JP2004364407A - Method and device for controlling rotational position of multi-degrees of freedom ultrasonic motor - Google Patents

Method and device for controlling rotational position of multi-degrees of freedom ultrasonic motor Download PDF

Info

Publication number
JP2004364407A
JP2004364407A JP2003159714A JP2003159714A JP2004364407A JP 2004364407 A JP2004364407 A JP 2004364407A JP 2003159714 A JP2003159714 A JP 2003159714A JP 2003159714 A JP2003159714 A JP 2003159714A JP 2004364407 A JP2004364407 A JP 2004364407A
Authority
JP
Japan
Prior art keywords
rotation
voltage
piezoelectric element
rotor
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003159714A
Other languages
Japanese (ja)
Other versions
JP4209261B2 (en
Inventor
Hiroshi Kawano
洋 川野
Tatsuya Hirahara
達也 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003159714A priority Critical patent/JP4209261B2/en
Publication of JP2004364407A publication Critical patent/JP2004364407A/en
Application granted granted Critical
Publication of JP4209261B2 publication Critical patent/JP4209261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for controlling rotational position, capable of controlling rotational position in three-degrees of freedom of a multi-degrees of freedom ultrasonic motor with no use of kinetic model. <P>SOLUTION: A rotational position controller α applied to a multi-DOF ultrasonic motor β employs a featuristic configuration that includes a rotational angle measuring sensor 1 for measuring current rotational position of a rotor 5 in rotational movement, a rotational position monitoring part 2 that calculates the amplitude value of an AC voltage applied to piezoelectric elements 4a, 4b, and 4c and outputs it as an amplitude command value so that the rotor 5 is made to reach a pre-set target rotational position from the measurement value of the current rotational position measured with the rotational angle measuring sensor 1, and a high frequency rotational direction switching part 3 that outputs the AC voltage of a plurality of phases having the same amplitude value as the amplitude command value inputted from the rotational position monitoring part 2 and also having a phase difference required for rotating the rotor 5 to the piezoelectric elements 4a, 4b, and 4c. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多自由度超音波モータの回転位置制御方法及び装置に関し、詳しくは、所望の回転運動を発生させるために固定子の圧電素子に交流電圧を印加して回転子の回転位置を制御する際に適用される多自由度超音波モータの回転位置制御方法及びその実施に直接使用する回転位置制御装置に係わる。
【0002】
【従来の技術】
近年、高トルク、高自由度を要求されるような部位に適用されるアクチュエータとして、省スペース、高トルクで静音性の高い多自由度超音波モータの適用が期待されている。
【0003】
例えば、人間型ロボットの間接機構、特に首の部分のように、多自由度に姿勢を変えることができるように重量物を鉛直に支える必要のある機構等へ、従来の一自由度回転式の電磁式サーボモータに代わって、多自由度超音波モータの適用が期待されている。
【0004】
ここで、多自由度超音波モータは、例えば、振動方向が異なる複数の圧電素子が積層された構成の固定子と、この固定子の上に密着された球状の回転子からなり、多自由度超音波モータの固定子の圧電素子に、周波数が等しく位相の異なる交流電流を印加すると圧電素子に固有振動が励振されて、それらの固有振動モードの組み合わせにより回転子が3自由度の回転を行う。
【0005】
このように、3自由度の回転を行う多自由度超音波モータを適切に駆動するためには、適切な制御手段が必要であり、そのような制御手段として、固定子を構成する各圧電素子に印加される交流電圧の位相差を制御する手法が提案されている。前記手法では、各入力信号の位相差の値で構成されたベクトル値に対する回転子の回転方向の角度値に関する情報を保持した運動モデルを利用して、制御信号を決定している。
【0006】
なお、上記多自由度超音波モータ回転位置制御の詳細については、下記の非特許文献1に記載されている。
【0007】
【非特許文献1】
K. Takemura, T. Maeno, “Control of Multi−DOF Ultrasonic Motor using Neural Network based Inverse Model”, Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and System, October 2002.
【0008】
【発明が解決しようとする課題】
ところで、多自由度超音波モータの回転子と固定子とが接する面における摩擦力の物理学的特性は複雑であり、さまざまな要因によって変化する。そのため、回転方向の制御に必要な運動モデルを推定することが非常に困難であり、また、運動モデルを利用した制御を長時間の運転に適用するには、多自由度超音波モータの運転中に運動モデルの更新を行わなければならない。
【0009】
しかしながら、多自由度の運動を表現する運動モデルを効率よく実時間で更新することは困難であり、さらに、多自由度超音波モータは回転子と固定子間の物理特性に個体差があることを考慮すると、運動モデルを一つ一つの多自由度超音波モータのために用意しなければならないという問題がある。
【0010】
ここにおいて、本発明の解決すべき主要な目的は、次のとおりである。
【0011】
即ち、本発明の第1の目的は、運動モデルを利用せずに、多自由度超音波モータの3自由度の回転位置を制御可能な多自由度超音波モータの回転位置制御方法及び装置を提供せんとするものである。
【0012】
本発明の第2の目的は、多自由度超音波モータを構成する回転子と固定子間の摩擦力の特性の変化の影響を受けずに、長時間の多自由度を表現する運転を可能とする多自由度超音波モータの回転位置制御方法及び装置を提供せんとするものである。
【0013】
本発明の第3の目的は、多自由度超音波モータ間の個体差に係わらず適用可能な多自由度超音波モータの回転位置制御方法及び装置を提供せんとするものである。
【0014】
本発明の他の目的は、明細書、図面、特に特許請求の範囲の各請求項の記載から、自ずと明らかとなろう。
【0015】
【課題を解決するための手段】
まず、本発明方法においては、まず、回転運動に伴う回転子の現在回転位置を計測し、次いで、当該計測された値から回転子を予め設定された目標回転位置に到達させるべく、固定子を構成する圧電素子に印加すべき交流電圧の振幅値を計算して、続いて、圧電素子に対して、振幅値と同じ振幅値を持ち、回転子を回転させるために必要な位相差を持たせた複数相の交流電圧を印加して当該回転子の回転方向の制御をなす、という特徴的構成手法を講じる。
【0016】
一方、本発明装置においては、回転運動に伴う回転子の現在回転位置を計測する回転角度計測センサと、当該回転角度計測センサにて計測された現在回転位置の測定値から回転子を予め設定された目標回転位置に到達させるべく、圧電素子に印加する交流電圧の振幅値を計算し、当該振幅値を振幅指令値として出力する回転位置監視部と、当該回転位置監視部から入力された当該振幅指令値と同じ振幅値を持ち、回転子を回転させるために必要な位相差を持たせた複数相の交流電圧を、圧電素子に出力する高周波回転方向切替部と、を具備させる、という特徴的構成手段を講じる。
【0017】
さらに、具体的詳細に述べると、当該課題の解決では、本発明が次に列挙する上位概念から下位概念に亙る新規な特徴的構成手段を採用することにより、前記目的を達成するように為される。
【0018】
即ち、本発明方法の第1の特徴は、位相が異なる交流電圧を印加すると固有振動数の等しい複数の固有振動を励振する積層された複数の圧電素子によって構成される固定子と、負荷重量物を保持し前記固定子の前記固有振動によって任意の方向に回転駆動される回転子と、で構成される多自由度超音波モータにおいて、所望の回転運動を発生させるために前記固定子の圧電素子に前記交流電圧を印加して前記回転子の回転位置を制御する方法であって、まず、前記回転運動に伴う前記回転子の現在回転位置を計測し、次いで、当該計測された値から前記回転子を予め設定された目標回転位置に到達させるべく、前記固定子を構成する前記圧電素子に印加すべき交流電圧の振幅値を計算して、続いて、前記圧電素子に対して、前記振幅値と同じ振幅値を持ち、前記回転子を回転させるために必要な位相差を持たせた複数相の交流電圧を印加して当該回転子の回転方向の制御をなしてなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0019】
本発明方法の第2の特徴は、上記本発明方法の第1の特徴における前記複数相の交流電圧の印加を、互いに直交して異なる仮想三次元座標3軸方向の前記固有振動をそれぞれ励振する前記圧電素子に対する当該交流電圧の出力を、前記回転子の回転加速所要時間よりも短い周期の高周波で切り替えて、前記複数の圧電素子のそれぞれに前記仮想三次元座標3軸方向の前記固有振動のいずれかを励振させる前記交流電圧を印加してなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0020】
本発明方法の第3の特徴は、上記本発明方法の第1又は第2の特徴における前記複数相の交流電圧の印加を、前記固定子の前記回転子との接触端面の鉛直上方をz軸とする互いに直交して異なるx,y,z軸からなる前記仮想三次元座標3軸方向の前記固有振動をそれぞれ励振する、前記x軸を軸として回転するロール方向たわみ振動発生用圧電素子と、前記z軸方向に上下伸縮する上下方向伸縮振動発生用圧電素子と、前記y軸を軸として回転するピッチ方向たわみ振動発生用圧電素子の各圧電素子のそれぞれに前記目標回転位置に到達するまで繰り返し前記交流電圧を印加して、励振する前記固有振動の合成により当該回転方向の制御を行ってなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0021】
本発明方法の第4の特徴は、上記本発明方法の第3の特徴における前記振幅値の計算を、前記仮想三次元座標上の前記現在回転位置から前記目標回転位置までの到達に必要な回転角を、前記圧電素子の励振される前記x,y,z軸をそれぞれ軸回転するピッチ方向、ロール方向及びヨー方向の回転方向の成分に分解して、前記交流電圧の振幅値を3つの当該回転方向の成分別に計算してなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0022】
本発明方法の第5の特徴は、上記本発明方法の第3又は第4の特徴における前記複数相の交流電圧の印加を、それぞれ互いに直交して異なる前記仮想三次元座標3軸方向固有振動を励振させて、前記x軸を軸回転する方向にたわむ前記ロール方向たわみ振動発生用圧電素子と、前記z軸方向に伸縮する前記上下方向伸縮振動発生用圧電素子と、前記y軸を軸回転する方向にたわむ前記ピッチ方向たわみ振動発生用圧電素子のうちの2種類の当該圧電素子に対して、90度の位相差を持たせて2種類の当該圧電素子のそれぞれに当該交流電圧を印加して、印加する2種類の前記圧電素子と、当該圧電素子に印加する前記交流電圧の位相及び振幅値を切り替えることで、前記回転子を前記目標回転位置に到達させてなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0023】
本発明方法の第6の特徴は、上記本発明方法の第1、第2、第3、第4又は第5の特徴における前記振幅値の計算を、前記回転子の回転駆動に対して、予め目標回転角速度が設定された場合に、先の前記回転位置の計測を継続的に行うことで、前記圧電素子に印加する前記交流電圧と対応させて当該回転子の回転角速度を監視して、当該回転角速度と当該交流電圧とを比較することで、次に印加する前記交流電圧の前記振幅値を前記目標回転速度に達するように計算してなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0024】
本発明方法の第7の特徴は、上記本発明方法の第1、第2、第3、第4、第5又は第6の特徴における前記回転子の回転方向の制御を、前記現在回転位置の回転角度から前記目標回転位置の目標角度に到達するために、より多くの回転制御が必要な回転方向について、他の回転方向よりも優先的な制御を行ってなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0025】
本発明方法の第8の特徴は、上記本発明方法の第1、第2、第3、第4、第5、第6又は第7の特徴における前記複数相の交流電圧の印加を、前記圧電素子の固有振動数と同じ値を周波数として、当該圧電素子に対して当該交流電圧を印加してなる、多自由度超音波モータの回転位置制御方法の構成採用にある。
【0026】
一方、本発明装置の第1の特徴は、位相が異なる交流電圧を印加すると固有振動数の等しい複数の固有振動を励振する積層された複数の圧電素子によって構成される固定子と、負荷重量物が保持されて前記固定子の前記固有振動によって任意の方向に回転駆動される回転子と、で構成される多自由度超音波モータにおいて、所望の回転運動を発生させるために適用される多自由度超音波モータの回転位置制御装置であって、前記回転運動に伴う前記回転子の現在回転位置を計測する回転角度計測センサと、当該回転角度計測センサにて計測された前記現在回転位置の測定値から前記回転子を予め設定された目標回転位置に到達させるべく、前記圧電素子に印加する交流電圧の振幅値を計算し、当該振幅値を振幅指令値として出力する回転位置監視部と、当該回転位置監視部から入力された当該振幅指令値と同じ振幅値を持ち、前記回転子を回転させるために必要な位相差を持たせた複数相の交流電圧を、前記圧電素子に出力する高周波回転方向切替部と、を具備してなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0027】
本発明装置の第2の特徴は、上記本発明装置の第1の特徴における前記高周波回転方向切替部が、前記交流電圧の出力を、前記回転子の回転加速所要時間よりも短い周期の高周波で切替出力可能に機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0028】
本発明装置の第3の特徴は、上記本発明装置の第1又は第2の特徴における前記高周波回転方向切替部が、前記固定子の前記回転子との接触端面の鉛直上方をz軸とする互いに直交して異なるx,y,z軸からなる仮想三次元座標3軸方向の前記固有振動をそれぞれ励振して、前記x軸を軸回転する方向にたわむロール方向たわみ振動発生用圧電素子と、前記z軸方向に上下伸縮する上下方向伸縮振動発生用圧電素子と、前記y軸を軸回転する方向にたわむピッチ方向たわみ振動発生用圧電素子の各圧電素子に対して、それぞれ前記交流電圧を印加可能に接続されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0029】
本発明装置の第4の特徴は、上記本発明装置の第3の特徴における前記回転位置監視部が、前記仮想三次元座標上の前記現在回転位置から前記目標回転位置までの到達に必要な回転角を、前記圧電素子の励振される前記x,y,z軸をそれぞれ軸回転するロール方向、ピッチ方向及びヨー方向の回転方向の成分に分解して、前記交流電圧の振幅値を3つの当該回転方向の成分別に計算して、計算された振幅値をそれぞれ3つの前記振幅指令値として前記高周波回転方向切替部に出力可能に機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0030】
本発明装置の第5の特徴は、上記本発明装置の第4の特徴における前記回転位置監視部が、前記ロール方向、ピッチ方向及びヨー方向の各回転方向において、前記回転子が、前記目標回転位置に到達した場合には、その回転方向に対して前記振幅指令値として電圧値0Vを出力する一方、当該目標回転位置までさらに回転角が必要である場合には、前記圧電素子に予め設定された電圧値を前記振幅指令値として出力するよう機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0031】
本発明装置の第6の特徴は、上記本発明装置の第3、第4又は第5の特徴における前記高周波回転方向切替部が、前記上下方向伸縮振動発生用圧電素子と、前記ロール方向たわみ振動発生用圧電素子とに、90度の位相差を持たせた前記交流電圧をそれぞれに印加することで、前記固定子に、前記回転子を前記ロール方向に回転させる回転駆動を誘起させるよう機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0032】
本発明装置の第7の特徴は、上記本発明装置の第3、第4、第5又は第6の特徴における前記高周波回転方向切替部が、前記ピッチ方向たわみ振動発生用圧電素子と、前記上下方向伸縮振動発生用圧電素子とに、90度の位相差を持たせた前記交流電圧をそれぞれに印加することで、前記固定子に、前記回転子を前記ピッチ方向に回転させる回転駆動を誘起させるよう機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0033】
本発明装置の第8の特徴は、上記本発明装置の第3、第4、第5、第6又は第7の特徴における前記高周波回転方向切替部が、前記ピッチ方向たわみ振動発生用圧電素子と、前記ロール方向たわみ振動発生用圧電素子とに、90度の位相差を持たせた前記交流電圧をそれぞれに印加することで、前記固定子に、前記回転子を前記ヨー方向に回転させる回転駆動を誘起させるよう機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0034】
本発明装置の第9の特徴は、上記本発明装置の第6、第7又は第8の特徴における前記高周波回転方向切替部が、2つの前記交流電圧の90度の位相差を反転することで、前記回転子に対して負方向の回転駆動を誘起させる当該交流電圧を印加するよう機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0035】
本発明装置の第10の特徴は、上記本発明装置の第1、第2、第3、第4、第5、第6、第7、第8又は第9の特徴における前記回転位置監視部が、前記回転子の回転駆動に対して、予め目標回転角速度が設定された場合、前記回転角度計測センサから出力された前記測定値を、前記高周波回転方向切替部から出力された前記交流電圧と対応させて継続的に保持して、前記圧電素子に印加された当該交流電圧の振幅値を前記目標回転速度に達するように調整可能に機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0036】
本発明装置の第11の特徴は、上記本発明装置の第1、第2、第3、第4、第5、第6、第7、第8、第9又は第10の特徴における前記高周波回転方向切替部が、前記現在回転位置の回転角度から前記目標回転位置の目標角度に到達するために、より多くの回転制御を必要とする回転方向に対して、他の回転方向よりも優先的な前記交流電圧の印加を行うよう機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0037】
本発明装置の第12の特徴は、上記本発明装置の第1、第2、第3、第4、第5、第6、第7、第8、第9、第10又は第11の特徴における前記高周波回転方向切替部が、前記圧電素子の固有振動数と同じ値の前記交流電圧の周波数を当該圧電素子に印加するよう機能構成されてなる、多自由度超音波モータの回転位置制御装置の構成採用にある。
【0038】
【発明の実施の形態】
以下、本発明の実施の形態につき、装置例及び方法例を添付図面を参照しつつ、本発明を球状の回転子を持つ多自由度超音波モータに適用した場合を例に挙げて詳細に説明する。
【0039】
(装置例)
まず、図1は、本発明の一実施形態例に係る装置例としての多自由度超音波モータの回転位置制御装置の内部構成図であり、図2は、同回転位置制御装置が適用される多自由度超音波モータの外観斜視図であり、図2に示した座標軸は、固定子4の回転子5との接触端面の鉛直上方をz軸として、ぞれぞれ直交して異なるx,y,z軸からなる仮想三次元座標系を備える。
【0040】
本装置例に係る回転位置制御装置αは、例えば、図2に示すような多自由度超音波モータβに適用されて、多自由度超音波モータβは、位相が異なる交流電圧を印加すると固有振動数の等しい複数の固有振動を励振する積層された複数の圧電素子によって構成される固定子4と、負荷重量物(図示せず)を保持し固定子4の固有振動によって任意の方向に回転駆動される回転子5と、で構成される。
【0041】
また、固定子4は、同図に示しように、まず、交流電圧は印加されたときにそれぞれ、y軸周りに軸回転する方向のピッチ方向にたわむピッチ方向たわみ振動発生用圧電素子4aと、z軸の正負方向に上下伸縮する上下方向伸縮振動発生用圧電素子4bと、x軸周りに軸回転する方向のロール方向にたわむロール方向たわみ振動発生用圧電素子4cと、から構成される。
【0042】
一方、回転子5は、例えば、球状であり、固定子4の上端面に載置されていて、多自由度超音波モータβは、回転子5に十分な予圧が与えられていれば、交流電圧を各圧電素子4a,4b,4cに印加せずとも、その時点での回転位置を保持可能な高いトルクを発生することが可能であり、また回転運動を行っている多自由度超音波モータβの圧電素子4a,4b,4cへの印加電圧を急激に0Vに落としても、例えば、10数ミリ秒以内に回転子5の回転が止まる特性を持つ。
【0043】
他方、図2に示すとおり、本発明回転位置制御装置αは、回転運動に伴う回転子5の現在回転位置を計測する回転角度計測センサ1と、回転角度測定センサ1にて測定された現在回転位置の測定値から回転子5を予め設定された目標回転位置に到達させるべく、圧電素子4a,4b,4cに印加する交流電圧の振幅値を計算し、この振幅値を振幅指令値として出力する回転位置監視部2と、回転位置監視部2から入力された振幅指令値と同じ振幅値を持ち、回転子5を回転させるために必要な位相差を持たせた複数相の交流電圧を圧電素子4a,4b,4cに出力する高周波回転方向切替部3と、を具備する。
【0044】
ここで、回転角度計測センサ1は、例えば、随時回転子5の回転位置を計測可能なものとして、計測した回転子5の現在状態の回転位置を示す計測値である現在回転位置を、回転位置監視部2及び高周波回転方向切替部3に随時出力可能に構成される。
【0045】
一方、回転位置監視部2は、回転角度計測センサ1から入力された現在回転位置から予め設定された目標回転位置までの到達に必要な回転角を、図2にて示したx,y,z座標の各座標軸をそれぞれ軸回転するロール方向、ピッチ方向、及びヨー方向の各回転方向成分に分解して、圧電素子4a,4b,4cに印加する交流電圧の振幅値を3つの当該回転方向の成分別に計算して、計算された振幅値をそれぞれ3つの振幅指令値として高周波回転方向切替部3に出力可能に構成される。
【0046】
また、回転位置監視部2は、回転子5が、前記ロール方向、ピッチ方向及びヨー方向の各回転方向において、目標回転位置に到達した場合には、その回転方向に対して振幅指令値として電圧値0Vを出力する一方、目標回転位置に到達しない場合は、圧電素子4a,4b,4cに印加可能な大きさの一定値の電圧値を振幅指令値として出力するよう構成される。
【0047】
さらに、回転位置監視部2は、多自由度超音波モータβの各方向における目標回転速度が与えられた場合には、その目標回転速度に見合った印加交流電圧の振幅値を振幅指令値として出力することによって、回転子5の回転速度の制御が可能である。
【0048】
このとき、目標回転速度に対する適切な印加交流電圧の値が不明な場合には、回転角度計測センサ1から入力された現在回転位置の計測値によって回転子5の回転角速度を継続的に監視して、回転子5の回転速度計測値を利用したフィードバック制御によって印加交流電圧の値を調整して回転角速度の制御を可能とする。
【0049】
他方、高周波回転方向切替部3は、圧電素子4a,4b,4cに印加する交流電圧の出力を、回転子5の回転加速所要時間よりも短い周期の高周波で切替出力して、それぞれの交流電圧は、例えば、圧電素子4a,4b,4cのそれぞれに独立して出力可能に構成される。
【0050】
図3は、本発明回転位置制御装置が適用された多自由度超音波モータの動作原理を説明する図であり、同図においては、ピッチ方向の正回転を例として示すものである。
【0051】
同図に示すとおり、回転子5のピッチ方向の回転には、ピッチ方向たわみ振動発生用圧電素子4aと上下方向伸縮振動発生用圧電素子4bとに、高周波回転方向切替部3から制御された交流電圧が印加されて、このとき印加される交流電圧の位相差は、例えば90度であり、これにより誘起されるピッチ方向たわみ振動発生用圧電素子4aと上下方向伸縮振動発生用圧電素子4bとの機械振動も同様の位相差を持つ。
【0052】
そのため、90度の位相差でピッチ方向のたわみ振動と縦方向の伸縮運動が組み合わさり、固定子4の上端面は、ピッチ方向の回転駆動を表出される。この回転駆動が、固定子4と回転子5の間の摩擦力によって、回転子5に伝達され、回転子5にピッチ方向の回転が誘起される。
【0053】
ここで、例えば、まず、図3(1)は、ピッチ方向たわみ振動発生用圧電素子4aの一点鎖線矢印で図示する方向のたわみにより回転子5がピッチ方向の正方向に回転駆動されるための初期の状態を示すものであり、次いで、図3(2)は、上下方向伸縮振動発生用圧電素子4bが上下方向に伸長されて固定子4から回転子5へ回転駆動を伝達するための摩擦力を強く発生する状態であり、続いて、図3(3)は、ピッチ方向たわみ振動発生用圧電素子4aの一点鎖線で図示する方向のたわみにより回転子5が図3(1)の位置からピッチ方向の正方向に回転駆動された状態であり、引続き、図3(4)は、上下方向伸縮振動発生用圧電素子4bが縮退されて固定子4から回転子5への回転駆動力の伝達が抑えられた状態をそれぞれ示すものである。
【0054】
なお、図3(1)、(2)、(3)及び(4)は、例えば、同図に示すとおり、印加する圧電素子4a,4bを、例えば、回転子5の回転加速所要時間よりも短い周期の高周波で高速に切り替えることで順次実施されるものであり、ここで、上下方向伸縮振動発生用圧電素子4bは、図3(2)に示す上下に伸長されるときには固定子4から回転子5へ回転駆動を伝達して、一方、図3(4)に示す縮退されるときには固定子4から回転子5への回転駆動を伝達しないようにしている。また、励振させる圧電素子4a,4b,4cに印加する交流電圧の位相差の順は、予め設定された目標回転位置に応じて適宜組み合わせ可能なものである。
【0055】
同様にして、高周波回転方向切替部3は、回転子5をロール方向に回転駆動させるためには、上下方向伸縮振動発生用圧電素子4bと、ロール方向たわみ振動発生用圧電素子4cとに、90度の位相差を持たせた交流電圧をそれぞれに印加することで、固定子4に、回転子5をロール方向に回転させる回転駆動を誘起させて、ヨー方向では、ピッチ方向たわみ振動発生用圧電素子4aと、ロール方向たわみ振動発生用圧電素子4cとに印加するように構成されて、どの方向への回転においても、2つの圧電素子4aと4b,4bと4c又は4cと4aに対して印加する。
【0056】
さらに、回転の向きを逆方向にするためには、印加する2つの交流電圧の位相差の値の符号を反転させればよく、回転速度については、印加する交流電圧の振幅値によって制御可能である。
【0057】
ここで、表1は、各回転方向における各圧電素子4a,4b,4cへの印加電圧の位相差を示したものである。
【0058】
【表1】

Figure 2004364407
【0059】
さらに、高周波回転方向切替部3は、回転角度計測センサ1から入力された現在回転位置の回転角度から予め設定された目標回転位置の目標角度に到達するために、より多くの回転制御を必要とする回転方向に対して、他の回転方向よりも優先的な交流電圧の印加を行うよう構成されてもよく、限られた数の圧電素子4a,4b,4cを回転速度が要求される方向の回転に有効利用することが可能である。
【0060】
加えて、高周波回転方向切替部3から圧電素子4a,4b,4cに交流電圧が印加することで発生する機械的振動によって、多自由度超音波モータβの回転子5の回転駆動が誘起されて、例えば、各圧電素子4a,4b,4cの固有振動数は、20kHzを超えており、各圧電素子4a,4b,4cを振動させるために、高周波回転方向切替部3から、各圧電素子4a,4b,4cの固有振動数と同じ値の交流電圧の周波数を印加するよう機能構成されることで、エネルギー効率が高くなる。
【0061】
(方法例)
続いて、以上のように構成された回転位置制御装置αを用いて、多自由度超音波モータβの回転子5の回転位置の制御を行う場合に適応される多自由度超音波モータの回転位置制御方法の具体例を説明する。
【0062】
図4は、本発明の多自由度超音波モータの回転位置制御方法を説明するためのシーケンス図である。
【0063】
同図に示すように、本形態例では、まず、回転角度計測センサ1において、多自由度超音波モータβの回転運動に伴う回転子5の現在回転位置を計測し(ST1)、次いでこの現在回転位置の計測値を出力された回転位置監視部2において、回転子5を、予め設定された目標回転位置に到達させるべく、固定子4を構成する圧電素子4a,4b,4cに印加すべき交流電圧の振幅値を計算する(ST2)。
【0064】
回転位置監視部2にて計算された振幅値は、振幅指令値として高周波回転方向切替部3に出力されて(ST3)、続いて、高周波回転方向切替部3において振幅指令値と同じ振幅を持ち、回転子5を回転させるために必要な位相差を持たせた複数相の交流電圧を圧電素子4a,4b,4cに対して印加する(ST4)ことにより、回転子5の回転方向の制御を為す。
【0065】
ここで、回転角度計測センサ1による現在回転位置の計測(ST1)は、例えば、予め設定された周期で回転子5の現在回転位置を計測(ST1´)して、計測された現在回転位置が目標回転位置に到達したかどうか確認して、到達した場合には処理を終了する一方、到達していない場合は、再度計測された現在回転位置を回転位置監視部2に出力する等の処理を繰り返す(ST5)ようにしても構わない。
【0066】
また、振幅値の計算(ST2)は、回転角度計測センサ1から入力された現在回転位置から予め設定された目標回転位置までの到達に必要な回転角を、例えば、圧電素子4a,4b,4cの励振される図2に示した座標軸の各軸をそれぞれ軸回転するピッチ方向、ロール方向及びヨー方向の回転方向の成分に分解して、これら回転方向の成分別に計算する。
【0067】
加えて、振幅値の計算(ST2)は、回転子5の回転駆動に対して、予め目標回転角速度が設定された場合に、現在回転位置の計測を継続的に行う(ST1,ST1´,・・・)回転角度計測センサからの出力を継続的に監視して、現在回転位置の測定値から得られる回転角速度と計算された振幅値とを比較して、次に印加する交流電圧の振幅値を目標回転速度に達するように計算するようにしてもよい。
【0068】
次に、図5は、本実施形態例における交流電圧の印加を説明するフロー図である。同図は、図4に示した交流電圧の印加(ST4)を詳細に説明するためのものである。
【0069】
同図に示すとおり、高周波回転方向切替部3により行われる交流電圧の印加(ST4)は、まず、図4に示した回転位置監視部2からの振幅指令値の出力(ST3)により、ピッチ方向、ロール方向、ヨー方向の各成分方向の振幅指令値を受信する。
【0070】
振幅指令値の受信(ST3)に引続き、本形態例では、受信した振幅指令値のそれぞれ対応する、互いに直交して異なる仮想三次元座標3軸方向の制御として、例えば、ピッチ方向回転制御(ST4a)、ロール方向回転制御(ST4b)、ヨー方向回転制御(ST4c)を行うものであり、それぞれの実施順は適宜設定されて構わず、これら仮想三次元座標3軸方向の回転制御(ST4a,ST4b,ST4c)は、それぞれが回転子5の回転加速所要時間よりも短い周期の高周波で切り替える。
【0071】
また、ピッチ方向回転制御(ST4a)は、ピッチ方向たわみ振動発生用圧電素子4aと上下方向伸縮振動発生用圧電素子4bとに交流電圧を印加するものであり、同様にして、ロール方向回転制御(ST4b)は、上下方向伸縮振動発生用圧電素子4bとロール方向たわみ振動発生用圧電素子4cに、ヨー方向回転制御(ST4c)は、ロール方向たわみ振動発生用圧電素子4cとピッチ方向たわみ振動発生用圧電素子4aとにそれぞれ交流電圧を印加するものである。
【0072】
このとき、それぞれ2つの圧電素子(4aと4b,4bと4c,4cと4a)に印加する交流電圧は、90度の位相差を持たせたものであり、印加する2つの圧電素子(4aと4b,4bと4c,4cと4a)、位相及び振幅指令値を高速に切り替えることで、回転子5を目標回転位置に到達するまで行う。
【0073】
なお、同図においては、まず、ピッチ方向回転制御(ST4a)、次いで、ロール方向回転制御(ST4b)、引続き、ヨー方向回転制御(ST4c)を順次行うことを示したが、高周波回転方向切替部3により圧電素子4a,4b,4cに対して交流電圧の印加(ST4)が行われるときに、現在回転位置の計測(ST1´)で得た計測値を高周波回転方向切替部3に出力することで、交流電圧の印加(ST5)は、計測された現在回転位置の回転角度から目標回転位置の目標角度に到達するために、より多くの回転制御が必要な回転方向について、他の回転方向よりも優先的な制御を行うことができる。
【0074】
即ち、ピッチ方向回転制御(ST4a)、ロール方向回転制御(ST4b)、ヨー方向回転制御(ST4c)の順番は優先される順であって構わず、また、予め設定された順であっても構わず、全ての方向の回転制御が終了したときには、ST4の処理を終了して、再度、振幅指令値の受信(ST3)を持つ。
【0075】
なお、本実施例の回転制御(ST4a,ST4b,ST4c)は、それぞれのその切替を一定時間ごとに行い、回転制御(ST4a,ST4b,ST4c)方向の切替時間は、適用される多自由度超音波モータβの加速特性を考慮して決定される。
【0076】
例えば、多自由度超音波モータβの各圧電素子4a,4b,4cに一定振幅の交流電圧を印加し始めてから、回転子5の回転速度が一定の速度に安定するまでの時間が10数ミリ秒である場合には、高周波回転方向切替部3における回転方向の切替時間は5ミリ秒よりも小さな値が好ましい。
【0077】
続いて、図6は、本実施形態例を適用される回転子頭頂点の回転駆動における回転軌跡を示す図である。
【0078】
同図に示すように、例えば、その回転軸を軸Aとする回転駆動を誘起される場合に、球状の回転子5の頭頂点5aは、以上のような回転制御により、ロール方向、ピッチ方向及びヨー方向の回転駆動を誘起される固定子4の上端面において、ロール方向、ピッチ方向及びヨー方向の仮想三次元座標3軸のそれぞれ軸回転方向の例えば、同図の一点鎖線矢印で示すような微小回転駆動の合成経路Bとして駆動される。
【0079】
しかしながら、本発明方法に適用される回転方向の切替周波数は、十分に高いために、同図に図示するほどの大きさのギザギザな形状の経路Bではなく、点線で示すような円形の頭頂点5aの回転軌跡Cに近いものとなる。
【0080】
以上、本発明の実施の形態につき、本発明を多自由度超音波モータαに適用した場合を例に挙げて説明したが、本発明は、必ずしも上述した手段にのみ限定されるものではなく、後述する効果を有する範囲内において、適宜、変更実施することが可能なものである。
【0081】
【発明の効果】
以上、詳細に説明したように、本発明によれば、回転子と固定子間の摩擦力の物理学的特性の複雑さや、多自由度超音波モータの長時間の運転に伴う変化に起因する悪影響や、多自由度超音波モータ間の個体差の影響を受けない、多自由度超音波モータの回転位置制御が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る装置例としての多自由度超音波モータの回転位置制御装置の内部構成図である。
【図2】同上した回転位置制御装置が適用される多自由度超音波モータの外観斜視図である。
【図3】同上した回転位置制御装置が適用された多自由度超音波モータの動作原理を説明する図である。
【図4】本発明の多自由度超音波モータの回転位置制御方法を説明するためのシーケンス図である。
【図5】同上した回転位置制御方法における交流電圧の印加を説明するフロー図である。
【図6】同上した回転位置制御方法が適用される多自由度超音波モータの回転子頭頂点の回転駆動における回転軌跡を示す図である。
【符号の説明】
α…回転位置制御装置
β…多自由度超音波モータ
1…回転角度計測センサ
2…回転位置監視部
3…高周波回転方向切替部
4…固定子
4a…ピッチ方向たわみ振動発生用圧電素子
4b…上下方向伸縮振動発生用圧電素子
4c…ロール方向たわみ振動発生用圧電素子
5…回転子
5a…頭頂点
A…軸
B…ロール方向、ピッチ方向、ヨー方向の回転駆動の合成経路
C…頭頂点の回転軌跡[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor, and more particularly, to control the rotational position of a rotor by applying an AC voltage to a piezoelectric element of a stator to generate a desired rotational movement. The present invention relates to a rotation position control method for a multi-degree-of-freedom ultrasonic motor applied to the above-described operation and a rotation position control device directly used for implementing the method.
[0002]
[Prior art]
2. Description of the Related Art In recent years, it has been expected that a multi-degree-of-freedom ultrasonic motor that is space-saving, has a high torque, and has a high level of silence, is used as an actuator applied to a part that requires high torque and high degree of freedom.
[0003]
For example, the conventional one-degree-of-freedom rotary type is used as an indirect mechanism of a humanoid robot, particularly a mechanism that needs to vertically support a heavy object so that the posture can be changed in multiple degrees of freedom, such as a neck part. The application of a multi-degree-of-freedom ultrasonic motor is expected to replace the electromagnetic servo motor.
[0004]
Here, the multi-degree-of-freedom ultrasonic motor includes, for example, a stator having a configuration in which a plurality of piezoelectric elements having different vibration directions are stacked, and a spherical rotor closely attached to the stator. When alternating currents of the same frequency and different phases are applied to the piezoelectric element of the stator of the ultrasonic motor, natural vibrations are excited in the piezoelectric element, and the rotor performs three degrees of freedom rotation by a combination of these natural vibration modes. .
[0005]
As described above, in order to appropriately drive the multi-degree-of-freedom ultrasonic motor that performs three-degree-of-freedom rotation, appropriate control means is required. As such control means, each piezoelectric element constituting the stator is used. There has been proposed a method of controlling a phase difference of an AC voltage applied to an AC power supply. In the above method, the control signal is determined by using a motion model that holds information on an angle value in the rotation direction of the rotor with respect to a vector value formed by a phase difference value of each input signal.
[0006]
The details of the multi-degree-of-freedom ultrasonic motor rotation position control are described in Non-Patent Document 1 below.
[0007]
[Non-patent document 1]
K. Takemura, T .; Maeno, "Control of Multi-DOF Ultrasonic Motor using Neural Network based Inverse Model", Proceedings of 2002, 2002, International Conference of International Conference of International Conferences.
[0008]
[Problems to be solved by the invention]
By the way, the physical characteristics of the frictional force on the surface where the rotor and the stator of the multi-degree-of-freedom ultrasonic motor are in contact are complicated and vary depending on various factors. Therefore, it is very difficult to estimate the motion model required for controlling the rotation direction, and to apply the control using the motion model to a long-time operation, it is necessary to use a multi-degree-of-freedom ultrasonic motor during operation. The exercise model must be updated.
[0009]
However, it is difficult to efficiently update the motion model expressing multi-degree-of-freedom motion in real time, and multi-degree-of-freedom ultrasonic motors have individual differences in the physical characteristics between the rotor and stator. Therefore, there is a problem that a motion model must be prepared for each multi-degree-of-freedom ultrasonic motor.
[0010]
Here, the main objects to be solved by the present invention are as follows.
[0011]
That is, a first object of the present invention is to provide a method and apparatus for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor capable of controlling the rotational positions of three degrees of freedom of a multi-degree-of-freedom ultrasonic motor without using a motion model. It will not be provided.
[0012]
A second object of the present invention is to provide a multi-degree-of-freedom ultrasonic motor capable of operating for a long time and expressing multiple degrees of freedom without being affected by changes in characteristics of a frictional force between a rotor and a stator. And a method and apparatus for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor.
[0013]
A third object of the present invention is to provide a method and apparatus for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor that can be applied regardless of individual differences between the multi-degree-of-freedom ultrasonic motors.
[0014]
Other objects of the present invention will become apparent from the description of the specification, drawings, and particularly from the claims.
[0015]
[Means for Solving the Problems]
First, in the method of the present invention, first, the current rotational position of the rotor associated with the rotational motion is measured, and then the stator is moved from the measured value so that the rotor reaches a preset target rotational position. Calculate the amplitude value of the AC voltage to be applied to the piezo element to be configured, and then give the piezo element the same amplitude value as the amplitude value and the phase difference necessary to rotate the rotor. A characteristic configuration technique of controlling the rotation direction of the rotor by applying a plurality of phases of AC voltages.
[0016]
On the other hand, in the device of the present invention, the rotation angle measurement sensor that measures the current rotation position of the rotor accompanying the rotation motion, and the rotor is set in advance from the measurement value of the current rotation position measured by the rotation angle measurement sensor. A rotation position monitoring unit that calculates the amplitude value of the AC voltage applied to the piezoelectric element and outputs the amplitude value as an amplitude command value so as to reach the target rotation position, and the amplitude input from the rotation position monitoring unit. A high frequency rotation direction switching unit that outputs to the piezoelectric element a plurality of AC voltages having the same amplitude value as the command value and having a phase difference necessary for rotating the rotor. Take configuration steps.
[0017]
More specifically, in solving the problem, the present invention has been made to achieve the above object by adopting new characteristic constitution means ranging from a superordinate concept to a subordinate concept listed below. You.
[0018]
That is, a first feature of the method of the present invention is that a stator constituted by a plurality of stacked piezoelectric elements that excite a plurality of natural vibrations having the same natural frequency when an AC voltage having a different phase is applied, And a rotor that is driven to rotate in an arbitrary direction by the natural vibration of the stator.In a multi-degree-of-freedom ultrasonic motor, a piezoelectric element of the stator is used to generate a desired rotational motion. A method of controlling the rotational position of the rotor by applying the AC voltage to the rotor, first measuring the current rotational position of the rotor associated with the rotational movement, then, from the measured value, the rotation In order to make the stator reach a preset target rotation position, the amplitude value of the AC voltage to be applied to the piezoelectric element constituting the stator is calculated, and then, for the piezoelectric element, the amplitude value is calculated. Same as A multi-degree-of-freedom ultrasonic motor having a width value and controlling the rotation direction of the rotor by applying a plurality of phases of AC voltages having a phase difference necessary for rotating the rotor. The present invention resides in adopting a configuration of a rotation position control method.
[0019]
According to a second aspect of the method of the present invention, the application of the AC voltages of the plurality of phases in the first aspect of the present invention excites the natural vibrations in three directions of virtual three-dimensional coordinates which are orthogonal to each other. The output of the AC voltage to the piezoelectric element is switched at a high frequency having a cycle shorter than the rotation acceleration required time of the rotor, and the natural vibration of the virtual three-dimensional coordinate three-axis direction is applied to each of the plurality of piezoelectric elements. The present invention resides in adopting a configuration of a rotation position control method for a multi-degree-of-freedom ultrasonic motor, which is obtained by applying the AC voltage for exciting either one.
[0020]
According to a third aspect of the method of the present invention, the application of the multi-phase AC voltage in the first or second aspect of the above-described method of the present invention is performed by applying a z-axis to a position vertically above a contact end face of the stator with the rotor. A roll-direction flexural vibration generating piezoelectric element that rotates about the x-axis, and that excites the natural vibrations in the three-dimensional virtual three-dimensional coordinate system, which comprises x, y, and z axes that are orthogonal to each other. The piezoelectric element for generating a vertical expansion / contraction vibration that expands / contracts in the z-axis direction and the piezoelectric element for generating a flexural vibration in a pitch direction that rotates about the y-axis are repeated until the target rotation position is reached. The present invention is to adopt a configuration of a rotation position control method for a multi-degree-of-freedom ultrasonic motor, which controls the rotation direction by applying the AC voltage and synthesizing the natural vibration to be excited.
[0021]
A fourth feature of the method of the present invention is that the calculation of the amplitude value in the third feature of the method of the present invention is performed by using the rotation required to reach the target rotation position from the current rotation position on the virtual three-dimensional coordinates. The angle is decomposed into components in a pitch direction, a roll direction, and a yaw direction in which the x, y, and z axes excited by the piezoelectric element are respectively rotated, and the amplitude value of the AC voltage is divided into three components. The present invention resides in adopting a configuration of a rotational position control method of a multi-degree-of-freedom ultrasonic motor, which is calculated for each component in the rotational direction.
[0022]
A fifth feature of the method of the present invention is that, in the third or fourth feature of the above-described method of the present invention, the application of the AC voltages of the plurality of phases corresponds to the virtual three-dimensional coordinate three-dimensional natural vibrations which are orthogonal to each other. When excited, the roll-direction bending vibration generating piezoelectric element that bends in the direction of rotating the x-axis, the vertical stretching vibration-generating piezoelectric element that expands and contracts in the z-axis direction, and rotates the y-axis. The AC voltage is applied to each of the two types of piezoelectric elements by giving a phase difference of 90 degrees to the two types of piezoelectric elements among the pitch direction bending vibration generating piezoelectric elements that bend in the direction. A multi-degree-of-freedom ultrasonic motor, wherein the two types of piezoelectric elements to be applied and the phase and amplitude of the AC voltage applied to the piezoelectric elements are switched to cause the rotor to reach the target rotational position. of Rolling in the configuration adopted position control method.
[0023]
A sixth feature of the method of the present invention is that the calculation of the amplitude value in the first, second, third, fourth or fifth feature of the method of the present invention is performed in advance with respect to the rotational driving of the rotor. When the target rotational angular velocity is set, by continuously measuring the rotational position, the rotational angular velocity of the rotor is monitored in association with the AC voltage applied to the piezoelectric element. By comparing the rotational angular velocity and the AC voltage, the amplitude value of the AC voltage to be applied next is calculated so as to reach the target rotational speed. In configuration adoption.
[0024]
A seventh feature of the method of the present invention is that the control of the rotation direction of the rotor according to the first, second, third, fourth, fifth or sixth feature of the method of the present invention is performed by changing the rotation direction of the current rotational position. In order to reach the target angle of the target rotation position from the rotation angle, for a rotation direction that requires more rotation control, by performing preferential control over other rotation directions, a multi-degree-of-freedom ultrasonic motor The present invention resides in adopting a configuration of a rotation position control method.
[0025]
An eighth feature of the method of the present invention is that the application of the multi-phase AC voltage according to the first, second, third, fourth, fifth, sixth or seventh feature of the method of the present invention is performed by the piezoelectric device. The present invention resides in the configuration of a method of controlling the rotational position of a multi-degree-of-freedom ultrasonic motor, in which the AC voltage is applied to the piezoelectric element with the same value as the natural frequency of the element as the frequency.
[0026]
On the other hand, the first feature of the device of the present invention is that a stator constituted by a plurality of stacked piezoelectric elements that excite a plurality of natural vibrations having the same natural frequency when an AC voltage having a different phase is applied, And a rotor that is rotatably driven in an arbitrary direction by the natural vibration of the stator, and a multi-degree-of-freedom ultrasonic motor configured to generate a desired rotational motion in the multi-degree-of-freedom ultrasonic motor. A rotation position control device for a degree ultrasonic motor, comprising: a rotation angle measurement sensor for measuring a current rotation position of the rotor associated with the rotation motion; and a measurement of the current rotation position measured by the rotation angle measurement sensor. In order to cause the rotor to reach a preset target rotation position from the value, a rotation position at which the amplitude value of the AC voltage applied to the piezoelectric element is calculated and the amplitude value is output as an amplitude command value The viewing unit and the plurality of AC voltages having the same amplitude value as the amplitude command value input from the rotation position monitoring unit and having a phase difference necessary for rotating the rotor, And a high-frequency rotation direction switching unit for outputting the rotation position of the multi-degree-of-freedom ultrasonic motor.
[0027]
A second feature of the present invention device is that the high-frequency rotation direction switching unit in the first feature of the present invention device outputs the AC voltage at a high frequency having a cycle shorter than the required rotation acceleration time of the rotor. Another object of the present invention is to adopt a configuration of a rotational position control device for a multi-degree-of-freedom ultrasonic motor, which is configured to be capable of switching output.
[0028]
A third feature of the device of the present invention is that the high-frequency rotation direction switching unit in the first or second feature of the device of the present invention is arranged such that a z-axis is a position vertically above a contact end face of the stator with the rotor. A piezoelectric element for generating a flexural vibration in a roll direction that excites the natural vibrations in three directions of virtual three-dimensional coordinates composed of x, y, and z axes that are orthogonal to each other and bends in a direction in which the x axis is axially rotated; The AC voltage is applied to each of the piezoelectric element for generating a vertical expansion / contraction vibration that expands and contracts in the z-axis direction and the piezoelectric element for generating a bending vibration in a pitch direction that bends in the direction of rotating the y-axis. The present invention resides in adopting a configuration of a rotational position control device of a multi-degree-of-freedom ultrasonic motor, which is connected as possible.
[0029]
A fourth feature of the present invention device is the rotation feature monitor according to the third feature of the present invention device, wherein the rotation position monitoring unit performs rotation necessary to reach the target rotation position from the current rotation position on the virtual three-dimensional coordinates. The angle is decomposed into components in rotation directions of a roll direction, a pitch direction, and a yaw direction that respectively rotate the x, y, and z axes excited by the piezoelectric element, and the amplitude value of the AC voltage is divided into three components. A rotational position control device for a multi-degree-of-freedom ultrasonic motor, which is configured so as to be capable of calculating for each component in the rotational direction and outputting the calculated amplitude values as the three amplitude command values to the high-frequency rotational direction switching unit. Configuration.
[0030]
A fifth feature of the device of the present invention is that the rotation position monitoring unit according to the fourth feature of the device of the present invention is configured such that the rotor rotates the target rotation in each of the roll direction, the pitch direction, and the yaw direction. When the position reaches the position, a voltage value of 0 V is output as the amplitude command value in the rotation direction, and when a further rotation angle is required to the target rotation position, the voltage is set in advance to the piezoelectric element. Another aspect of the present invention resides in the adoption of a configuration of a rotational position control device for a multi-degree-of-freedom ultrasonic motor, which is configured to output the output voltage value as the amplitude command value.
[0031]
A sixth feature of the device of the present invention is that the high-frequency rotation direction switching unit according to the third, fourth, or fifth feature of the device of the present invention is configured such that the high-frequency rotation direction switching unit includes A functional configuration for inducing a rotational drive for rotating the rotor in the roll direction on the stator by applying the AC voltage having a phase difference of 90 degrees to the generating piezoelectric element, respectively. Another object of the present invention is to adopt a configuration of a rotational position control device for a multi-degree-of-freedom ultrasonic motor.
[0032]
A seventh feature of the device of the present invention is that the high-frequency rotation direction switching unit according to the third, fourth, fifth, or sixth feature of the device of the present invention is arranged such that the high-frequency rotation direction switching unit includes By applying each of the AC voltages having a phase difference of 90 degrees to the piezoelectric element for generating directional expansion and contraction vibration, a rotational drive for rotating the rotor in the pitch direction is induced on the stator. The present invention resides in adopting a configuration of a rotational position control device for a multi-degree-of-freedom ultrasonic motor having such a functional configuration.
[0033]
An eighth feature of the device of the present invention resides in that the high-frequency rotation direction switching unit in the third, fourth, fifth, sixth or seventh feature of the above-described device of the present invention is configured such that A rotational drive for rotating the rotor in the yaw direction on the stator by applying the AC voltage having a phase difference of 90 degrees to the roll direction flexural vibration generating piezoelectric element. And a rotation position control device for a multi-degree-of-freedom ultrasonic motor, which is configured so as to induce the vibration.
[0034]
A ninth feature of the device of the present invention is that the high-frequency rotation direction switching unit in the sixth, seventh, or eighth feature of the device of the present invention inverts a 90-degree phase difference between the two AC voltages. Another aspect of the present invention resides in the adoption of a rotation position control device for a multi-degree-of-freedom ultrasonic motor, which is functionally configured to apply the AC voltage that induces a negative rotation drive to the rotor.
[0035]
A tenth feature of the device of the present invention is that the rotation position monitoring unit in the first, second, third, fourth, fifth, sixth, seventh, eighth or ninth feature of the above-described device of the present invention When a target rotational angular velocity is set in advance for the rotational driving of the rotor, the measured value output from the rotational angle measurement sensor corresponds to the AC voltage output from the high frequency rotation direction switching unit. The rotational position control of the multi-degree-of-freedom ultrasonic motor, which is configured so as to be continuously held and configured so that the amplitude value of the AC voltage applied to the piezoelectric element can be adjusted to reach the target rotational speed. The configuration of the device is adopted.
[0036]
An eleventh feature of the device of the present invention is the high-frequency rotation according to the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, or tenth feature of the device of the present invention. The direction switching unit has a higher priority than the other rotation directions for the rotation direction that requires more rotation control to reach the target angle of the target rotation position from the rotation angle of the current rotation position. The present invention resides in adopting a configuration of a rotational position control device for a multi-degree-of-freedom ultrasonic motor, which is functionally configured to apply the AC voltage.
[0037]
The twelfth feature of the device of the present invention is the same as the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, or eleventh feature of the device of the present invention. The high-frequency rotation direction switching unit is configured to apply a frequency of the AC voltage having the same value as the natural frequency of the piezoelectric element to the piezoelectric element. In configuration adoption.
[0038]
BEST MODE FOR CARRYING OUT THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which an example of an apparatus and an example of a method are applied to a multi-degree-of-freedom ultrasonic motor having a spherical rotor. I do.
[0039]
(Example of device)
First, FIG. 1 is an internal configuration diagram of a rotation position control device of a multi-degree-of-freedom ultrasonic motor as an example of a device according to an embodiment of the present invention, and FIG. FIG. 3 is an external perspective view of the multi-degree-of-freedom ultrasonic motor, in which coordinate axes shown in FIG. 2 are orthogonally different x and x, respectively, where the z-axis is a vertical direction above a contact end face of the stator 4 with the rotor 5. A virtual three-dimensional coordinate system including the y and z axes is provided.
[0040]
The rotational position control device α according to the present example is applied to, for example, a multi-degree-of-freedom ultrasonic motor β as shown in FIG. 2, and the multi-degree-of-freedom ultrasonic motor β is unique when an AC voltage having a different phase is applied. A stator 4 composed of a plurality of stacked piezoelectric elements for exciting a plurality of natural vibrations having the same frequency, and holding a load (not shown) and rotating in an arbitrary direction by the natural vibration of the stator 4 And a driven rotor 5.
[0041]
As shown in the figure, the stator 4 firstly includes a pitch-direction bending vibration generating piezoelectric element 4a that bends in a pitch direction in a direction of axial rotation around the y-axis when an AC voltage is applied, It comprises a piezoelectric element 4b for generating vertical stretching vibration that expands and contracts in the positive and negative directions of the z-axis, and a piezoelectric element 4c for generating bending vibration in the roll direction that bends in the roll direction in which the axis rotates about the x-axis.
[0042]
On the other hand, the rotor 5 is, for example, spherical, and is mounted on the upper end surface of the stator 4, and the multi-degree-of-freedom ultrasonic motor β A multi-degree-of-freedom ultrasonic motor that is capable of generating a high torque capable of maintaining the rotational position at that time without applying a voltage to each of the piezoelectric elements 4a, 4b, and 4c, and performing a rotational motion. Even if the voltage applied to the piezoelectric elements 4a, 4b, 4c of β is suddenly dropped to 0 V, for example, the rotor 5 has a characteristic that the rotation of the rotor 5 is stopped within ten and several milliseconds.
[0043]
On the other hand, as shown in FIG. 2, the rotation position control device α of the present invention includes a rotation angle measurement sensor 1 for measuring a current rotation position of the rotor 5 associated with the rotation motion, and a current rotation measured by the rotation angle measurement sensor 1. The amplitude value of the AC voltage applied to the piezoelectric elements 4a, 4b, 4c is calculated from the measured position value so that the rotor 5 reaches the preset target rotation position, and this amplitude value is output as an amplitude command value. A rotational position monitor 2 and a plurality of AC voltages having the same amplitude value as the amplitude command value input from the rotational position monitor 2 and having a phase difference necessary for rotating the rotor 5 are applied to the piezoelectric element. 4a, 4b, and 4c.
[0044]
Here, the rotation angle measurement sensor 1, for example, can measure the rotation position of the rotor 5 at any time, and uses the measured rotation position, which is a measurement value indicating the measured current rotation position of the rotor 5, as the rotation position. The monitoring unit 2 and the high frequency rotation direction switching unit 3 can be output at any time.
[0045]
On the other hand, the rotation position monitoring unit 2 calculates the rotation angles required to reach the preset target rotation position from the current rotation position input from the rotation angle measurement sensor 1 as x, y, z shown in FIG. Each coordinate axis of the coordinates is decomposed into rotational components of a roll direction, a pitch direction, and a yaw direction for rotating the axes, and the amplitude values of the AC voltage applied to the piezoelectric elements 4a, 4b, and 4c are divided into three rotational directions. Each of the components is calculated, and the calculated amplitude values are output to the high frequency rotation direction switching unit 3 as three amplitude command values.
[0046]
When the rotor 5 reaches the target rotation position in each of the roll direction, the pitch direction, and the yaw direction, the rotation position monitoring unit 2 outputs a voltage as an amplitude command value for the rotation direction. When a value of 0 V is output and the target rotational position is not reached, a constant voltage value of a magnitude that can be applied to the piezoelectric elements 4a, 4b, and 4c is output as an amplitude command value.
[0047]
Further, when a target rotation speed in each direction of the multi-degree-of-freedom ultrasonic motor β is given, the rotation position monitoring unit 2 outputs an amplitude value of the applied AC voltage corresponding to the target rotation speed as an amplitude command value. By doing so, the rotation speed of the rotor 5 can be controlled.
[0048]
At this time, if an appropriate value of the applied AC voltage with respect to the target rotational speed is unknown, the rotational angular speed of the rotor 5 is continuously monitored based on the measured value of the current rotational position input from the rotational angle measurement sensor 1. The value of the applied AC voltage is adjusted by feedback control using the measured value of the rotation speed of the rotor 5 to control the rotation angular speed.
[0049]
On the other hand, the high-frequency rotation direction switching unit 3 switches and outputs the output of the AC voltage applied to the piezoelectric elements 4a, 4b, and 4c at a high frequency having a cycle shorter than the rotation acceleration required time of the rotor 5, and outputs the AC voltage. Is configured to be capable of outputting independently to each of the piezoelectric elements 4a, 4b, 4c, for example.
[0050]
FIG. 3 is a diagram for explaining the operation principle of the multi-degree-of-freedom ultrasonic motor to which the rotational position control device of the present invention is applied. In FIG. 3, a forward rotation in the pitch direction is shown as an example.
[0051]
As shown in the drawing, the rotation of the rotor 5 in the pitch direction includes an alternating current controlled by the high frequency rotation direction switching unit 3 with the pitch direction bending vibration generating piezoelectric element 4a and the vertical direction expansion / contraction vibration generating piezoelectric element 4b. A voltage is applied, and the phase difference of the applied AC voltage at this time is, for example, 90 degrees, and the induced piezoelectric vibration element 4a for generating the bending vibration in the pitch direction and the piezoelectric element 4b for generating the expansion / contraction vibration in the vertical direction are induced by this. Mechanical vibration also has a similar phase difference.
[0052]
Therefore, the flexural vibration in the pitch direction and the expansion and contraction movement in the vertical direction are combined with a phase difference of 90 degrees, and the upper end surface of the stator 4 is exposed to the rotation in the pitch direction. This rotational drive is transmitted to the rotor 5 by the frictional force between the stator 4 and the rotor 5, and rotation in the pitch direction is induced in the rotor 5.
[0053]
Here, for example, first, FIG. 3A shows that the rotor 5 is driven to rotate in the positive direction of the pitch direction by bending in the direction shown by the one-dot chain arrow in the pitch direction bending vibration generating piezoelectric element 4a. FIG. 3B shows the initial state, and FIG. 3B shows the friction for transmitting the rotational drive from the stator 4 to the rotor 5 when the vertical expansion / contraction vibration generating piezoelectric element 4b is extended in the vertical direction. 3 (3) shows that the rotor 5 is moved from the position shown in FIG. 3 (1) by bending in the direction indicated by a dashed line in the pitch direction bending vibration generating piezoelectric element 4a. FIG. 3D shows a state in which the piezoelectric element 4 b for generating the vertical stretching vibration is contracted and the rotational driving force is transmitted from the stator 4 to the rotor 5. Indicating the state in which is suppressed A.
[0054]
3 (1), (2), (3) and (4), for example, as shown in FIG. 3, the applied piezoelectric elements 4a, 4b are, for example, shorter than the time required for the rotational acceleration of the rotor 5. The piezoelectric element 4b for generating vertical stretching vibration is rotated from the stator 4 when it is vertically extended as shown in FIG. 3 (2). The rotational drive is transmitted to the stator 5, while the rotational drive from the stator 4 to the rotor 5 is not transmitted during the contraction shown in FIG. The order of the phase difference of the AC voltage applied to the piezoelectric elements 4a, 4b, 4c to be excited can be appropriately combined in accordance with a preset target rotation position.
[0055]
Similarly, in order to rotate the rotor 5 in the roll direction, the high-frequency rotation direction switching unit 3 sets the piezoelectric element 4b for generating expansion / contraction vibration in the up-down direction and the piezoelectric element 4c for generating flexural vibration in the roll direction into 90. By applying an AC voltage having a phase difference of each degree, a rotational drive for rotating the rotor 5 in the roll direction is induced in the stator 4, and in the yaw direction, a piezoelectric element for generating flexural vibration in the pitch direction is generated. It is configured to apply to the element 4a and the roll-direction bending vibration generating piezoelectric element 4c, and to apply to the two piezoelectric elements 4a and 4b, 4b and 4c or 4c and 4a in any direction of rotation. I do.
[0056]
Further, in order to reverse the direction of rotation, the sign of the value of the phase difference between the two applied AC voltages may be inverted, and the rotation speed can be controlled by the amplitude value of the applied AC voltage. is there.
[0057]
Here, Table 1 shows the phase difference of the voltage applied to each piezoelectric element 4a, 4b, 4c in each rotation direction.
[0058]
[Table 1]
Figure 2004364407
[0059]
Furthermore, the high-frequency rotation direction switching unit 3 needs more rotation control to reach a preset target rotation position target angle from the current rotation position rotation angle input from the rotation angle measurement sensor 1. The rotation direction may be configured such that an AC voltage is applied with a higher priority than the other rotation directions, and a limited number of piezoelectric elements 4a, 4b, 4c are driven in a direction requiring a rotation speed. It can be used effectively for rotation.
[0060]
In addition, the rotational drive of the rotor 5 of the multi-degree-of-freedom ultrasonic motor β is induced by mechanical vibration generated when an AC voltage is applied from the high frequency rotation direction switching unit 3 to the piezoelectric elements 4a, 4b, 4c. For example, the natural frequency of each of the piezoelectric elements 4a, 4b, 4c exceeds 20 kHz, and the high-frequency rotation direction switching unit 3 sends the piezoelectric elements 4a, 4a, 4c to vibrate the piezoelectric elements 4a, 4b, 4c. By configuring so as to apply a frequency of an AC voltage having the same value as the natural frequency of 4b, 4c, energy efficiency is increased.
[0061]
(Example of method)
Subsequently, the rotation of the multi-degree-of-freedom ultrasonic motor adapted to control the rotational position of the rotor 5 of the multi-degree-of-freedom ultrasonic motor β by using the rotational position control device α configured as described above. A specific example of the position control method will be described.
[0062]
FIG. 4 is a sequence diagram for explaining the rotational position control method of the multi-degree-of-freedom ultrasonic motor of the present invention.
[0063]
As shown in the figure, in the present embodiment, first, the rotation angle measurement sensor 1 measures the current rotational position of the rotor 5 associated with the rotational movement of the multi-degree-of-freedom ultrasonic motor β (ST1), and then measures the current rotational position. In the rotation position monitoring unit 2 to which the measured value of the rotation position has been output, the rotor 5 should be applied to the piezoelectric elements 4a, 4b, 4c constituting the stator 4 in order to reach the preset target rotation position. The amplitude value of the AC voltage is calculated (ST2).
[0064]
The amplitude value calculated by the rotation position monitoring unit 2 is output to the high frequency rotation direction switching unit 3 as an amplitude command value (ST3), and subsequently, the high frequency rotation direction switching unit 3 has the same amplitude as the amplitude command value. By applying a plurality of AC voltages having a phase difference necessary for rotating the rotor 5 to the piezoelectric elements 4a, 4b, 4c (ST4), the rotation direction of the rotor 5 is controlled. Do
[0065]
Here, the measurement of the current rotation position by the rotation angle measurement sensor 1 (ST1) is performed, for example, by measuring the current rotation position of the rotor 5 at a preset cycle (ST1 '), and determining the measured current rotation position. It is checked whether or not the target rotational position has been reached. If the target rotational position has been reached, the processing is terminated. If not, processing such as outputting the measured current rotational position again to the rotational position monitoring unit 2 is performed. The process may be repeated (ST5).
[0066]
The calculation of the amplitude value (ST2) is performed by calculating the rotation angle required to reach from a current rotation position input from the rotation angle measurement sensor 1 to a preset target rotation position, for example, the piezoelectric elements 4a, 4b, 4c. Each of the coordinate axes shown in FIG. 2 to be excited is decomposed into components in the rotation directions of the pitch direction, the roll direction, and the yaw direction, and the calculation is performed for each of these rotation direction components.
[0067]
In addition, in the calculation of the amplitude value (ST2), the current rotation position is continuously measured when the target rotation angular velocity is set in advance for the rotation driving of the rotor 5 (ST1, ST1 ',...). ..) The output from the rotation angle measurement sensor is continuously monitored, the rotation angular velocity obtained from the measured value of the current rotation position is compared with the calculated amplitude value, and the amplitude value of the AC voltage to be applied next is calculated. May be calculated so as to reach the target rotation speed.
[0068]
Next, FIG. 5 is a flowchart illustrating application of an AC voltage in the present embodiment. This figure is for describing in detail the application of the AC voltage (ST4) shown in FIG.
[0069]
As shown in the figure, the application of the AC voltage (ST4) performed by the high frequency rotation direction switching unit 3 is performed by first outputting the amplitude command value from the rotation position monitoring unit 2 (ST3) shown in FIG. , The amplitude command value in each component direction of the roll direction and the yaw direction is received.
[0070]
Subsequent to the reception of the amplitude command value (ST3), in the present embodiment, for example, pitch direction rotation control (ST4a) may be used as control in the virtual three-dimensional coordinate three-axis directions different from each other and corresponding to the received amplitude command value. ), Roll direction rotation control (ST4b), and yaw direction rotation control (ST4c), and the order of execution may be set as appropriate. , ST4c) are switched at a high frequency with a cycle shorter than the required rotation acceleration time of the rotor 5.
[0071]
In the pitch direction rotation control (ST4a), an AC voltage is applied to the pitch direction bending vibration generating piezoelectric element 4a and the vertical direction expansion / contraction vibration generating piezoelectric element 4b. Similarly, the roll direction rotation control (ST4a) is performed. ST4b) controls the piezoelectric element 4b for generating vertical expansion / contraction vibration and the piezoelectric element 4c for generating bending vibration in the roll direction. An AC voltage is applied to each of the piezoelectric elements 4a.
[0072]
At this time, the AC voltage applied to each of the two piezoelectric elements (4a and 4b, 4b and 4c, 4c and 4a) has a phase difference of 90 degrees, and the two applied piezoelectric elements (4a and 4a) 4b, 4b and 4c, and 4c and 4a), the phase and amplitude command values are switched at high speed until the rotor 5 reaches the target rotational position.
[0073]
In the figure, the pitch direction rotation control (ST4a), the roll direction rotation control (ST4b), and subsequently the yaw direction rotation control (ST4c) are sequentially performed. When the AC voltage is applied to the piezoelectric elements 4a, 4b, and 4c (ST4) by ST3, the measurement value obtained in the current rotation position measurement (ST1 ') is output to the high-frequency rotation direction switching unit 3. In the AC voltage application (ST5), the rotation direction requiring more rotation control in order to reach the target angle of the target rotation position from the measured rotation angle of the current rotation position is higher than the other rotation directions. Can also perform preferential control.
[0074]
That is, the order of the pitch direction rotation control (ST4a), the roll direction rotation control (ST4b), and the yaw direction rotation control (ST4c) may be in the order of priority, or may be in a preset order. On the other hand, when the rotation control in all the directions is completed, the process of ST4 is terminated, and the process again has the reception of the amplitude command value (ST3).
[0075]
In the rotation control (ST4a, ST4b, ST4c) of the present embodiment, the switching is performed at regular time intervals, and the switching time in the rotation control (ST4a, ST4b, ST4c) direction exceeds the applicable multi-degree of freedom. It is determined in consideration of the acceleration characteristics of the sound wave motor β.
[0076]
For example, the time from the start of applying an AC voltage having a constant amplitude to each of the piezoelectric elements 4a, 4b, and 4c of the multi-degree-of-freedom ultrasonic motor β until the rotation speed of the rotor 5 stabilizes to a constant speed is about ten millimeters. In the case of seconds, the switching time of the rotation direction in the high-frequency rotation direction switching unit 3 is preferably a value smaller than 5 milliseconds.
[0077]
Next, FIG. 6 is a diagram illustrating a rotation trajectory in the rotation driving of the top of the rotor to which the present embodiment is applied.
[0078]
As shown in the figure, for example, when a rotational drive with the rotation axis as the axis A is induced, the top apex 5a of the spherical rotor 5 is controlled in the roll direction and the pitch direction by the above-described rotation control. On the upper end surface of the stator 4 induced to rotate in the yaw direction, the three-dimensional virtual three-dimensional coordinates in the roll direction, the pitch direction, and the yaw direction are respectively indicated by the dashed-dotted arrows in FIG. It is driven as a synthesis path B of a minute rotation drive.
[0079]
However, since the switching frequency in the rotation direction applied to the method of the present invention is sufficiently high, it is not a jagged path B as large as shown in FIG. The rotation locus C of FIG.
[0080]
As described above, the embodiment of the present invention has been described by exemplifying a case where the present invention is applied to a multi-degree-of-freedom ultrasonic motor α, but the present invention is not necessarily limited to only the above-described means, Changes can be made as appropriate within a range having the effects described below.
[0081]
【The invention's effect】
As described above in detail, according to the present invention, the physical characteristics of the frictional force between the rotor and the stator are complicated, and the multi-degree-of-freedom ultrasonic motor is changed due to long-term operation. The rotational position of the multi-degree-of-freedom ultrasonic motor can be controlled without being affected by an adverse effect or individual differences between the multi-degree-of-freedom ultrasonic motors.
[Brief description of the drawings]
FIG. 1 is an internal configuration diagram of a rotation position control device of a multi-degree-of-freedom ultrasonic motor as an example of an apparatus according to an embodiment of the present invention.
FIG. 2 is an external perspective view of a multi-degree-of-freedom ultrasonic motor to which the above rotational position control device is applied.
FIG. 3 is a diagram illustrating the operating principle of a multi-degree-of-freedom ultrasonic motor to which the above-described rotational position control device is applied.
FIG. 4 is a sequence diagram for explaining a rotational position control method of the multi-degree-of-freedom ultrasonic motor of the present invention.
FIG. 5 is a flowchart illustrating application of an AC voltage in the above-described rotational position control method.
FIG. 6 is a diagram showing a rotational trajectory of the multi-degree-of-freedom ultrasonic motor to which the above-described rotational position control method is applied in a rotational drive of a rotor head apex.
[Explanation of symbols]
α ... Rotation position control device
β ... Multi-degree-of-freedom ultrasonic motor
1. Rotation angle measurement sensor
2 ... Rotation position monitor
3. High frequency rotation direction switching unit
4 ... Stator
4a: Pitch direction piezoelectric element for generating flexural vibration
4b: Piezoelectric element for generating vertical stretching vibration
4c: Piezoelectric element for generating flexural vibration in the roll direction
5 ... rotor
5a ... top of the head
A: axis
B: Synthetic path of rotational drive in the roll direction, pitch direction, and yaw direction
C: The rotation locus of the top of the head

Claims (20)

位相が異なる交流電圧を印加すると固有振動数の等しい複数の固有振動を励振する積層された複数の圧電素子によって構成される固定子と、負荷重量物を保持し前記固定子の前記固有振動によって任意の方向に回転駆動される回転子と、で構成される多自由度超音波モータにおいて、所望の回転運動を発生させるために前記固定子の圧電素子に前記交流電圧を印加して前記回転子の回転位置を制御する方法であって、
まず、前記回転運動に伴う前記回転子の現在回転位置を計測し、
次いで、当該計測された値から前記回転子を予め設定された目標回転位置に到達させるべく、前記固定子を構成する前記圧電素子に印加すべき交流電圧の振幅値を計算して、
続いて、前記圧電素子に対して、前記振幅値と同じ振幅値を持ち、前記回転子を回転させるために必要な位相差を持たせた複数相の交流電圧を印加して当該回転子の回転方向の制御をなす、
ことを特徴とする多自由度超音波モータの回転位置制御方法。
A stator constituted by a plurality of stacked piezoelectric elements that excite a plurality of natural vibrations having the same natural frequency when an AC voltage having a different phase is applied thereto, and a stator holding a load heavy object and being arbitrary by the natural vibration of the stator In the multi-degree-of-freedom ultrasonic motor configured to rotate in the direction of, the AC voltage is applied to the piezoelectric element of the stator to generate a desired rotational motion, A method of controlling a rotational position,
First, measuring the current rotational position of the rotor with the rotational movement,
Then, in order to reach the rotor to a preset target rotation position from the measured value, to calculate the amplitude value of the AC voltage to be applied to the piezoelectric element constituting the stator,
Subsequently, a multiple-phase AC voltage having the same amplitude value as the amplitude value and having a phase difference necessary for rotating the rotor is applied to the piezoelectric element to rotate the rotor. Control the direction,
A method for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor, characterized in that:
前記複数相の交流電圧の印加は、
互いに直交して異なる仮想三次元座標3軸方向の前記固有振動をそれぞれ励振する前記圧電素子に対する当該交流電圧の出力を、前記回転子の回転加速所要時間よりも短い周期の高周波で切り替えて、
前記複数の圧電素子のそれぞれに前記仮想三次元座標3軸方向の前記固有振動のいずれかを励振させる前記交流電圧を印加する、
ことを特徴とする請求項1に記載の多自由度超音波モータの回転位置制御方法。
The application of the AC voltage of the plurality of phases includes:
Switching the output of the AC voltage to the piezoelectric element, which respectively excites the natural vibrations in the virtual three-dimensional coordinate three-axis directions different from each other orthogonally, at a high frequency having a cycle shorter than the rotation acceleration required time of the rotor,
Applying the AC voltage that excites any of the natural vibrations in the virtual three-dimensional coordinate three-axis direction to each of the plurality of piezoelectric elements;
2. The method for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor according to claim 1, wherein:
前記複数相の交流電圧の印加は、
前記固定子の前記回転子との接触端面の鉛直上方をz軸とする互いに直交して異なるx,y,z軸からなる前記仮想三次元座標3軸方向の前記固有振動をそれぞれ励振する、前記x軸を軸として回転するロール方向たわみ振動発生用圧電素子と、前記z軸方向に上下伸縮する上下方向伸縮振動発生用圧電素子と、前記y軸を軸として回転するピッチ方向たわみ振動発生用圧電素子の各圧電素子のそれぞれに前記目標回転位置に到達するまで繰り返し前記交流電圧を印加して、
励振する前記固有振動の合成により当該回転方向の制御を行う、
ことを特徴とする請求項1又は2に記載の多自由度超音波モータの回転位置制御方法。
The application of the AC voltage of the plurality of phases includes:
Exciting the natural vibrations in the three-dimensional virtual three-dimensional coordinate system comprising x, y, and z axes that are orthogonal to each other and have x, y, and z axes perpendicular to each other with the z-axis being vertically above a contact end surface of the stator with the rotor. a roll-direction bending vibration generating piezoelectric element that rotates about the x-axis, a vertical stretching vibration generating piezoelectric element that expands and contracts in the z-axis direction, and a pitch-direction bending vibration generating piezoelectric rotation that rotates about the y-axis. Applying the AC voltage repeatedly until each of the piezoelectric elements of the element reaches the target rotational position,
Controlling the rotation direction by synthesizing the natural vibration to be excited;
3. The method for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor according to claim 1, wherein:
前記振幅値の計算は、
前記仮想三次元座標上の前記現在回転位置から前記目標回転位置までの到達に必要な回転角を、前記圧電素子の励振される前記x,y,z軸をそれぞれ軸回転するピッチ方向、ロール方向及びヨー方向の回転方向の成分に分解して、
前記交流電圧の振幅値を3つの当該回転方向の成分別に計算する、
ことを特徴とする請求項3に記載の多自由度超音波モータの回転位置制御方法。
The calculation of the amplitude value,
The rotation angle required to reach the target rotation position from the current rotation position on the virtual three-dimensional coordinates is determined by a pitch direction and a roll direction in which the x, y, and z axes excited by the piezoelectric element are respectively rotated. And the component in the rotational direction of the yaw direction,
Calculating the amplitude value of the AC voltage for each of the three components in the rotation direction;
4. The method according to claim 3, wherein the rotational position of the multi-degree-of-freedom ultrasonic motor is controlled.
前記複数相の交流電圧の印加は、
それぞれ互いに直交して異なる前記仮想三次元座標3軸方向固有振動を励振させて、前記x軸を軸回転する方向にたわむ前記ロール方向たわみ振動発生用圧電素子と、前記z軸方向に伸縮する前記上下方向伸縮振動発生用圧電素子と、前記y軸を軸回転する方向にたわむ前記ピッチ方向たわみ振動発生用圧電素子のうちの2種類の当該圧電素子に対して、90度の位相差を持たせて2種類の当該圧電素子のそれぞれに当該交流電圧を印加して、
印加する2種類の前記圧電素子と、当該圧電素子に印加する前記交流電圧の位相及び振幅値を切り替えることで、前記回転子を前記目標回転位置に到達させる、
ことを特徴とする請求項3又は4に記載の多自由度超音波モータの回転位置制御方法。
The application of the AC voltage of the plurality of phases includes:
The virtual three-dimensional coordinate three-axis direction natural vibrations, which are orthogonal to each other, are excited, and the roll-direction bending vibration generating piezoelectric element that bends in the direction in which the x-axis is axially rotated, and the piezoelectric element that expands and contracts in the z-axis direction. A phase difference of 90 degrees is given to two kinds of the piezoelectric element for generating a vertical expansion / contraction vibration and the piezoelectric element for generating a bending vibration in the pitch direction which bends in the direction of rotating the y axis. Applying the AC voltage to each of the two types of piezoelectric elements,
By switching the two types of piezoelectric elements to be applied and the phase and amplitude values of the AC voltage applied to the piezoelectric elements, the rotor reaches the target rotation position,
5. The method for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor according to claim 3 or 4, wherein:
前記振幅値の計算は、
前記回転子の回転駆動に対して、予め目標回転角速度が設定された場合に、
先の前記回転位置の計測を継続的に行うことで、前記圧電素子に印加する前記交流電圧と対応させて当該回転子の回転角速度を監視して、
当該回転角速度と当該交流電圧とを比較することで、次に印加する前記交流電圧の前記振幅値を前記目標回転速度に達するように計算する、
ことを特徴とする請求項1、2、3又は4に記載の多自由度超音波モータの回転位置制御方法。
The calculation of the amplitude value,
When the target rotational angular velocity is set in advance for the rotational driving of the rotor,
By continuously measuring the rotational position, the rotational angular velocity of the rotor is monitored in correspondence with the AC voltage applied to the piezoelectric element,
By comparing the rotation angular velocity and the AC voltage, the amplitude value of the AC voltage to be applied next is calculated so as to reach the target rotation speed,
5. The method for controlling the rotational position of a multi-degree-of-freedom ultrasonic motor according to claim 1, wherein:
前記回転子の回転方向の制御は、
前記現在回転位置の回転角度から前記目標回転位置の目標角度に到達するために、より多くの回転制御が必要な回転方向について、他の回転方向よりも優先的な制御を行う、
ことを特徴とする請求項1、2、3、4、5又は6に記載の多自由度超音波モータの回転位置制御方法。
The control of the rotation direction of the rotor,
In order to reach the target angle of the target rotation position from the rotation angle of the current rotation position, for rotation directions that require more rotation control, perform priority control over other rotation directions,
7. The method of controlling the rotational position of a multi-degree-of-freedom ultrasonic motor according to claim 1, wherein:
前記複数相の交流電圧の印加は、
前記圧電素子の固有振動数と同じ値を周波数として、当該圧電素子に対して当該交流電圧を印加する、
ことを特徴とする請求項1、2、3、4、5、6又は7に記載の多自由度超音波モータの回転位置制御方法。
The application of the AC voltage of the plurality of phases includes:
With the same value as the natural frequency of the piezoelectric element as the frequency, applying the AC voltage to the piezoelectric element,
8. The method of controlling the rotational position of a multi-degree-of-freedom ultrasonic motor according to claim 1, 2, 3, 4, 5, 6, or 7.
位相が異なる交流電圧を印加すると固有振動数の等しい複数の固有振動を励振する積層された複数の圧電素子によって構成される固定子と、負荷重量物を保持し前記固定子の前記固有振動によって任意の方向に回転駆動される回転子と、で構成される多自由度超音波モータにおいて、所望の回転運動を発生させるために適用される多自由度超音波モータの回転位置制御装置であって、
前記回転運動に伴う前記回転子の現在回転位置を計測する回転角度計測センサと、
当該回転角度計測センサにて計測された前記現在回転位置の測定値から前記回転子を予め設定された目標回転位置に到達させるべく、前記圧電素子に印加する交流電圧の振幅値を計算し、当該振幅値を振幅指令値として出力する回転位置監視部と、
当該回転位置監視部から入力された当該振幅指令値と同じ振幅値を持ち、前記回転子を回転させるために必要な位相差を持たせた複数相の交流電圧を、前記圧電素子に出力する高周波回転方向切替部と、を具備する、
ことを特徴とする多自由度超音波モータの回転位置制御装置。
A stator constituted by a plurality of stacked piezoelectric elements that excite a plurality of natural vibrations having the same natural frequency when an AC voltage having a different phase is applied thereto, and a stator holding a load heavy object and being arbitrary by the natural vibration of the stator In a multi-degree-of-freedom ultrasonic motor composed of a rotor driven to rotate in the direction of, a multi-degree-of-freedom ultrasonic motor rotation position control device applied to generate a desired rotational motion,
A rotation angle measurement sensor that measures a current rotation position of the rotor with the rotation motion,
From the measurement value of the current rotation position measured by the rotation angle measurement sensor, to reach the rotor to a preset target rotation position, to calculate the amplitude value of the AC voltage applied to the piezoelectric element, A rotation position monitoring unit that outputs an amplitude value as an amplitude command value,
A high frequency having the same amplitude value as the amplitude command value input from the rotation position monitoring unit and outputting a plurality of phases of AC voltages having a phase difference necessary for rotating the rotor to the piezoelectric element. A rotation direction switching unit;
A rotational position control device for a multi-degree-of-freedom ultrasonic motor, comprising:
前記高周波回転方向切替部は、
前記交流電圧の出力を、前記回転子の回転加速所要時間よりも短い周期の高周波で切替出力可能に機能構成される、
ことを特徴とする請求項9に記載の多自由度超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
The output of the AC voltage is configured to be capable of being switched and output at a high frequency having a cycle shorter than the rotation acceleration required time of the rotor.
The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to claim 9, wherein:
前記高周波回転方向切替部は、
前記固定子の前記回転子との接触端面の鉛直上方をz軸とする互いに直交して異なるx,y,z軸からなる仮想三次元座標3軸方向の前記固有振動をそれぞれ励振して、前記x軸を軸回転する方向にたわむロール方向たわみ振動発生用圧電素子と、前記z軸方向に上下伸縮する上下方向伸縮振動発生用圧電素子と、前記y軸を軸回転する方向にたわむピッチ方向たわみ振動発生用圧電素子の各圧電素子に対して、それぞれ前記交流電圧を印加可能に接続される、
ことを特徴とする請求項9又は10に記載の多自由度超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
Exciting the natural vibrations in three directions of virtual three-dimensional coordinates composed of x, y, and z axes that are orthogonal to each other and that are perpendicular to the end surface of the stator that makes contact with the rotor and that are the z axis, A roll-direction bending vibration generating piezoelectric element that bends in the direction of rotating the x-axis, a vertically expanding and contracting vibration generating piezoelectric element that expands and contracts in the z-axis direction, and a pitch-direction bending that bends in the direction of rotating the y-axis. For each piezoelectric element of the vibration generating piezoelectric element, each is connected so that the AC voltage can be applied,
The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to claim 9 or 10, wherein:
前記回転位置監視部は、
前記仮想三次元座標上の前記現在回転位置から前記目標回転位置までの到達に必要な回転角を、前記圧電素子の励振される前記x,y,z軸をそれぞれ軸回転するロール方向、ピッチ方向及びヨー方向の回転方向の成分に分解して、前記交流電圧の振幅値を3つの当該回転方向の成分別に計算して、計算された振幅値をそれぞれ3つの前記振幅指令値として前記高周波回転方向切替部に出力可能に機能構成される、
ことを特徴とする請求項11に記載の多自由度超音波モータの回転位置制御装置。
The rotation position monitoring unit,
The rotation angle required to reach the target rotation position from the current rotation position on the virtual three-dimensional coordinates is determined by the roll direction and the pitch direction in which the x, y, and z axes excited by the piezoelectric element are respectively rotated. And the amplitude value of the AC voltage is calculated for each of the three components in the rotation direction, and the calculated amplitude values are used as the three amplitude command values, respectively, in the high frequency rotation direction. It is configured to be able to output to the switching unit,
The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to claim 11, wherein:
前記回転位置監視部は、
前記ロール方向、ピッチ方向及びヨー方向の各回転方向において、前記回転子が、前記目標回転位置に到達した場合には、その回転方向に対して前記振幅指令値として電圧値0Vを出力する一方、当該目標回転位置までさらに回転角が必要である場合には、前記圧電素子に予め設定された電圧値を前記振幅指令値として出力するよう機能構成される、
ことを特徴とする請求項12に記載の多自由度超音波モータの回転位置制御装置。
The rotation position monitoring unit,
In each of the roll direction, the pitch direction, and the yaw direction, when the rotor reaches the target rotational position, the rotor outputs a voltage value of 0 V as the amplitude command value in the rotational direction. If a further rotation angle is required up to the target rotation position, a function is configured to output a voltage value preset to the piezoelectric element as the amplitude command value,
The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to claim 12, wherein:
前記高周波回転方向切替部は、
前記上下方向伸縮振動発生用圧電素子と、前記ロール方向たわみ振動発生用圧電素子とに、90度の位相差を持たせた前記交流電圧をそれぞれに印加することで、前記固定子に、前記回転子を前記ロール方向に回転させる回転駆動を誘起させるよう機能構成される、
ことを特徴とする請求項11、12又は13に記載の多自由度超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
By applying the AC voltage having a phase difference of 90 degrees to each of the piezoelectric element for generating vertical stretching vibration and the piezoelectric element for generating flexural vibration in the roll direction, the stator is rotated. Functionally configured to induce a rotational drive to rotate the child in the roll direction,
14. The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to claim 11, 12, or 13.
前記高周波回転方向切替部は、
前記ピッチ方向たわみ振動発生用圧電素子と、前記上下方向伸縮振動発生用圧電素子とに、90度の位相差を持たせた前記交流電圧をそれぞれに印加することで、前記固定子に、前記回転子を前記ピッチ方向に回転させる回転駆動を誘起させるよう機能構成される、
ことを特徴とする請求項11、12、13又は14に記載の多自由度超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
By applying the AC voltage having a phase difference of 90 degrees to the pitch direction flexural vibration generating piezoelectric element and the vertical stretching vibration generating piezoelectric element, respectively, Functionally configured to induce rotational drive to rotate the child in the pitch direction,
The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to claim 11, 12, 13, or 14, wherein:
前記高周波回転方向切替部は、
前記ピッチ方向たわみ振動発生用圧電素子と、前記ロール方向たわみ振動発生用圧電素子とに、90度の位相差を持たせた前記交流電圧をそれぞれに印加することで、前記固定子に、前記回転子を前記ヨー方向に回転させる回転駆動を誘起させるよう機能構成される、
ことを特徴とする請求項11、12、13、14又は15に記載の多自由超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
By applying the AC voltage having a phase difference of 90 degrees to each of the pitch-direction flexural vibration generating piezoelectric element and the roll-direction flexural vibration generating piezoelectric element, Functionally configured to induce a rotational drive to rotate the child in the yaw direction,
The rotational position control device for a multi-free ultrasonic motor according to claim 11, 12, 13, 14, or 15, wherein:
前記高周波回転方向切替部は、
2つの前記交流電圧の90度の位相差を反転することで、前記回転子に対して負方向の回転駆動を誘起させる当該交流電圧を印加するよう機能構成される、
ことを特徴とする請求項14、15又は16に記載の多自由度超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
Inverting the 90-degree phase difference between the two AC voltages to apply the AC voltage that induces the rotor to rotate in the negative direction,
17. The rotation position control device for a multi-degree-of-freedom ultrasonic motor according to claim 14, 15, or 16.
前記回転位置監視部は、
前記回転子の回転駆動に対して、予め目標回転角速度が設定された場合、
前記回転角度計測センサから出力された前記測定値を、前記高周波回転方向切替部から出力された前記交流電圧と対応させて継続的に保持して、前記圧電素子に印加された当該交流電圧の振幅値を前記目標回転速度に達するように調整可能に機能構成される、
ことを特徴とする請求項9、10、11、12、13、14、15、16又は17に記載の多自由度超音波モータの回転位置制御装置。
The rotation position monitoring unit,
When the target rotational angular velocity is set in advance for the rotational driving of the rotor,
The measured value output from the rotation angle measurement sensor is continuously held in association with the AC voltage output from the high-frequency rotation direction switching unit, and the amplitude of the AC voltage applied to the piezoelectric element is held. Value is configured to be adjustable to reach the target rotational speed,
The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to any one of claims 9, 10, 11, 12, 13, 14, 15, 16, and 17.
前記高周波回転方向切替部は、
前記現在回転位置の回転角度から前記目標回転位置の目標角度に到達するために、より多くの回転制御を必要とする回転方向に対して、他の回転方向よりも優先的な前記交流電圧の印加を行うよう機能構成される、
ことを特徴とする請求項9、10、11、12、13、14、15、16、17又は18に記載の多自由超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
In order to reach the target angle of the target rotation position from the rotation angle of the current rotation position, to the rotation direction that requires more rotation control, the application of the AC voltage has higher priority than other rotation directions. Is configured to perform
The rotational position control device for a multi-free ultrasonic motor according to claim 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, or 18.
前記高周波回転方向切替部は、
前記圧電素子の固有振動数と同じ値の前記交流電圧の周波数を当該圧電素子に印加するよう機能構成される、
ことを特徴とする請求項9、10、11、12、13、14、15、16、17、18又は19に記載の多自由度超音波モータの回転位置制御装置。
The high frequency rotation direction switching unit,
The frequency of the AC voltage having the same value as the natural frequency of the piezoelectric element is configured to be applied to the piezoelectric element,
20. The rotational position control device for a multi-degree-of-freedom ultrasonic motor according to claim 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18 or 19.
JP2003159714A 2003-06-04 2003-06-04 Method and apparatus for controlling rotational position of multi-degree-of-freedom ultrasonic motor Expired - Fee Related JP4209261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159714A JP4209261B2 (en) 2003-06-04 2003-06-04 Method and apparatus for controlling rotational position of multi-degree-of-freedom ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159714A JP4209261B2 (en) 2003-06-04 2003-06-04 Method and apparatus for controlling rotational position of multi-degree-of-freedom ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2004364407A true JP2004364407A (en) 2004-12-24
JP4209261B2 JP4209261B2 (en) 2009-01-14

Family

ID=34052705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159714A Expired - Fee Related JP4209261B2 (en) 2003-06-04 2003-06-04 Method and apparatus for controlling rotational position of multi-degree-of-freedom ultrasonic motor

Country Status (1)

Country Link
JP (1) JP4209261B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612415A (en) * 2017-10-30 2018-01-19 哈尔滨工业大学 A kind of multiple degrees of freedom sandwich micro-containing operators and its displacement output control method
CN114123848A (en) * 2021-11-23 2022-03-01 歌尔股份有限公司 Control method and control device of multi-dimensional stereo vibration device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612415A (en) * 2017-10-30 2018-01-19 哈尔滨工业大学 A kind of multiple degrees of freedom sandwich micro-containing operators and its displacement output control method
CN114123848A (en) * 2021-11-23 2022-03-01 歌尔股份有限公司 Control method and control device of multi-dimensional stereo vibration device
CN114123848B (en) * 2021-11-23 2024-01-30 歌尔股份有限公司 Control method and control device of multi-dimensional three-dimensional vibration device

Also Published As

Publication number Publication date
JP4209261B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US8384316B2 (en) Synchronized vibration device for haptic feedback
Lucinskis et al. Investigation of oscillations of piezoelectric actuators with multi-directional polarization
JP2004129458A (en) Controller for vibratory actuator, vibratory actuator system, and control method for vibratory actuator
JP5264225B2 (en) Multi-degree-of-freedom drive device and imaging device including the same
KR20140112386A (en) Asymmetric and general vibration waveforms from multiple synchronized vibration actuators
Chen et al. Modeling and experimental validation of new two degree-of-freedom piezoelectric actuators
JP2014184524A (en) Robot hand and robot
Takemura et al. Characteristics of an ultrasonic motor capable of generating a multi-degrees of freedom motion
WO2010104130A1 (en) Spherical ultrasound motor and control method for a spherical ultrasound motor
JP2004364407A (en) Method and device for controlling rotational position of multi-degrees of freedom ultrasonic motor
JP5627655B2 (en) Multi-degree-of-freedom drive
JP2007221973A (en) Oscillatory type actuator
Otokawa et al. Development of an arrayed-type multi-degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes
JPH1118459A (en) Spherical ultrasonic motor with wide work area
JP5370960B2 (en) Electromagnetic actuator device, electromagnetic actuator driving device, driving method thereof, and device equipped with electromagnetic actuator
US10396633B2 (en) Haptic device
JP4209291B2 (en) Method and apparatus for controlling rotational position of multi-degree-of-freedom ultrasonic motor
Takemura et al. A master-slave system using a multi-DOF ultrasonic motor and its controller designed considering measured and simulated driving characteristics
JP4162218B2 (en) Multi-degree-of-freedom ultrasonic motor rotor attitude angle measuring method and apparatus
Lin et al. Design of multi-DOF spherical piezoelectric motor using electrode configuration based actuating units
Lučinskis et al. Investigation of oscillations of the piezoelectric actuator with two-directional polarization
JP2971971B2 (en) Ultrasonic actuator
WO2023149396A1 (en) Electric toothbrush
JP6388011B2 (en) Robot hand and robot
Weyrich Three DOF in a Single Spherical Joint Realized

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071109

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

R150 Certificate of patent or registration of utility model

Ref document number: 4209261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees