別途に固形化させる工程が必要であった。特に、近年、需要が急増する建材や農園芸分野では、吸水性樹脂の製造や輸送のコスト面や粉末という使用上の難点で、その使用が制限されることもあった。
【特許文献1】
米国特許第4093776号明細書
【特許文献2】
米国特許第4367323号明細書
【特許文献3】
米国特許第4446261号明細書
【特許文献4】
米国特許第4683274号明細書
【特許文献5】
米国特許第5244735号明細書
【特許文献6】
米国特許第4625001号明細書
【特許文献7】
米国特許第4873299号明細書
【特許文献8】
米国特許第4286082号明細書
【特許文献9】
米国特許第4973632号明細書
【特許文献10】
米国特許第4985518号明細書
【特許文献11】
米国特許第5124416号明細書
【特許文献12】
米国特許第5250640号明細書
【特許文献13】
米国特許第5264495号明細書
【特許文献14】
米国特許第5145906号明細書
【特許文献15】
米国特許第5380808号明細書
【特許文献16】
欧州特許第0811636号明細書
【特許文献17】
欧州特許第0955086号明細書
【特許文献18】
欧州特許第0922717号明細書
【特許文献19】
欧州特許第1178059号明細書
【特許文献20】
国際公開第01/16197号パンフレット
【特許文献21】
特開平8−92307号公報
【特許文献22】
特開平1−156310号公報
【特許文献23】
特開昭63−43912号公報
【0005】
【発明が解決しようとする課題】
高価な製造設備や多くの複雑な製造工程を必要とし、さらに粉末形状であるために輸送や貯蔵・成型に困難を伴う吸水性樹脂およびその製造方法において、本発明は、製造コストおよび輸送コストが飛躍的に削減された吸水性樹脂であって、任意の形状に成型でき、さらに任意に吸水性および/または保水性を付与できる吸水性樹脂の製造方法、および、基材への吸水性・保水性の付与方法を与える。
【0006】
【課題を解決するための手段】
上記課題を解決するために鋭意検討した結果、本発明を完成した。
すなわち、本発明の吸水性樹脂の製造方法は、親水性不飽和単量体を含む単量体組成物を、自然光で重合させることを特徴とする。前記重合は、基材上で行ってもよい。
また本発明の基材への吸水性・保水性の付与方法は、基材上で、親水性不飽和単量体を含む単量体組成物を自然光で重合させることにより、前記基材に吸水性および/または保水性を付与することを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明にかかる吸水性樹脂の製造方法および吸水性・保水性の付与方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜実施し得る。
【0008】
(吸水性樹脂)
本発明において、吸水性樹脂とは水膨潤性かつ実質水不溶性の架橋重合体で、アニオン性、ノニオン性、またはカチオン性の実質水不溶性ヒドロゲルを形成する水膨潤性架橋重合体のことである。本発明で水膨潤性とはイオン交換水中において吸水性樹脂樹脂の固形分に対して必須に5倍以上、好ましくは50倍から1000倍という多量の水を吸収することを指す。また、本発明で実質水不溶性とは吸水性樹脂中の水可溶性成分(水溶性高分子)が0〜50質量%(重量%)、好ましくは25質量%以下、さらに好ましくは20質量%以下、さらにより好ましくは15質量%以下、特に好ましくは10質量%以下のことを指す。なお、これらの測定法は後述の実施例で規定される。
【0009】
かかる吸水性樹脂は含水状態(含水ゲル)であってもいいし、乾燥されていていもよい。含水ゲルとする場合、吸水性樹脂中の含水率(後述の実施例で規定)は25〜95質量%、好ましくは30〜80質量%程度の範囲されるし、乾燥される場合、含水率は20質量%以下、さらには1〜10質量%程度に乾燥ないし調整される。
本発明で吸水性樹脂は1種または混合物でも用いられるが、中でも酸基含有の吸水性樹脂、さらには、カルボン酸またはその塩であるカルボキシル基含有の吸水性樹脂の1種またはその混合物が好ましく、典型的にはアクリル酸及び/又はその塩(中和物)を主成分とする単量体を重合することにより得られる架橋重合体、すなわち、最も好ましくは、必要によりグラフト成分を含むポリアクリル酸塩架橋重合体が主成分とされる。
【0010】
(単量体組成物)
本発明の単量体組成物は親水性不飽和単量体を含み、さらに必要により架橋剤、その他単量体成分、後述の重合開始剤、重合溶媒などを含む。なお、単量体組成物は溶媒なしで重合されてもよいが、後述のように、親水性不飽和単量体は溶液、好ましくは水溶液とされるので、本発明で溶媒を用いる場合、単量体組成物は単量体溶液ないし単量体水溶液と呼び変えてもよい。
なお、本発明で単量体組成物が親水性不飽和単量体を主成分とするとは、親水性不飽和単量体の重合物が吸水性樹脂の主成分となること、すなわち、組成物中で溶媒以外の成分中で親水性不飽和単量体が主成分であることを意味する。よって、単量体組成物中で任意に用いられる溶媒が重合前に重量的には主成分となってもよく、また逆に1種または2種以上の親水性不飽和単量体が単量体組成物中の100%であってもよい。
【0011】
以下、本発明で好ましい組成を詳述する。
(親水性不飽和単量体)
本発明で単量体は親水性不飽和単量体が主成分に用いられ、具体的には吸水性樹脂を得る親水性不飽和単量体として、アクリル酸(塩)やその他、例えば、メタクリル酸、マレイン酸、ビニルスルホン酸、スチレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸等のアニオン性不飽和単量体及びその塩;アクリルアミド、メタアクリルアミド、N−エチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ビニルピリジン、N−ビニルピロリドン、N−アクリロイルピペリジン、N−アクリロイルピロリジン、N−ビニルアセトアミド等のノニオン性の親水基含有不飽和単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、及びこれらの四級塩等のカチオン性不飽和単量体等が挙げられる。これら単量体は重合性不飽和基を分子内に一個有しており、後述の架橋剤とは区別されるものであるが、これら親水性不飽和単量体は単独で用いてもよく、適宜2種類以上を混合して用いてもよい。
【0012】
上記単量体の中でも本発明においては物性面から、その主成分として好ましくは酸基含有不飽和単量体、より好ましくはアクリル酸及びその塩が用いられ、さらに必要により通常30モル%以下、好ましくは10モル%以下でその他の単量体を併用すればよい。
すなわち、本発明で吸水性樹脂はその構成単位として酸基含有不飽和単量体が用いることが好ましく、その中和率(酸基不飽和単量体中で中和されたモル%で規定)は、30モル%以上、好ましくは50モル%%、特に70モル%が中和されていることが好ましい。中和率を高めることで、物性が向上する上に、後述の中和熱の発生が増加し、さらに、中和することで沸点も上昇し重合時の単量体の揮発も抑えられて好ましい。中和率の上限は、酸基に過剰のアルカリを加えることで100モル%を超えることで吸水性樹脂に土壌中和剤として働きを持たせてもよいが、通常、105モル%以下、さらには100モル%以下、特に99モル%以下の中和率とされる。
【0013】
(架橋重合および架橋剤)
上記の親水性不飽和単量体は架橋重合される。架橋重合を行うには、架橋剤を使用しないで形成させたもの(自己架橋型)であってもよいが、上記親水性不飽和単量体以外に、別途、一分子中に2個以上の重合性不飽和基や2個以上の反応性基を有する架橋剤(内部架橋剤)を共重合又は反応させて形成させたものがさらに好ましい。
【0014】
これら内部架橋剤の具体例としては、例えば、N,N´−メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレートなどの有機架橋剤、硫酸アルミニウムなど無機架橋剤(多価金属)などを挙げることができる。
【0015】
これら内部架橋剤は、独で用いてもよく、宜2種類以上を混合して用いてもよい。また、これら内部架橋剤は反応系に一括添加してもよく、分割添加してもよい。少なくとも1種または2種類以上の内部架橋剤を使用する場合には、最終的に得られる吸水性樹脂製品の吸収特性等を考慮して、2個以上の重合性不飽和基を有する化合物を単量体組成物に用いることが好ましい。
【0016】
これら内部架橋剤の使用量は物性面から前記単量体(架橋剤を除く)に対して、好ましくは0.001〜2モル%、より好ましくは0.005〜0.5モル%、さらに好ましくは0.01〜0.2モル%、特に好ましくは0.03〜0.15モル%の範囲内とされる。
【0017】
(その他の単量体成分)
本発明で用いる単量体、特にアクリル酸は重合促進や低着色の面から、p−メトキシフェノール(別称、ヒドロキノンモノメチルエーテル)を含有することが好ましく、その含有量は単量体の重量(質量)、特にアクリル酸の重量に対して0を超えて200質量ppm以下、好ましくは10〜160質量ppm、さらには20〜140質量ppm、よりさらには30〜120質量ppm、40〜100質量ppm、50〜90質量ppmのp−メトキシフェノールが用いられる。また、アクリル酸中のプロトアネモニンおよび/またはフルフラールの含有量は20質量ppm以下、さらには10質量ppm以下、特に5質量ppm以下とされる。p−メトキシフェノールが上記範囲で含有されない場合、重合性や物性に劣る傾向にあり、また、プロトアネモニンおよび/またはフルフラールが多い場合も同様に重合性に劣る。
さらに吸水性樹脂の改質のために単量体組成物にはさらに、澱粉・セルロース、澱粉・セルロースの誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子0〜50質量%(対単量体)や、その他0〜10質量%の、炭酸(水素)塩、二酸化炭素、アゾ化合物、不活性有機溶媒等の各種発泡剤;各種界面活性剤;キレート剤;次亜燐酸(塩)等の連鎖移動剤などを添加してもよい。親水性高分子の添加によって単量体の担体への担持性を向上させてもよいし、重合時の各種添加剤で物性や重合性を向上させてもよい。
【0018】
(親水性不飽和単量体の溶媒)
上記の単量体組成物は溶媒なしでそのまま重合されてもよいが、通常、溶液、さらには水溶液とされて重合される。単量体を水溶液とする場合の該水溶液(以下、単量体水溶液と称する)中の単量体の濃度は、水溶液の温度や単量体によって決まり、特に限定されるものではないが、通常10〜80質量%、好ましくは30〜75質量%、さらに好ましくは40〜70質量%とされる。濃度が低い場合、重合率や物性の低下が見られ、濃度が高すぎる場合、好ましくはより高濃度で重合され、重合と同時に乾燥される。また、上記水溶液重合を行う際には、水以外の溶媒を必要に応じて併用してもよく、併用して用いられる溶媒の種類は、特に限定されるものではない。
【0019】
(重合)
本発明で重合は、単量体組成物は自然光、好ましくは太陽光(日光)で重合される。すなわち、本発明では単量体組成物に自然光に曝すことで重合が行われる。かかる自然光は、例えば、自然光、特に太陽光を屋外ないし紫外線透過性の室内、特に屋外で利用することで得られる。本発明での自然光としては可視光線に限定されず、紫外線、赤外線をも含め、自然界から得られる通常1nm〜1mmの波長を有する光がそのまま/ないし変性や分光して直接利用される。
従来、吸水性樹脂の紫外線重合は知られていたが、かかる方法では特別な重合装置や膨大な電力を必要とし、しかも、紫外線ランプなどの交換やメンテナンスが煩雑であった。しかし、本発明の方法ではかかる問題もなく、安価に簡便に吸水性樹脂が得られる。
【0020】
また、本発明の単量体組成物は重合に先立って加熱される。加熱温度は40℃以上、好ましくは40℃以上、さらに好ましくは50〜120℃、より好ましくは60〜110℃、特に好ましくは70〜100℃に加熱される。加熱によって重合の促進と単量体組成物の脱気の効果を示する。重合前の加熱されない場合、重合の促進が困難であり、また、重合が完結しない場合や開始されない場合がある。また、後述の空気雰囲気で重合する場合、高温の単量体組成物が重合により好ましい。
単量体組成物の加熱は単量体組成物の外部加熱を行ってもよいが、酸基含有不飽和単量体を用いる場合、その中和熱で単量体組成物を昇温させてもよい。すなわち、中和するには重合前に単量体組成物の状態で行っても良い中和熱で単量体組成物を加熱してもよいし、あるいは重合途中や重合後に重合体の状態で行っても良いし、それらを併用してもよい。中和の塩としては、ナトリウム、カリウム、リチウム等の水酸化物ないし炭酸塩、炭酸水素塩、アンモニウム塩及びアミン塩等を例示することができる。
重合に先立って、単量体組成物は脱気(溶存酸素の除去)を行ってもよいが、後記の加熱(中和熱での昇温を含む)を行う場合、温度の上昇にともって酸素の単量体組成物への溶解度が低下するため、特に脱気しなくてもよい。重合に用いられる単量体組成物中の酸素濃度は好ましくは10〜0.1ppm、さらには6〜0.2ppmとされる。酸素量が多いと重合が阻害され、酸素量が少ないと重合前の単量体組成物の安定性が低下して好ましくない。
【0021】
重合の開始には通常、単量体組成物は重合開始剤を含む。好ましくは重合開始剤として、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン等の光重合開始剤、好ましくは紫外線重合開始剤を用いることができ、その使用量は通常0.001〜2質量%(対親水性不飽和単量体)、好ましくは0.01〜0.1質量%である。
用いられる光重合開始剤として、ベンゾイン系、ベンジル系、アセトフェノン系、ベンゾフェノン系、アゾ系化合物およびこれらの誘導体を挙げることができ、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテルなどのベンゾイン系重合開始剤、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトンなどのアセトフェノン系重合開始剤、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノンなどのベンゾフェノン系重合開始剤、2,2′−アゾビス(2−アミジノプロパン)二塩酸塩のアゾ系重合開始剤が例示される。また、吸水性樹脂に用いられる光重合開始剤は前記の特許文献19および特許文献21〜23などにも例示され、これら特許文献の光重合開始剤も本発明に広く使用できる。
さらに、本発明では光重合開始剤に加えて熱分解重合開始材を別途併用するこが好ましい。すなわち、好ましくは、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、t−ブチルハイドロパーオキサイド、過酸化水素、2,2′−アゾビス(2−アミジノプロパン)二塩酸塩等の熱分解型重合開始剤を併用され、その使用量は通常0〜2質量%(対親水性不飽和単量体)、好ましくは0.001〜0.1質量%である。なお、アゾ化合物は紫外線重合開始剤以外の熱分解重合開始材としても働くことができるが、アゾ化合物を用いる場合でも別の開始剤を併用することが好ましい。
さらに、これら重合開始剤の分解を促進する還元剤を併用し、両者を組み合わせることによりレドックス系開始剤としてもよい。上記の還元剤としては例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸(塩)、L−アスコルビン酸(塩)、第一鉄塩等の還元性金属(塩)、アミン類等が挙げられるが、特に限定されるものではない。
【0022】
単量体組成物の供給は液滴で噴霧してもよし、シャワリーリングしてもよいし、1点からホース状で連続供給してもよいし、これらは断続的も連続的でもよいし、適宜併用してもよい。噴霧する場合の粒子径は例えば平均粒子径0.01〜2mm程度で行えばよい。単量体組成物の添加は一面に面状で行ってよいし、点状、縞状、網目状などに部分的に行ってよい。単量体組成物の厚みは特に問わないが、事前工で重合する範囲、例えば0.01〜200mm、さらには1〜50mm程度に制御すればよい。
重合の温度(ピーク温度)は好ましくは150℃以下、さらに好ましくは80〜130℃、より好ましくは115℃以下とされる。重合時により単量体組成物の濃度を上昇ことが好ましく、(重合後の吸水性樹脂の固形分)/(重合前の固形分)で規定される濃縮比が1.10以上、さらに好ましくは1.15以上、より好ましくは1.20とされる。なお、上限は単量体組成物濃度で適宜決定されるが、例えば、50質量%濃度の単量体組成物は必然的に2.0以下となる。
重合時間も好ましくは10分以内、さらには0.1〜5分で行われる。なお、重合時間にはピークまでの時間で規定される。重合後、さらに室温で放置して重合を促進されてもよい。光重合開始剤を含むことで、自然光で重合が促進され完結する。重合の促進や完結は残存モノマーの経時的な低減で容易に判明できる。また、本発明では自然光で重合開始後、重合途中や重合終了後に必要により別途、単量体組成物やその重合体に外部加熱を行ってもよいし、紫外線などの放射線を人工的に照射してもよい。
【0023】
本発明の重合は、好ましくは、重合が吸水性樹脂の実質的に使用される場所で行われる。使用される場所とは使用場所と重合場所の距離が10Km以内、さらには5Km以内、1Km以内、特にその場所で重合および実使用行われる。従来、重合は吸水性樹脂の製造プラントで吸水性樹脂を重合し、その後、輸送および貯蔵を経て使用されるが、吸水性樹脂の粉末はかさ比重が小さいために輸送や貯蔵に多大なコストを要していたが、本発明ではかかる問題も解決できる。
重合は、好ましくは空気雰囲気下、常圧で行われ、かかる条件は例えば屋外での重合によって達成される。すなわち、本発明の重合は、窒素など不活性気体を用いてもよいが、好ましくは重合が空気雰囲気下で行われる。空気雰囲気として屋外ないし屋内、特に屋外で吸水性樹脂をそのまま重合すればよい。従来、不活性気体を用いる方法では製造設備や日々の不活性気体に費用を要する上に、製造現場で酸欠事故の注意を要したが、本発明ではかかる問題も解決する。
【0024】
さらに、本発明の重合が土壌ないしその構成物、繊維材料、建材、建造物の何れか基材上でなされることが好ましい。土壌ないしその構成物(肥料、藁)、繊維材料、建材、建造物などで本発明の上記の吸水性樹脂の製造方法を適用することで、基材と一体化した吸水性樹脂を提供することができる。具体的に、土壌や肥料上で重合することで、農園芸用の一体化した吸水性樹脂(吸水性樹脂組成物ないし複合体)とすることができる。また、建材上で重合することで、建材の潤滑剤(H鋼引き抜き)や吸湿剤とすることができる。
【0025】
すなわち、本発明は基材上で親水性不飽和単量体を主成分とする単量体組成物を自然光で重合させることを特徴とする、基材への吸水性保水性の付与方法をも提供する。
【0026】
(重合後の吸水性樹脂)
重合後の吸水性樹脂は、必要によりさらに粉砕ないし乾燥してもよいし、粉砕・分級、造粒、表面架橋、水や可塑剤などの各種添加剤の混合、他の基材との複合化など行ってもよい。乾燥は例えば40〜250℃で加熱することで乾燥することができ、上記して得られた厚板上、ブロック上、シート状、(噴霧した場合には)粒子状の吸水性樹脂は細分化してもよく、重合後の吸水性樹脂を裁断することで粒子状やシート状などに任意の形状に細分化ないし成型することができる。かかる重合後の工程は前述の特許文献6〜23などにも記載されており、これらに記載の重合後の粉砕・分級、造粒、表面架橋、添加剤も本発明に適用してもよい。
【0027】
本発明の吸水性樹脂は通常、上記の含水率を有しており、ゲル状態ないし乾燥状態であり、これらは厚板上、ブロック状、シート状、(噴霧した場合には)粒子状など、任意の形態に重合と同時に成型ないし担持可能である。こられはそのまま吸水性樹脂として用いてもよいし、土壌や建材に担持させたままそのまま保水剤や吸湿材、潤滑剤として使用してもよい。
上記して得られた吸水性樹脂の生理食塩水に対する吸収倍率(CRC/Centrifuge Retension Capacity)は好ましくは20g/g以上、さらに好ましくは25〜100g/g、特に好ましくは30〜80g/gとされる。また、吸水性樹脂の可溶成分は0〜50質量%、好ましくは25質量%以下、さらに好ましくは20質量%以下、さらにより好ましくは15質量%以下、特に好ましくは10質量%以下となる。また、重合率は通常98.0質量%以上、好ましくは99.0%以上、より好ましくは99.5%以上、特に好ましくは99.99%以上とされる。なお、上記物性値は固形分あたりの数値であり、その測定法は実施例で規定される。
【0028】
(吸水性樹脂の用途)
本発明は安価に簡便に吸水性樹脂を製造することができる。本発明の上記の吸水性樹脂は衛生材料に限らず、農園芸保水剤(土壌改良剤)、工業用保水剤、吸湿剤、除湿剤、建材(調湿剤、建材引き抜き用潤滑剤など)などで広く用いられる。例えば、前記の基材に担持させたまま重合することで、基材と一体化した吸水性樹脂、すなわち吸水性樹脂樹脂複合体を得ることができる。
吸水性樹脂の用途は前述の特許文献1〜23にも記載され適用できるが、本発明の吸水性樹脂はその性能などから、好ましくは農園芸用ないし土木建材用に使用できる。すなわち、本発明は必要により基材と一体化した吸水性樹脂であって、上記の製造方法で得られた吸水性樹脂を用いた農園芸用保水剤をも提供する。また、本発明は必要により基材と一体化した吸水性樹脂であって、上記の製造方法で得られた吸水性樹脂を用いた建材ないし建造物をも提供する。
【0029】
【実施例】
以下に、実施例と比較例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
なお、測定は室温(23℃±2℃)で行い、吸水性樹脂は固形分補正を行った。(例えば、含水率50%の吸水性樹脂の場合、下記(1)では0.400gの含水吸水性樹脂で固形分0.200g)。また、吸水性樹脂の物性はすべて1mm以下に細分化した吸水性樹脂で行った。
(1)無加圧下吸収倍率(CRC)
前記の特許文献19に準じて以下に測定した。すなわち、1mm以下に細分化した吸水性樹脂0.200g(固形分)を透水性不織布製の袋(60mm×80mm)に均一に入れシール後、室温で0.90質量%生理食塩水中に浸漬した。24時間後に袋を引き上げ、遠心分離機を用いて250Gで3分間水切りを行った後、袋の質量W1(g)を測定した。また、同様の操作を吸水性樹脂を用いずに行い、その時の質量W0(g)を測定した。そして、これらW1、W0から次式に従って、無加圧下吸収倍率(g/g)を算出した。
【0030】
無加圧下吸収倍率(g/g)=(W1(g)−W0(g))/吸水性樹脂の固形分質量(g)
(2)水可溶性分(可溶分とも略すことがある)
前記の特許文献19に準じて以下に測定した。すなわち、1mm以下に細分化した吸水性樹脂1.00g(固形分)を184.3gの生理食塩水(0.9質量%塩化ナトリウム水溶液)に分散し、マグネッチクスターラーを用いて長さ40mmで直径8mmの弗素被覆攪拌子で16時間攪拌後、膨潤ゲルを分離濾過した。次いで、得られた濾液中に溶出した水可溶性分(実質的には水溶性ポリアクリル酸(塩))を0.1NのNaOHおよび0.1NのHClでpHを10から2.7までpH滴定することにより、吸水性樹脂中の水可溶性分の質量%(対吸水性樹脂の固形分)を求めた。
(3)残存モノマーおよび重合率
1mm以下に細分化した吸水性樹脂0.500g(固形分)を1Lのイオン交換水に分散させて、上記(2)の攪拌子で16時間攪拌後、膨潤ゲルを分離濾過した。次いで、得られた濾液を液体クロマトクラフィーでUV分析することで、吸水性樹脂の残存モノマー量(ppm/対吸水性樹脂固形分)も分析した。なお、重合率(%)は残存モノマー(%)より一義的に逆算できる。
(4)固形分
吸水性樹脂1gを約0.1〜2mmに細分化して、180℃の無風オーブン中で3時間乾燥することで、下記式に従い乾燥残分から固形分(質量%)および含水率(質量%)を求めた。
(固形分質量%)=(乾燥後の質量)/(乾燥前の質量)×100
(含水率質量%)=100−(固形分)
(5)溶存酸素量
セントラル科学(株)製DOメーターUD−1型で、単量体組成物の溶存酸素量を測定した。
【0031】
(実施例1)
p−メトキシフェノールを60質量ppm含有しフルフラールおよびプロトアネモニンがNDの精製アクリル酸を蒸留で得た。室温の前記アクリル酸6674g、48.5質量%苛性ソーダ水溶液5374gをイオン交換水5801gに一気に混合することで、中和と同時に昇温させて約90℃の水溶液を得た。次いで、内部架橋剤としてポリエチレングリコールジアクリレート(PEG鎖平均n数9)21.78g加えて、さらにキレート剤としてジエチレントリアミンペンタ5酢酸ナトリウム50ppm(対固形分)、重合開始剤としての2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名ダロキュア1173、チバスペシャリティケミカルズ社製)を0.01質量%(対固形分)、過硫酸ナトリウムの3質量%水溶液154.4gを混合することで、本発明の単量体組成物として単量体水溶液(1)を得た。得られた単量体水溶液(1)は比重約1.16g/cm、温度は約90℃、濃度約45質量%で中和率70モル%のアクリル酸ナトリウム水溶液である。また、中和熱によって脱気され、その溶存酸素量は4ppmに低減されていた。
次いで、単量体水溶液(1)の全量を姫路の8月晴天昼過ぎの屋外に、底面1m*1.8m(で、さらに4方を幅1.8mで傾斜角30℃の斜壁)の浅いバット状容器に散布したところ、日光によって重合はほぼ即座に開始し、厚み約1cmの単量体水溶液(1)は激しく重合し、4方および高さ約50cmまで膨張して重合が起こった。重合は散布後約30秒でピーク温度(約110℃、赤外線温度計で検知)を迎え、その後、重合ゲルは収縮して完結した。得られた吸水性樹脂(1)は約1m*1.8mの白色シート状の吸水性樹脂であった。吸水性樹脂(1)の諸物性を分析し、その結果を表1に示す。
【0032】
(実施例2)
実施例1で得られたシート状の吸水性樹脂(1)(重合率99%)をさらに雨のない6日間、室温で屋外に放置して重合を促進させた。6日後に得られた吸水性樹脂(2)は残存モノマー600ppm(重合率99.94%)にまで低減していた。
【0033】
(実施例3)
実施例1で得られた単量体水溶液(1)を室温まで冷却したのち、さらに、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オンを0.1質量%添加し増量することで、単量体組成物としての単量体水溶液(2)を得た。
単量体水溶液(2)を姫路の8月晴天昼過ぎの屋外で、基材として木材パルプマット(坪量・約650g/m、密度・約0.19g/cm)に約1〜0.2mmの液滴として噴霧したところ、木材パルプマット上で重合が進行し、基材と一体化した粒状白色の吸水性樹脂(3)が得られた。吸水性樹脂(3)は生理食塩水で吸水膨潤した。
【0034】
(比較例1)
単量体水溶液(2)を室内の暗室で、基材として上記木材パルプマット上に約1〜0.2mmの液滴として噴霧したところ、重合は全く起こらず、吸水性樹脂は得られなかった。
【0035】
【表1】

Figure 2005008705
【0036】
【発明の効果】
親水性不飽和単量体を含む単量体組成物を、自然光で重合させること、また、基材上で、親水性不飽和単量体を含む単量体組成物を自然光で重合させることにより、前記基材に吸水性および/または保水性を効率的に付与することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a water-absorbent resin and a method for imparting water-absorbing water retention to a substrate.
More specifically, the water-absorbent resin has drastically reduced manufacturing costs and transportation costs, can be molded into any shape, and can optionally impart water-absorbing and water-holding properties, and The present invention relates to a method for imparting water absorption and water retention to a substrate.
[0002]
[Prior art]
In recent years, hygroscopic materials such as disposable diapers and sanitary napkins, so-called incontinence pads, have widely used water-absorbing resins for the purpose of absorbing bodily fluids as constituent materials. In addition to sanitary materials such as disposable diapers and sanitary napkins, these water-absorbing resins are used for agricultural and horticultural water retention agents (soil conditioners), building materials (humidifiers, concrete modifiers, lubricants for pulling building materials, etc.), cables Widely used in fields such as water-stopping agents, water-swelling sealing agents (water-swelling rubbers), cold-retaining agents, and fragrances, and in recent years, their demands and uses are further expanding.
[0003]
A general method for producing such a water-absorbent resin is to polymerize and dry a hydrophilic unsaturated monomer such as acrylic acid (salt) or acrylamide, and if necessary, crush and classify, surface cross-linking agent and various additives (modified). A method obtained by adding a material is generally used. The obtained water-absorbent resin is often produced, stored, transported or used as a powder having an average particle size of about 10 to 2000 μm.
[0004]
As a typical polymerization method of the water-absorbent resin, aqueous solution polymerization or reverse phase turbid polymerization is the mainstream. As a typical production method of a water-absorbent resin, in particular, as a polymerization method, reverse phase suspension polymerization is a polymerization method in which an aqueous monomer solution is suspended in a hydrophobic organic solvent. In U.S. Patents. The aqueous solution polymerization is a method of polymerizing an aqueous monomer solution without using a dispersion solvent. For example, US patents such as the following Patent Documents 6 to 15, European patents such as the following Patent Documents 16 to 19, Are described in international patents such as US Pat. Further, ultraviolet polymerization is also known as aqueous solution polymerization, and is described in, for example, Japanese patents such as the following Patent Documents 21 to 23.
These methods for producing water-absorbing resins require huge production facilities, and in particular, in reverse phase suspension polymerization, a large amount of dispersed organic solvent (such as cyclohexane) is used, so explosion-proof facilities are also required. Furthermore, after the polymerization, the above-mentioned many production processes and the polymerization itself also require a nitrogen stream, and there is a concern about lack of oxygen at the production site, and the water-absorbing resin is not expensive due to equipment costs and operating costs. Did not get.
The specific gravity of the monomer (monomer composition) before polymerization is 1 g / cm. 3 Since the obtained water-absorbent resin is a powder, its bulk specific gravity is 0.4 to 0.8 g / cm 3 due to voids between the powders. 3 The transportation cost and storage cost (warehouse cost) of the small and bulky water-absorbing resin are expensive. In addition, since the water-absorbent resin is a powder, a separate solidifying step is required when it is carried on a base material on a base material in actual use. In particular, in the building materials and agricultural and horticultural fields in which demand is increasing rapidly in recent years, the use of the water-absorbent resin may be limited due to the manufacturing cost and transportation cost of the water-absorbent resin and the difficulty in use of powder.
[Patent Document 1]
US Pat. No. 4,093,776
[Patent Document 2]
U.S. Pat. No. 4,367,323
[Patent Document 3]
U.S. Pat. No. 4,446,261
[Patent Document 4]
US Pat. No. 4,683,274
[Patent Document 5]
US Pat. No. 5,244,735
[Patent Document 6]
US Pat. No. 462501
[Patent Document 7]
US Pat. No. 4,873,299
[Patent Document 8]
U.S. Pat. No. 4,286,082
[Patent Document 9]
US Pat. No. 4,973,632
[Patent Document 10]
US Pat. No. 4,985,518
[Patent Document 11]
US Pat. No. 5,124,416
[Patent Document 12]
US Pat. No. 5,250,640
[Patent Document 13]
US Pat. No. 5,264,495
[Patent Document 14]
US Pat. No. 5,145,906
[Patent Document 15]
US Pat. No. 5,380,808
[Patent Document 16]
European Patent No. 0811636
[Patent Document 17]
European Patent No. 0955086
[Patent Document 18]
European Patent No. 0922717
[Patent Document 19]
European Patent No. 1178059
[Patent Document 20]
International Publication No. 01/16197 Pamphlet
[Patent Document 21]
JP-A-8-92307
[Patent Document 22]
JP-A-1-156310
[Patent Document 23]
JP 63-43912 A
[0005]
[Problems to be solved by the invention]
In the water-absorbent resin and its manufacturing method that require expensive manufacturing equipment and many complicated manufacturing processes and are difficult to transport, store and mold due to the powder form, the present invention has a manufacturing cost and a transportation cost. A method for producing a water-absorbent resin, which can be molded into an arbitrary shape and can be arbitrarily given water absorbency and / or water retention, and water absorption / water retention on a substrate. Gives a method of imparting sex.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present invention has been completed.
That is, the method for producing a water absorbent resin of the present invention is characterized in that a monomer composition containing a hydrophilic unsaturated monomer is polymerized with natural light. The polymerization may be performed on a substrate.
The method for imparting water absorption and water retention to the base material of the present invention includes the step of polymerizing a monomer composition containing a hydrophilic unsaturated monomer with natural light on the base material so that the base material absorbs water. It is characterized by imparting property and / or water retention.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the production method of the water-absorbent resin according to the present invention and the method for imparting water absorption and water retention will be described in detail, but the scope of the present invention is not limited to these explanations, other than the following examples, It can implement suitably in the range which does not impair the meaning of this invention.
[0008]
(Water absorbent resin)
In the present invention, the water-absorbing resin is a water-swellable and substantially water-insoluble crosslinked polymer, which is a water-swellable crosslinked polymer that forms an anionic, nonionic, or cationic substantially water-insoluble hydrogel. In the present invention, the water swellability means that it absorbs a large amount of water in ion-exchanged water that is essentially 5 times or more, preferably 50 to 1000 times the solid content of the water-absorbent resin resin. In the present invention, substantially water-insoluble means that the water-soluble component (water-soluble polymer) in the water-absorbent resin is 0 to 50% by weight (% by weight), preferably 25% by weight or less, more preferably 20% by weight or less. Even more preferably, it means 15% by mass or less, particularly preferably 10% by mass or less. In addition, these measuring methods are prescribed | regulated by the below-mentioned Example.
[0009]
Such a water-absorbing resin may be in a water-containing state (water-containing gel) or may be dried. In the case of a water-containing gel, the water content in the water-absorbent resin (specified in the examples described later) is in the range of 25 to 95% by mass, preferably about 30 to 80% by mass, and when dried, the water content is It is dried or adjusted to 20% by mass or less, and further about 1 to 10% by mass.
In the present invention, the water-absorbing resin may be used alone or as a mixture. Among them, an acid group-containing water-absorbing resin, more preferably a carboxyl group-containing water-absorbing resin that is a carboxylic acid or a salt thereof, or a mixture thereof is preferable. , Typically a cross-linked polymer obtained by polymerizing a monomer mainly composed of acrylic acid and / or a salt thereof (neutralized product), that is, most preferably a polyacrylic containing a graft component if necessary. The acid salt cross-linked polymer is the main component.
[0010]
(Monomer composition)
The monomer composition of the present invention contains a hydrophilic unsaturated monomer, and further contains a crosslinking agent, other monomer components, a polymerization initiator described later, a polymerization solvent and the like as necessary. Although the monomer composition may be polymerized without a solvent, as described later, since the hydrophilic unsaturated monomer is a solution, preferably an aqueous solution, when using a solvent in the present invention, The monomer composition may be called a monomer solution or a monomer aqueous solution.
In the present invention, the monomer composition having a hydrophilic unsaturated monomer as a main component means that a polymer of the hydrophilic unsaturated monomer is a main component of the water-absorbent resin, that is, the composition. It means that a hydrophilic unsaturated monomer is a main component among components other than the solvent. Therefore, a solvent arbitrarily used in the monomer composition may be a main component in weight before polymerization, and conversely, one or more hydrophilic unsaturated monomers are a single amount. It may be 100% in the body composition.
[0011]
Hereinafter, preferred compositions in the present invention will be described in detail.
(Hydrophilic unsaturated monomer)
In the present invention, a hydrophilic unsaturated monomer is used as a main component of the monomer. Specifically, as a hydrophilic unsaturated monomer for obtaining a water-absorbent resin, acrylic acid (salt) or other, for example, methacrylic acid is used. Anionic properties such as acid, maleic acid, vinylsulfonic acid, styrenesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid Unsaturated monomers and salts thereof; acrylamide, methacrylamide, N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxy Nonionic hydrophilic group-containing unsaturated monomers such as polyethylene glycol (meth) acrylate, polyethylene glycol mono (meth) acrylate, vinylpyridine, N-vinylpyrrolidone, N-acryloylpiperidine, N-acryloylpyrrolidine, and N-vinylacetamide N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, and these And cationic unsaturated monomers such as quaternary salts. These monomers have one polymerizable unsaturated group in the molecule and are distinguished from the below-mentioned crosslinking agents, but these hydrophilic unsaturated monomers may be used alone, Two or more kinds may be appropriately mixed and used.
[0012]
Among the above monomers, from the viewpoint of physical properties in the present invention, an acid group-containing unsaturated monomer is preferably used as the main component, more preferably acrylic acid and a salt thereof, and if necessary, usually 30 mol% or less, Preferably, other monomers may be used in combination at 10 mol% or less.
That is, in the present invention, it is preferable to use an acid group-containing unsaturated monomer as the structural unit of the water-absorbent resin, and its neutralization rate (specified by mol% neutralized in the acid group unsaturated monomer). Is preferably neutralized at least 30 mol%, preferably 50 mol%, particularly 70 mol%. By increasing the neutralization rate, physical properties are improved, generation of neutralization heat described later is increased, and further, neutralization is preferable because the boiling point is increased and the volatilization of the monomer during polymerization is suppressed. . The upper limit of the neutralization rate may be that the water-absorbent resin functions as a soil neutralizing agent by exceeding 100 mol% by adding an excess alkali to the acid group. Is a neutralization rate of 100 mol% or less, particularly 99 mol% or less.
[0013]
(Crosslinking polymerization and crosslinking agent)
The hydrophilic unsaturated monomer is cross-linked and polymerized. In order to carry out the cross-linking polymerization, it may be formed without using a cross-linking agent (self-crosslinking type), but in addition to the above hydrophilic unsaturated monomer, two or more separately per molecule. More preferred are those formed by copolymerizing or reacting a polymerizable unsaturated group or a crosslinking agent having two or more reactive groups (internal crosslinking agent).
[0014]
Specific examples of these internal crosslinking agents include, for example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, tri Allylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene Examples include organic crosslinking agents such as lenglycol, propylene glycol, glycerin, pentaerythritol, ethylenediamine, ethylene carbonate, propylene carbonate, polyethyleneimine, and glycidyl (meth) acrylate, and inorganic crosslinking agents (polyvalent metals) such as aluminum sulfate. .
[0015]
These internal cross-linking agents may be used alone or as a mixture of two or more. These internal cross-linking agents may be added all at once to the reaction system, or may be added in divided portions. In the case of using at least one kind or two or more kinds of internal cross-linking agents, a compound having two or more polymerizable unsaturated groups is simply used in consideration of the absorption characteristics of the finally obtained water absorbent resin product. It is preferable to use it for a monomer composition.
[0016]
The amount of these internal crosslinking agents used is preferably 0.001 to 2 mol%, more preferably 0.005 to 0.5 mol%, still more preferably, based on physical properties, with respect to the monomer (excluding the crosslinking agent). Is in the range of 0.01 to 0.2 mol%, particularly preferably 0.03 to 0.15 mol%.
[0017]
(Other monomer components)
The monomer used in the present invention, particularly acrylic acid, preferably contains p-methoxyphenol (also known as hydroquinone monomethyl ether) from the viewpoint of acceleration of polymerization and low coloration, and the content is the weight (mass of the monomer). ), In particular, more than 0 and not more than 200 ppm by weight with respect to the weight of acrylic acid, preferably 10 to 160 ppm, more preferably 20 to 140 ppm, even more preferably 30 to 120 ppm, 40 to 100 ppm, 50-90 mass ppm of p-methoxyphenol is used. Further, the content of protoanemonin and / or furfural in acrylic acid is 20 mass ppm or less, further 10 mass ppm or less, and particularly 5 mass ppm or less. When p-methoxyphenol is not contained in the above range, the polymerizability and physical properties tend to be inferior, and when the amount of protoanemonin and / or furfural is large, the polymerizability is also inferior.
Furthermore, in order to modify the water-absorbent resin, the monomer composition further includes hydrophilic substances such as starch / cellulose, starch / cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), and cross-linked polyacrylic acid (salt). Various foaming agents such as carbonic acid (hydrogen) salts, carbon dioxide, azo compounds, inert organic solvents, etc .; Chelating agent; chain transfer agent such as hypophosphorous acid (salt) may be added. By adding a hydrophilic polymer, the supportability of the monomer on the carrier may be improved, or the physical properties and polymerizability may be improved by various additives during polymerization.
[0018]
(Solvent of hydrophilic unsaturated monomer)
The monomer composition may be polymerized as it is without a solvent, but is usually polymerized in a solution or further in an aqueous solution. When the monomer is an aqueous solution, the concentration of the monomer in the aqueous solution (hereinafter referred to as the monomer aqueous solution) is determined by the temperature of the aqueous solution and the monomer and is not particularly limited. 10 to 80% by mass, preferably 30 to 75% by mass, and more preferably 40 to 70% by mass. When the concentration is low, the polymerization rate and physical properties are decreased, and when the concentration is too high, the polymerization is preferably performed at a higher concentration and dried simultaneously with the polymerization. Moreover, when performing the said aqueous solution polymerization, you may use together solvents other than water as needed, and the kind of solvent used together is not specifically limited.
[0019]
(polymerization)
In the present invention, the monomer composition is polymerized by natural light, preferably sunlight (sunlight). That is, in the present invention, polymerization is performed by exposing the monomer composition to natural light. Such natural light can be obtained, for example, by using natural light, particularly sunlight, outdoors or in an ultraviolet transparent room, particularly outdoors. The natural light in the present invention is not limited to visible light, but light having a wavelength of 1 nm to 1 mm, which is obtained from the natural world, including ultraviolet rays and infrared rays, is directly used as it is or after modification or spectroscopy.
Conventionally, ultraviolet polymerization of a water-absorbing resin has been known. However, such a method requires a special polymerization apparatus and enormous electric power, and the replacement and maintenance of an ultraviolet lamp and the like are complicated. However, with the method of the present invention, there is no such problem, and a water-absorbing resin can be obtained easily and inexpensively.
[0020]
The monomer composition of the present invention is heated prior to polymerization. Heating temperature is 40 degreeC or more, Preferably it is 40 degreeC or more, More preferably, it is 50-120 degreeC, More preferably, it is 60-110 degreeC, Most preferably, it heats to 70-100 degreeC. The effect of acceleration of polymerization and degassing of the monomer composition by heating is shown. When not heated before the polymerization, it is difficult to accelerate the polymerization, and the polymerization may not be completed or may not be started. Moreover, when superposing | polymerizing in the below-mentioned air atmosphere, a high temperature monomer composition is preferable by superposition | polymerization.
The heating of the monomer composition may be performed by external heating of the monomer composition, but when using an acid group-containing unsaturated monomer, the monomer composition is heated with its heat of neutralization. Also good. That is, in order to neutralize, the monomer composition may be heated in the state of the monomer composition before the polymerization, or the monomer composition may be heated in the state of the polymer during or after the polymerization. You may go or you may use them together. Examples of the neutralization salt include hydroxides or carbonates such as sodium, potassium and lithium, carbonates, bicarbonates, ammonium salts and amine salts.
Prior to the polymerization, the monomer composition may be degassed (removed dissolved oxygen). However, when heating described below (including temperature increase with heat of neutralization) is performed, as the temperature increases Since the solubility of oxygen in the monomer composition is lowered, it is not particularly necessary to deaerate. The oxygen concentration in the monomer composition used for the polymerization is preferably 10 to 0.1 ppm, more preferably 6 to 0.2 ppm. When the amount of oxygen is large, the polymerization is inhibited, and when the amount of oxygen is small, the stability of the monomer composition before the polymerization is lowered, which is not preferable.
[0021]
In order to initiate polymerization, the monomer composition usually contains a polymerization initiator. Preferably, as the polymerization initiator, a photopolymerization initiator such as 2-hydroxy-2-methyl-1-phenyl-propan-1-one, preferably an ultraviolet polymerization initiator can be used. It is 001-2 mass% (vs. hydrophilic unsaturated monomer), preferably 0.01-0.1 mass%.
Examples of the photopolymerization initiator used include benzoin-based, benzyl-based, acetophenone-based, benzophenone-based, azo-based compounds, and derivatives thereof, such as benzoin-based polymerization initiators such as benzoin methyl ether and benzoin ethyl ether, Acetophenone polymerization initiators such as diethoxyacetophenone and 1-hydroxycyclohexyl phenyl ketone, benzophenone polymerization initiators such as methyl o-benzoylbenzoate and 4-phenylbenzophenone, 2,2'-azobis (2-amidinopropane) Examples are azo polymerization initiators of hydrochloride. Moreover, the photoinitiator used for a water absorbing resin is illustrated by the said patent document 19 and the patent documents 21-23 etc., The photoinitiator of these patent documents can also be widely used for this invention.
Furthermore, in the present invention, it is preferable to separately use a thermal decomposition polymerization initiator in addition to the photopolymerization initiator. That is, preferably a thermal decomposition type polymerization initiator such as potassium persulfate, ammonium persulfate, sodium persulfate, t-butyl hydroperoxide, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, etc. The amount used is usually 0-2% by mass (with respect to the hydrophilic unsaturated monomer), preferably 0.001-0.1% by mass. In addition, although an azo compound can work | function as thermal decomposition polymerization initiators other than an ultraviolet-ray polymerization initiator, even when using an azo compound, it is preferable to use another initiator together.
Furthermore, it is good also as a redox type | system | group initiator by using together the reducing agent which accelerates | stimulates decomposition | disassembly of these polymerization initiators, and combining both. Examples of the reducing agent include (bi) sulfurous acid (salt) such as sodium sulfite and sodium bisulfite, L-ascorbic acid (salt), reducing metal (salt) such as ferrous salt, and amines. However, it is not particularly limited.
[0022]
The monomer composition may be supplied in the form of droplets or showering, or may be continuously supplied in the form of a hose from one point. These may be intermittent or continuous. These may be used as appropriate. What is necessary is just to perform the particle diameter in the case of spraying, for example with an average particle diameter of about 0.01-2 mm. The addition of the monomer composition may be performed in a planar shape on one side, or may be partially performed in a dot shape, a stripe shape, a mesh shape, or the like. The thickness of the monomer composition is not particularly limited, but may be controlled within the range of polymerization by prior work, for example, about 0.01 to 200 mm, and further about 1 to 50 mm.
The polymerization temperature (peak temperature) is preferably 150 ° C. or lower, more preferably 80 to 130 ° C., and more preferably 115 ° C. or lower. It is preferable to increase the concentration of the monomer composition at the time of polymerization, and the concentration ratio defined by (solid content of water absorbent resin after polymerization) / (solid content before polymerization) is 1.10 or more, more preferably 1.15 or more, more preferably 1.20. The upper limit is appropriately determined depending on the concentration of the monomer composition. For example, a monomer composition having a concentration of 50% by mass inevitably becomes 2.0 or less.
The polymerization time is also preferably within 10 minutes, and further 0.1 to 5 minutes. The polymerization time is defined by the time to peak. After the polymerization, the polymerization may be further promoted by allowing to stand at room temperature. By including a photopolymerization initiator, polymerization is accelerated and completed by natural light. The promotion and completion of polymerization can be easily determined by reducing the residual monomer over time. Further, in the present invention, after the polymerization is started with natural light, the monomer composition or the polymer may be externally heated as needed during the polymerization or after the polymerization, or artificially irradiated with radiation such as ultraviolet rays. May be.
[0023]
The polymerization of the present invention is preferably carried out where the polymerization is substantially used for the water absorbent resin. The place of use is that the distance between the place of use and the polymerization place is within 10 km, further within 5 km, within 1 km, and in particular, polymerization and practical use are performed at that place. Conventionally, polymerization is performed by polymerizing a water absorbent resin at a water absorbent resin production plant, and then transported and stored, but the powder of the water absorbent resin has a low bulk specific gravity, so it is very expensive to transport and store. However, the present invention can also solve this problem.
The polymerization is preferably carried out at atmospheric pressure in an air atmosphere, such conditions being achieved for example by outdoor polymerization. That is, in the polymerization of the present invention, an inert gas such as nitrogen may be used, but the polymerization is preferably performed in an air atmosphere. What is necessary is just to superpose | polymerize water-absorbing resin as it is outdoors or indoors as an air atmosphere, especially outdoors. Conventionally, in the method using an inert gas, manufacturing equipment and daily inert gas are expensive, and attention to an oxygen deficiency accident has been required at the manufacturing site. However, the present invention solves this problem.
[0024]
Furthermore, it is preferable that the polymerization of the present invention is carried out on any substrate of soil or its constituents, fiber materials, building materials and buildings. To provide a water-absorbent resin integrated with a base material by applying the above-described method for producing a water-absorbent resin of the present invention in soil or its components (fertilizer, straw), fiber materials, building materials, buildings, etc. Can do. Specifically, it is possible to obtain an integrated water-absorbing resin (water-absorbing resin composition or composite) for agriculture and horticulture by polymerizing on soil or fertilizer. Moreover, it can be set as the lubricant (H steel drawing) and hygroscopic agent of building materials by superposing | polymerizing on building materials.
[0025]
That is, the present invention also comprises a method for imparting water-absorbing water retention to a substrate, characterized in that a monomer composition comprising a hydrophilic unsaturated monomer as a main component is polymerized by natural light on the substrate. provide.
[0026]
(Water absorbent resin after polymerization)
The water-absorbing resin after polymerization may be further pulverized or dried as necessary, pulverized / classified, granulated, surface cross-linked, mixed with various additives such as water and plasticizer, and combined with other substrates. And so on. Drying can be performed by heating at 40 to 250 ° C., for example, and the water-absorbing resin in the form of a thick plate, a block, a sheet, or a particle (when sprayed) obtained above is subdivided. Alternatively, the water-absorbing resin after polymerization can be cut into a desired shape such as particles or sheets. Such post-polymerization steps are also described in the aforementioned Patent Documents 6 to 23 and the like, and the post-polymerization pulverization / classification, granulation, surface cross-linking and additives described therein may also be applied to the present invention.
[0027]
The water-absorbent resin of the present invention usually has the above water content, and is in a gel state or a dry state. These are on a thick plate, a block shape, a sheet shape, (when sprayed) a particulate shape, etc. It can be molded or supported in any form simultaneously with polymerization. These may be used as a water-absorbing resin as they are, or may be used as a water-retaining agent, moisture-absorbing material, or lubricant as they are supported on soil or building materials.
The absorption capacity (CRC / Centrifuge Retention Capacity) of the water-absorbing resin obtained above with respect to physiological saline is preferably 20 g / g or more, more preferably 25 to 100 g / g, and particularly preferably 30 to 80 g / g. The Further, the soluble component of the water absorbent resin is 0 to 50% by mass, preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less. Further, the polymerization rate is usually 98.0% by mass or more, preferably 99.0% or more, more preferably 99.5% or more, and particularly preferably 99.99% or more. In addition, the said physical-property value is a numerical value per solid content, and the measuring method is prescribed | regulated by an Example.
[0028]
(Use of water-absorbing resin)
The present invention can produce a water-absorbent resin easily at low cost. The above water-absorbent resin of the present invention is not limited to sanitary materials, but also agricultural and horticultural water retention agents (soil conditioners), industrial water retention agents, moisture absorbents, dehumidifiers, building materials (humidity adjusting agents, building material pulling lubricants, etc.) Widely used in. For example, it is possible to obtain a water-absorbing resin integrated with the base material, that is, a water-absorbing resin-resin composite, by polymerizing while being supported on the base material.
Applications of the water-absorbing resin are also described and applicable in the above-mentioned Patent Documents 1 to 23, but the water-absorbing resin of the present invention is preferably used for agricultural and horticultural or civil engineering and building materials because of its performance. That is, the present invention also provides a water-absorbing resin that is integrated with a base material as necessary, and that uses a water-absorbing resin obtained by the above production method. The present invention also provides a water-absorbing resin integrated with a base material as necessary, and a building material or a building using the water-absorbing resin obtained by the above production method.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
The measurement was performed at room temperature (23 ° C. ± 2 ° C.), and the water absorbent resin was subjected to solid content correction. (For example, in the case of a water-absorbing resin having a water content of 50%, in the following (1), 0.400 g of a water-absorbing water-absorbing resin and a solid content of 0.200 g). Further, the physical properties of the water-absorbent resin were all determined using a water-absorbent resin subdivided to 1 mm or less.
(1) Absorption capacity without pressure (CRC)
The following measurement was performed according to Patent Document 19. That is, 0.200 g (solid content) of the water-absorbing resin subdivided to 1 mm or less was uniformly put in a water-permeable nonwoven fabric bag (60 mm × 80 mm), sealed, and then immersed in 0.90% by mass physiological saline at room temperature. . After 24 hours, the bag was pulled up, drained at 250 G for 3 minutes using a centrifuge, and then the mass W1 (g) of the bag was measured. Further, the same operation was performed without using the water absorbent resin, and the mass W0 (g) at that time was measured. Then, the absorption capacity without load (g / g) was calculated from W1 and W0 according to the following formula.
[0030]
Absorption capacity under no pressure (g / g) = (W1 (g) −W0 (g)) / solid content mass of water absorbent resin (g)
(2) Water-soluble component (sometimes abbreviated as soluble component)
The following measurement was performed according to Patent Document 19. That is, 1.00 g (solid content) of a water-absorbing resin subdivided to 1 mm or less is dispersed in 184.3 g of physiological saline (0.9% by mass sodium chloride aqueous solution), and is 40 mm in length using a magnetic costar. After stirring for 16 hours with a fluorine-coated stirrer having a diameter of 8 mm, the swollen gel was separated and filtered. Subsequently, the water-soluble component (substantially water-soluble polyacrylic acid (salt)) eluted in the obtained filtrate was subjected to pH titration with 0.1N NaOH and 0.1N HCl to a pH of 10 to 2.7. As a result, the mass% of water-soluble content in the water-absorbent resin (solid content of the water-absorbent resin) was determined.
(3) Residual monomer and polymerization rate
Water-absorbing resin 0.500 g (solid content) subdivided to 1 mm or less was dispersed in 1 L of ion-exchanged water, and after stirring for 16 hours with the stirrer of (2) above, the swollen gel was separated and filtered. Next, the obtained filtrate was subjected to UV analysis by liquid chromatography to analyze the residual monomer amount of the water absorbent resin (ppm / water absorbent resin solid content). The polymerization rate (%) can be uniquely calculated from the residual monomer (%).
(4) Solid content
By subdividing 1 g of water-absorbing resin into about 0.1 to 2 mm and drying in a windless oven at 180 ° C. for 3 hours, the solid content (mass%) and moisture content (mass%) are determined from the dry residue according to the following formula. Asked.
(Mass% by solid content) = (mass after drying) / (mass before drying) × 100
(Moisture content% by mass) = 100− (solid content)
(5) Amount of dissolved oxygen
The dissolved oxygen content of the monomer composition was measured using DO meter UD-1 manufactured by Central Science Co., Ltd.
[0031]
(Example 1)
A purified acrylic acid containing 60 mass ppm of p-methoxyphenol and having ND of furfural and protoanemonin was obtained by distillation. The aqueous solution having a temperature of about 90 ° C. was obtained by mixing 674 g of the acrylic acid at room temperature and 5374 g of 48.5% by mass aqueous caustic soda solution with 5801 g of ion-exchanged water at a time to raise the temperature simultaneously with neutralization. Then, 21.78 g of polyethylene glycol diacrylate (PEG chain average n number 9) is added as an internal cross-linking agent, 50 ppm (sodium content) of diethylenetriaminepentapentaacetate as a chelating agent, and 2-hydroxy-2 as a polymerization initiator -Methyl-1-phenyl-propan-1-one (trade name Darocur 1173, manufactured by Ciba Specialty Chemicals) 0.01% by mass (based on solid content) and 154.4 g of a 3% by mass aqueous solution of sodium persulfate are mixed. Thereby, monomer aqueous solution (1) was obtained as a monomer composition of this invention. The obtained monomer aqueous solution (1) has a specific gravity of about 1.16 g / cm. 3 The temperature is about 90 ° C., the concentration is about 45% by mass and the neutralization rate is 70 mol%. Moreover, it deaerated by the heat of neutralization and the amount of dissolved oxygen was reduced to 4 ppm.
Next, the whole amount of the monomer aqueous solution (1) is placed outside Himeji in the afternoon of August in fine weather, and the bottom is 1m * 1.8m (and the four sides are 1.8m wide and a sloping wall with an inclination angle of 30 ° C) shallow. When sprayed onto the vat-like container, the polymerization started almost immediately by sunlight, and the monomer aqueous solution (1) having a thickness of about 1 cm was vigorously polymerized and expanded to four sides and a height of about 50 cm to cause the polymerization. The polymerization reached a peak temperature (about 110 ° C., detected by an infrared thermometer) about 30 seconds after spraying, and then the polymerization gel was contracted and completed. The obtained water absorbent resin (1) was a white sheet-like water absorbent resin of about 1 m * 1.8 m. Various physical properties of the water absorbent resin (1) were analyzed, and the results are shown in Table 1.
[0032]
(Example 2)
The sheet-like water-absorbing resin (1) obtained in Example 1 (polymerization rate 99%) was further allowed to stand outdoors at room temperature for 6 days without rain to promote polymerization. The water-absorbent resin (2) obtained after 6 days had been reduced to a residual monomer of 600 ppm (polymerization rate 99.94%).
[0033]
Example 3
After cooling the monomer aqueous solution (1) obtained in Example 1 to room temperature, 0.1 mass% of 2-hydroxy-2-methyl-1-phenyl-propan-1-one is further added to increase the amount. As a result, a monomer aqueous solution (2) as a monomer composition was obtained.
Monomer aqueous solution (2) was used as a base material in Himeji's outdoor after a fine day in August, and a wood pulp mat (basis weight: about 650 g / m) 2 , Density approximately 0.19 g / cm 3 ) Was sprayed as droplets of about 1 to 0.2 mm, polymerization proceeded on the wood pulp mat, and a granular white water-absorbing resin (3) integrated with the base material was obtained. The water absorbent resin (3) was swollen with physiological saline.
[0034]
(Comparative Example 1)
When the monomer aqueous solution (2) was sprayed as a droplet of about 1 to 0.2 mm on the wood pulp mat as a base material in a dark room, polymerization did not occur at all and a water absorbent resin was not obtained. .
[0035]
[Table 1]
Figure 2005008705
[0036]
【The invention's effect】
By polymerizing a monomer composition containing a hydrophilic unsaturated monomer with natural light, and polymerizing a monomer composition containing a hydrophilic unsaturated monomer with natural light on a substrate. Thus, water absorption and / or water retention could be efficiently imparted to the substrate.

Claims (8)

親水性不飽和単量体を含む単量体組成物を、自然光で重合させることを特徴とする吸水性樹脂の製造方法。A method for producing a water-absorbing resin, wherein a monomer composition containing a hydrophilic unsaturated monomer is polymerized with natural light. 自然光が屋外の太陽光である、請求項1記載の製造方法。The production method according to claim 1, wherein the natural light is outdoor sunlight. 前記単量体組成物が紫外線重合開始剤および架橋剤を含む水溶液である、請求項1または2に記載の製造方法。The production method according to claim 1 or 2, wherein the monomer composition is an aqueous solution containing an ultraviolet polymerization initiator and a crosslinking agent. 重合に供する前記単量体組成物の温度が40℃以上である、請求項1から3の何れかに記載の製造方法。The manufacturing method in any one of Claim 1 to 3 whose temperature of the said monomer composition with which it uses for superposition | polymerization is 40 degreeC or more. 前記重合が吸水性樹脂の実質的に使用される場所で行われる、請求項1から4の何れかに記載の製造方法。The manufacturing method in any one of Claim 1 to 4 with which the said superposition | polymerization is performed in the place where a water absorbing resin is substantially used. 前記重合が空気雰囲気下で行われる、請求項1から5の何れかに記載の製造方法。The production method according to claim 1, wherein the polymerization is performed in an air atmosphere. 前記重合が基材上で行われる請求項1から6の何れかに記載の製造方法。The production method according to claim 1, wherein the polymerization is performed on a substrate. 基材上で親水性不飽和単量体を含む単量体組成物を自然光で重合させることにより、前記基材に吸水性および/または保水性を付与することを特徴とする、基材への吸水性・保水性の付与方法。A polymer composition comprising a hydrophilic unsaturated monomer on a substrate is polymerized with natural light to impart water absorption and / or water retention to the substrate, A method for imparting water absorption and water retention.
JP2003172373A 2003-06-17 2003-06-17 Method for producing water-absorbing resin Pending JP2005008705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172373A JP2005008705A (en) 2003-06-17 2003-06-17 Method for producing water-absorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172373A JP2005008705A (en) 2003-06-17 2003-06-17 Method for producing water-absorbing resin

Publications (1)

Publication Number Publication Date
JP2005008705A true JP2005008705A (en) 2005-01-13

Family

ID=34096550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172373A Pending JP2005008705A (en) 2003-06-17 2003-06-17 Method for producing water-absorbing resin

Country Status (1)

Country Link
JP (1) JP2005008705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124926A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2017047363A (en) * 2015-09-01 2017-03-09 Dowaエコシステム株式会社 Detoxicating method for contaminated soil
US9962680B2 (en) 2010-12-17 2018-05-08 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-based water absorbent resin, and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962680B2 (en) 2010-12-17 2018-05-08 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-based water absorbent resin, and method for production thereof
JP2016124926A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Photopolymerizable composition, separator for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2017047363A (en) * 2015-09-01 2017-03-09 Dowaエコシステム株式会社 Detoxicating method for contaminated soil

Similar Documents

Publication Publication Date Title
US8362174B2 (en) Process for producing water-absorbing polymer particles
JP5376420B2 (en) Process for the preparation of water-soluble or water-swellable polymers, in particular water-soluble or water-swellable copolymers consisting of acrylamide and at least one ionic comonomer having a low residual monomer content
EP2411422B1 (en) Method for producing surface post-cross-linked, water absorbing polymer particles
US4486489A (en) Films of hydrophilic interpolymers of neutralized acrylic acid, hydroxyalkyl methacrylate or dialkylaminoalkyl (meth)acrylate and optionally a cross-linking agent
EP2673011B2 (en) Procedure for preparing water absorbing polymer particles having high free swell rate
EP3020737A1 (en) Super absorbent polymer and preparation method therefor
JP4688535B2 (en) Continuous production method of water absorbent resin
US20110257340A1 (en) Process for Producing Water-Absorbing Polymer Particles
EP2731975A1 (en) Method for producing water-absorbing polymer particles having a high swelling speed
US20110237767A1 (en) Process for Removing Residual Monomers from Water-Absorbing Polymer Particles
US8703876B2 (en) Process for producing water absorbing polymer particles with improved color stability
JP7064614B2 (en) Method for manufacturing a water-absorbent resin containing a chelating agent
EP2504368B1 (en) Method for producing water-absorbing polymer particles having improved color stability
JP5042674B2 (en) Method for producing polyacrylic acid (salt) water-absorbing resin
EP1440984B1 (en) Method of manufacturing water-absorbing shaped body
US8188193B2 (en) Method for post-crosslinking of the surface of water-absorbing polymer particles
EP2385816A1 (en) Method for producing odor inhibiting, water absorbing polymer particles
JP2005008705A (en) Method for producing water-absorbing resin
JP4545448B2 (en) Method for producing water-absorbent molded body
JPH0352903A (en) Production of water-absorptive resin with little water-solubles
US8541528B2 (en) Process for producing water-absorbing particles
US8765898B2 (en) Process for producing water-absorbing polymer particles
JP3251647B2 (en) Water-absorbing resin and method for producing the same
EP0055728A1 (en) Hydrophilic interpolymers of acrylic acid and an acrylate
JP3091215B2 (en) Absorbent resin