JP2005001485A - Driving force control device of vehicle - Google Patents

Driving force control device of vehicle Download PDF

Info

Publication number
JP2005001485A
JP2005001485A JP2003166431A JP2003166431A JP2005001485A JP 2005001485 A JP2005001485 A JP 2005001485A JP 2003166431 A JP2003166431 A JP 2003166431A JP 2003166431 A JP2003166431 A JP 2003166431A JP 2005001485 A JP2005001485 A JP 2005001485A
Authority
JP
Japan
Prior art keywords
driving force
control
engine
target
engine torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003166431A
Other languages
Japanese (ja)
Inventor
Masao Shiomi
昌生 塩見
Shigeyuki Sakaguchi
重幸 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003166431A priority Critical patent/JP2005001485A/en
Publication of JP2005001485A publication Critical patent/JP2005001485A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide target driving force in correspondence with a driving state while preventing deterioration of fuel consumption. <P>SOLUTION: This driving force control device is furnished with: an accelerator pedal operating position detection means to detect operating quantity of an accelerator pedal, a car speed detection means to detect speed of a vehicle; a target driving force computing part 21 to compute the target driving force in accordance with the operating quantity of the accelerator pedal and the car speed; and a driving force control means to control an engine and an automatic transmission so as to be this target driving force. The driving force control means is constituted to gradually lower the driving force by engine control while gradually increasing the driving force by gear ratio control after temporarily increasing the driving force by the engine control when the target driving force increases. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関と無段変速機を備えた車両の、駆動力制御に関するものである。
【0002】
【従来の技術】
従来から車両に用いられる駆動力制御装置としては、特開2000−297672号公報のように、アクセル踏み込み量と車速及び走行抵抗に応じた目標駆動力が実現できるようにエンジンと変速機を制御する装置が知られている。
【0003】
これは、アクセル踏み込み量APOと車速VSPに基づいて、平坦路相当の基準目標駆動力を設定し、走行抵抗が増加した場合には補正駆動力を加算したものをエンジン制御用目標駆動力として出力する車両の駆動力制御装置において、補正駆動力に補正係数αを乗じたものを基準目標駆動力に加算して変速制御用の目標駆動力とする補正駆動力加算部を備えている。そして、変速制御用の目標駆動力に加算する補正駆動力を、エンジン制御用の目標駆動力に加算する補正駆動力で除した比は、アクセルペダルの踏み込み量に応じて変化するものである。
【0004】
【特許文献1】
特開2000−297672号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例では、補正駆動力に補正係数αを乗じたものを基準目標駆動力に加算して変速制御用の目標駆動力とする補正駆動力加算部を備える構成になっているが、例えば、ドライバがアクセル踏み込み量一定で勾配路に差しかかった場合、上記駆動力補正では勾配抵抗分の駆動力を増加させる。この勾配抵抗分の増加要求駆動力は、変速比とエンジントルクにて実現され、変速比とエンジントルクとの分配は補正係数αに従って決定される。勾配路進入前に燃費性能の要求から、エンジンが燃費率の良い動作点にコントロールされているとき、つまり、高負荷・低回転で運転している場合、エンジントルクを増加させるにあたって、燃料増量域に突入して燃料増量による燃料の無駄吹き(増量分の燃料はエンジンを冷却するためのもので出力には影響しない)により燃費が悪化するという問題があった。
【0006】
また、前記変速制御用の目標駆動力に加算する補正駆動力をエンジン制御用の目標駆動力に加算する補正駆動力で除した比は、アクセルペダルの踏み込み量に応じて変化することを特徴とするという構成になっているが、補正係数αをアクセルペダルの踏み込み量に応じて可変にした場合、アクセルペダルの踏込み量一定で勾配路を走行する場合には、補正係数αが一定であるため、車両が勾配路を走行している間は常に燃料増量補正を行うことになり、燃費の悪化が著しいという問題があった。
【0007】
そこで、本発明は上記問題点に鑑みてなされたもので、燃費の悪化を防ぎながら運転状態に応じた目標駆動力を実現することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、アクセルペダルの踏み込み量を検出するアクセルペダル操作位置検出手段と、車両の速度を検出する車速検出手段と、前記アクセルペダルの踏み込み量と車速に基づいて、目標駆動力を算出する目標駆動力演算手段と、この目標駆動力となるようにエンジンと自動変速機を制御する駆動力制御手段とを備えた車両の駆動力制御装置において、
前記駆動力制御手段は、目標駆動力が増大したときには、エンジン制御によって駆動力を一時的に増大した後、変速比制御によって駆動力を徐々に増大しながらエンジン制御による駆動力を徐々に低下させる駆動力配分補正手段を有して、目標駆動力の増大によってエンジントルクが燃料増量の必要な領域にあれば、一時的にエンジントルクを増大させ、その後エンジントルクを徐々に低減させるとともに、変速比を徐々に増大して、エンジントルクを燃料増量の不要な領域へ移行させる。
【0009】
【発明の効果】
したがって、本発明は、目標駆動力が増大したときには、一時的に燃料増量を行ってエンジントルクを増大した後に、徐々に変速比をLo側へシフトするとともにエンジントルクを徐々に低減することで、全体的な駆動力を一定に保ちながら変速比制御とエンジン制御による駆動力の配分を徐々に変速比制御へ移行でき、燃費の悪化を防止するとともに、エンジン回転速度の急上昇を防いで運転者に違和感を与えることがなく、燃費性能の向上と運転性の向上を両立できる。
【0010】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて説明する。
【0011】
図1は、エンジン9にトルクコンバータを備えた自動変速機8を連結し、走行状態に応じて最適な駆動力となるようにエンジン9の出力と自動変速機8の変速比を制御するコントロールユニット2を備えた車両に本発明を適用した一例を示す。
【0012】
このコントロールユニット2は、アクセルポジションセンサ1からのアクセル踏み込み量APO(または、スロットル開度)、自動変速機8の変速レンジを切り換えるレンジ選択レバーやインヒビタスイッチ(図示省略)からのセレクト信号、車輪速センサ11が検出した車速VSP、プライマリプーリ回転センサ6が検出したプライマリプーリ回転速度、セカンダリプーリ回転センサが検出したセカンダリプーリ回転速度などが運転状態として入力され、これらの運転状態基づいて演算した目標駆動力が得られるように、エンジン9の燃料噴射量や、点火時期を制御したり、自動変速機8の変速制御を行って車両の駆動力を制御する。
【0013】
このため、エンジン9の吸気通路にはスロットルアクチュエータ3によって開閉駆動される電子制御スロットルバルブ30が介装されており、コントロールユニット2から送られたスロットルバルブ開度信号に基づいて、が電子制御スロットルバルブ30の開度を制御する。
【0014】
また、自動変速機8は、コントロールユニット2からの変速指令に応じて変速比を連続的に変更可能な無段変速機で構成され、プライマリプーリ回転速度とセカンダリプーリ回転速度の比から求めた実変速比RATIOが、コントロールユニット2からの指令値と一致するように変速機構の制御を行う。
【0015】
ここで、コントロールユニット2で行われる駆動力制御の一例を図2に示す。
【0016】
図2において、アクセルポジションセンサ1からのアクセル踏み込み量APOと、車輪速センサ11が検出した車速VSPとから、予め設定したマップに基づいて平坦路での車両の駆動力である基準目標駆動力TFDDを求める基準目標駆動力演算部21と、予め設定した車両の基準値に対して増加した走行抵抗(加速抵抗や登坂抵抗など)から補正駆動力を演算する補正駆動力演算部22と、燃料増量率から増加した補正駆動力の変速比制御への反映率αsftを演算する増加駆動力変速比反映率演算部23(配分比率補正手段)と、補正駆動力に変速比反映率αsftを乗じる補正駆動力修正部26と、基準目標駆動力にこの乗算結果を加えて、変速比制御に指令する要求補正駆動力を求める変速比制御要求補正駆動力演算部27(駆動力配分補正手段)とから変速比制御の要求駆動力mMTFDDを決定する。
【0017】
エンジン制御では、目標エンジントルク演算部24で、基準目標駆動力TFDDと実変速比及びトルクコンバータのトルク比から目標エンジントルクTTEPを算出し、エンジントルクデマンド部25において目標エンジントルクTTEPから必要な空気量を求めてから目標スロットル開度TGTVOを演算し、この目標スロットル開度TGTVOでスロットルアクチュエータ3を駆動する。また、エンジントルクデマンド部25では目標エンジントルクTTEPを実現するために必要な燃料噴射量を演算して、燃料噴射弁(図示省略)の制御を行う。
【0018】
変速比制御では、変速比制御用アクセル開度演算部28で、予め設定したマップに基づいて、車速VSPと変速比制御要求補正駆動力演算部27で求めた変速比制御の要求補正駆動力mMTFDDから変速比制御用アクセル開度を求め、この変速比制御用アクセル開度を正規化部29で正規化した後、目標入力軸回転速度演算部41で、予め設定したマップに基づいて、車速VSPと変速比制御用アクセル開度から目標入力軸回転速度DsrREVを求め、フィードバック制御部42では、この目標入力軸回転速度DsrREVに基づいて目標変速比を決定し、実変速比が目標変速比へ一致するように油圧制御部5を制御する。
【0019】
次に、上記図2に示したコントロールユニット2で行われる駆動力制御の一例について、図3に示すフローチャートを参照しながら以下に詳述する。なお、図3のフローチャートは、所定時間毎、例えば、10msec毎に実行される。
【0020】
まず、ステップ♯1、♯2では、車輪速センサ11とアクセルポジションセンサ1から車速VSPとアクセル踏み込み量APOを読み込み、ステップ♯3では、図2に示した基準目標駆動力演算部21のマップに基づいて、基準目標駆動力TFDDを演算する。
【0021】
そして、ステップ♯4では、駆動力の補正が必要であるか否かを判定し、補正が必要であればステップ♯5へ進む一方、不要な場合には変速比反映率調整値αhos=0としてリセットしてからステップ♯9に進み変速比制御を行う。なお、駆動力補正の要否の判定は、アクセル踏み込み量APOが一定のときに車速VSPが減少したときなどを、駆動力の補正が必要であると判定すればよい。
【0022】
ステップ♯5では、予め設定した車両の基準値に対して増加した走行抵抗から勾配抵抗分の補正駆動力を算出する。
【0023】
次に、ステップ♯6以降では、ステップ♯5にて決定された増加駆動力を、エンジン回転速度とエンジントルクによって実現する際の変速比制御への分配率(反映率αsft)を決定する。
【0024】
ステップ♯6では、上記ステップ♯5にて求めた勾配分の駆動力について変速比制御への反映率(補正係数)αを決定する。この変速比反映率αは、0から1の間の値であり、前記従来例と同様にして求められる。
【0025】
ステップ♯7は、燃料増量が必要か否かで、上記ステップ♯6で決定された変速比反映率αを決定する。
【0026】
この燃料増量の要求はステップ♯14で判定される。
【0027】
この判定は、エンジンの動作点(エンジン回転速度、エンジントルク)に基づいて行われるもので、図5で示すように、エンジン回転速度とエンジントルクが予め設定された燃料増量域にあるか否かで判定される。この判定で燃料増量が必要な場合には、ステップ♯16に進んで、変速比反映率調整値αhosを決定し、燃料増量が不要な場合にはステップ♯15に進んで変速比反映率調整値αhosの値を保持する。
【0028】
上記ステップ♯16において、燃料増量が必要なときには、変速比反映率調整値αhosを所定の比率(割合)βで増加させ、
αhos=αhos(前回値)+β
として求める。なお、βは適合された一定比率である。
【0029】
ステップ♯7では、以上のように決定された変速比反映率調整値αhosを用いて変速比反映率αを調整する。すなわち、燃料増量を考慮した後の変速比反映率をαsftとすると、
αsft=α+αhos
として燃料増量考慮後の変速比反映率αsftを演算する。
【0030】
ステップ♯8では、燃料増量考慮後の変速比反映率αsftを用いて補正駆動力の乗算を行い、この乗算結果に基準目標駆動力を加算して要求補正駆動力を求める(補正駆動力修正部26、変速比制御要求補正駆動力演算部27)。
【0031】
ステップ♯9では、要求補正駆動力に基づいて変速比制御用アクセル開度を求め、図2の目標入力軸回転速度演算部41で目標入力軸回転速度DsrREVから目標変速比を決定してフィードバック制御部42により自動変速機8の油圧制御部5を駆動する。
【0032】
次に、ステップ♯10、♯11では、プライマリプーリ回転速度とセカンダリプーリ回転速度から実変速比を演算するとともに、トルクコンバータのトルク比を求め、ステップ♯12では実変速比とトルク比より目標エンジントルクを求める(目標エンジントルク演算部24)。
【0033】
そして、ステップ♯13では、目標エンジントルクTTEPから必要な空気量を求めてから目標スロットル開度TGTVOを演算し、この目標スロットル開度TGTVOでスロットルアクチュエータ3を駆動し、また、目標エンジントルクTTEPを実現するために必要な燃料噴射量を演算して、燃料噴射弁の制御を行う(エンジントルクデマンド部25)。
【0034】
以上の制御により、従来技術では燃料増量により発生していたトルクを変速比制御に置き換えることで、燃料増量による燃費の悪化を防ぐことができ、特に、勾配路に進入して補正駆動力を発生する際に、エンジントルクによる駆動力増加状態から、変速比制御による駆動力増加状態に移行する際に所定割合βずつで滑らかに移行するように変速比を制御するので、勾配路進入時の急激なエンジン回転速度の急上昇を抑制して、運転者に違和感を与えるのを防止でき、また、トルク制御状態から変速比制御状態に滑らかに移行することで、坂道進入時の違和感と燃料増量による燃費の悪化の改善を両立することが出来る。
【0035】
すなわち、勾配路(登坂路)へ進入する際には、アクセル踏み込み量APO、目標駆動力TFDD、エンジントルク、燃料増量率、エンジン回転速度の関係は図4のようになる。なお、図4において本発明を破線で示し、従来例を実線で示す。
【0036】
アクセル踏み込み量が一定の運転状態で、時間T1で登坂路に差しかかると、走行抵抗の増大により目標駆動力は勾配分だけ増大する。そして、従来例では、エンジントルクの増大によって目標駆動力の増加分を補うため、エンジントルクは燃料増量が必要な領域(図中斜線の領域)に入って増量される一方、変速比は一定のままであるため、上記課題でも述べたように、燃費の著しい悪化が生じる。
【0037】
これに対して、本発明によれば、時間T1で登坂路に差しかかると、走行抵抗の増大により目標駆動力は勾配分だけ増大するが、まず、エンジントルクの増大によって目標駆動力の増加分を補うため、エンジントルク(エンジン制御による駆動力)は一時的に燃料増量が必要な領域(図中斜線の領域)に入って増量されるが、上記燃料増量考慮後の変速比反映率αsfが所定比率βずつ増大するので、変速比は時間の経過に応じて徐々にLo側(大側)へ移行して変速比制御による駆動力が徐々に増える。これに伴ってエンジントルクは徐々に減少し、時間T2では、エンジントルクは燃料増量が必要な領域を下回る。
【0038】
これにより、目標駆動力が増大したときには、一時的に燃料増量を行ってエンジントルクを増大した後に、徐々に変速比をLo側へシフトするとともにエンジントルクを徐々に低減することで、全体的な駆動力を一定に保ちながら変速比制御とエンジン制御による駆動力の配分を徐々に変速比制御へ移行でき、燃費の悪化を防止するとともに、エンジン回転速度の急上昇を防いで運転者に違和感を与えることがなく、燃費性能の向上と運転性の向上を両立できるのである。
【0039】
なお、変速比のLo側への増大は、エンジントルクが燃料増量必要領域から外れるまで行えばよい。
【0040】
また、エンジントルクの低減は、目標駆動力に(1−αsft)を乗じた値に相当するように設定すればよい。
【0041】
また、目標駆動力の増大によってエンジントルクが燃料増量の必要な領域に入るか否かを判定して、エンジントルクが燃料増量領域に入ると判定されたときには、エンジントルクを徐々に低減するよう補正するとともに、変速比を徐々に増大させる配分比率補正を行うことで、登坂路に進入するなどで目標駆動力が増大したときには、徐々に変速比をLo側へシフトするとともにエンジントルクを徐々に低減することで、全体的な駆動力を一定に保ちながら変速比制御とエンジン制御による駆動力の配分を徐々に変速比制御へ移行でき、燃費の悪化を防止するとともに、急速な変速を抑制することでエンジン回転速度の急上昇を防いで運転者に違和感を与えることがなく、燃費性能の向上と運転性の向上を両立できるのである。
【0042】
さらに、目標駆動力の増大によってエンジントルクが燃料増量の必要な領域にあれば、一時的にエンジントルクを増大させ、その後エンジントルクを徐々に低減させるとともに、変速比を徐々に増大して、エンジントルクを燃料増量の不要な領域へ移行させることにより、登坂路に進入するなどで目標駆動力が増大したときには、一時的に燃料増量を行ってエンジントルクを増大して車速VSPの低下を防いだ後に、徐々に変速比をLo側へシフトするとともにエンジントルクを徐々に低減することで、全体的な駆動力を一定に保ちながら変速比制御とエンジン制御による駆動力の配分を徐々に変速比制御へ移行でき、燃費の悪化を防止するとともに、エンジン回転速度の急上昇を防いで運転者に違和感を与えることがなく、燃費性能の向上と運転性の向上を両立できるのである。
【0043】
また、エンジン制御で実現する目標駆動力と、変速比制御で実現する目標駆動力をそれぞれ演算し、目標駆動力が増大したときには、時間の経過に応じて徐々に増大する補正係数を変速比制御で実現する目標駆動力に乗じて変速比制御で実現する駆動力を増大する一方、時間の経過に応じて徐々に減少する補正係数をエンジン制御で実現する目標駆動力に乗じてエンジン制御で実現する駆動力を低減することにより、登坂路に進入するなどで目標駆動力が増大したときには、時間の経過に伴って徐々に変速比をLo側へシフトするとともにエンジントルクを徐々に低減することで、全体的な駆動力を一定に保ちながら変速比制御とエンジン制御による駆動力の配分を徐々に変速比制御へ移行でき、燃費の悪化を防止するとともに、急速な変速を抑制することでエンジン回転速度の急上昇を防いで運転者に違和感を与えることがなく、燃費性能の向上と運転性の向上を両立できるのである。
【図面の簡単な説明】
【図1】本発明の一実施形態を示し、駆動力を制御する車両の概略構成図。
【図2】コントロールユニットで行われる駆動力制御の一例を示すブロック図。
【図3】同じく、駆動力制御の一例を示すフローチャート。
【図4】勾配の増加による各値の変化を示すグラフで、破線が本発明の場合を示し、実線が従来例の場合を示しており、アクセルペダルの踏み込み量、目標駆動力、エンジントルク、燃料増量率及びエンジン回転速度と時間の関係を示す。
【図5】エンジン回転速度とエンジントルクの関係を示すマップ。
【符号の説明】
1 アクセルポジションセンサ
2 コントロールユニット
3 スロットルアクチュエータ
5 油圧制御部
6 プライマリプーリ回転センサ
7 セカンダリプーリ回転センサ
8 自動変速機
9 エンジン
10 クランク角センサ
11 車輪速センサ
21 基準目標駆動力設定部
27 変速比制御要求駆動力演算部
22 補正駆動力演算部
23 増加駆動力変速比反映率演算部
24 目標エンジントルク演算部
25 エンジントルクデマンド部
26 補正駆動力修正部
41 目標変速比設定部
42 変速比フィードバック制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to driving force control for a vehicle including an internal combustion engine and a continuously variable transmission.
[0002]
[Prior art]
Conventionally, as a driving force control device used for a vehicle, as in JP 2000-297672 A, an engine and a transmission are controlled so that a target driving force corresponding to an accelerator depression amount, a vehicle speed, and a running resistance can be realized. The device is known.
[0003]
This is based on the accelerator depression amount APO and the vehicle speed VSP, and a reference target driving force equivalent to a flat road is set. When the running resistance increases, the corrected driving force is added and output as the target driving force for engine control. The vehicle driving force control apparatus includes a correction driving force addition unit that adds a correction driving force multiplied by a correction coefficient α to a reference target driving force to obtain a target driving force for shift control. The ratio obtained by dividing the correction driving force added to the target driving force for shift control by the correction driving force added to the target driving force for engine control changes according to the depression amount of the accelerator pedal.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-297672 [0005]
[Problems to be solved by the invention]
However, in the above-described conventional example, the correction driving force is multiplied by the correction coefficient α and added to the reference target driving force to obtain a target driving force for shift control. For example, when the driver approaches the gradient road with a constant accelerator depression amount, the driving force correction increases the driving force for the gradient resistance. The required driving force for increasing the gradient resistance is realized by the gear ratio and the engine torque, and the distribution of the gear ratio and the engine torque is determined according to the correction coefficient α. When the engine is controlled to an operating point with a good fuel economy rate due to demands on fuel efficiency before entering the ramp, that is, when operating at high load and low speed, the fuel increase range is required to increase the engine torque. However, there is a problem that fuel consumption deteriorates due to wasteful blowing of fuel due to an increase in fuel (the increased amount of fuel is for cooling the engine and does not affect the output).
[0006]
The ratio obtained by dividing the corrected driving force added to the target driving force for shift control by the corrected driving force added to the target driving force for engine control changes according to the amount of depression of the accelerator pedal. However, if the correction coefficient α is made variable according to the amount of depression of the accelerator pedal, the correction coefficient α is constant when traveling on a slope with a constant depression amount of the accelerator pedal. The fuel increase correction is always performed while the vehicle is traveling on the slope road, and there is a problem that the fuel consumption is remarkably deteriorated.
[0007]
Therefore, the present invention has been made in view of the above problems, and an object thereof is to realize a target driving force according to a driving state while preventing deterioration of fuel consumption.
[0008]
[Means for Solving the Problems]
The present invention relates to an accelerator pedal operation position detecting means for detecting a depression amount of an accelerator pedal, a vehicle speed detection means for detecting a vehicle speed, and a target for calculating a target driving force based on the depression amount and the vehicle speed of the accelerator pedal. In a vehicle driving force control device comprising driving force calculating means and driving force control means for controlling the engine and the automatic transmission so as to achieve this target driving force,
When the target driving force increases, the driving force control means temporarily increases the driving force by engine control, and then gradually decreases the driving force by engine control while gradually increasing the driving force by speed ratio control. If there is a driving force distribution correction means and the engine torque is in the region where fuel increase is required due to an increase in the target driving force, the engine torque is temporarily increased, and then the engine torque is gradually reduced and the gear ratio is changed. Is gradually increased to shift the engine torque to a region where fuel increase is not required.
[0009]
【The invention's effect】
Therefore, according to the present invention, when the target driving force increases, the fuel torque is temporarily increased to increase the engine torque, and then the gear ratio is gradually shifted to the Lo side and the engine torque is gradually reduced. While keeping the overall driving force constant, the distribution of driving force by gear ratio control and engine control can be gradually shifted to gear ratio control, preventing fuel deterioration and preventing the engine speed from rapidly increasing. Without giving a sense of incongruity, it is possible to improve both fuel efficiency and driving performance.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0011]
FIG. 1 shows a control unit for connecting an automatic transmission 8 having a torque converter to an engine 9 and controlling an output of the engine 9 and a gear ratio of the automatic transmission 8 so as to obtain an optimum driving force according to a traveling state. An example in which the present invention is applied to a vehicle having 2 is shown.
[0012]
The control unit 2 includes an accelerator depression amount APO (or throttle opening) from the accelerator position sensor 1, a select signal from a range selection lever or an inhibitor switch (not shown) for switching the shift range of the automatic transmission 8, wheel speed. The vehicle speed VSP detected by the sensor 11, the primary pulley rotation speed detected by the primary pulley rotation sensor 6, the secondary pulley rotation speed detected by the secondary pulley rotation sensor, etc. are input as driving states, and the target drive calculated based on these driving states The driving force of the vehicle is controlled by controlling the fuel injection amount of the engine 9 and the ignition timing, or by controlling the shift of the automatic transmission 8 so that the power can be obtained.
[0013]
For this reason, an electronically controlled throttle valve 30 that is opened and closed by the throttle actuator 3 is interposed in the intake passage of the engine 9, and the electronically controlled throttle is based on the throttle valve opening signal sent from the control unit 2. The opening degree of the valve 30 is controlled.
[0014]
The automatic transmission 8 is a continuously variable transmission capable of continuously changing the gear ratio in accordance with a gear change command from the control unit 2, and is obtained from the ratio between the primary pulley rotation speed and the secondary pulley rotation speed. The transmission mechanism is controlled so that the transmission gear ratio RATIO matches the command value from the control unit 2.
[0015]
Here, an example of the driving force control performed by the control unit 2 is shown in FIG.
[0016]
In FIG. 2, a reference target driving force TFDD which is a driving force of the vehicle on a flat road based on a map set in advance based on the accelerator depression amount APO from the accelerator position sensor 1 and the vehicle speed VSP detected by the wheel speed sensor 11. A reference target driving force calculating unit 21 for calculating the driving force, a corrected driving force calculating unit 22 for calculating a correcting driving force from a running resistance (acceleration resistance, climbing resistance, etc.) increased with respect to a preset reference value of the vehicle, and fuel increase An increased driving force speed ratio reflection ratio calculating unit 23 (distribution ratio correcting means) that calculates a reflection ratio αsft of the corrected driving force increased from the ratio to the speed ratio control, and a correction driving that multiplies the corrected driving force by the speed ratio reflecting ratio αsft. A force correction unit 26 and a gear ratio control request correction driving force calculation unit 27 (driving force) for obtaining a request correction driving force commanded to the gear ratio control by adding the multiplication result to the reference target driving force. The required driving force mMTFDD for gear ratio control is determined from the distribution correction means.
[0017]
In the engine control, the target engine torque calculation unit 24 calculates the target engine torque TTEP from the reference target driving force TFDD, the actual gear ratio, and the torque ratio of the torque converter, and the engine torque demand unit 25 calculates the necessary air from the target engine torque TTEP. After obtaining the amount, the target throttle opening degree TGTVO is calculated, and the throttle actuator 3 is driven at this target throttle opening degree TGTVO. Further, the engine torque demand unit 25 calculates the fuel injection amount necessary for realizing the target engine torque TTEP and controls the fuel injection valve (not shown).
[0018]
In the gear ratio control, the gear ratio control demand correction driving force mMTFDD obtained by the vehicle speed VSP and the gear ratio control request correction driving force calculation unit 27 based on a map preset by the gear ratio control accelerator opening calculation unit 28. The speed ratio control accelerator opening is obtained from the above, the speed ratio control accelerator opening is normalized by the normalizing section 29, and then the target input shaft rotational speed calculation section 41 is used to determine the vehicle speed VSP based on a preset map. The target input shaft rotational speed DsrREV is obtained from the speed ratio accelerator opening and the feedback control unit 42 determines the target speed ratio based on the target input shaft rotational speed DsrREV, and the actual speed ratio matches the target speed ratio. The hydraulic pressure control unit 5 is controlled as described above.
[0019]
Next, an example of the driving force control performed by the control unit 2 shown in FIG. 2 will be described in detail below with reference to the flowchart shown in FIG. Note that the flowchart of FIG. 3 is executed every predetermined time, for example, every 10 msec.
[0020]
First, in steps # 1 and # 2, the vehicle speed VSP and the accelerator depression amount APO are read from the wheel speed sensor 11 and the accelerator position sensor 1, and in step # 3, the map of the reference target driving force calculation unit 21 shown in FIG. Based on this, the reference target driving force TFDD is calculated.
[0021]
In step # 4, it is determined whether or not the driving force needs to be corrected. If correction is necessary, the process proceeds to step # 5. If not, the gear ratio reflection rate adjustment value αhos = 0 is set. After resetting, the process proceeds to step # 9 to perform gear ratio control. The determination of whether or not the driving force needs to be corrected may be made by determining that the driving force needs to be corrected when the vehicle speed VSP decreases when the accelerator depression amount APO is constant.
[0022]
In step # 5, a corrected driving force for the gradient resistance is calculated from the running resistance increased with respect to a preset reference value of the vehicle.
[0023]
Next, in step # 6 and subsequent steps, a distribution rate (reflection rate αsft) for transmission ratio control when the increased driving force determined in step # 5 is realized by the engine rotation speed and engine torque is determined.
[0024]
In step # 6, a reflection ratio (correction coefficient) α for the gear ratio control is determined for the driving force corresponding to the gradient obtained in step # 5. The transmission ratio reflection rate α is a value between 0 and 1, and is obtained in the same manner as in the conventional example.
[0025]
In step # 7, the gear ratio reflection rate α determined in step # 6 is determined depending on whether fuel increase is necessary.
[0026]
This request for increasing fuel is determined in step # 14.
[0027]
This determination is made based on the operating point of the engine (engine speed, engine torque). As shown in FIG. 5, it is determined whether the engine speed and engine torque are within a predetermined fuel increase range. It is determined by. If the fuel increase is necessary in this determination, the process proceeds to step # 16 to determine the gear ratio reflection rate adjustment value αhos. If the fuel increase is not required, the process proceeds to step # 15 and the gear ratio reflection rate adjustment value. Holds the value of αhos.
[0028]
In step # 16, when the fuel increase is necessary, the transmission ratio reflection rate adjustment value αhos is increased by a predetermined ratio (ratio) β,
αhos = αhos (previous value) + β
Asking. Note that β is an adapted constant ratio.
[0029]
In step # 7, the transmission ratio reflection ratio α is adjusted using the transmission ratio reflection ratio adjustment value αhos determined as described above. That is, if the gear ratio reflection rate after taking into account the fuel increase is αsft,
αsft = α + αhos
As a result, the gear ratio reflection rate αsft after taking into account the fuel increase is calculated.
[0030]
In step # 8, the corrected driving force is multiplied using the gear ratio reflection rate αsft after taking into account the fuel increase, and the required corrected driving force is obtained by adding the reference target driving force to the multiplication result (corrected driving force correcting unit). 26, transmission ratio control request correction driving force calculation unit 27).
[0031]
In step # 9, the accelerator opening for gear ratio control is obtained based on the required corrected driving force, and the target gear ratio is determined from the target input shaft rotational speed DsrREV by the target input shaft rotational speed calculator 41 in FIG. The hydraulic control unit 5 of the automatic transmission 8 is driven by the unit 42.
[0032]
Next, in steps # 10 and # 11, the actual gear ratio is calculated from the primary pulley rotation speed and the secondary pulley rotation speed and the torque ratio of the torque converter is obtained. In step # 12, the target engine is calculated from the actual gear ratio and the torque ratio. Torque is obtained (target engine torque calculator 24).
[0033]
In step # 13, the required air amount is obtained from the target engine torque TTEP, the target throttle opening TGTVO is calculated, the throttle actuator 3 is driven at the target throttle opening TGTVO, and the target engine torque TTEP is calculated. The fuel injection amount necessary for the realization is calculated to control the fuel injection valve (engine torque demand unit 25).
[0034]
By the above control, the torque generated by the fuel increase in the conventional technology can be replaced with the gear ratio control, thereby preventing the deterioration of the fuel consumption due to the fuel increase. In particular, the correction drive force is generated by entering the gradient road. When shifting, the gear ratio is controlled so as to smoothly shift by a predetermined ratio β when shifting from the driving force increasing state due to engine torque to the driving force increasing state due to gear ratio control. By suppressing the sudden increase in the engine speed and preventing the driver from feeling uncomfortable, the smooth transition from the torque control state to the gear ratio control state allows the driver to feel uncomfortable when entering the hill and increase fuel consumption. It is possible to achieve both improvement of deterioration.
[0035]
That is, when entering the slope road (uphill road), the relationship among the accelerator depression amount APO, the target driving force TFDD, the engine torque, the fuel increase rate, and the engine rotation speed is as shown in FIG. In FIG. 4, the present invention is indicated by a broken line, and a conventional example is indicated by a solid line.
[0036]
When the accelerator is depressed in a constant driving state and the vehicle approaches the uphill road at time T1, the target driving force increases by the amount of the gradient due to the increase in running resistance. In the conventional example, in order to compensate for the increase in the target driving force by increasing the engine torque, the engine torque enters the area where the fuel increase is required (the hatched area in the figure), while the speed ratio is constant. Therefore, as described in the above problem, the fuel consumption is remarkably deteriorated.
[0037]
On the other hand, according to the present invention, when the vehicle approaches the uphill road at time T1, the target driving force increases by the gradient due to the increase in running resistance. First, the increase in the target driving force due to the increase in engine torque is achieved. In order to compensate for this, the engine torque (driving force by engine control) temporarily enters the region where the fuel increase is necessary (the shaded area in the figure) and is increased, but the gear ratio reflection rate αsf after taking into account the fuel increase is Since the speed ratio increases by a predetermined ratio β, the speed ratio gradually shifts to the Lo side (large side) with the passage of time, and the driving force by the speed ratio control gradually increases. Along with this, the engine torque gradually decreases, and at time T2, the engine torque falls below the region where fuel increase is required.
[0038]
As a result, when the target driving force increases, the engine torque is temporarily increased to increase the engine torque, and then the gear ratio is gradually shifted to the Lo side and the engine torque is gradually reduced. While keeping the driving force constant, the distribution of the driving force by the gear ratio control and the engine control can be gradually shifted to the gear ratio control, preventing the deterioration of fuel consumption and preventing the engine speed from rapidly increasing, giving the driver a sense of incongruity Therefore, it is possible to achieve both improved fuel efficiency and improved drivability.
[0039]
Note that the increase in the gear ratio to the Lo side may be performed until the engine torque deviates from the fuel increase requirement region.
[0040]
Further, the reduction of the engine torque may be set so as to correspond to a value obtained by multiplying the target driving force by (1−αsft).
[0041]
Further, it is determined whether or not the engine torque enters the region where the fuel increase is required due to the increase of the target driving force, and when it is determined that the engine torque enters the fuel increase region, the correction is made so that the engine torque is gradually reduced. In addition, by performing distribution ratio correction that gradually increases the gear ratio, when the target driving force increases due to entering an uphill road, the gear ratio is gradually shifted to the Lo side and the engine torque is gradually reduced. As a result, while maintaining the overall driving force constant, the distribution of the driving force by the gear ratio control and the engine control can be gradually shifted to the gear ratio control, preventing deterioration of fuel consumption and suppressing rapid gear shifting. Therefore, the rapid increase in engine rotation speed can be prevented without causing the driver to feel uncomfortable, and both improved fuel efficiency and improved drivability can be achieved.
[0042]
Further, if the engine torque is in the region where the fuel increase is required due to the increase in the target driving force, the engine torque is temporarily increased, and then the engine torque is gradually decreased and the gear ratio is gradually increased. By shifting the torque to a region where fuel increase is not required, when the target driving force increases due to entering the uphill road, the fuel torque is temporarily increased to increase the engine torque to prevent the vehicle speed VSP from decreasing. Later, by gradually shifting the gear ratio to the Lo side and gradually reducing the engine torque, the gear ratio control and the distribution of the driving force by the engine control are gradually controlled while keeping the overall driving force constant. To prevent the deterioration of fuel efficiency and prevent sudden increase in engine speed without causing driver discomfort and improving fuel efficiency. We can achieve both an improvement in drivability.
[0043]
In addition, the target driving force realized by engine control and the target driving force realized by gear ratio control are calculated, and when the target driving force increases, a correction coefficient that gradually increases as time elapses is changed. Multiplying the target driving force realized in step 1 to increase the driving force realized by gear ratio control, while increasing the driving force realized by engine control by multiplying the target driving force realized by engine control with a correction coefficient that gradually decreases over time By reducing the driving force to be used, when the target driving force increases due to entering the uphill road, etc., the gear ratio is gradually shifted to the Lo side and the engine torque is gradually reduced with the passage of time. , While maintaining the overall driving force constant, the distribution of the driving force by the gear ratio control and engine control can be gradually shifted to the gear ratio control, preventing deterioration of fuel consumption and rapid gear shifting Preventing rapid increase in engine speed by suppressing without discomfort to the driver, we can achieve both an improvement in drivability and improve fuel efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a vehicle for controlling a driving force according to an embodiment of the present invention.
FIG. 2 is a block diagram showing an example of driving force control performed by a control unit.
FIG. 3 is a flowchart similarly showing an example of driving force control.
FIG. 4 is a graph showing a change in each value due to an increase in gradient, in which a broken line indicates the case of the present invention, and a solid line indicates a case of the conventional example. The relationship between fuel increase rate and engine speed and time is shown.
FIG. 5 is a map showing a relationship between engine rotation speed and engine torque.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Accelerator position sensor 2 Control unit 3 Throttle actuator 5 Hydraulic control part 6 Primary pulley rotation sensor 7 Secondary pulley rotation sensor 8 Automatic transmission 9 Engine 10 Crank angle sensor 11 Wheel speed sensor 21 Reference target driving force setting part 27 Gear ratio control request Driving force calculation unit 22 Correction driving force calculation unit 23 Increased driving force gear ratio reflection rate calculation unit 24 Target engine torque calculation unit 25 Engine torque demand unit 26 Correction driving force correction unit 41 Target gear ratio setting unit 42 Gear ratio feedback control unit

Claims (4)

アクセルペダルの踏み込み量を検出するアクセルペダル操作位置検出手段と、
車両の速度を検出する車速検出手段と、
前記アクセルペダルの踏み込み量と車速に基づいて、目標駆動力を算出する目標駆動力演算手段と、
この目標駆動力となるようにエンジンと自動変速機を制御する駆動力制御手段とを備えた車両の駆動力制御装置において、
前記駆動力制御手段は、目標駆動力が増大したときには、エンジン制御によって駆動力を一時的に増大した後、変速比制御によって駆動力を徐々に増大しながらエンジン制御による駆動力を徐々に低下させる駆動力配分補正手段を有することを特徴とする車両の駆動力制御装置。
An accelerator pedal operation position detecting means for detecting the amount of depression of the accelerator pedal;
Vehicle speed detection means for detecting the speed of the vehicle;
A target driving force calculating means for calculating a target driving force based on the depression amount of the accelerator pedal and the vehicle speed;
In the vehicle driving force control device including the driving force control means for controlling the engine and the automatic transmission to achieve the target driving force,
When the target driving force increases, the driving force control means temporarily increases the driving force by engine control, and then gradually decreases the driving force by engine control while gradually increasing the driving force by speed ratio control. A driving force control apparatus for a vehicle comprising driving force distribution correcting means.
前記駆動力配分補正手段は、目標駆動力の増大によってエンジントルクが燃料増量の必要な領域に入るか否かを判定するエンジン動作点判定手段と、
前記エンジントルクが燃料増量領域に入ると判定されたときには、前記エンジントルクを徐々に低減するよう補正するとともに、変速比を徐々に増大させる配分比率補正手段とを含むことを特徴とする請求項1に記載の車両の駆動力制御装置。
The driving force distribution correcting means includes an engine operating point determining means for determining whether or not the engine torque enters an area where fuel increase is required due to an increase in the target driving force;
2. A distribution ratio correction unit that corrects the engine torque to be gradually reduced when it is determined that the engine torque enters a fuel increase region, and gradually increases a gear ratio. The driving force control device for a vehicle according to claim 1.
前記配分比率補正手段は、目標駆動力の増大によってエンジントルクが燃料増量の必要な領域にあれば、一時的にエンジントルクを増大させ、その後エンジントルクを徐々に低減させるとともに、変速比を徐々に増大して、エンジントルクを燃料増量の不要な領域へ移行させることを特徴とする請求項2に記載の車両の駆動力制御装置。If the engine torque is in a region where the fuel increase is required due to an increase in the target driving force, the distribution ratio correcting means temporarily increases the engine torque and then gradually decreases the engine torque and gradually increases the speed ratio. The driving force control apparatus for a vehicle according to claim 2, wherein the engine torque is increased and the engine torque is shifted to a region where fuel increase is not required. 前記目標駆動力演算手段は、エンジン制御で実現する目標駆動力と、変速比制御で実現する目標駆動力をそれぞれ演算し、
前記駆動力配分補正手段は、前記目標駆動力が増大したときには、時間の経過に応じて徐々に増大する補正係数を変速比制御で実現する目標駆動力に乗じて変速比制御で実現する駆動力を増大する一方、時間の経過に応じて徐々に減少する補正係数をエンジン制御で実現する目標駆動力に乗じてエンジン制御で実現する駆動力を低減することを特徴とする請求項1ないし請求項3のいずれか一つに記載の車両の駆動力制御装置。
The target driving force calculating means calculates a target driving force realized by engine control and a target driving force realized by gear ratio control, respectively.
When the target driving force increases, the driving force distribution correcting unit multiplies the target driving force realized by the gear ratio control by a correction coefficient that gradually increases with the passage of time, and the driving force realized by the gear ratio control. The driving force realized by the engine control is reduced by multiplying the target driving force realized by the engine control by a correction coefficient that gradually decreases as time elapses. 4. The driving force control apparatus for a vehicle according to any one of 3 above.
JP2003166431A 2003-06-11 2003-06-11 Driving force control device of vehicle Pending JP2005001485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166431A JP2005001485A (en) 2003-06-11 2003-06-11 Driving force control device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166431A JP2005001485A (en) 2003-06-11 2003-06-11 Driving force control device of vehicle

Publications (1)

Publication Number Publication Date
JP2005001485A true JP2005001485A (en) 2005-01-06

Family

ID=34092599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166431A Pending JP2005001485A (en) 2003-06-11 2003-06-11 Driving force control device of vehicle

Country Status (1)

Country Link
JP (1) JP2005001485A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100639A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Vehicle, power output device, method for controlling vehicle and method for controlling power output device
JP2010038051A (en) * 2008-08-06 2010-02-18 Denso Corp Torque control device for onboard power generator
JP2011126425A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Vehicle control system
KR101280711B1 (en) 2008-12-11 2013-07-01 도요타지도샤가부시키가이샤 Driving condition evaluation device and evaluation method
WO2014142210A1 (en) * 2013-03-12 2014-09-18 ヤマハ発動機株式会社 Vehicle control device and motorcycle equipped with same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100639A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Vehicle, power output device, method for controlling vehicle and method for controlling power output device
JP4566110B2 (en) * 2005-10-06 2010-10-20 トヨタ自動車株式会社 Vehicle, power output device, vehicle control method, and power output device control method
JP2010038051A (en) * 2008-08-06 2010-02-18 Denso Corp Torque control device for onboard power generator
KR101280711B1 (en) 2008-12-11 2013-07-01 도요타지도샤가부시키가이샤 Driving condition evaluation device and evaluation method
JP2011126425A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Vehicle control system
WO2014142210A1 (en) * 2013-03-12 2014-09-18 ヤマハ発動機株式会社 Vehicle control device and motorcycle equipped with same
JP6082804B2 (en) * 2013-03-12 2017-02-15 ヤマハ発動機株式会社 VEHICLE CONTROL DEVICE AND MOTORCYCLE EQUIPPED WITH THE SAME

Similar Documents

Publication Publication Date Title
JP3815111B2 (en) Vehicle driving force control device
US6157885A (en) Vehicle motive force control system
JP4404079B2 (en) Output control device for internal combustion engine
JPH11198686A (en) Driving force control device for vehicle
JP2008239130A (en) Control device for vehicle
JP2000297662A (en) Drive force control device for vehicle
JP2008120268A (en) Cruise control device for vehicle
JP2007016624A (en) Device for controlling engine output during vehicle acceleration by pedal depression
JP2000064872A (en) Output control device for engine
JP3757674B2 (en) Vehicle driving force control device
US6454676B1 (en) Control system for internal combustion engine equipped with automatic transmission
US8909441B2 (en) Driving power source rotational speed control device and driving power source rotational speed control method
JP2005001485A (en) Driving force control device of vehicle
JP2007071160A (en) Control device for vehicle
JPH10329587A (en) Engine combustion mode switching control device for vehicle drive system
JP2011027200A (en) Control device for vehicle
JP2011017320A (en) Control device for vehicle
JP2007132238A (en) Engine power control device in start of vehicle
JP3765199B2 (en) Driving force control device for vehicle deceleration
JP4269956B2 (en) Control device for internal combustion engine with continuously variable transmission
JP2004060734A (en) Gear change control device of automatic transmission
JP4077062B2 (en) Vehicle driving force control device
JP3582098B2 (en) Sliding control device for torque converter
JP3719104B2 (en) Vehicle driving force control device
JPH1044833A (en) Compound control device for prime mover and automatic transmission