JP2005005845A - Image processing apparatus - Google Patents

Image processing apparatus Download PDF

Info

Publication number
JP2005005845A
JP2005005845A JP2003164909A JP2003164909A JP2005005845A JP 2005005845 A JP2005005845 A JP 2005005845A JP 2003164909 A JP2003164909 A JP 2003164909A JP 2003164909 A JP2003164909 A JP 2003164909A JP 2005005845 A JP2005005845 A JP 2005005845A
Authority
JP
Japan
Prior art keywords
analysis
image processing
image
frequency
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003164909A
Other languages
Japanese (ja)
Other versions
JP2005005845A5 (en
JP4579507B2 (en
Inventor
Hiroyuki Arahata
弘之 新畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003164909A priority Critical patent/JP4579507B2/en
Publication of JP2005005845A publication Critical patent/JP2005005845A/en
Publication of JP2005005845A5 publication Critical patent/JP2005005845A5/ja
Application granted granted Critical
Publication of JP4579507B2 publication Critical patent/JP4579507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image processing apparatus capable of performing only required image processing during a photographing routine so as to enhance the processing efficiency and capable of carrying out sharpening processing and noise elimination processing with a high efficiency. <P>SOLUTION: The image processing apparatus includes: an information acquisition means for acquiring a location, a photographing condition, and apparatus information or the like; a determining means for determining an image processing method for actual processing among a plurality of image processing methods using multifrequency processing on the basis of the information acquired by the information acquisition means; a frequency component separating means for converting an image into a plurality of frequency components; an analysis means for carrying out one or more analyses among noise elimination analysis, sharpening analysis, and dynamic range compression analysis on the basis of the image processing method determined by the determining means; a high frequency coefficient conversion means for converting a coefficient of each of the frequency bands separated by the frequency component separating means on the basis of an analysis result by the analysis means; and a restoration means for inversely converting the coefficients converted by the high frequency coefficient conversion means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多重周波数処理を用いて画像処理装置に関し、特に部位情報等に基づきノイズ除去、鮮鋭化、ダイナミックレンジ圧縮等の画像処理を選択的に行う画像処理装置に関するものである。
【0002】
【従来の技術】
例えば、X線胸部画像は、X線が透過し易い肺野の画像及びX線が非常に透過しにくい縦隔部の画像より構成されるため、画素値の存在するレンジが非常に広い。このため、肺野及び縦隔部の両方を同時に観察することが可能なX線胸部画像を得ることは困難であるとされてきた。
【0003】
そこで、この問題を回避する方法として、本願出願人より特許文献1に記載された方法がある。f(x,y)を原画像、階調変換後の画像をfh(x,y)、fc(x,y)を圧縮処理後の画像、Sus(x,y)を原画像の低周波画像、Bを定数とする。すると、本処理は(1)式で示される。ここで、f(x,y)−Sus(x,y)が高周波成分であり、この項の効果により圧縮された高周波成分の振幅を復元し、ダイナミックレンジの圧縮後においても微細構造(主として高周波成分で構成される)の見え方を原画像と同様に維持するものである。
【0004】
【数1】

Figure 2005005845
【0005】
【数2】
Figure 2005005845
ここで、Sus(x,y)は移動平均画像であり、原画像f(x,y)から(2)式で示す計算式で算出される。
【0006】
F()は単調増加関数である。
【0007】
又、階調変換曲線F()は微分値が連続となるようになっている。本処理では高周波成分の振幅を維持したまま一定画素値範囲のダイナミックレンジを圧縮することが可能である。
【0008】
又、微細構造を見易くするために所謂鮮鋭化処理がある。
【0009】
f(x,y)を原画像、処理後の画像をfp(x,y)、Sus2(x,y)を原画像の低周波画像、Cを定数とする。そうすると本処理は(3)式で表せるものである。
【0010】
ここで、Sus2(x,y)は(2)式で表される平滑化画像とマスクサイズが異なるものである。
【0011】
【数3】
Figure 2005005845
又、高周波成分を平滑化したり、多重周波数分解処理におけるサブバンド間の相関等によりノイズを減少させるノイズ除去処理の検討が行われつつある。
【0012】
以上のようなダイナミックレンジを圧縮する処理、鮮鋭処理、ノイズ除去処理等の複数の処理を原画像に行うことが行われる場合がある。
【0013】
【特許文献1】
特開2000−101841号公報
【発明が解決しようとする課題】
しかしながら、鮮鋭化処理を行った後にダイナミックレンジを圧縮する処理を行う場合、上述の(1)式は(4)式のように変更される。ここで、fp(x,y)−Sus3(x,y)の項が高周波成分を意味する。しかし、鮮鋭化処理後の画像でSus3(x,y)は(5),(6)式で示すようにSus4(x,y)の項の影響を受けるものであり、従来の(1)式でのf(x,y)−Sus(x,y)の高周波成分と(4)式でのfp(x,y)−Sus3(x,y)の高周波成分は異なるものである。
【0014】
【数4】
Figure 2005005845
【0015】
【数5】
Figure 2005005845
【0016】
【数6】
Figure 2005005845
従って、(1)式でダイナミックレンジを圧縮する場合と、(4)式でダイナミックレンジを圧縮する場合とでは復元される高周波の周波帯が異なり、微細構造の復元性が異なり、画質の劣化の原因になる場合がある。これはダイナミックレンジを圧縮する処理を行った後に、鮮鋭化処理を行う場合にも同様の問題が生じる。つまり、移動平均を用いた周波数処理を2度以上行う場合には、上述の鮮鋭化処理、ダイナミックレンジを圧縮する処理に限らず同様の問題が生じる。
【0017】
又、ノイズを除去する処理は基本的には高周波成分を抑制する処理であり、鮮鋭化処理は高周波成分を増強する処理であり、両処理は相反する効果を有する。
従って、従来のようにノイズ除去処理と鮮鋭化処理を独立に行っていた場合には、高周波成分を抑制したい領域を強調したり、逆に高周波成分を抑制したい領域を強調する等の問題が生じる場合がある。この問題は直接に画質の劣化へと繋がるものである。
【0018】
更に、複数の画像処理は、一律に全部位に同様に掛けるとノイズが問題とならない部位にノイズ除去を行ったり、ダイナミックレンジ圧縮処理を行う必要が無い部位に処理を行う等の不都合が生じる。又、不必要な処理を行うことは計算機の処理効率上も好ましくない。更に、立位撮影、臥位撮影、カセッテ撮影では同一部位でも観察目的が異なるため、異なる処理を行う必要がある。
【0019】
本発明は上記問題に鑑みてなされたもので、その目的とする処は、必要とする画像処理だけを撮影ルーティンの中で行うことができ、処理効率を高めるとともに、効率良く鮮鋭化処理とノイズ除去処理を行うことができる画像処理装置を提供することにある。
【0020】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、部位、撮影条件、装置情報等を取得する情報取得手段と、情報取得手段で取得された情報に基づき複数の多重周波数処理を用いた画像処理方法から実際に処理を行う画像処理方法を決定する決定手段と、決定手段で決定された画像処理方法を実行する画像処理手段とを含んで画像処理装置を構成したことを特徴とする。
【0021】
請求項2記載の発明は、部位、撮影条件、装置情報等を取得する情報取得手段と、情報取得手段で取得された情報に基づき複数の多重周波数処理を用いた画像処理方法から実際に処理を行う画像処理方法を決定する決定手段と、画像を複数の周波数成分に変換する周波数成分分解手段と、決定手段で決定された画像処理方法に基づきノイズ除去解析、鮮鋭化解析、ダイナミックレンジ圧縮解析の何れか1つ以上の解析を行う解析手段と、該解析手段で解析された結果に基づき該周波数成分分解手段で分解された周波数帯毎の係数を変換する高周波係数変換手段と該高周波係数変換手段で変換された係数を逆変換する復元手段とを含んで画像処理装置を構成したことを特徴とする。
【0022】
請求項3記載の発明は、原画像を諧調変換曲線に基づき諧調変換する諧調変換手段と、該諧調変換手段で諧調変換された画像を複数の周波数成分に変換する周波数成分分解手段と、ノイズ除去解析、ダイナミックレンジ圧縮解析、鮮鋭化解析の少なくとも1つ以上の解析処理を行う解析手段と、該解析手段で解析された結果に基づき該周波数成分分解手段で分解された周波数帯毎の係数を変換する高周波係数変換手段と該高周波係数変換手段で変換された係数を逆変換する復元手段とを含んで画像処理装置を構成したことを特徴とする。
【0023】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。
【0024】
図1は本発明の実施の形態1に係るX線撮影装置100を示す。即ち、X線撮影装置100は、撮影された画像の周波数帯毎の処理を行う機能を有するX線の撮影装置であり、前処理回路106、CPU108、メインメモリ109、操作パネル110、画像表示器111、画像処理回路112を備えており、CPUバス107を介して互いにデータ授受されるよう構成されている。
【0025】
又、X線撮影装置100は、前処理回路106に接続されたデータ収集回路105と、データ収集回路105に接続された2次元X線センサ104及びX線発生回路101とを備えており、これらの各回路はCPUバス107にも接続されている。
【0026】
図2は本発明の実施の形態1に係るX線撮影装置100の処理の流れを示すフローチャートである。図3はノイズ除去を説明する図であり、図4は鮮鋭化処理を説明する図であり、原画像の画素値に応じて高周波係数を変更するものである。横軸が原画像の画素値、縦軸が高周波係数を変更する度合いを示し、例えば1.0であると何も変更せず、0.5であると高周波係数を0.5倍する。
【0027】
図5は最も低周波数の帯域の係数を変更するための曲線形を示す。図6(a)は周波数成分分解回路115の構成を示す図であり、図6(b)は2次元の変換処理により得られる2レベルの変換係数群の構成例を示し、図6(c)は復元回路118の構成を示す図である。
【0028】
上述のようなX線撮影装置100において、先ず、メインメモリ109は、CPU108での処理に必要な各種のデータ等が記憶されるものであるとともに、CPU108の作業用としてのワークメモリを含む。
【0029】
CPU108は、メインメモリ109を用いて、操作パネル110からの操作に従った装置全体の動作制御等を行う。これによりX線撮影装置100は、以下のように動作する。
【0030】
先ず、X線発生回路101は、被検査体103に対してX線ビーム102を放射する。
【0031】
X線発生回路101から放射されたX線ビーム102は、被検査体103を減衰しながら透過して2次元X線センサ104に到達し、2次元X線センサ104によりX線画像として出力される。ここでは、2次元X線センサ104から出力されるX線画像を例えば人体画像等とする。
【0032】
データ収集回路105は、2次元X線センサ104から出力されたX線画像を電気信号に変換して前処理回路106に供給する。前処理回路106は、データ収集回路105からの信号(X線画像信号)に対して、オフセット補正処理やゲイン補正処理等の前処理を行う。この前処理回路106で前処理が行われたX線画像信号は原画像として、CPU108の制御により、CPUバス107を介してメインメモリ109、画像処理回路112に転送される。
【0033】
112は画像処理回路の構成を示すブロック図であり、112において、113は画像のヘッダ、操作パネル110等から画像の部位情報、撮影機、撮影条件を取得する部位情報入力回路、114は部位情報決定回路113で取得した情報から画像処理方法を決定する画像処理方法決定回路、115は原画像の諧調変換を行う諧調変換回路であり、116はノイズ除去のための解析、鮮鋭化処理を行うための解析、ダイナミックレンジを変更(圧縮、伸張を意味)するための解析を行う解析回路である。ここでの解析とは、高周波係数を変更する量と領域を決定することを意味する。
【0034】
117は原画像に対して離散ウェーブレット変換(以後、DWT変換)を施し、各周波数帯の高周波係数(ウェーブレット変換係数)を得る周波数成分分解回路、118は解析回路116で解析した結果に基づき、周波数成分分解回路117で分解された周波数帯毎の高周波係数を変換する高周波係数変換回路である。119は高周波係数変換回路118で変換された高周波係数に基き逆離散ウェーブレット変換(以後、逆DWT)を行う復元回路を備えている。多重周波数処理は、DWTに限らず、ラプラシアンピラミッドを用いても良く、又、サブバンド化しないフィルタを用いても良い。
【0035】
図2の処理の流れに従って本実施の形態について以下に説明する。
【0036】
前処理回路106で前処理された原画像は、CPUバス107を介して画像処理装置112に転送される。画像処理装置112では、はじめに部位情報入力回路113が画像のヘッダ、操作パネル110等から画像の部位情報、撮影機、撮影条件を取得する(S201)、そして、画像処理方法決定回路114は部位情報決定回路113で取得した情報から画像処理方法を決定する。この場合、メインメモリ109に部位情報、撮影機、撮影条件に応じた画像処理方法をテーブルとして保存しておく。このテーブルは操作パネル10等で自在に変更できるものである。
【0037】
そして、周波数成分分解回路117が原画像をf(x,y)に対して2次元の離散ウェーブレット変換処理を行い、周波数帯毎の高周波係数を計算して出力するものである。入力された画像信号は、遅延素子及びダウンサンプラの組み合わせにより、偶数アドレス及び奇数アドレスの信号に分離され、2つのフィルタp及びuによりフィルタ処理が施される。図5(a)のs及びdは、各々1次元の画像信号に対して1レベルの分解を行った際のローパス係数及びハイパス係数を表しており、次式により計算されるものとする。
【0038】
【数7】
Figure 2005005845
【0039】
【数8】
Figure 2005005845
但し、x(n)は変換対象となる画像信号である。
【0040】
以上の処理により、画像信号に対する1次元の離散ウェーブレット変換処理が行われる。2次元の離散ウェーブレット変換は、1次元の変換を画像の水平・垂直方向に対して順次行うものであり、その詳細は公知であるのでここでは説明を省略する。図5(b)は2次元の変換処理により得られる2レベルの変換係数群の構成例であり、画像信号は異なる周波数帯域の高周波係数HH1,HL1,LH1,…,LLに分解される(S203)。図5(b)においてHH1,HL1,LH1,…,LL等(以下、サブバンドと呼ぶ)が周波数帯毎の高周波係数を示す。
【0041】
次に、解析回路116では画像処理方法決定回路114で決定された画像処理方法に従い、処理を行う画像処理のための解析を行う。例えば胸部正面という情報に関しては、ノイズ除去、鮮鋭化、ダイナミックレンジ圧縮のための解析を行う。例えばノイズ解析の一例として、得られたサブバンドのうち高周波係数を示すHL,LH,HLの3つのサブバンドに対して、それぞれのサブバンドごとに適当な閾値を設定する。閾値の設定方法は特に限定しないが、離散ウェーブレット変換の分解レベルに応じて経験的に求めた或る定数を設定しても良く、各サブバンドの平均値や分散値等の統計量に基づいて自動的に決めても良い。
【0042】
次に、設定した各サブバンドの閾値により、HL,LH,HHの高周波係数に対して閾値処理を行う。閾値処理の方法としては、例えば符号付2値化処理が考えられ、以下のように実現できる。
【0043】
if (−THHL < HL(x,y) < THHL
then2値化画像HL(x,y) = 1;
else2値化画像HL(x,y) = 0;
if (−THLH < LH(x,y) < THLH
then2値化画像LH(x,y) = 1;
else2値化画像LH(x,y) = 0;
if (−THHH < HH(x,y) < THHH
then2値化画像HH(x,y) = 1;
else2値化画像HH(x,y) = 0;
ここで、THHL,THLH,THHHは設定された各サブバンドの閾値であり、HL(x,y),LH(x,y),HH(x,y)は、各サブバンドの画素値、即ちウェーブレット係数を表す。
【0044】
次に、各サブバンドの閾値処理結果に基づき、後段の高周波係数変換回路116の処理対象とする画素を決定する。処理対象画素の決定方法は幾つか考えられるが、本実施の形態では各サブバンドの2値化画像の論理積を採用する。即ち、以下のように実現される。
【0045】
if (( 2値化画像HL(x,y) = 1) AND
(2値化画像LH(x,y) = 1) AND
(2値化画像HH(x,y) = 1))
then2値化画像HL(x,y) = 2値化画像LH(x,y) = 2値化画像HH(x,y) = 1;
else2値化画像HL(x,y) = 2値化画像LH(x,y) = 2値化画像HH(x,y) = 0;
この高周波係数で1となった係数の値は、1を指摘された係数の周辺係数の平均値に置き換える。そして、この置き換えた係数の位置と値をメインメモリ109に保存する(S204)。
【0046】
次に、鮮鋭化処理のための係数の変換の度合いを解析回路116は算出する。例えば、図4に示すように原画像の画素値毎に高周波係数を変更する割合が決められており、解析回路114はHL,LH,HHの全ての高周波係数を変更する割合をメインメモリ109に保存する(S203)。本実施の形態では、説明簡単のためにHL,LH,HH全てに図4の変換曲線を用いるがサブバンドごとに異なる曲線形を用いても良い。又、これらの曲線系も部位情報等に応じて変更するものである。
【0047】
次に、解析回路116は、ダイナミックレンジを変更するために、最も低周波数の帯域に対応する係数を係数の値に応じて変更する割合をメインメモリ109に保存する(S206)。一般に低周波成分の係数の値は、原画像の画素値の値と高い相関があり、低周波成分の係数の値を変更することで、復元した画像のダイナミックレンジも変更できるものである。
【0048】
次に、高周波係数変換回路116は、先ず、メインメモリ109に保存される、ノイズ除去解析により変更された係数を周波数成分分解回路117で算出した係数に置き換える。そして、又、係数ごとにメインメモリ109に保存される変更する割合に従い置き換えられた係数を変更する。更に、最低周波数帯域に対応する係数(ここではLL)を変更する(S207)。
【0049】
そして、復元回路119では高周波係数変換回路118で変更された高周波係数に基づき逆離散ウェーブレット変換処理を行う。入力された係数はu及びpの2つのフィルタ処理を施され、アップサンプリングされた後に重ね合わされて画像信号x’が出力される。これらの処理は次式により行われる。
【0050】
【数9】
Figure 2005005845
【0051】
【数10】
Figure 2005005845
以上の処理により、変換係数に対する1次元の逆離散ウェーブレット変換処理が行われる。2次元の逆離散ウェーブレット変換は、1次元の逆変換を画像の水平・垂直方向に対して順次行うものであり、その詳細は公知であるのでここでは説明を省略する。
【0052】
以上のように、本実施の形態では部位情報等に応じて画像処理方法を決定できるため、必要とする画像処理だけを撮影ルーティンの中で行える効果がある。更に、必要な画像解析しか行わないため、処理効率が上がる効果もある。
【0053】
更に、周波数帯域に分解してノイズ除去処理及び鮮鋭化処理を行うので、両者で矛盾する効果を生じることなく、効率良く鮮鋭化処理とノイズ除去処理を行うことができる効果がある。又、ダイナミックレンジを変更する処理と鮮鋭化処理を同時に行うので、両処理の影響が干渉せず、画質の劣化が生じない効果がある。
【0054】
又、ノイズ除去、鮮鋭化処理、ダイナミックレンジを変更する処理を矛盾なく行えるため、それぞれの処理を干渉することなく行え、それぞれの処理の目的を達することができ、画像全体の処理として画質の向上が図れる効果がある。更に、重複した周波数処理を行わないため、計算時間の短縮を行える効果もある。
【0055】
【発明の効果】
以上の説明で明らかなように、本発明によれば、必要とする画像処理だけを撮影ルーティンの中で行うことができ、処理効率を高めるとともに、効率良く鮮鋭化処理とノイズ除去処理を行うことができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る画像処理装置の構成を示すブロック図である。
【図2】本発明に係る画像処理装置の処理手順を示すフローチャートである。
【図3】ノイズ除去処理解析を説明する図である。
【図4】画素値依存の鮮鋭化解析処理を説明する図である。
【図5】ダイナミックレンジを変更する解析を説明する図である。
【図6】離散ウェーブレット変換及びその逆変換の説明図である。
【符号の説明】
101 X線発生回路
102 X線ビーム
103 被写体
104 2次元X線センサ
105 データ収集回路
106 前処理回路
107 CPUバス
108 CPU
109 メインメモリ
110 操作パネル
111 表示器
112 画像処理回路
113 部位情報入力回路
114 画像処理方法決定回路
115 諧調変換回路
116 解析回路
117 周波数成分分解回路
118 高周波係数変換回路
119 復元回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image processing apparatus using multi-frequency processing, and more particularly to an image processing apparatus that selectively performs image processing such as noise removal, sharpening, and dynamic range compression based on part information and the like.
[0002]
[Prior art]
For example, an X-ray chest image is composed of a lung field image through which X-rays are easily transmitted and a mediastinal image through which X-rays are very difficult to transmit. For this reason, it has been considered difficult to obtain an X-ray chest image capable of simultaneously observing both the lung field and the mediastinum.
[0003]
Therefore, as a method for avoiding this problem, there is a method described in Patent Document 1 by the present applicant. f (x, y) is an original image, tone-converted image is fh (x, y), fc (x, y) is an image after compression processing, and Sus (x, y) is a low-frequency image of the original image. , B is a constant. Then, this processing is expressed by equation (1). Here, f (x, y) −Sus (x, y) is a high frequency component, and the amplitude of the compressed high frequency component is restored by the effect of this term. The appearance of the image (consisting of the components) is maintained in the same manner as the original image.
[0004]
[Expression 1]
Figure 2005005845
[0005]
[Expression 2]
Figure 2005005845
Here, Sus (x, y) is a moving average image, and is calculated from the original image f (x, y) by the calculation formula shown by the formula (2).
[0006]
F () is a monotonically increasing function.
[0007]
The gradation conversion curve F () is such that the differential value is continuous. In this processing, it is possible to compress the dynamic range of a certain pixel value range while maintaining the amplitude of the high frequency component.
[0008]
In addition, there is a so-called sharpening process to make the microstructure easy to see.
[0009]
It is assumed that f (x, y) is an original image, a processed image is fp (x, y), Sus2 (x, y) is a low-frequency image of the original image, and C is a constant. Then, this process can be expressed by equation (3).
[0010]
Here, Sus2 (x, y) is different from the smoothed image represented by the equation (2) in mask size.
[0011]
[Equation 3]
Figure 2005005845
In addition, a noise removal process for smoothing high-frequency components and reducing noise due to correlation between subbands in the multi-frequency decomposition process is being studied.
[0012]
There are cases where a plurality of processes such as the above dynamic range compression process, sharpening process, and noise removal process are performed on the original image.
[0013]
[Patent Document 1]
JP, 2000-101841, A [Problems to be solved by the invention]
However, when performing the process of compressing the dynamic range after performing the sharpening process, the above equation (1) is changed to the equation (4). Here, the term fp (x, y) -Sus3 (x, y) means a high frequency component. However, in the image after the sharpening process, Sus3 (x, y) is affected by the term of Sus4 (x, y) as shown by the expressions (5) and (6), and the conventional expression (1) The high frequency component of f (x, y) −Sus (x, y) in FIG. 4 is different from the high frequency component of fp (x, y) −Sus3 (x, y) in equation (4).
[0014]
[Expression 4]
Figure 2005005845
[0015]
[Equation 5]
Figure 2005005845
[0016]
[Formula 6]
Figure 2005005845
Therefore, the high frequency band to be restored differs between the case where the dynamic range is compressed by the equation (1) and the case where the dynamic range is compressed by the equation (4), the recoverability of the fine structure is different, and the image quality is deteriorated. It may cause. This also causes the same problem when the sharpening process is performed after the process of compressing the dynamic range. In other words, when the frequency processing using the moving average is performed twice or more, the same problem occurs not only in the above-described sharpening processing and dynamic range compression processing.
[0017]
In addition, the process of removing noise is basically a process of suppressing high frequency components, and the sharpening process is a process of enhancing high frequency components, and both processes have a conflicting effect.
Therefore, when noise removal processing and sharpening processing are performed independently as in the prior art, problems such as emphasizing a region where high-frequency components are to be suppressed or conversely emphasizing regions where high-frequency components are to be suppressed arise. There is a case. This problem directly leads to image quality degradation.
[0018]
Furthermore, the plurality of image processing causes inconveniences such as performing noise removal on a portion where noise does not become a problem when the same processing is applied to all the portions, or performing processing on a portion that does not require dynamic range compression processing. Further, performing unnecessary processing is not preferable in terms of processing efficiency of the computer. Further, in the standing position photographing, the standing position photographing, and the cassette photographing, since the observation purpose is different even in the same part, it is necessary to perform different processes.
[0019]
The present invention has been made in view of the above problems, and the target processing is that only necessary image processing can be performed in the photographing routine, and the processing efficiency is improved and sharpening processing and noise are efficiently performed. An object of the present invention is to provide an image processing apparatus capable of performing removal processing.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is an image acquisition unit that acquires a part, imaging conditions, device information, and the like, and an image that uses a plurality of multiple frequency processes based on the information acquired by the information acquisition unit. The image processing apparatus is configured to include a determination unit that determines an image processing method to be actually processed from the processing method, and an image processing unit that executes the image processing method determined by the determination unit.
[0021]
According to the second aspect of the present invention, the processing is actually performed from an information acquisition unit that acquires a part, imaging conditions, device information, and the like, and an image processing method that uses a plurality of multi-frequency processes based on the information acquired by the information acquisition unit. A determination means for determining an image processing method to be performed, a frequency component decomposition means for converting an image into a plurality of frequency components, and a noise removal analysis, a sharpening analysis, and a dynamic range compression analysis based on the image processing method determined by the determination means. Analyzing means for performing any one or more analysis, high frequency coefficient converting means for converting a coefficient for each frequency band decomposed by the frequency component decomposing means based on a result analyzed by the analyzing means, and the high frequency coefficient converting means The image processing apparatus is configured to include restoration means for inversely transforming the coefficients transformed in step (1).
[0022]
According to a third aspect of the present invention, there is provided a tone conversion unit that performs tone conversion on an original image based on a tone conversion curve, a frequency component decomposition unit that converts an image tone-converted by the tone conversion unit into a plurality of frequency components, and noise removal Analysis means for performing at least one analysis process of analysis, dynamic range compression analysis, sharpening analysis, and conversion of coefficients for each frequency band decomposed by the frequency component decomposition means based on the result analyzed by the analysis means The image processing apparatus is configured to include a high-frequency coefficient conversion unit that performs conversion and a restoration unit that performs inverse conversion on the coefficient converted by the high-frequency coefficient conversion unit.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0024]
FIG. 1 shows an X-ray imaging apparatus 100 according to Embodiment 1 of the present invention. That is, the X-ray imaging apparatus 100 is an X-ray imaging apparatus having a function of performing processing for each frequency band of a captured image, and includes a preprocessing circuit 106, a CPU 108, a main memory 109, an operation panel 110, and an image display. 111 and an image processing circuit 112, and are configured to exchange data with each other via a CPU bus 107.
[0025]
The X-ray imaging apparatus 100 includes a data acquisition circuit 105 connected to the preprocessing circuit 106, a two-dimensional X-ray sensor 104 and an X-ray generation circuit 101 connected to the data acquisition circuit 105. These circuits are also connected to the CPU bus 107.
[0026]
FIG. 2 is a flowchart showing a processing flow of the X-ray imaging apparatus 100 according to Embodiment 1 of the present invention. FIG. 3 is a diagram for explaining noise removal, and FIG. 4 is a diagram for explaining sharpening processing, in which the high-frequency coefficient is changed according to the pixel value of the original image. The horizontal axis indicates the pixel value of the original image, and the vertical axis indicates the degree of change of the high frequency coefficient. For example, 1.0 is not changed, and 0.5 is 0.5 times the high frequency coefficient.
[0027]
FIG. 5 shows a curve for changing the coefficient of the lowest frequency band. FIG. 6A is a diagram showing a configuration of the frequency component decomposition circuit 115, and FIG. 6B shows a configuration example of a two-level conversion coefficient group obtained by two-dimensional conversion processing, and FIG. FIG. 4 is a diagram showing a configuration of a restoration circuit 118.
[0028]
In the X-ray imaging apparatus 100 as described above, first, the main memory 109 stores various data necessary for processing by the CPU 108 and also includes a work memory for work of the CPU 108.
[0029]
The CPU 108 uses the main memory 109 to perform operation control of the entire apparatus according to the operation from the operation panel 110. Thereby, the X-ray imaging apparatus 100 operates as follows.
[0030]
First, the X-ray generation circuit 101 emits an X-ray beam 102 to the inspection object 103.
[0031]
The X-ray beam 102 emitted from the X-ray generation circuit 101 passes through the object 103 while being attenuated, reaches the two-dimensional X-ray sensor 104, and is output as an X-ray image by the two-dimensional X-ray sensor 104. . Here, the X-ray image output from the two-dimensional X-ray sensor 104 is, for example, a human body image.
[0032]
The data acquisition circuit 105 converts the X-ray image output from the two-dimensional X-ray sensor 104 into an electrical signal and supplies it to the preprocessing circuit 106. The preprocessing circuit 106 performs preprocessing such as offset correction processing and gain correction processing on the signal (X-ray image signal) from the data acquisition circuit 105. The X-ray image signal preprocessed by the preprocessing circuit 106 is transferred as an original image to the main memory 109 and the image processing circuit 112 via the CPU bus 107 under the control of the CPU 108.
[0033]
112 is a block diagram showing the configuration of the image processing circuit. In 112, reference numeral 113 denotes an image header, part information of the image from the operation panel 110 or the like, a photographing machine, a part information input circuit for acquiring photographing conditions, and 114 part information. An image processing method determination circuit that determines an image processing method from information acquired by the determination circuit 113, 115 is a gradation conversion circuit that performs gradation conversion of an original image, and 116 performs analysis and sharpening processing for noise removal. And an analysis circuit for performing analysis for changing the dynamic range (meaning compression and expansion). The analysis here means determining the amount and region for changing the high frequency coefficient.
[0034]
117 is a frequency component decomposition circuit that performs discrete wavelet transform (hereinafter referred to as DWT transform) on the original image to obtain high frequency coefficients (wavelet transform coefficients) of each frequency band, and 118 is a frequency based on the result of analysis by the analysis circuit 116. This is a high frequency coefficient conversion circuit that converts the high frequency coefficient for each frequency band decomposed by the component decomposition circuit 117. Reference numeral 119 includes a restoration circuit that performs inverse discrete wavelet transform (hereinafter referred to as inverse DWT) based on the high frequency coefficient converted by the high frequency coefficient conversion circuit 118. The multi-frequency processing is not limited to DWT, and a Laplacian pyramid may be used, or a filter that does not subband may be used.
[0035]
This embodiment will be described below in accordance with the processing flow of FIG.
[0036]
The original image preprocessed by the preprocessing circuit 106 is transferred to the image processing apparatus 112 via the CPU bus 107. In the image processing apparatus 112, first, the part information input circuit 113 acquires the part information of the image, the photographing machine, and the photographing conditions from the header of the image, the operation panel 110, etc. (S201), and the image processing method determination circuit 114 receives the part information. The image processing method is determined from the information acquired by the determination circuit 113. In this case, the image processing method corresponding to the part information, the photographing machine, and the photographing conditions is stored in the main memory 109 as a table. This table can be freely changed by the operation panel 10 or the like.
[0037]
The frequency component decomposition circuit 117 performs a two-dimensional discrete wavelet transform process on the original image with respect to f (x, y), and calculates and outputs a high frequency coefficient for each frequency band. The input image signal is separated into an even address signal and an odd address signal by a combination of a delay element and a downsampler, and is subjected to filter processing by two filters p and u. In FIG. 5A, s and d each represent a low-pass coefficient and a high-pass coefficient when one-level decomposition is performed on a one-dimensional image signal, and is calculated by the following equation.
[0038]
[Expression 7]
Figure 2005005845
[0039]
[Equation 8]
Figure 2005005845
However, x (n) is an image signal to be converted.
[0040]
Through the above processing, one-dimensional discrete wavelet transform processing is performed on the image signal. The two-dimensional discrete wavelet transform is a one-dimensional transform that is sequentially performed in the horizontal and vertical directions of the image, and the details thereof are publicly known, and thus the description thereof is omitted here. FIG. 5B is a configuration example of a two-level transform coefficient group obtained by two-dimensional transform processing, and an image signal is decomposed into high frequency coefficients HH1, HL1, LH1,..., LL in different frequency bands (S203). ). In FIG. 5B, HH1, HL1, LH1,..., LL, etc. (hereinafter referred to as subbands) indicate high frequency coefficients for each frequency band.
[0041]
Next, the analysis circuit 116 performs analysis for image processing to be processed in accordance with the image processing method determined by the image processing method determination circuit 114. For example, for information on the front of the chest, analysis for noise removal, sharpening, and dynamic range compression is performed. For example, as an example of noise analysis, an appropriate threshold is set for each subband of three subbands HL, LH, and HL indicating high frequency coefficients among the obtained subbands. Although the threshold setting method is not particularly limited, a certain constant obtained empirically may be set according to the decomposition level of the discrete wavelet transform, and based on statistics such as an average value and a variance value of each subband. You may decide automatically.
[0042]
Next, threshold processing is performed on the high frequency coefficients of HL, LH, and HH according to the set threshold value of each subband. As a threshold processing method, for example, a signed binarization process is conceivable and can be realized as follows.
[0043]
if (-TH HL <HL (x, y) <TH HL )
then binarized image HL (x, y) = 1;
else binarized image HL (x, y) = 0;
if (−TH LH <LH (x, y) <TH LH )
then binarized image LH (x, y) = 1;
else binarized image LH (x, y) = 0;
if (-TH HH <HH (x , y) <TH HH)
then binarized image HH (x, y) = 1;
else binarized image HH (x, y) = 0;
Here, THHL, THLH, and THHH are threshold values of each set subband, and HL (x, y), LH (x, y), and HH (x, y) are pixel values of each subband, that is, Represents a wavelet coefficient.
[0044]
Next, based on the threshold processing result of each subband, a pixel to be processed by the subsequent high-frequency coefficient conversion circuit 116 is determined. There are several methods for determining the pixel to be processed. In this embodiment, the logical product of the binarized images of each subband is adopted. That is, it is realized as follows.
[0045]
if ((binarized image HL (x, y) = 1) AND
(Binarized image LH (x, y) = 1) AND
(Binarized image HH (x, y) = 1))
then binarized image HL (x, y) = binarized image LH (x, y) = binarized image HH (x, y) = 1;
else binarized image HL (x, y) = binarized image LH (x, y) = binarized image HH (x, y) = 0;
The value of the coefficient that becomes 1 in the high-frequency coefficient is replaced with the average value of the peripheral coefficients of the indicated coefficient. Then, the position and value of the replaced coefficient are stored in the main memory 109 (S204).
[0046]
Next, the analysis circuit 116 calculates the degree of coefficient conversion for the sharpening process. For example, as shown in FIG. 4, the ratio of changing the high frequency coefficient for each pixel value of the original image is determined, and the analysis circuit 114 sets the ratio of changing all the high frequency coefficients of HL, LH, and HH in the main memory 109. Save (S203). In the present embodiment, for simplicity of explanation, the conversion curves of FIG. 4 are used for all of HL, LH, and HH, but different curve shapes may be used for each subband. These curve systems are also changed according to the part information.
[0047]
Next, in order to change the dynamic range, the analysis circuit 116 stores in the main memory 109 a ratio of changing the coefficient corresponding to the lowest frequency band according to the coefficient value (S206). Generally, the coefficient value of the low frequency component has a high correlation with the pixel value of the original image, and the dynamic range of the restored image can be changed by changing the coefficient value of the low frequency component.
[0048]
Next, the high frequency coefficient conversion circuit 116 first replaces the coefficient stored in the main memory 109 and changed by the noise removal analysis with the coefficient calculated by the frequency component decomposition circuit 117. Further, the replaced coefficient is changed according to the changing ratio stored in the main memory 109 for each coefficient. Further, the coefficient (here, LL) corresponding to the lowest frequency band is changed (S207).
[0049]
The restoration circuit 119 performs an inverse discrete wavelet transform process based on the high frequency coefficient changed by the high frequency coefficient transform circuit 118. The input coefficients are subjected to two filtering processes u and p, and after being up-sampled, are superposed and output an image signal x ′. These processes are performed according to the following equation.
[0050]
[Equation 9]
Figure 2005005845
[0051]
[Expression 10]
Figure 2005005845
Through the above processing, a one-dimensional inverse discrete wavelet transform process is performed on the transform coefficient. The two-dimensional inverse discrete wavelet transform sequentially performs one-dimensional inverse transform in the horizontal and vertical directions of the image, and details thereof are publicly known, and thus description thereof is omitted here.
[0052]
As described above, in the present embodiment, the image processing method can be determined according to the part information and the like, so that only the necessary image processing can be performed in the imaging routine. Further, since only necessary image analysis is performed, there is an effect that processing efficiency is increased.
[0053]
Furthermore, since the noise removal process and the sharpening process are performed by decomposing into frequency bands, there is an effect that the sharpening process and the noise removal process can be efficiently performed without producing contradictory effects. In addition, since the process for changing the dynamic range and the sharpening process are simultaneously performed, the effects of both processes do not interfere with each other, and the image quality is not deteriorated.
[0054]
In addition, noise removal, sharpening processing, and dynamic range changing processing can be performed without contradiction, so that each processing can be performed without interfering with each other, and the purpose of each processing can be achieved. Is effective. Furthermore, since duplicate frequency processing is not performed, the calculation time can be shortened.
[0055]
【The invention's effect】
As is apparent from the above description, according to the present invention, only necessary image processing can be performed in the shooting routine, and processing efficiency can be improved and sharpening processing and noise removal processing can be performed efficiently. The effect of being able to be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an image processing apparatus according to the present invention.
FIG. 2 is a flowchart showing a processing procedure of the image processing apparatus according to the present invention.
FIG. 3 is a diagram for explaining noise removal processing analysis;
FIG. 4 is a diagram illustrating a pixel value-dependent sharpening analysis process.
FIG. 5 is a diagram illustrating an analysis for changing a dynamic range.
FIG. 6 is an explanatory diagram of a discrete wavelet transform and its inverse transform.
[Explanation of symbols]
101 X-ray generation circuit 102 X-ray beam 103 Subject 104 Two-dimensional X-ray sensor 105 Data acquisition circuit 106 Preprocessing circuit 107 CPU bus 108 CPU
109 Main memory 110 Operation panel 111 Display 112 Image processing circuit 113 Part information input circuit 114 Image processing method determination circuit 115 Gradation conversion circuit 116 Analysis circuit 117 Frequency component decomposition circuit 118 High frequency coefficient conversion circuit 119 Restoration circuit

Claims (3)

部位、撮影条件、装置情報等を取得する情報取得手段と、情報取得手段で取得された情報に基づき複数の多重周波数処理を用いた画像処理方法から実際に処理を行う画像処理方法を決定する決定手段と、決定手段で決定された画像処理方法を実行する画像処理手段とを備えることを特徴とする画像処理装置。Information acquisition means for acquiring a part, imaging conditions, device information, etc., and determination to determine an image processing method to actually perform processing from an image processing method using a plurality of multiple frequency processing based on information acquired by the information acquisition means And an image processing means for executing the image processing method determined by the determining means. 部位、撮影条件、装置情報等を取得する情報取得手段と、情報取得手段で取得された情報に基づき複数の多重周波数処理を用いた画像処理方法から実際に処理を行う画像処理方法を決定する決定手段と、画像を複数の周波数成分に変換する周波数成分分解手段と、決定手段で決定された画像処理方法に基づきノイズ除去解析、鮮鋭化解析、ダイナミックレンジ圧縮解析の何れか1つ以上の解析を行う解析手段と、該解析手段で解析された結果に基づき該周波数成分分解手段で分解された周波数帯毎の係数を変換する高周波係数変換手段と該高周波係数変換手段で変換された係数を逆変換する復元手段とを備えることを特徴とする画像処理装置。Information acquisition means for acquiring a part, imaging conditions, device information, etc., and determination to determine an image processing method to actually perform processing from an image processing method using a plurality of multiple frequency processing based on information acquired by the information acquisition means Means, frequency component decomposition means for converting an image into a plurality of frequency components, and at least one of noise removal analysis, sharpening analysis, and dynamic range compression analysis based on the image processing method determined by the determination means. Analysis means for performing, high frequency coefficient conversion means for converting coefficients for each frequency band decomposed by the frequency component decomposition means based on the result analyzed by the analysis means, and inverse conversion of the coefficients converted by the high frequency coefficient conversion means An image processing apparatus comprising: a restoration unit that performs the restoration. 原画像を諧調変換曲線に基づき諧調変換する諧調変換手段と、該諧調変換手段で諧調変換された画像を複数の周波数成分に変換する周波数成分分解手段と、ノイズ除去解析、ダイナミックレンジ圧縮解析、鮮鋭化解析の少なくとも1つ以上の解析処理を行う解析手段と、該解析手段で解析された結果に基づき該周波数成分分解手段で分解された周波数帯毎の係数を変換する高周波係数変換手段と該高周波係数変換手段で変換された係数を逆変換する復元手段とを備えることを特徴とする画像処理装置。Gradation conversion means for gradation-converting the original image based on the gradation conversion curve, frequency component decomposition means for converting the gradation-converted image into a plurality of frequency components, noise removal analysis, dynamic range compression analysis, sharpness Analysis means for performing at least one analysis process of the conversion analysis, high frequency coefficient conversion means for converting a coefficient for each frequency band decomposed by the frequency component decomposition means based on the result analyzed by the analysis means, and the high frequency An image processing apparatus comprising: a restoration unit that performs inverse conversion on the coefficient converted by the coefficient conversion unit.
JP2003164909A 2003-06-10 2003-06-10 Image processing device Expired - Fee Related JP4579507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164909A JP4579507B2 (en) 2003-06-10 2003-06-10 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164909A JP4579507B2 (en) 2003-06-10 2003-06-10 Image processing device

Publications (3)

Publication Number Publication Date
JP2005005845A true JP2005005845A (en) 2005-01-06
JP2005005845A5 JP2005005845A5 (en) 2006-07-27
JP4579507B2 JP4579507B2 (en) 2010-11-10

Family

ID=34091552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164909A Expired - Fee Related JP4579507B2 (en) 2003-06-10 2003-06-10 Image processing device

Country Status (1)

Country Link
JP (1) JP4579507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11406340B2 (en) * 2018-05-16 2022-08-09 Panasonic Corporation Method for converting tone of chest X-ray image, storage medium, image tone conversion apparatus, server apparatus, and conversion method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274614A (en) * 1993-03-18 1994-09-30 Fuji Photo Film Co Ltd Image processing method
JP2000101843A (en) * 1998-09-25 2000-04-07 Canon Inc Radiograph processing system
WO2002045020A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Image processing device, image processing method, storage medium, and program
JP2002209113A (en) * 2001-01-11 2002-07-26 Canon Inc Image processing apparatus, its method and storage medium
JP2003076992A (en) * 2001-06-19 2003-03-14 Canon Inc Image processor, image processing system, image processing method, program and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274614A (en) * 1993-03-18 1994-09-30 Fuji Photo Film Co Ltd Image processing method
JP2000101843A (en) * 1998-09-25 2000-04-07 Canon Inc Radiograph processing system
WO2002045020A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Image processing device, image processing method, storage medium, and program
JP2002209113A (en) * 2001-01-11 2002-07-26 Canon Inc Image processing apparatus, its method and storage medium
JP2003076992A (en) * 2001-06-19 2003-03-14 Canon Inc Image processor, image processing system, image processing method, program and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11406340B2 (en) * 2018-05-16 2022-08-09 Panasonic Corporation Method for converting tone of chest X-ray image, storage medium, image tone conversion apparatus, server apparatus, and conversion method

Also Published As

Publication number Publication date
JP4579507B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP3754933B2 (en) Image processing apparatus, image processing system, image processing method, program, and storage medium
JP3833177B2 (en) Image processing apparatus, image processing method, storage medium, and program
JP4046969B2 (en) Image processing apparatus, method thereof, program, and storage medium
JP3796480B2 (en) Image processing apparatus, image processing method, storage medium, and program
US20020031247A1 (en) Image processing apparatus, image processing method, program for implementing said method, and storage medium therefor
US20080019583A1 (en) Image processing apparatus and method
US7630575B2 (en) Image processing apparatus, image processing method, program, and computer-readable medium
JP3700798B2 (en) Image processing method and apparatus
JP4579507B2 (en) Image processing device
JP4630893B2 (en) Image processing apparatus, method thereof, program, and storage medium
JP4235622B2 (en) Image processing apparatus, image processing system, image processing method, program, and storage medium
JP2003337942A (en) Image processor
JPH10105701A (en) Method and device for radio graph emphasis processing
JP3870173B2 (en) Image processing method, image processing apparatus, program, and computer recording medium
JP2005005846A (en) Image processing apparatus
JP2002092588A (en) Device and method for processing image, and storage medium
JP4428868B2 (en) Image processing apparatus and method, and storage medium
JP2004173078A (en) Image processor
JP2004086456A (en) Image processor
JP4458325B2 (en) Image processing device
JP2005020127A (en) Image processor
JP2003331286A (en) Image processor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees