JP2005008431A - Production method for monolayered boron nitride nanotube by laser ablation method - Google Patents

Production method for monolayered boron nitride nanotube by laser ablation method Download PDF

Info

Publication number
JP2005008431A
JP2005008431A JP2003170919A JP2003170919A JP2005008431A JP 2005008431 A JP2005008431 A JP 2005008431A JP 2003170919 A JP2003170919 A JP 2003170919A JP 2003170919 A JP2003170919 A JP 2003170919A JP 2005008431 A JP2005008431 A JP 2005008431A
Authority
JP
Japan
Prior art keywords
boron nitride
monolayered
walled
laser ablation
nitride nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003170919A
Other languages
Japanese (ja)
Other versions
JP3921537B2 (en
Inventor
Yoshio Bando
義雄 板東
Golberg Dmitri
デミトリー・ゴルバーグ
Rode Andree
アンドレー・ロデ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003170919A priority Critical patent/JP3921537B2/en
Publication of JP2005008431A publication Critical patent/JP2005008431A/en
Application granted granted Critical
Publication of JP3921537B2 publication Critical patent/JP3921537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high-purity monolayered boron nitride nanotube. <P>SOLUTION: In a nitrogen atmosphere of 100 Torr, boron nitride as the target is irradiated with a laser beam with a wave length of 1.064 μm, a pulse width of 60 ps, a pulse repetition rate of 2×10<SP>5</SP>pulse/sec, and intensity of 2.7×10<SP>11</SP>W/cm<SP>2</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、単層窒化ホウ素ナノチューブの製造方法に関する。さらに詳しくは、この出願の発明は、半導体材料、エミッター材料、耐熱性充填材料、高強度材料、触媒等の分野において従来にない特性を有する材料として見込まれる窒化ホウ素の単層ナノチューブを高純度で製造することのできる単層窒化ホウ素ナノチューブの製造方法に関する。
【0002】
【従来の技術】
炭素原子が筒状に並んだナノメートルサイズのチューブ状炭素物質、カーボンナノチューブが知られている。このカーボンナノチューブは、アーク放電法、レーザー加熱法、化学的気相成長法等により合成されており、直径、巻き方、層数等によって導体あるいは半導体の性質を示す。
【0003】
近年、窒化ホウ素が、グラファイトと構造的な類似性があることから、窒化ホウ素ナノチューブもまた、上記と同様な方法により合成されている。この他、窒化ホウ素ナノチューブの製造方法については、ホウ化ニッケルを触媒に使用し、ボラジンを原料として合成する方法(たとえば、非特許文献1参照)やカーボンを鋳型として使用し、酸化ホウ素と窒素を高周波誘導加熱炉中で反応させて合成する方法(たとえば、特許文献1、2参照)が提案されている。窒化ホウ素ナノチューブには、カーボンナノチューブと比較して熱的、化学的に安定であるという大きな利点がある。このことから、窒化ホウ素は、半導体材料、エミッター材料、耐熱性充填材料、高強度材料、触媒等の分野において従来にない特性を有する材料として見込まれている。
【0004】
【非特許文献1】
O.R.Lourie外,ケミカル・マテリアルズ(Chem.Mater.),2000年,第12巻,p.1808
【特許文献1】
特開2000−109306号公報
【特許文献2】
特開2002−97004号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述の窒化ホウ素ナノチューブの製造方法には、安全性において、また、カーボン等の不純物を含む等の問題があり、窒化ホウ素ナノチューブの半導体特性や強度等の物理的特性を測定することは困難であった。
【0006】
この出願の発明は、このような事情に鑑みてなされたものであり、炭素等の不純物を含まない高純度の単層窒化ホウ素ナノチューブを製造することのできる単層窒化ホウ素ナノチューブの製造方法を提供することを解決すべき課題としている。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、100Torrの窒素雰囲気中で、波長1.064μm、パルス幅60ps、繰り返し回数2×10パルス/秒、強度2.7×1011W/cmのレーザー光を、ターゲットとしての窒化ホウ素に照射することを特徴とする単層窒化ホウ素ナノチューブの製造方法を提供する(請求項1)。
【0008】
【発明の実施の形態】
この出願の発明の単層窒化ホウ素ナノチューブの製造方法では、窒素の減圧下で短時間−超高繰り返し回数のパルスレーザーを、ターゲットとしての窒化ホウ素に照射することにより、レーザー光の焦点付近にすす状の生成物を堆積させる。この生成物の中に、不純物のきわめて少ない高純度の単層窒化ホウ素ナノチューブが含まれる。
【0009】
短時間−超高繰り返し回数のレーザー照射法により単層窒化ホウ素ナノチューブが得られることは、従来技術にはない画期的なことである。
【0010】
以下、実施例を示し、この出願の発明の単層窒化ホウ素ナノチューブの製造方法についてさらに詳しく説明する。
【0011】
【実施例】
100Torrの窒素減圧中で、波長1.064μm、パルス幅60ps、繰り返し回数2×10パルス/秒、レーザー強度2.7×1011W/cmの短時間−超高繰り返し回数のレーザーを、ターゲットとしての窒化ホウ素に照射した。レーザー光の焦点付近にすす状の生成物が堆積した。生成物は、質量分析装置を用いて測定した結果、不純物の総量が220ppm以下の高純度であった。この生成物を四塩化炭素に分散して超音波処理し、カーボン膜の付いた銅グリッドに滴下して透過型電子顕微鏡観察のための試料を作製した。
【0012】
図1は、高分解能透過型電子顕微鏡を用いて観察した像の写真である。
【0013】
単層のナノチューブが確認された。このチューブの巻き方はジグザグ状であった。
【0014】
図2は、得られた単層のナノチューブの電子エネルギー損失スペクトルを示した図である。
【0015】
この図2には、188eVと401evにホウ素と窒素のピークがそれぞれ現れており、B/N比は0.9±0.2である。このことから、化学量論的窒化ホウ素が生成していることが確認された。また、図2には、ホウ素、窒素以外のピークはなく、生成物である単層窒化ホウ素ナノチューブは高純度であることも確認された。
【0016】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、炭素等の不純物を含まない高純度の単層窒化ホウ素ナノチューブが製造される。
【図面の簡単な説明】
【図1】単層窒化ホウ素ナノチューブの高分解能透過型電子顕微鏡像の写真である。
【図2】単層窒化ホウ素ナノチューブの電子エネルギー損失スペクトルを示した図である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing single-walled boron nitride nanotubes. More specifically, the invention of this application relates to boron nitride single-walled nanotubes, which are expected as materials having unprecedented properties in the fields of semiconductor materials, emitter materials, heat-resistant filling materials, high-strength materials, catalysts, etc., with high purity. The present invention relates to a method for producing single-walled boron nitride nanotubes that can be produced.
[0002]
[Prior art]
A carbon nanotube, a nanometer-sized tubular carbon material in which carbon atoms are arranged in a cylindrical shape, is known. These carbon nanotubes are synthesized by an arc discharge method, a laser heating method, a chemical vapor deposition method, or the like, and exhibit the properties of a conductor or a semiconductor depending on the diameter, winding method, number of layers, and the like.
[0003]
In recent years, since boron nitride has structural similarity with graphite, boron nitride nanotubes have also been synthesized by the same method as described above. In addition, as for the method for producing boron nitride nanotubes, nickel boride is used as a catalyst, borazine is used as a raw material (see, for example, Non-Patent Document 1), carbon is used as a template, boron oxide and nitrogen are used. A method of synthesizing by reacting in a high-frequency induction heating furnace (for example, see Patent Documents 1 and 2) has been proposed. Boron nitride nanotubes have the great advantage of being thermally and chemically stable compared to carbon nanotubes. For this reason, boron nitride is expected as a material having unprecedented characteristics in the fields of semiconductor materials, emitter materials, heat-resistant filling materials, high-strength materials, catalysts, and the like.
[0004]
[Non-Patent Document 1]
O. R. Lourie et al., Chemical Materials, 2000, Vol. 12, p. 1808
[Patent Document 1]
JP 2000-109306 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-97004
[Problems to be solved by the invention]
However, the above-described method for producing boron nitride nanotubes has problems such as safety and inclusion of impurities such as carbon, and it is difficult to measure physical properties such as semiconductor properties and strength of boron nitride nanotubes. Met.
[0006]
The invention of this application was made in view of such circumstances, and provides a method for producing single-walled boron nitride nanotubes that can produce high-purity single-walled boron nitride nanotubes that do not contain impurities such as carbon. It is a problem to be solved.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application has a wavelength of 1.064 μm, a pulse width of 60 ps, a repetition rate of 2 × 10 5 pulses / second, and an intensity of 2.7 × 10 11 W / second in a nitrogen atmosphere of 100 Torr. A method for producing a single-walled boron nitride nanotube, characterized by irradiating boron nitride as a target with a laser beam of cm 2 (claim 1).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing single-walled boron nitride nanotubes of the invention of this application, a boron laser as a target is irradiated with a pulse laser of a short time-ultra high repetition number under a reduced pressure of nitrogen, so that the laser light is made close to the focal point of the laser light. The product is deposited. Among these products are high purity single-walled boron nitride nanotubes with very few impurities.
[0009]
The single-walled boron nitride nanotubes can be obtained by a short-time and ultra-high repetition number of laser irradiation methods, which is an epoch-making that is not found in the prior art.
[0010]
Hereinafter, an Example is shown and the manufacturing method of the single layer boron nitride nanotube of invention of this application is demonstrated in more detail.
[0011]
【Example】
In a nitrogen decompression of 100 Torr, a laser with a wavelength of 1.064 μm, a pulse width of 60 ps, a repetition rate of 2 × 10 5 pulses / second, and a laser intensity of 2.7 × 10 11 W / cm 2 for a short time-ultra high repetition rate, Irradiated to boron nitride as a target. Soot-like product was deposited near the focal point of the laser beam. As a result of measuring the product using a mass spectrometer, the product had a high purity with the total amount of impurities being 220 ppm or less. This product was dispersed in carbon tetrachloride, subjected to ultrasonic treatment, and dropped onto a copper grid with a carbon film to prepare a sample for observation with a transmission electron microscope.
[0012]
FIG. 1 is a photograph of an image observed using a high-resolution transmission electron microscope.
[0013]
Single-walled nanotubes were confirmed. The tube was wound in a zigzag shape.
[0014]
FIG. 2 is a diagram showing an electron energy loss spectrum of the obtained single-walled nanotube.
[0015]
In FIG. 2, peaks of boron and nitrogen appear at 188 eV and 401 ev, respectively, and the B / N ratio is 0.9 ± 0.2. From this, it was confirmed that stoichiometric boron nitride was generated. In addition, in FIG. 2, there are no peaks other than boron and nitrogen, and it was confirmed that the single-walled boron nitride nanotube as a product has high purity.
[0016]
【The invention's effect】
As described above in detail, according to the invention of this application, high-purity single-walled boron nitride nanotubes that do not contain impurities such as carbon are produced.
[Brief description of the drawings]
FIG. 1 is a photograph of a high-resolution transmission electron microscope image of single-walled boron nitride nanotubes.
FIG. 2 is a diagram showing an electron energy loss spectrum of single-walled boron nitride nanotubes.

Claims (1)

100Torrの窒素雰囲気中で、波長1.064μm、パルス幅60ps、繰り返し回数2×10パルス/秒、強度2.7×1011W/cmのレーザー光を、ターゲットとしての窒化ホウ素に照射することを特徴とする単層窒化ホウ素ナノチューブの製造方法。In a nitrogen atmosphere of 100 Torr, laser light having a wavelength of 1.064 μm, a pulse width of 60 ps, a repetition rate of 2 × 10 5 pulses / second, and an intensity of 2.7 × 10 11 W / cm 2 is irradiated to boron nitride as a target. A method for producing single-walled boron nitride nanotubes, wherein
JP2003170919A 2003-06-16 2003-06-16 Method for producing single-walled boron nitride nanotubes by laser ablation Expired - Lifetime JP3921537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170919A JP3921537B2 (en) 2003-06-16 2003-06-16 Method for producing single-walled boron nitride nanotubes by laser ablation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170919A JP3921537B2 (en) 2003-06-16 2003-06-16 Method for producing single-walled boron nitride nanotubes by laser ablation

Publications (2)

Publication Number Publication Date
JP2005008431A true JP2005008431A (en) 2005-01-13
JP3921537B2 JP3921537B2 (en) 2007-05-30

Family

ID=34095580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170919A Expired - Lifetime JP3921537B2 (en) 2003-06-16 2003-06-16 Method for producing single-walled boron nitride nanotubes by laser ablation

Country Status (1)

Country Link
JP (1) JP3921537B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347079C (en) * 2005-04-20 2007-11-07 中国科学院金属研究所 Production of boron nitride nanometer tube with water as growth improver
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US10076316B2 (en) 2008-10-01 2018-09-18 Covidien Lp Needle biopsy device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347079C (en) * 2005-04-20 2007-11-07 中国科学院金属研究所 Production of boron nitride nanometer tube with water as growth improver
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US10076316B2 (en) 2008-10-01 2018-09-18 Covidien Lp Needle biopsy device

Also Published As

Publication number Publication date
JP3921537B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3355442B2 (en) Amorphous nanoscale carbon tube and method for producing the same
JP3183845B2 (en) Method for producing carbon nanotube and carbon nanotube film
Zhang et al. Silicon nanowires prepared by laser ablation at high temperature
US7014737B2 (en) Method of purifying nanotubes and nanofibers using electromagnetic radiation
EP2431325B1 (en) Process for producing carbon nanotubes
Maitra et al. Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials
JP2009107921A (en) Graphene sheet and method of producing the same
JP5574257B2 (en) Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same
JP2015534535A (en) Method for producing graphene nanoribbon
Alexandrescu et al. Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis
EP3567130A1 (en) Reactor and system for fabrication of free-standing two-dimensional nanostructures using plasma technology
JPH10273308A (en) Production of atomic monolayer carbon nanotube
JP4817103B2 (en) Method for producing boron nitride nanotubes
WO2003010114A1 (en) A method of producing nanometer silicon carbide material
TWI811364B (en) -bonded carbon materials, methods of manufacturing and uses thereof
Heya et al. Graphene synthesis from pentacene by soft X-ray irradiation
Oyama et al. Gas-phase synthesis of crystalline B4C encapsulated in graphitic particles by pulsed-laser irradiation
JP2004002103A (en) Method for manufacturing carbon nano wire
Li et al. Low-temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure
JP3921537B2 (en) Method for producing single-walled boron nitride nanotubes by laser ablation
EP1666409A1 (en) Method for controlling structure of nano-scale substance, and method for preparing low dimensional quantum structure having nano-scale using the method for controlling structure
JP2012184145A (en) Substrate for carbon nanotube growth, method of manufacturing the same, and method of manufacturing oriented carbon nanotube
JP2014024710A (en) Carbon nanotube assembly
JP2005314162A (en) Conductivity-variable three-layer carbon nanotube, method of synthesizing three-layer carbon nanotube, and method of synthesizing conductivity-variable three-layer carbon nanotube
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Ref document number: 3921537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term