JP2004364037A - Lens antenna system - Google Patents

Lens antenna system Download PDF

Info

Publication number
JP2004364037A
JP2004364037A JP2003161096A JP2003161096A JP2004364037A JP 2004364037 A JP2004364037 A JP 2004364037A JP 2003161096 A JP2003161096 A JP 2003161096A JP 2003161096 A JP2003161096 A JP 2003161096A JP 2004364037 A JP2004364037 A JP 2004364037A
Authority
JP
Japan
Prior art keywords
radio wave
lens
relay box
antenna
wave lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161096A
Other languages
Japanese (ja)
Other versions
JP4079040B2 (en
Inventor
Katsuyuki Imai
克之 今井
Masatoshi Kuroda
昌利 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003161096A priority Critical patent/JP4079040B2/en
Publication of JP2004364037A publication Critical patent/JP2004364037A/en
Application granted granted Critical
Publication of JP4079040B2 publication Critical patent/JP4079040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens antenna system wherein antenna elements combined with a Luneberg lens are downsized, a plurality of the antenna elements can be deposited side by side at a focus of the lens at a narrow interval and interior wires from the antenna to a tuner can be unified into one wire. <P>SOLUTION: In the lens antenna system provided with a hemispherical lens 1 for converging a radio wave beam and a reflecting plate 2 fitted to a half cross-section of the sphere of the lens 1, a plurality of the antenna elements 3 (feeds) each comprising the integration of a pickup and a first stage amplifier to an optional radio wave converging point of the lens 1, a relay box 10 is provided onto the reflecting plate, a frequency conversion circuit and an oscillator having been conventionally included in an LNB are provided in the box 10, each antenna element 3 and the relay box 10 are interconnected by an RF transmission line 11, and the frequency conversion circuit and the oscillator are eliminated from the antenna elements (feeds) deposited at the focus of the radio waves. Further, the relay box 10 selects and outputs radio waves from satellites or the radio waves are arranged serially on a frequency axis and outputted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電波レンズを収束する半球状のルーネベルグ電波レンズと複数のアンテナ素子とを組み合わせて構成される無線通信用の電波レンズアンテナ装置に関する。
【0002】
【従来の技術】
半球状のルーネベルグ電波レンズを用いたアンテナ装置の概念図を図1に示す。図中1は電波ビームを収束する半球状のルーネベルグ電波レンズ(以下単に電波レンズと言う)、2は電波レンズ1の球の2分断面に取り付けられて天空から入射される電波または標的に向けて送出される電波を反射させる反射板、3は電波を送信または受信するアンテナ素子である。アンテナ素子3は、図示しないアーチ型のアームなどで保持して、電波レンズ1の任意の電波収束点に配置できるようにしてある。
【0003】
この電波レンズアンテナ装置は、例えば受信を考えたとき、ある方向から到来した電波Aは、電波レンズ1によりその進行方向が曲げられて反射板2に至り、次に反射板2で反射されて図1に示すようにレンズの中心に対して反対側に収束されるので、これをアンテナ素子3で受信することができる。このことは、反射板2よりも上の任意の方向から到来した電波を受信できる、換言すれば、電波レンズ1の半球状の任意の点が焦点に成り得ることを意味している。
【0004】
なお、送信の場合は上記とは逆であり、可逆性が成立する。
【0005】
また、図1はレンズの表面上に焦点がある状態にしたが、焦点は実際にはレンズ表面よりも少し外側(一般には0mm〜100mm程度の範囲で調整される)にあることが多い。
【0006】
上記の特性を考慮すれば、赤道を含む面内に存在する複数(N個)の静止衛星に対し、独立的に受信あるいは送信するためには、アンテナ素子3を複数(N個)用意し、各静止衛星に対する焦点にアンテナ素子を設置すればよく、ひとつの電波レンズでN個の衛星に対応できると言うのが、本電波レンズアンテナ装置の大きな利点である。
【0007】
ところで、従来衛星との通信に利用されているパラボラアンテナでは、受信、送信のためにアンテナ素子として図2、図3に示すようなLNB(ローノイズブロック)が装備されている。このLNBは、電波を取り込むピックアップ4と、低ノイズ初段増幅器5、周波数変換回路6、発信器7を設けた回路基板8をひとつにまとめたものである。
【0008】
このLNBを装備したパラボラアンテナは、ひとつの衛星からの電波(例えば12GHz帯、日本国内のBSは11.7GHz〜12.2GHz、CSは12.2GHz〜12.75GHzを使用)を、パラボラアンテナの鏡面で収束し、これを焦点位置に配置したLNBのピックアップ4で受信し、低ノイズの初段増幅器5で増幅後、周波数変換回路6で発振器7の出力信号(例えば11.2GHz)とミキシングして、例えば500MHz〜1.55GHzのIF信号として出力する。
【0009】
【発明が解決しようとする課題】
例えば、日本国内では、一般に通信衛星は赤道上に4度(海外では2度)間隔で隣接しており、地球表面上から見たそれらの通信衛星(Communication Satellite:略してCSと称されている)の離角はおおよそ4.4度(海外では2.2度)である。上述した電波レンズアンテナ装置の利点を活かしてその4.4度間隔の衛星と各々独立して通信するためには、アンテナ素子を電波レンズの表面近くにある焦点位置に4.4度間隔で並べる必要がある。この要求に応えようとすると隣り合うアンテナ素子間の間隔が非常に狭くなり、パラボラアンテナに用いられているLNBでは大きすぎるため(このLNBは、一般的にホーンアンテナよりも大きくなる)そのLNBを小型化することが不可欠になる。
【0010】
また、レンズアンテナは、パラボラアンテナと違ってひとつの電波レンズで多数の衛星との同時通信ができることが特徴であるが、各々のLNBからの出力信号を屋内のチューナーまで引き込むには、図4に示すようにLNB数と同数の同軸ケーブル9が必要であり、屋内の配線が嵩張り、配線の体裁なども悪くなる。
【0011】
従って、LNBの小型化と併せて室内配線の簡素化も図る必要がある。
【0012】
この配線の簡素化の要求に応えるために従来考えられている回路に電波レンズアンテナを組み合わせた概念を図5に示す。
【0013】
この図5は、室内に引き込むケーブルを1本に集約するために、各LNBに選択回路を付加してLNBの各々を直列につないでおり、チューナーを通して選択信号を送り込み、選択されたひとつの衛星からの信号のみを例えば1〜3GHzの信号に変換して出力する。しかしながら、この方法は、信号ケーブル(IF伝送ライン12)を1本に集約できる利点はあるが、LNBが選択回路を付加した分従来よりも大きくなる欠点と、複数の衛星からの電波を同時にチューナーに送り込むことができず、複数の衛星放送テレビを家族等が別々に見て楽しむと言ったことができない欠点がある。
【0014】
この発明は、アンテナ素子の小型化と室内配線の集約を可能ならしめて上記の不具合を解消した電波レンズアンテナ装置を提供することを課題としている。
【0015】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、電波ビームを収束する半球状の電波レンズと、この電波レンズの球の2分断面に取り付けられて天空から入射される電波または標的に向けて放射される電波を反射させる反射板とを備える電波レンズアンテナ装置において、ピックアップと初段増幅器をひとつにまとめめたフィードを電波レンズの任意の電波収束点に複数個配置し、さらに、前記反射板上に中継ボックスを設けてその中継ボックス内に、各フィードを出力回路に選択的に接続する切換回路と、この切換回路と出力回路との間に介在する周波数変換回路及び発信器を設け、各フィードと前記中継ボックスとの間をRF伝送ラインで接続した。
【0016】
また、もう一つの方法として、前記電波レンズと反射板とを備える電波レンズアンテナ装置において、ピックアップと初段増幅器をひとつにまとめたフィードを電波レンズの任意の電波収束点に複数個配置し、さらに、前記反射板上に中継ボックスを設けてその中継ボックス内に、各フィードの出力を個別に処理する周波数変換回路及び発信周波数の異なる発振器と、周波数変換された各フィードからの信号をシリアルに並べて出力する合成回路を設け、各フィードと前記中継ボックスとの間をRF伝送ラインで接続した。
【0017】
【作用】
半球状の電波レンズと反射板を組み合わせたアンテナ装置には、電波の反射に寄与しない空きスペースが反射板上に存在する。この発明の電波レンズアンテナ装置は、その空きスペースに中継ボックスを設け、従来LNBに含ませていた周波数変換回路と発信器をその中継ボックス内に設けてフィード(アンテナ素子)の構成要素の中から周波数変換回路と発信器を取り除いており、その分、フィードを小型化することができる。
【0018】
また、衛星からの電波を中継ボックス内で選択するか又は、周波数軸上にシリアルに並べて出力するので、中継ボックスからチューナーに至るケーブルは1本でよく、室内配線の集約も可能になる。
【0019】
なお、衛星からの電波を周波数軸上にシリアルに並べて出力するものは、チューナーに信号分離回路を含ませて各衛星からの信号を分離・注出することができるので、複数の衛星放送テレビを同一家屋内で別々に見て楽しむことも可能になる。
【0020】
【発明の実施の形態】
以下、この発明の実施の形態を図6乃至図8に基づいて説明する。
【0021】
図6に示すように、この発明の電波レンズアンテナ装置は、半球状のルーネベルグ電波レンズ1と、この電波レンズ1の球の2分断面に取り付ける反射板2と、N(=複数)個の衛星に対応させて各衛星からの電波の焦点部に配置するN個のアンテナ素子3(図のそれは後述するフィード)と、反射板2上に設ける中継ボックス10と、各アンテナ素子3と中継ボックス10との間に設ける信号伝送用のRF伝送ライン11と、アンテナ素子3を所定位置に保持するホルダ(図示せず)とで構成される。なお、中継ボックス10と室内のチューナー(図示せず)は、1本のIF伝送ライン12によって接続される。
【0022】
図6に示す電波レンズアンテナ装置の第1の基本回路構成を図7に、第2の基本回路構成を図8にそれぞれ示す。
【0023】
図7、図8の両回路とも、ピックアップ4、そのピックアップ4で受信したV偏波、H偏波の各信号をそれぞれに増幅する低ノイズ初段増幅器5、偏波切換回路13及びフィルタ14を備えるフィードを、アンテナ素子3として採用している。なお、ここでは、直線偏波(V、H)の場合を述べているが、円偏波(右回り、左回り)の場合も同じである。また、ここでは図の簡略化のために、通信相手を衛星Iと衛星IIの2個(N=2)と仮定している。
【0024】
図7の回路は、通信相手の衛星を選択するための切換回路15と、従来LNBに含ませていた周波数変換回路6及び発振器7を中継ボックス10内に設けており、選択された衛星からの信号を中継ボックス10の位置でIF信号に変えてチューナーに送り出すことができる。
【0025】
また、図8の回路は、各アンテナ素子3の出力を個別に処理する周波数変換回路6−1、6−2及び発信周波数の異なる発振器7−1、7−2と、周波数変換後の信号をシリアルに並べて出力する合成回路16とを中継ボックス10内に設けており、各衛星からの信号をIF信号に変えて同時にチューナーに送り出すことができる。RF伝送ライン11には例えば12GHzの信号が流れ、この信号が例えば1〜3GHzに周波数変換されてIF伝送ライン12に流される。
【0026】
このように、この発明の電波レンズアンテナ装置は、低ノイズ初段増幅器5は受信性能を決定する重要な部品であるのでそのままフィード部に残し、LNBに含まれているその他の要素、即ち、周波数変換回路6や発振器7をフィード部から除くことでフィード(アンテナ素子)の小型化を実現する。
【0027】
また、通信相手の衛星を選択するための切換回路15や各衛星からの信号を周波数変換後にシリアルに並べて出力する合成回路16を周波数変換回路及び発信器と共に中継ボックス10内に設け、中継ボックス10からチューナーに至るケーブルを1本に集約する。
【0028】
なお、RFでの信号伝送は、伝送損失やコストを考えると有利な方法とはいえないが、アンテナ素子3から反射板2上の中継ボックス10までの距離は大して長くないので、RF伝送を行っても伝送損失増やコスト高の問題は生じない。
【0029】
【発明の効果】
以上述べたように、この発明の電波レンズアンテナ装置は、従来LNBに含めていた周波数変換回路と発信器を反射板上に設置する中継ボックス内に設けて電波の焦点部に配置するアンテナ素子(フィード)から周波数変換回路と発信器を取り除いており、その分アンテナ素子を小型化してマルチビーム対応の電波レンズアンテナ装置において問題になるアンテナ素子の配置規制を緩和することができる。
【0030】
また、衛星からの電波を中継ボックス内で選択するか又は周波数軸上にシリアルに並べて出力するので、中継ボックスからチューナーに至るケーブルは1本でよく、室内配線の集約、それによる配線の体裁向上なども可能になる。
【0031】
このほか、複数の衛星からの電波を周波数軸上にシリアルに並ぶように合成して出力するものは、複数の衛星放送テレビを同一家屋内で別々に見て楽しむことも可能になる。
【図面の簡単な説明】
【図1】半球状のルーネベルグ電波レンズを用いたアンテナ装置の概念図
【図2】パラボラアンテナに採用されているLNBの概念図
【図3】従来LNBの基本構成を示す回路図
【図4】複数のLNBを設けた電波レンズアンテナ装置の従来型の概念図
【図5】各LNBに選択回路を設けてチューナーに至る信号伝送ラインを1本にしたアンテナ装置の概念図
【図6】この発明の電波レンズアンテナ装置の概念図
【図7】図6のアンテナ装置の第1の基本回路構成を示す図
【図8】図6のアンテナ装置の第2の基本回路構成を示す図
【符号の説明】
1 ルーネベルグ電波レンズ
2 反射板
3 アンテナ素子
4 ピックアップ
5 低ノイズ初段増幅器
6、6−1、6−2 周波数変換回路
7、7−1、7−2 発振器
8 回路基板
9 同軸ケーブル
10 中継ボックス
11 RF伝送ライン
12 IF伝送ライン
13 偏波切換回路
14 フィルタ
15 切換回路
16 合成回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radio wave lens antenna device for wireless communication configured by combining a hemispherical Luneberg radio wave lens for converging a radio wave lens and a plurality of antenna elements.
[0002]
[Prior art]
FIG. 1 shows a conceptual diagram of an antenna device using a hemispherical Luneberg radio wave lens. In the figure, 1 is a hemispherical Luneberg radio wave lens (hereinafter simply referred to as a radio wave lens) for converging a radio wave beam, and 2 is a radio wave lens 1 attached to a bisecting section of a sphere and directed to a radio wave incident from the sky or a target. The reflecting plate 3 for reflecting the transmitted radio wave is an antenna element for transmitting or receiving the radio wave. The antenna element 3 is held by an arched arm (not shown) or the like so that the antenna element 3 can be arranged at an arbitrary radio wave convergence point of the radio wave lens 1.
[0003]
In this radio wave lens antenna device, for example, when reception is considered, a radio wave A arriving from a certain direction is bent by a radio wave lens 1 to reach a reflection plate 2 and then reflected by the reflection plate 2. Since the light is converged on the opposite side to the center of the lens as shown in FIG. 1, the light can be received by the antenna element 3. This means that a radio wave arriving from an arbitrary direction above the reflector 2 can be received, in other words, an arbitrary hemispherical point of the radio wave lens 1 can be a focal point.
[0004]
In the case of transmission, the above is the opposite, and reversibility is established.
[0005]
Although FIG. 1 shows a state in which the focus is on the surface of the lens, the focus is often slightly outside (generally adjusted in a range of about 0 mm to 100 mm) from the lens surface.
[0006]
In consideration of the above characteristics, in order to independently receive or transmit a plurality of (N) geostationary satellites existing in a plane including the equator, a plurality of (N) antenna elements 3 are prepared, It is a great advantage of the present radio wave lens antenna apparatus that an antenna element only needs to be installed at the focal point for each geostationary satellite, and that one radio wave lens can support N satellites.
[0007]
By the way, a parabolic antenna conventionally used for communication with a satellite is equipped with an LNB (low noise block) as an antenna element for reception and transmission as shown in FIGS. The LNB is a combination of a pickup 4 for capturing radio waves, a low-noise first-stage amplifier 5, a frequency conversion circuit 6, and a circuit board 8 provided with a transmitter 7.
[0008]
The parabolic antenna equipped with this LNB transmits radio waves from one satellite (for example, 12 GHz band, BS in Japan uses 11.7 GHz to 12.2 GHz, CS uses 12.2 GHz to 12.75 GHz), The light converges on the mirror surface, is received by the LNB pickup 4 disposed at the focal position, is amplified by the low-noise first-stage amplifier 5, and is then mixed with the output signal (for example, 11.2 GHz) of the oscillator 7 by the frequency conversion circuit 6. , For example, as an IF signal of 500 MHz to 1.55 GHz.
[0009]
[Problems to be solved by the invention]
For example, in Japan, communication satellites are generally adjacent on the equator at intervals of 4 degrees (2 degrees overseas), and these communication satellites (Communication Satellite: CS for short) viewed from the surface of the earth. ) Is approximately 4.4 degrees (2.2 degrees overseas). In order to take advantage of the above-mentioned radio wave lens antenna device and to independently communicate with the satellites at 4.4-degree intervals, the antenna elements are arranged at a focal position near the surface of the radio-wave lens at 4.4-degree intervals. There is a need. In order to meet this requirement, the distance between adjacent antenna elements becomes very narrow, and the LNB used for a parabolic antenna is too large (this LNB is generally larger than a horn antenna). Miniaturization becomes essential.
[0010]
In addition, unlike the parabolic antenna, the lens antenna is characterized by the ability to communicate with many satellites simultaneously using a single radio lens. To draw the output signal from each LNB to an indoor tuner, see FIG. As shown, the same number of coaxial cables 9 as the number of LNBs are required, so that the indoor wiring is bulky and the appearance of the wiring is poor.
[0011]
Therefore, it is necessary to simplify the indoor wiring as well as downsize the LNB.
[0012]
FIG. 5 shows a concept in which a radio lens antenna is combined with a conventionally conceived circuit in order to meet the demand for simplifying the wiring.
[0013]
In FIG. 5, in order to consolidate the cables to be drawn into the room, a selection circuit is added to each LNB and each LNB is connected in series, a selection signal is sent through a tuner, and one selected satellite is transmitted. Is converted into a signal of, for example, 1 to 3 GHz and output. However, although this method has an advantage that the signal cable (IF transmission line 12) can be integrated into one, the LNB is larger than the conventional one because of the addition of the selection circuit, and the radio waves from a plurality of satellites can be simultaneously transmitted to the tuner. And it cannot be said that a family or the like separately enjoys watching a plurality of satellite broadcast televisions.
[0014]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a radio wave lens antenna device which makes it possible to reduce the size of an antenna element and consolidate wiring in a room, thereby solving the above-mentioned problems.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a hemispherical radio wave lens for converging a radio wave beam, and a radio wave lens attached to a bisector of the sphere of the radio wave lens and radiated toward a radio wave or a target incident from the sky. In a radio wave lens antenna device comprising a reflector for reflecting a radio wave to be received, a plurality of feeds in which a pickup and a first-stage amplifier are integrated are arranged at arbitrary radio wave convergence points of a radio wave lens, and further, on the reflector. A switching circuit for providing a relay box and selectively connecting each feed to an output circuit in the relay box, and a frequency conversion circuit and a transmitter interposed between the switching circuit and the output circuit are provided. The connection with the relay box was made by an RF transmission line.
[0016]
Further, as another method, in a radio wave lens antenna device including the radio wave lens and the reflection plate, a plurality of feeds in which a pickup and a first-stage amplifier are integrated are arranged at arbitrary radio wave convergence points of the radio wave lens. A relay box is provided on the reflector plate, and in the relay box, a frequency conversion circuit for individually processing the output of each feed and an oscillator having a different transmission frequency, and a signal from each frequency-converted feed is serially arranged and output. A synthesizing circuit was provided, and each feed and the relay box were connected by an RF transmission line.
[0017]
[Action]
In an antenna device combining a hemispherical radio wave lens and a reflector, there is an empty space on the reflector that does not contribute to the reflection of radio waves. In the radio wave lens antenna device of the present invention, a relay box is provided in the empty space, and a frequency conversion circuit and a transmitter, which are conventionally included in the LNB, are provided in the relay box so that the feed (antenna element) can be selected from the components. Since the frequency conversion circuit and the transmitter are eliminated, the size of the feed can be reduced accordingly.
[0018]
In addition, since radio waves from the satellite are selected in the relay box or serially output on the frequency axis and output, only one cable is required from the relay box to the tuner, and the indoor wiring can be integrated.
[0019]
For those that output radio waves from satellites serially on the frequency axis and output them, a signal separation circuit can be included in the tuner to separate and output signals from each satellite. It is also possible to enjoy watching separately in the same house.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0021]
As shown in FIG. 6, a radio lens antenna apparatus according to the present invention includes a hemispherical Luneberg radio lens 1, a reflector 2 attached to a bisecting section of the sphere of the radio lens 1, and N (= plural) satellites. N antenna elements 3 (feeds, which will be described later) arranged at the focal point of the radio wave from each satellite, a relay box 10 provided on the reflector 2, and each of the antenna elements 3 and the relay box 10 And a holder (not shown) for holding the antenna element 3 at a predetermined position. In addition, the relay box 10 and the indoor tuner (not shown) are connected by one IF transmission line 12.
[0022]
FIG. 7 shows a first basic circuit configuration of the radio wave lens antenna device shown in FIG. 6, and FIG. 8 shows a second basic circuit configuration thereof.
[0023]
Each of the circuits shown in FIGS. 7 and 8 includes a pickup 4, a low-noise first-stage amplifier 5 for amplifying the respective V-polarized and H-polarized signals received by the pickup 4, a polarization switching circuit 13, and a filter 14. The feed is adopted as the antenna element 3. Here, the case of linear polarization (V, H) is described, but the same applies to the case of circular polarization (clockwise, counterclockwise). Further, for simplification of the figure, it is assumed that the communication partner is two satellites I and II (N = 2).
[0024]
The circuit shown in FIG. 7 is provided with a switching circuit 15 for selecting a satellite of a communication partner, a frequency conversion circuit 6 and an oscillator 7 conventionally included in the LNB in a relay box 10, and receives a signal from a selected satellite. The signal can be converted to an IF signal at the position of the relay box 10 and sent to the tuner.
[0025]
The circuit of FIG. 8, the frequency converting circuit 6-1 for processing the output of each antenna element 3 separately, 6-2 and different transmission frequency oscillator 7-1, and 7 -2, the signal after the frequency conversion A synthesizing circuit 16 for serially arranging and outputting the signals is provided in the relay box 10. The signals from the respective satellites can be converted into IF signals and sent to the tuner at the same time. A signal of, for example, 12 GHz flows in the RF transmission line 11, and this signal is frequency-converted to, for example, 1 to 3 GHz, and flows through the IF transmission line 12.
[0026]
As described above, in the radio lens antenna apparatus of the present invention, since the low-noise first-stage amplifier 5 is an important component for determining the reception performance, the low-noise first-stage amplifier 5 is left in the feed section as it is, and the other elements included in the LNB, namely, the frequency conversion The feed (antenna element) can be reduced in size by removing the circuit 6 and the oscillator 7 from the feed section.
[0027]
A switching circuit 15 for selecting a communication partner satellite and a synthesizing circuit 16 for serially arranging and outputting signals from each satellite after frequency conversion are provided in the relay box 10 together with the frequency conversion circuit and the transmitter. And the cables from the tuner to the tuner.
[0028]
Although signal transmission by RF is not an advantageous method in consideration of transmission loss and cost, since the distance from the antenna element 3 to the relay box 10 on the reflector 2 is not very long, RF transmission is performed. However, problems such as an increase in transmission loss and an increase in cost do not occur.
[0029]
【The invention's effect】
As described above, the radio wave lens antenna device of the present invention provides an antenna element (hereinafter, referred to as an LNB) which is provided in a relay box in which a frequency conversion circuit and a transmitter are provided on a reflector and disposed at a focal point of radio waves. Since the frequency conversion circuit and the transmitter are removed from the feed, the antenna element can be reduced in size by that amount, and the arrangement restriction of the antenna element which is a problem in the multi-beam compatible radio lens antenna apparatus can be eased.
[0030]
In addition, since radio waves from the satellite are selected in the relay box or serially output on the frequency axis and output, only one cable from the relay box to the tuner is required, and indoor wiring is consolidated and the wiring style is thereby improved. And so on.
[0031]
In addition, a device that combines and outputs radio waves from a plurality of satellites so as to be serially arranged on a frequency axis allows a plurality of satellite broadcast televisions to be viewed and enjoyed separately in the same house.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an antenna device using a hemispherical Luneberg radio wave lens. FIG. 2 is a conceptual diagram of an LNB employed in a parabolic antenna. FIG. 3 is a circuit diagram showing a basic configuration of a conventional LNB. FIG. 5 is a conceptual diagram of a conventional type of a radio wave lens antenna device provided with a plurality of LNBs. FIG. 5 is a conceptual diagram of an antenna device in which a selection circuit is provided in each LNB and a single signal transmission line to a tuner is provided. FIG. 7 is a diagram showing a first basic circuit configuration of the antenna device of FIG. 6; FIG. 8 is a diagram showing a second basic circuit configuration of the antenna device of FIG. 6; ]
1 Runeberugu wave lens 2 reflector 3 antenna elements 4 pickup 5 low-noise stage amplifier 6,6 -1, 6-2 frequency converting circuit 7, 7 -1, 7 -2 oscillator 8 circuit board 9 coaxial cable 10 relay box 11 RF Transmission line 12 IF transmission line 13 Polarization switching circuit 14 Filter 15 Switching circuit 16 Synthesis circuit

Claims (2)

電波ビームを収束する半球状の電波レンズと、この電波レンズの球の2分断面に取り付けられて天空から入射される電波または標的に向けて放射される電波を反射させる反射板とを備える電波レンズアンテナ装置において、
ピックアップと初段増幅器をひとつにまとめたフィードを電波レンズの任意の電波収束点に複数個配置し、さらに、前記反射板上に中継ボックスを設けてその中継ボックス内に、各フィードを出力回路に選択的に接続する切換回路と、この切換回路と出力回路との間に介在する周波数変換回路及び発信器を設け、各フィードと前記中継ボックスとの間をRF伝送ラインで接続したことを特徴とする電波レンズアンテナ装置。
A radio wave lens having a hemispherical radio wave lens for converging a radio wave beam, and a reflector attached to a half-section of the sphere of the radio wave lens and reflecting a radio wave incident from the sky or a radio wave radiated toward a target. In the antenna device,
A plurality of feeds combining the pickup and the first-stage amplifier are arranged at arbitrary radio wave convergence points of the radio wave lens, and further, a relay box is provided on the reflection plate, and each feed is selected as an output circuit in the relay box. A switching circuit to be electrically connected, a frequency conversion circuit and a transmitter interposed between the switching circuit and the output circuit, and each feed and the relay box are connected by an RF transmission line. Radio wave lens antenna device.
電波ビームを収束する半球状の電波レンズと、この電波レンズの球の2分断面に取り付けられて天空から入射される電波または標的に向けて放射される電波を反射させる反射板とを備える電波レンズアンテナ装置において、
ピックアップと初段増幅器をひとつにまとめたフィードを電波レンズの任意の電波収束点に複数個配置し、さらに、前記反射板上に中継ボックスを設けてその中継ボックス内に、各フィードの出力を個別に処理する周波数変換回路及び発信周波数の異なる発振器と、周波数変換された各フィードからの信号をシリアルに並べて出力する合成回路を設け、各フィードと前記中継ボックスとの間をRF伝送ラインで接続したことを特徴とする電波レンズアンテナ装置。
A radio wave lens having a hemispherical radio wave lens for converging a radio wave beam, and a reflector attached to a half-section of the sphere of the radio wave lens and reflecting a radio wave incident from the sky or a radio wave radiated toward a target. In the antenna device,
A plurality of feeds combining a pickup and a first-stage amplifier are arranged at arbitrary radio wave convergence points of the radio wave lens, and further, a relay box is provided on the reflection plate, and the output of each feed is individually set in the relay box. A frequency conversion circuit for processing and an oscillator having a different transmission frequency, and a synthesizing circuit for serially arranging and outputting signals from the respective frequency-converted feeds are provided, and each feed and the relay box are connected by an RF transmission line. A radio wave lens antenna device characterized by the above-mentioned.
JP2003161096A 2003-06-05 2003-06-05 Radio wave lens antenna device Expired - Fee Related JP4079040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161096A JP4079040B2 (en) 2003-06-05 2003-06-05 Radio wave lens antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161096A JP4079040B2 (en) 2003-06-05 2003-06-05 Radio wave lens antenna device

Publications (2)

Publication Number Publication Date
JP2004364037A true JP2004364037A (en) 2004-12-24
JP4079040B2 JP4079040B2 (en) 2008-04-23

Family

ID=34053660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161096A Expired - Fee Related JP4079040B2 (en) 2003-06-05 2003-06-05 Radio wave lens antenna device

Country Status (1)

Country Link
JP (1) JP4079040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098726A1 (en) * 2018-11-15 2020-05-22 Huawei Technologies Co., Ltd. Switchable lens antenna with integrated frequency selective structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098726A1 (en) * 2018-11-15 2020-05-22 Huawei Technologies Co., Ltd. Switchable lens antenna with integrated frequency selective structure
US10938124B2 (en) 2018-11-15 2021-03-02 Huawei Technologies Co., Ltd. Switchable lens antenna with integrated frequency selective structure
US11515653B2 (en) 2018-11-15 2022-11-29 Huawei Technologies Co., Ltd. Switchable lens antenna with integrated frequency selective structure

Also Published As

Publication number Publication date
JP4079040B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US6441797B1 (en) Aggregated distribution of multiple satellite transponder signals from a satellite dish antenna
US8462753B2 (en) Low profile mobile tri-band antenna system
US6556807B1 (en) Antenna receiving system
US7522115B2 (en) Satellite ground station antenna with wide field of view and nulling pattern using surface waveguide antennas
EP0963006A2 (en) Reconfigurable multiple beam satellite phased array antenna
US8594587B2 (en) Method and apparatus for integrated waveguide transmit-receive isolation, filtering, and circular polarization
US7039937B1 (en) System and method for providing satellite signals to multiple receiving units
US20130321206A1 (en) Interference rejections of satellite ground terminal with orthogonal beams
US20060189273A1 (en) Systems, methods and devices for a ku/ka band transmitter-receiver
JP2000078068A (en) System distributing satellite signals from many separate satellites on single cable line
WO2007064094A1 (en) Low profile mobile tri-band antenna system
US20170237182A1 (en) Antenna with beamwidth reconfigurable circularly polarized radiators
CN111478726A (en) Communication system for small communication satellite
EP0930669A2 (en) Antenna for communicating with low earth orbit satellite
Jung et al. Novel antenna system design for satellite mobile multimedia service
JP4417343B2 (en) Digital multimedia broadcast receiver with shared antenna connection
CN101682437B (en) Integrated multi-sat LNB and frequency translation module
US6373445B1 (en) Converter for antenna to receive signals from two satellites
CN1331273C (en) Communications antenna system and mobile transmit and receive reflector antenna
US6801789B1 (en) Multiple-beam antenna
TW471197B (en) Integrated type bi-direction feed-in electromagnetic apparatus
US7362279B2 (en) Method and device for TV receiving and internet transreceiving on a satellite antenna
JP4079040B2 (en) Radio wave lens antenna device
JP2005539426A (en) Transmitting equipment to be combined with receiving equipment
JP2005210632A (en) Broadcast wave transmitting apparatus and broadcast wave receiving system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110215

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees