JP2004363967A - Magnetostrictive speaker - Google Patents

Magnetostrictive speaker Download PDF

Info

Publication number
JP2004363967A
JP2004363967A JP2003160193A JP2003160193A JP2004363967A JP 2004363967 A JP2004363967 A JP 2004363967A JP 2003160193 A JP2003160193 A JP 2003160193A JP 2003160193 A JP2003160193 A JP 2003160193A JP 2004363967 A JP2004363967 A JP 2004363967A
Authority
JP
Japan
Prior art keywords
magnetostrictive element
magnetic field
magnetostrictive
coil
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003160193A
Other languages
Japanese (ja)
Inventor
Koji Maekawa
孝治 前川
Masatoshi Sato
政敏 佐藤
Nobuaki Takahashi
宣章 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Pioneer Corp
Pioneer Corp
Original Assignee
Tohoku Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Pioneer Corp, Pioneer Electronic Corp filed Critical Tohoku Pioneer Corp
Priority to JP2003160193A priority Critical patent/JP2004363967A/en
Publication of JP2004363967A publication Critical patent/JP2004363967A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetostrictive speaker capable of attaining reproduction over a broadband through the combination of a magnetostrictive element or an ultra-magnetostrictive element and a magnetic circuit. <P>SOLUTION: The magnetostrictive speaker is provided with: the magnetostrictive element; a magnetic field generating coil for generating a magnetic field in an extending / contracting direction of the magnetostrictive element; a support member for freely movably supporting both ends of the magnetostrictive element; the magnetic circuit for providing a DC magnetic field causing different polarities at both the ends of the magnetostrictive element; and a diaphragm fixed to one end of the magnetostrictive element. When a high frequency sound current (AC) flows through the magnetic field generating coil, the coil generates a magnetic field to extend / contract (vibrate) the magnetostrictive element in the direction of the magnetic field. The vibration of the magnetostrictive element is delivered to the diaphragm, which reproduces a high frequency sound. At the same time, when a low frequency sound current flows through the magnetic field generating coil, the polarities of the magnetostrictive element being a magnetic substance are changed. Since the magnetostrictive element is placed in the DC magnetic field formed by the magnetic circuit, the magnetostrictive element is vibrated in response to the polarities of the DC magnetic field by the magnetic circuit and the polarities of the magnetostrictive element, and the diaphragm reproduces a low frequency sound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁歪素子或いは超磁歪素子を使用したスピーカ装置に関する。
【0002】
【従来の技術】
外部磁界に応じて素子寸法が変化する磁歪現象を示すものとして、磁歪素子が知られている。特に、TbFe系などのRFeラーベス型金属間化合物は、磁歪量が極めて大きいため超磁歪素子と呼ばれている。磁歪素子にコイルを巻回し、このコイルに電流を流すと、電流の大きさとコイル巻数に比例した磁界が発生し、その磁界の大きさに応じて磁歪素子が伸縮する。磁歪素子のこのような性質を利用したスピーカが各種提案されている。
【0003】
例えば、磁歪素子を用いてスピーカ振動板を駆動し、スピーカ全体を薄型の構成とした磁歪スピーカ(例えば、特許文献1を参照)が提案されている。また超磁歪ロッドの一端を円板状ヨークに固定するとともに、その他端を振動板に固定し、その超磁歪ロッドをハウジングなどに摺動させずに伸縮させるようにして、ノイズ等の防止を図るようにした超磁歪アクチュエータ及びこれを用いた超磁歪スピーカ(例えば、特許文献2を参照)が提案されている。
【0004】
【特許文献1】
特開2000−341791号公報
【特許文献2】
特開平10−145892号公報
【0005】
【発明が解決しようとする課題】
しかし、磁歪素子は高周波電流による磁界変化によっては振動速度が大きく、低周波電流による磁界変化によっては振動速度が小さいという性質を有するため、一般的に磁歪素子を利用したスピーカでは低域の再生が困難であった。
【0006】
本発明が解決しようとする課題としては、上記のようなものが例として挙げられる。本発明は、低域から高域までの広帯域の再生が可能な磁歪形スピーカ装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、磁歪形スピーカ装置において、磁歪素子と、前記磁歪素子の伸縮方向に磁界を発生する磁界発生コイルと、前記磁歪素子の両端を移動自在に支持する支持部材と、前記磁歪素子の両端に異なる極性の直流磁界を付与する磁気回路と、前記磁歪素子の一端に固定された振動板と、を備えることを特徴とする。
【0008】
請求項3に記載の発明は、磁歪形スピーカ装置において、磁歪素子と、前記磁歪素子の伸縮方向に磁界を発生する磁界発生コイルと、前記磁歪素子の一端を固定するとともに前記磁歪素子の他端側に空隙を有し、前記磁歪素子の両端に異なる極性の直流磁界を付与する磁気回路と、前記磁歪素子の他端を移動自在に支持する支持部材と、前記空隙内に配置されたコイルボビンと、前記コイルボビンに巻回された可動コイルと、前記コイルボビンに固定された低域用振動板と、前記磁歪素子の前記他端に固定された高域用振動板と、を備えることを特徴とする。
【0009】
【発明の実施の形態】
本発明は、低域での振動速度が小さい磁歪素子(以下、「超磁歪素子」を含む)と、ヨーク及びバイアス磁界発生磁石などからなる磁気回路とを組み合わせて使用することで、低域から高域までの広帯域にわたって音の再生を可能とするスピーカ装置を提供する。
【0010】
本発明の1つの観点では、磁歪形スピーカ装置は、磁歪素子と、前記磁歪素子の伸縮方向に磁界を発生する磁界発生コイルと、前記磁歪素子の両端を移動自在に支持する支持部材と、前記磁歪素子の両端に異なる極性の直流磁界を付与する磁気回路と、前記磁歪素子の一端に固定された振動板と、を備える。
【0011】
上記の磁歪形スピーカ装置によれば、磁界発生コイルに高周波の音声電流(交流)が流れると磁界が発生し、磁歪素子はその磁界の方向に伸縮(振動)する。磁歪素子の振動は振動板へ伝達され、振動板から高域音声が再生される。一方、磁界発生コイルに低周波の音声電流が流れると、磁性体である磁歪素子の極性が変化する。磁歪素子は磁気回路が形成する直流磁界内に配置されているので、磁気回路による直流磁界の極性と磁歪素子の極性とに応じて、磁歪素子には反発/吸引力が作用する。この反発/吸引力により磁歪素子は振動し、その振動が振動板に伝えられて低域音声が再生される。こうして、磁歪素子を利用して、低域から高域までの音声再生が可能となる。
【0012】
上記の磁歪形スピーカの一態様では、前記磁歪素子の前記両端に非磁性体を設け、前記磁歪素子を前記非磁性体を介して前記支持部材に支持し、一方の前記非磁性体に前記振動板を固定することができる。
【0013】
本発明の他の観点では、磁歪形スピーカ装置は、磁歪素子と、前記磁歪素子の伸縮方向に磁界を発生する磁界発生コイルと、前記磁歪素子の一端を固定するとともに前記磁歪素子の他端側に空隙を有し、前記磁歪素子の両端に異なる極性の直流磁界を付与する磁気回路と、前記磁歪素子の他端を移動自在に支持する支持部材と、前記空隙内に配置されたコイルボビンと、前記コイルボビンに巻回された可動コイルと、前記コイルボビンに固定された低域用振動板と、前記磁歪素子の前記他端に固定された高域用振動板と、を備える。
【0014】
上記の磁歪形スピーカ装置によれば、磁界発生コイルに高周波の音声電流(交流)が流れると磁界が発生し、磁歪素子はその磁界の方向に伸縮(振動)する。磁歪素子の振動は振動板へ伝達され、振動板から高域音声が再生される。一方、磁気回路の空隙内に配置された可動コイルに低周波の音声電流が流れると、可動コイルが巻回されたコイルボビンに電磁力が作用し、振動を生じる。この振動が振動板に伝えられて、低域音声が再生される。こうして、磁歪素子を利用して、低域から高域までの音声再生が可能となる。
【0015】
上記の磁歪形スピーカの一態様では、前記磁界発生コイルと前記可動コイルを同一のコイルとすることができる。
【0016】
上記の磁歪形スピーカの他の一態様では、前記磁界発生コイルと前記可動コイルとを並列接続してなる入力回路を備え、前記入力回路は、入力音声信号の高域成分を前記磁界発生コイルに供給する高域通過フィルタと、前記入力音声信号の低域成分を前記可動コイルに供給する低域通過フィルタと、を有する。この態様では、入力音声信号から、高域成分をフィルタリングして、高域成分を磁界発生コイルに供給し、低域成分を可動コイルに供給する。こうして、低域及び高域をそれぞれ再生することができる。
【0017】
上記の磁歪形スピーカの他の一態様は、前記磁界発生コイルと前記可動コイルとを並列接続してなる入力回路を備え、前記入力音声信号は前記磁界発生コイルと前記可動コイルに並列に入力される。また、さらに他の一態様では、前記磁界発生コイルと前記可動コイルとを直列接続してなる入力回路を備え、前記入力音声信号は前記磁界発生コイルと前記可動コイルに直列に入力される。磁歪素子は基本的に高域信号に対してのみ大きな振動速度を生じる性質を有するので、入力音声信号を帯域制限せずに磁界発生コイルと可動コイルに供給してもかまわない。
【0018】
上記の磁歪形スピーカ装置の他の一態様では、前記磁界発生コイルは、前記磁歪素子と非接触で前記磁気回路に固定される。この態様によれば、磁界発生コイルは磁歪素子と接触することなく、磁気回路、例えば円筒状をなすヨークの内壁に巻回するようにして固定される。よって、磁歪素子の伸縮(振動)が阻害されることなく、振動板に伝達される。
【0019】
上記の磁歪形スピーカ装置の他の一態様では、前記磁歪素子には超磁歪素子が含まれる。これにより、スピーカ装置の特性に応じて磁歪変形量を大きくすることができる。
【0020】
上記の磁歪形スピーカ装置の他の一態様では、前記支持部材は、前記磁歪素子を前記磁歪素子の伸縮方向に移動自在に支持する。これにより、磁歪素子による伸縮(振動)は支持部材によって阻害されることなく、忠実に振動板へと伝達される。
【0021】
上記の磁歪形スピーカ装置の他の一態様では、前記磁気回路は、磁界発生手段と、前記磁界発生手段から生じる磁界に従って着磁したヨークと、を含む。この態様によれば、磁界発生手段により生じた磁気エネルギーは効率よくヨークに伝達され、その磁気エネルギーを空隙に与えることができる。
【0022】
上記の磁歪形スピーカの他の一態様では、磁界発生手段は、磁石及び/又は導線が巻回されたコイルとすることができる。例えば永久磁石により、又は励磁コイルに巻回された導線に音声電流を流すことにより、前者又は後者に応じた大きさの磁界を発生することができる。また、スピーカ装置の特性などに応じて、その永久磁石及び励磁コイルの両方を採用することもできる。
【0023】
【実施例】
以下、図面を参照して本発明の好適な実施例について説明する。
【0024】
[第1実施例]
図1には、第1実施例に係るスピーカ装置100の軸方向に沿った断面図が示される。
【0025】
スピーカ装置100は、主として、図1に示すように、棒状の磁歪素子1と、円板状のダンパー2a、2bと、非磁性体3a、3bと、円筒状のヨーク4と、バイアス磁界発生磁石5と、磁界発生コイル6と、円錐状のフレーム7と、円錐状の振動板8とを備える。磁歪素子1は、外部磁界からの大きさに応じて素子寸法が変位する(伸縮する)と共に、スピーカ装置100の略中央に配置される。ダンパー2a、2bは、複数の同心円状に波型が形成されると共に、ヨーク4の開口部を閉塞する位置に設けられ、磁歪素子1を移動自在に支持する。非磁性体3a、3bは、磁歪素子1の端部1a、1bに夫々固定されると共に、ダンパー2a、2bの略中心部を貫通するようにして支持される。ヨーク4は、磁歪素子1及び非磁性体3a、3bを筒内に収容すると共に、ダンパー2a、2bの周縁部と夫々固定される。バイアス磁界発生磁石5はリング状であり、ヨーク4の略中央にヨーク4の外壁を覆うようにして設けられる。磁界発生コイル6は磁歪素子1とは接触させずにバイアス磁界発生磁石5の筒内内壁に沿って巻回してなり、円錐状のフレーム7はヨーク4の一端側の外壁を周方向に沿って覆うようにして固定される。振動板8は、一端を磁歪素子1と固定されていない非磁性体3bの一端に固定すると共に、エッジ部8a近傍の周縁部をフレーム7の周縁部に固定される。
【0026】
かかる構成におけるスピーカ装置100の低域又は高域における音の再生は、以下に示す方法により行われる。
【0027】
先ず、低域音声信号の再生原理について述べる。低域では、可動鉄片形スピーカと類似した動作により音の再生が行われ、磁歪素子の磁歪現象は再生には寄与しない。具体的には、磁界発生コイル6に低周波の音声電流(交流電流)が流れると、その音声電流の極性(+又は−)の変化に応じて磁歪素子1の極性がN極又はS極に変化する。一方、ヨーク4とバイアス磁界発生磁石5とにより構成される空隙9a、9b内の極性はバイアス磁界発生磁石5により決まっている(本例では、空隙9aがS極、空隙9bがN極)。よって、各空隙9a、9bの極性と磁歪素子1の極性との関係に応じて磁歪素子1には反発力又は吸引力が働き、磁歪素子1が図1における軸方向Xに変位する。この変位は、非磁性体3bを介して振動板8へと伝達され、振動板8から低域の音波が放射される。振動系の等価質量と、ダンパー2a、2bのコンプライアンスとによって発生する共振周波数を所定の値に選択することにより、所望の低域において磁歪素子1を振動させることができる。
【0028】
次に、高域音声信号の再生原理について述べる。高域音声信号は磁歪素子の磁歪現象により再生が行われる。磁界発生コイル6に高周波の音声電流が流れると、磁歪素子1の軸方向Xに磁界の変化が生じる。そして、その磁界の変化に応じて磁歪素子1が軸方向Xに伸縮し、振動を発生させる。磁歪素子1によるこの振動は、非磁性体3bを介して振動板8に伝達され、振動板8から高域の音波が放射される。
【0029】
このように第1実施例に係るスピーカ装置100は、磁界発生コイル6及びヨーク4が形成する直流磁界と磁歪素子1の磁性との反発/吸引作用により低域信号を再生し、磁歪素子1の磁歪現象により高域信号を再生する。よって、低域から高域までの広帯域にわって音声信号を再生することができる。
【0030】
第1実施例に係るスピーカ装置100では、磁歪素子1の端部1aをヨーク4に固定することなく、非磁性体3a、3bをダンパー2a、2bで支持することにより磁歪素子1を軸方向Xに変位可能としている。このため、磁歪素子1は、高域での振動が低減する一方、低域での振動が大きくなる。
【0031】
この理由について、図1及び図2を参照しながら詳述する。図2には、図1に示すスピーカ装置100の磁歪素子1の拡大図が示される。図2(a)は磁歪素子1の端部を固定しない場合を示し、図2(b)は磁歪素子1の左側端部を固定した場合を示す。なお、図2(a)及び(b)に示す磁歪素子1の長さは、共に同じ長さLである。また、本例では、説明の便宜上、磁歪素子1が伸びるときの長さと、縮むときの長さは共に等しいものとする。また、図2(a)及び(b)において、L2の長さはL1の長さの2倍である。
【0032】
図2(a)に示すように、磁歪素子1は磁界発生コイル6に音声電流が流れると、各々の端部1a及び1bが長さL1だけ軸方向Xへ伸縮する。よって、図2(a)において磁歪素子1の右端部1bを非磁性体を介して振動板に固定すると、振動板が振動する振幅はL1となる。一方、図2(b)のように磁歪素子1の左側端部を固定した状態で同じ音声電流を流すと、磁歪素子1の右側端部1bは長さL2(=2×L1)だけ軸方向Xへ変位する。よって、左端部1aを非磁性体を介して振動板に固定すると、振動板が振動する振幅はL2となり、磁歪素子1の端部を固定しない場合の2倍となる。
【0033】
第1実施例では、磁歪素子1の端部を固定していないので、磁歪素子の振動量、即ち再生高域信号の振幅は磁歪素子を固定しない場合の1/2となる。しかし、磁歪素子は高域信号に対して振動速度が大きい性質がある。よって、本実施例では磁歪素子を固定しないこととして高域信号の振幅を抑制すると同時に、磁歪素子の伸縮によっては再生できない低域信号を上述の原理により増大することにより、再生帯域全体としては平坦な周波数特性を得ることが可能となる。
【0034】
以上のように、第1実施例に係るスピーカ装置100では、低域での振動速度が小さい磁歪素子1と、ヨーク4及びバイアス磁界磁石5などからなる磁気回路とを組み合わせて使用し、低域は可動鉄片形スピーカと類似した原理で、高域は磁歪素子1の振動原理で再生を行う。これにより、低域から高域までの広帯域の音声再生が可能となり、低域の延びたツィータを提供することが可能となる。
【0035】
[第2実施例]
第2実施例では、磁歪素子11からの振動により音波を放射する高域用の振動板に加えて、ヨーク14などの動電形に類する磁気回路からの振動により音波を放射する低域用の振動板を設けることにより、低域から高域までの広帯域にわたって音の再生を可能とするスピーカ装置200を提供する。
【0036】
図3(a)には、スピーカ装置200の軸方向に沿った断面図が示される。図3(b)には、図3(a)に示されるスピーカ装置200の磁気回路の部分の断面図が示される。また、図3(b)に示される磁気回路では、符号s30に示される方向に沿って磁路が形成されている。尚、図3(b)に示される磁気回路では、説明の便宜上、ヨーク14、バイアス磁界発生磁石15、及び磁歪素子11以外の構成要素は省略している。
【0037】
図3(a)に示すように、スピーカ装置200は、主として、棒状の磁歪素子11と、円板状のダンパー12と、有底円筒状のヨーク14と、リング状のバイアス磁界発生磁石15と、磁界発生コイル16と、円筒状のボイスコイルボビン21と、可動コイル20と、円錐状のフレーム17と、低域再生用の振動板18(ウーファ)と、高域再生用の振動板22(ツィータ)と、を備える。
【0038】
磁歪素子11は、外部磁界からの大きさに応じて素子寸法が変位すると共に、スピーカ装置200の略中央に配置される。ダンパー12は、複数の同心円状に波型が形成されると共に、ヨーク14の開口部を閉塞する位置に設けられ、磁歪素子11を移動自在に支持する。ヨーク14は、磁歪素子11を筒内に収容すると共に、その磁歪素子11の一端11aを固定する。バイアス磁界発生磁石15は、ヨーク14の略中央にヨーク14の外壁を覆うようにして設けられる。第1の磁界発生コイル16は、磁歪素子11とは接触させずにヨーク14の筒内内壁に沿って巻回してなる。ボイスコイルボビン21は、磁歪素子11の一端11bとヨーク14の開口部との間に介在させると共に、ダンパー12の略中央を貫通する。可動コイル20は、ヨーク14の開口側の空隙19内に配置されたボイスコイルボビン21の外壁に巻回される。円錐状のフレーム17は、ヨーク14の一端側の外壁を周方向に沿って覆うようにして固定される。低域再生用の振動板18は、ボイスコイルボビン21の一端側の外壁を周方向に沿って覆うようにして固定されると共に、エッジ部18a近傍の周縁部をフレーム17の周縁部に固定される円錐状をなす。高域再生用の振動板22は、磁歪素子11の端部11bに固定される円錐状をなす。
【0039】
かかる構成における低域或いは高域における音の再生は、以下に示す方法により行われる。
【0040】
先ず、低域の音を再生するための方法について述べる。図3(a)及び(b)に示すように、可動コイル20の位置にはヨーク14による磁界が形成されており(図3(b)に示される磁気回路中の符号s30を参照)、可動コイル20に音声電流が流れると、ボイスコイルボビン21に電磁力が働いて、紙面に向かって左右方向にボイスコイルボビン21を振動させる。ボイスコイルボビン21の振動は、低域再生用の振動板18へと伝達され、その振動板18から低域の音波が放射される。つまり、これは動電形スピーカと同様の音の再生方法である。
【0041】
次に、高域の音を再生するための方法について述べるが、これは第1実施例で述べた方法と略同様である。即ち、磁界発生コイル16に高周波の音声電流が流れると磁歪素子11の軸方向に磁界の変化が生じて、磁歪素子11がその軸方向Xに伸縮(振動)する。磁歪素子11によるこの振動は、高域再生用の振動板22へと伝達され、振動板22から高域の音波が放射される。
【0042】
但し、第2実施例に係るスピーカ装置200は、第1実施例に示すスピーカ装置100とは異なり、磁歪素子11の一端11aがヨーク14に固定されている、よって、第1実施例に係るスピーカ装置100と比べ、磁歪素子11の振動の振幅の大きさは概ね2倍となる。よって、第2実施例に係るスピーカ装置200は、より高域の音の再生が可能である。
【0043】
以上のように、第2実施例に係るスピーカ装置200は、高域再生に適した磁歪素子を利用したスピーカ装置に対して、動電形スピーカの原理を適用して低域の再生を可能としているので、低域から高域までの広帯域にわたって音声信号の再生が可能となる。よって、低域の延びたツィータを提供することが可能となる。
【0044】
次に、第2実施例に係るスピーカ装置200に適用可能な電子回路の各種例を図4(a)〜図4(c)に示す。
【0045】
先ず、図4(a)には、高域再生用の振動板22(ツィータ)を駆動する閉回路C2と、低域再生用の振動板18(ウーファ)を駆動する閉回路C3とを並列接続した電子回路C100が示される。
【0046】
図4(a)に示す閉回路C2では、高域再生用の振動板22を駆動する磁界発生コイル16と、ハイパスフィルタHfとを直列接続することにより閉回路を構成している。このため、入力端子S1に音声電流が印加されると、閉回路C2ではハイパスフィルタHfが低周波成分の音声電流をカットして、一定の高周波成分の音声電流を磁界発生コイル16側へ供給する。そして、磁界発生コイル16に一定の高周波の音声電流が流れると、磁歪素子11がスピーカ装置200の軸方向に伸縮(振動)し、高域再生用の振動板22を振動させる。よって、閉回路C2により、高域再生用の振動板22を通じて高域の音声が再生される。
【0047】
一方、図4(a)に示す閉回路C3では、低域再生用の振動板18を駆動する可動コイル20と、ローパスフィルタLfとを直列接続することにより閉回路を構成している。このため、入力端子S1に音声電流が印加されると、閉回路C3ではローパスフィルタLfが高周波成分の音声電流をカットして、一定の低周波成分の音声電流を可動コイル20へ供給する。そして、可動コイル20に一定の低周波の音声電流が流れると、ボイスコイルボビン21が変位し、低域再生用の振動板18を振動させる。よって、閉回路C3により、低域再生用の振動板18を通じて低域の音声が再生される。
【0048】
このように、図4(a)に示す電子回路C100をスピーカ装置200に適用することにより、低域から高域までの広帯域の音声再生が可能となる。
【0049】
次に、図4(b)には、高域再生用の振動板22を駆動する閉回路C5と、低域再生用の振動板18を駆動する閉回路C6とを並列接続した電子回路C200が示される。
【0050】
図4(b)に示す閉回路C5では、上述した図4(a)に示す閉回路C2と異なり、ハイパスフィルタHfを設けていない。したがって、閉回路C5では、入力端子S1に低周波成分及び高周波成分を含む音声電流が印加されると、その音声電流が磁界発生コイル16に流れる。しかし、磁歪素子11は、低周波成分の音声電流に対応する磁界の変化によっては振動速度が小さい性質があるため、高周波成分の音声電流に対応する磁界の変化のみによって大きな振動速度で振動することになる。よって、閉回路C5により、高域再生用の振動板22を通じて高域の音声信号のみが再生される。
【0051】
また、図4(b)に示す閉回路C6では、上述した図4(a)に示す閉回路C3と異なり、ローパスフィルタLfを設けていない。しかし、閉回路C6において、入力端子S1に低周波成分の音声電流を印加することにより、その音声電流が可動コイル20に流れ、ボイスコイルボビン21をスピーカ装置200の軸方向に振動させる。これにより、低域再生用の振動板18を振動させる。よって、閉回路C6により、低域再生用の振動板18を通じて低域の音声信号が再生される。
【0052】
このように、図4(b)に示す電子回路C200をスピーカ装置200に適用した場合には、ハイパスフィルタHfやローパスフィルタLfを設けることなく、低域から高域までの広帯域にわたって音声信号の再生が行われる。
【0053】
図4(c)には、高域再生用の振動板22を駆動する磁界発生コイル16と、低域再生用の振動板18を駆動する可動コイル20とを直列接続した電子回路C300が示される。
【0054】
図4(c)に示す電子回路C300では、入力端子S1に低周波成分及び高周波成分を含む音声電流が印加されると、その音声電流が磁界発生コイル16及び可動コイル20へと流れる。これにより、磁歪素子11は高周波成分の音声電流に対応する磁界の変化のみによって大きな振動速度で振動し、高域再生用の振動板22を通じて高域の音声を再生する。一方、可動コイル20に低周波成分の音声電流が流れると、ボイスコイルボビン21をスピーカ装置200の軸方向に振動させる。これにより、低域再生用の振動板18を通じて低域の音声を再生する。
【0055】
よって、図4(c)に示す電子回路C300をスピーカ装置200に適用した場合には、図4(b)に示す電子回路C200と同様にハイパスフィルタHfやローパスフィルタLfを設けることなく、低域から高域までの広帯域にわたって音の再生をすることができる。
【0056】
[第3実施例]
第3実施例に係るスピーカ装置300は、上述した第2実施例に係るスピーカ装置200における磁界発生コイル16と可動コイル20を1つのコイルにより構成したものである。
【0057】
図5にスピーカ装置300の軸方向に沿った断面図が示される。スピーカ装置300の構成は、上述した第2実施例に係るスピーカ装置200の構成と殆ど同様である。このため、第2実施例に係るスピーカ装置200と異なる構成の部分についてのみ説明する。なお、図示のスピーカ装置300では、第2実施例に係るスピーカ装置200と同様の構成部分については同様の符号を付している。
【0058】
本実施例のスピーカ装置300は、図5に示すように、ダンパー12近傍から磁歪素子11の一端11a近傍に至る長いボイスコイルボビン121を使用し、コイル120をボイスコイルボビン121の外壁に巻回している。このコイル120は、第2実施例における磁界発生コイル16及び可動コイル20の両方の機能を備える。
【0059】
かかる構成のスピーカ装置300では、コイル120に低周波成分の音声電流が流れると、電磁作用の原理により、ボイスコイルボビン121がスピーカ装置300の軸方向Xに振動する。そして、この振動が低域再生用の振動板18へと伝達され、その振動板18から低域の音波が放射される。尚、このとき、磁歪素子11内にも磁界の変化が生じるが、磁歪素子11は低周波成分の音声電流に対応する磁界の変化によっては振動速度が小さい。一方、磁界発生コイル120に高周波成分の音声電流が流れると、磁歪素子11の軸方向Xに磁界の変化が生じ、磁歪素子11を軸方向Xに伸縮(振動)させる。そして、磁歪素子11による振動が高域再生用の振動板22へと伝達され、その振動板22から高域の音波が放射される。
【0060】
このように、第3実施例に係るスピーカ装置300は、1つのコイルを利用して、低域から高域までの広帯域にわたって音声再生が可能となる。
【0061】
[変形例]
第1乃至第3実施例においては、スピーカ装置100、200、300に磁界を発生させるためバイアス磁界発生磁石5、15を設けたが、これに代えて或いはこれに加えて、導線を巻回したコイルを設けて、その導線に電流を流すことにより、磁界を発生させるように構成してもよい。さらに、このコイルに前記電流に音声電流を重畳するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の第1実施例に係るスピーカ装置の軸方向に沿った断面図を示す。
【図2】磁歪素子の一端を固定した場合と両端を固定しない場合の各磁歪素子の変位状態を示す。
【図3】本発明の第2実施例に係るスピーカ装置の軸方向に沿った断面図及び磁気回路部分の断面図を示す。
【図4】本発明の第2実施例に係るスピーカ装置に適用可能な電子回路の各種例を示す。
【図5】本発明の第3実施例に係るスピーカ装置の軸方向に沿った断面図を示す。
【符号の説明】
1、11 磁歪素子
4、14 ヨーク
5、15 バイアス磁界発生磁石
6、16 磁界発生コイル
7、17 フレーム
8、18、22 振動板
9、19 空隙
20 可動コイル
21、121 ボイスコイルボビン
100、200、300 スピーカ装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a speaker device using a magnetostrictive element or a giant magnetostrictive element.
[0002]
[Prior art]
2. Description of the Related Art A magnetostrictive element has been known as a magnetostrictive phenomenon in which the element size changes according to an external magnetic field. In particular, TbFe 2 RFe of system 2 The Laves-type intermetallic compound has an extremely large magnetostriction and is called a giant magnetostrictive element. When a coil is wound around the magnetostrictive element and a current flows through the coil, a magnetic field is generated in proportion to the magnitude of the current and the number of turns of the coil, and the magnetostrictive element expands and contracts according to the magnitude of the magnetic field. Various speakers utilizing such a property of the magnetostrictive element have been proposed.
[0003]
For example, there has been proposed a magnetostrictive speaker in which a speaker diaphragm is driven by using a magnetostrictive element and the whole speaker is configured to be thin (for example, see Patent Document 1). In addition, one end of the giant magnetostrictive rod is fixed to the disk-shaped yoke, and the other end is fixed to the diaphragm, so that the giant magnetostrictive rod is expanded and contracted without sliding on the housing or the like, thereby preventing noise and the like. A giant magnetostrictive actuator configured as described above and a giant magnetostrictive speaker using the same (for example, see Patent Document 2) have been proposed.
[0004]
[Patent Document 1]
JP-A-2000-341791
[Patent Document 2]
JP-A-10-145892
[0005]
[Problems to be solved by the invention]
However, the magnetostrictive element has a property that the vibration speed is large depending on the magnetic field change due to the high-frequency current, and the vibration speed is small depending on the magnetic field change due to the low-frequency current. It was difficult.
[0006]
The problems to be solved by the present invention include the above-mentioned ones as examples. An object of the present invention is to provide a magnetostrictive speaker device capable of reproducing a wide band from a low band to a high band.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is the magnetostrictive speaker device, wherein the magnetostrictive element, a magnetic field generating coil that generates a magnetic field in the direction of expansion and contraction of the magnetostrictive element, and a support member that movably supports both ends of the magnetostrictive element; A magnetic circuit for applying DC magnetic fields of different polarities to both ends of the magnetostrictive element, and a diaphragm fixed to one end of the magnetostrictive element are provided.
[0008]
The invention according to claim 3 is the magnetostrictive speaker device, wherein the magnetostrictive element, a magnetic field generating coil that generates a magnetic field in the direction of expansion and contraction of the magnetostrictive element, and one end of the magnetostrictive element are fixed and the other end of the magnetostrictive element is fixed. A magnetic circuit that applies a DC magnetic field of a different polarity to both ends of the magnetostrictive element, a support member that movably supports the other end of the magnetostrictive element, and a coil bobbin disposed in the air gap. A movable coil wound around the coil bobbin, a low-frequency diaphragm fixed to the coil bobbin, and a high-frequency diaphragm fixed to the other end of the magnetostrictive element. .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention uses a magnetostrictive element having a low vibration speed in a low frequency range (hereinafter, referred to as a “super magnetostrictive element”) in combination with a magnetic circuit including a yoke and a bias magnetic field generating magnet to reduce the low frequency range. A speaker device capable of reproducing sound over a wide band up to a high frequency is provided.
[0010]
In one aspect of the present invention, a magnetostrictive speaker device includes a magnetostrictive element, a magnetic field generating coil that generates a magnetic field in a direction in which the magnetostrictive element expands and contracts, a support member that movably supports both ends of the magnetostrictive element, The magnetostrictive element includes a magnetic circuit for applying DC magnetic fields having different polarities to both ends of the magnetostrictive element, and a diaphragm fixed to one end of the magnetostrictive element.
[0011]
According to the magnetostrictive speaker device described above, when a high-frequency audio current (AC) flows through the magnetic field generating coil, a magnetic field is generated, and the magnetostrictive element expands and contracts (vibrates) in the direction of the magnetic field. The vibration of the magnetostrictive element is transmitted to the diaphragm, and a high-frequency sound is reproduced from the diaphragm. On the other hand, when a low-frequency audio current flows through the magnetic field generating coil, the polarity of the magnetostrictive element, which is a magnetic material, changes. Since the magnetostrictive element is arranged in a DC magnetic field formed by the magnetic circuit, a repulsion / attraction force acts on the magnetostrictive element according to the polarity of the DC magnetic field generated by the magnetic circuit and the polarity of the magnetostrictive element. The repulsion / attraction force causes the magnetostrictive element to vibrate, and the vibration is transmitted to the diaphragm to reproduce low-frequency sound. In this way, it is possible to reproduce sound from a low frequency to a high frequency using the magnetostrictive element.
[0012]
In one aspect of the above-described magnetostrictive speaker, a nonmagnetic material is provided at the both ends of the magnetostrictive element, the magnetostrictive element is supported by the support member via the nonmagnetic material, and the vibration is applied to one of the nonmagnetic materials. The board can be fixed.
[0013]
According to another aspect of the present invention, a magnetostrictive speaker device includes a magnetostrictive element, a magnetic field generating coil that generates a magnetic field in a direction in which the magnetostrictive element expands and contracts, and fixes one end of the magnetostrictive element and the other end of the magnetostrictive element. A magnetic circuit that provides a DC magnetic field having different polarities to both ends of the magnetostrictive element, a support member that movably supports the other end of the magnetostrictive element, and a coil bobbin disposed in the air gap, A movable coil wound around the coil bobbin; a low-frequency diaphragm fixed to the coil bobbin; and a high-frequency diaphragm fixed to the other end of the magnetostrictive element.
[0014]
According to the magnetostrictive speaker device described above, when a high-frequency audio current (AC) flows through the magnetic field generating coil, a magnetic field is generated, and the magnetostrictive element expands and contracts (vibrates) in the direction of the magnetic field. The vibration of the magnetostrictive element is transmitted to the diaphragm, and a high-frequency sound is reproduced from the diaphragm. On the other hand, when a low-frequency audio current flows through the movable coil disposed in the gap of the magnetic circuit, an electromagnetic force acts on the coil bobbin around which the movable coil is wound, causing vibration. This vibration is transmitted to the diaphragm, and low-frequency sound is reproduced. In this way, it is possible to reproduce sound from a low frequency to a high frequency using the magnetostrictive element.
[0015]
In one aspect of the magnetostrictive speaker, the magnetic field generating coil and the movable coil may be the same coil.
[0016]
In another aspect of the above-described magnetostrictive speaker, the input device includes an input circuit in which the magnetic field generating coil and the movable coil are connected in parallel, and the input circuit transmits a high-frequency component of an input audio signal to the magnetic field generating coil. A high-pass filter that supplies a low-frequency component of the input audio signal to the movable coil. In this embodiment, the high frequency component is filtered from the input audio signal, the high frequency component is supplied to the magnetic field generating coil, and the low frequency component is supplied to the movable coil. In this way, the low and high frequencies can be reproduced respectively.
[0017]
Another aspect of the above magnetostrictive speaker includes an input circuit formed by connecting the magnetic field generating coil and the movable coil in parallel, and the input audio signal is input to the magnetic field generating coil and the movable coil in parallel. You. In still another aspect, the apparatus further comprises an input circuit formed by connecting the magnetic field generating coil and the movable coil in series, and the input audio signal is input to the magnetic field generating coil and the movable coil in series. Since the magnetostrictive element basically has a property of generating a large vibration velocity only for a high-frequency signal, the input audio signal may be supplied to the magnetic field generating coil and the movable coil without band limitation.
[0018]
In another aspect of the magnetostrictive speaker device, the magnetic field generating coil is fixed to the magnetic circuit without contacting the magnetostrictive element. According to this aspect, the magnetic field generating coil is fixed so as to be wound around a magnetic circuit, for example, an inner wall of a cylindrical yoke without contacting the magnetostrictive element. Therefore, the transmission is performed to the diaphragm without obstructing expansion and contraction (vibration) of the magnetostrictive element.
[0019]
In another aspect of the magnetostrictive speaker device, the magnetostrictive element includes a giant magnetostrictive element. Thereby, the amount of magnetostriction deformation can be increased according to the characteristics of the speaker device.
[0020]
In another aspect of the above-described magnetostrictive speaker device, the support member supports the magnetostrictive element movably in a direction in which the magnetostrictive element expands and contracts. Thus, expansion and contraction (vibration) by the magnetostrictive element is faithfully transmitted to the diaphragm without being hindered by the support member.
[0021]
In another aspect of the magnetostrictive speaker device, the magnetic circuit includes a magnetic field generating unit and a yoke magnetized according to a magnetic field generated from the magnetic field generating unit. According to this aspect, the magnetic energy generated by the magnetic field generating means is efficiently transmitted to the yoke, and the magnetic energy can be given to the air gap.
[0022]
In another aspect of the magnetostrictive speaker, the magnetic field generating means may be a coil around which a magnet and / or a conductive wire is wound. For example, a magnetic field having a magnitude corresponding to the former or the latter can be generated by flowing an audio current through a permanent magnet or a conducting wire wound around an exciting coil. Further, both the permanent magnet and the exciting coil can be adopted according to the characteristics of the speaker device.
[0023]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0024]
[First embodiment]
FIG. 1 shows a cross-sectional view along the axial direction of a speaker device 100 according to the first embodiment.
[0025]
As shown in FIG. 1, the speaker device 100 mainly includes a rod-shaped magnetostrictive element 1, disk-shaped dampers 2a and 2b, non-magnetic members 3a and 3b, a cylindrical yoke 4, and a bias magnetic field generating magnet. 5, a magnetic field generating coil 6, a conical frame 7, and a conical diaphragm 8. The magnetostrictive element 1 is displaced (expands and contracts) in accordance with the magnitude of the external magnetic field, and is disposed substantially at the center of the speaker device 100. The dampers 2a and 2b have a plurality of concentric corrugations and are provided at positions where the openings of the yoke 4 are closed, and movably support the magnetostrictive element 1. The non-magnetic members 3a and 3b are fixed to the ends 1a and 1b of the magnetostrictive element 1, respectively, and are supported so as to penetrate substantially the center of the dampers 2a and 2b. The yoke 4 accommodates the magnetostrictive element 1 and the non-magnetic members 3a and 3b in a cylinder, and is fixed to the periphery of the dampers 2a and 2b, respectively. The bias magnetic field generating magnet 5 has a ring shape and is provided substantially at the center of the yoke 4 so as to cover the outer wall of the yoke 4. The magnetic field generating coil 6 is wound along the inner wall of the cylinder of the bias magnetic field generating magnet 5 without contacting the magnetostrictive element 1, and the conical frame 7 extends along the outer wall on one end side of the yoke 4 along the circumferential direction. It is fixed so as to cover. The diaphragm 8 has one end fixed to one end of the non-magnetic body 3 b not fixed to the magnetostrictive element 1, and a peripheral edge near the edge 8 a fixed to the peripheral edge of the frame 7.
[0026]
The sound reproduction in the low or high frequency range of the speaker device 100 having such a configuration is performed by the following method.
[0027]
First, the principle of reproducing a low-frequency audio signal will be described. In the low frequency range, sound is reproduced by an operation similar to that of the movable iron loudspeaker, and the magnetostrictive phenomenon of the magnetostrictive element does not contribute to reproduction. Specifically, when a low-frequency audio current (alternating current) flows through the magnetic field generating coil 6, the polarity of the magnetostrictive element 1 changes to the N-pole or the S-pole in accordance with a change in the polarity (+ or-) of the audio current. Change. On the other hand, the polarities in the air gaps 9a and 9b formed by the yoke 4 and the bias magnetic field generating magnet 5 are determined by the bias magnetic field generating magnet 5 (in this example, the air gap 9a is an S pole and the air gap 9b is an N pole). Therefore, a repulsive force or an attractive force acts on the magnetostrictive element 1 according to the relationship between the polarities of the gaps 9a and 9b and the polarity of the magnetostrictive element 1, and the magnetostrictive element 1 is displaced in the axial direction X in FIG. This displacement is transmitted to the diaphragm 8 via the non-magnetic body 3b, and a low-frequency sound wave is emitted from the diaphragm 8. By selecting the resonance frequency generated by the equivalent mass of the vibration system and the compliance of the dampers 2a and 2b to a predetermined value, the magnetostrictive element 1 can be vibrated in a desired low band.
[0028]
Next, the principle of reproducing a high-frequency audio signal will be described. The high-frequency audio signal is reproduced by the magnetostrictive phenomenon of the magnetostrictive element. When a high-frequency audio current flows through the magnetic field generating coil 6, a change in the magnetic field occurs in the axial direction X of the magnetostrictive element 1. Then, the magnetostrictive element 1 expands and contracts in the axial direction X according to the change in the magnetic field, and generates vibration. This vibration by the magnetostrictive element 1 is transmitted to the diaphragm 8 via the non-magnetic body 3b, and a high-frequency sound wave is emitted from the diaphragm 8.
[0029]
As described above, the speaker device 100 according to the first embodiment reproduces the low-frequency signal by the repulsion / attraction effect of the DC magnetic field formed by the magnetic field generating coil 6 and the yoke 4 and the magnetism of the magnetostrictive element 1, The high frequency signal is reproduced by the magnetostriction phenomenon. Therefore, an audio signal can be reproduced over a wide band from a low band to a high band.
[0030]
In the speaker device 100 according to the first embodiment, the non-magnetic members 3a, 3b are supported by the dampers 2a, 2b without fixing the end 1a of the magnetostrictive element 1 to the yoke 4, so that the magnetostrictive element 1 can be moved in the axial direction X. To be displaceable. Therefore, in the magnetostrictive element 1, the vibration in the high frequency range is reduced, while the vibration in the low frequency range is large.
[0031]
The reason for this will be described in detail with reference to FIGS. FIG. 2 is an enlarged view of the magnetostrictive element 1 of the speaker device 100 shown in FIG. FIG. 2A shows a case where the end of the magnetostrictive element 1 is not fixed, and FIG. 2B shows a case where the left end of the magnetostrictive element 1 is fixed. The length of the magnetostrictive element 1 shown in FIGS. 2A and 2B is the same length L. Further, in this example, for convenience of explanation, it is assumed that the length when the magnetostrictive element 1 expands and the length when it contracts are both equal. In FIGS. 2A and 2B, the length of L2 is twice as long as L1.
[0032]
As shown in FIG. 2A, when an audio current flows through the magnetic field generating coil 6 of the magnetostrictive element 1, each end 1a and 1b expands and contracts in the axial direction X by the length L1. Therefore, when the right end 1b of the magnetostrictive element 1 is fixed to the diaphragm via the non-magnetic material in FIG. 2A, the vibration amplitude of the diaphragm becomes L1. On the other hand, when the same audio current is applied while the left end of the magnetostrictive element 1 is fixed as shown in FIG. 2B, the right end 1b of the magnetostrictive element 1 is moved in the axial direction by a length L2 (= 2 × L1). Displace to X. Therefore, when the left end 1a is fixed to the diaphragm via the non-magnetic material, the vibration amplitude of the diaphragm becomes L2, which is twice as large as when the end of the magnetostrictive element 1 is not fixed.
[0033]
In the first embodiment, since the end of the magnetostrictive element 1 is not fixed, the amount of vibration of the magnetostrictive element, that is, the amplitude of the reproduced high-frequency signal is 1 / of the case where the magnetostrictive element is not fixed. However, the magnetostrictive element has a property that the vibration speed is high with respect to a high-frequency signal. Therefore, in this embodiment, the amplitude of the high-frequency signal is suppressed by not fixing the magnetostrictive element, and at the same time, the low-frequency signal that cannot be reproduced by expansion and contraction of the magnetostrictive element is increased by the above-described principle, so that the entire reproduction band is flat. Frequency characteristics can be obtained.
[0034]
As described above, in the speaker device 100 according to the first embodiment, the magnetostrictive element 1 having a low vibration speed in the low frequency band and the magnetic circuit including the yoke 4 and the bias magnetic field magnet 5 are used in combination. Is based on a principle similar to that of a movable iron loudspeaker, and reproduction is performed in the high frequency range based on the vibration principle of the magnetostrictive element 1. As a result, sound reproduction in a wide band from a low band to a high band becomes possible, and it is possible to provide a tweeter whose low band is extended.
[0035]
[Second embodiment]
In the second embodiment, in addition to a high-frequency diaphragm that emits a sound wave by vibration from the magnetostrictive element 11, a low-frequency diaphragm that emits a sound wave by vibration from a magnetic circuit similar to an electrokinetic type such as the yoke 14 is provided. Provided is a speaker device 200 that can reproduce sound over a wide band from a low band to a high band by providing a diaphragm.
[0036]
FIG. 3A is a cross-sectional view of the speaker device 200 along the axial direction. FIG. 3B is a sectional view of a magnetic circuit portion of the speaker device 200 shown in FIG. In the magnetic circuit shown in FIG. 3B, a magnetic path is formed along the direction indicated by reference numeral s30. In the magnetic circuit shown in FIG. 3B, components other than the yoke 14, the bias magnetic field generating magnet 15, and the magnetostrictive element 11 are omitted for convenience of explanation.
[0037]
As shown in FIG. 3A, the speaker device 200 mainly includes a rod-shaped magnetostrictive element 11, a disk-shaped damper 12, a bottomed cylindrical yoke 14, and a ring-shaped bias magnetic field generating magnet 15. , A magnetic field generating coil 16, a cylindrical voice coil bobbin 21, a movable coil 20, a conical frame 17, a low-frequency reproduction diaphragm 18 (woofer), and a high-frequency reproduction diaphragm 22 (tweeter) ).
[0038]
The size of the magnetostrictive element 11 is displaced in accordance with the magnitude of an external magnetic field, and the magnetostrictive element 11 is disposed substantially at the center of the speaker device 200. The damper 12 has a plurality of concentric corrugations and is provided at a position where the opening of the yoke 14 is closed, and supports the magnetostrictive element 11 movably. The yoke 14 accommodates the magnetostrictive element 11 in a cylinder and fixes one end 11 a of the magnetostrictive element 11. The bias magnetic field generating magnet 15 is provided substantially at the center of the yoke 14 so as to cover the outer wall of the yoke 14. The first magnetic field generating coil 16 is wound along the inner wall of the yoke 14 without contacting the magnetostrictive element 11. The voice coil bobbin 21 is interposed between one end 11 b of the magnetostrictive element 11 and the opening of the yoke 14 and penetrates substantially the center of the damper 12. The movable coil 20 is wound around the outer wall of the voice coil bobbin 21 disposed in the gap 19 on the opening side of the yoke 14. The conical frame 17 is fixed so as to cover the outer wall on one end side of the yoke 14 along the circumferential direction. The diaphragm 18 for low-frequency reproduction is fixed so as to cover the outer wall on one end side of the voice coil bobbin 21 along the circumferential direction, and the peripheral part near the edge part 18 a is fixed to the peripheral part of the frame 17. Form a cone. The diaphragm 22 for high-frequency reproduction has a conical shape fixed to the end 11 b of the magnetostrictive element 11.
[0039]
Reproduction of sound in the low or high range in such a configuration is performed by the following method.
[0040]
First, a method for reproducing low-frequency sound will be described. As shown in FIGS. 3A and 3B, a magnetic field is formed by the yoke 14 at the position of the movable coil 20 (see reference numeral s30 in the magnetic circuit shown in FIG. 3B). When a voice current flows through the coil 20, an electromagnetic force acts on the voice coil bobbin 21 to vibrate the voice coil bobbin 21 in the left-right direction toward the paper surface. The vibration of the voice coil bobbin 21 is transmitted to the diaphragm 18 for low-frequency reproduction, and a low-frequency sound wave is emitted from the diaphragm 18. That is, this is a sound reproduction method similar to that of the electrodynamic speaker.
[0041]
Next, a method for reproducing high-frequency sounds will be described, which is substantially the same as the method described in the first embodiment. That is, when a high-frequency audio current flows through the magnetic field generating coil 16, a change in the magnetic field occurs in the axial direction of the magnetostrictive element 11, and the magnetostrictive element 11 expands and contracts (vibrates) in the axial direction X. This vibration by the magnetostrictive element 11 is transmitted to the diaphragm 22 for high-frequency reproduction, and a high-frequency sound wave is emitted from the diaphragm 22.
[0042]
However, the speaker device 200 according to the second embodiment differs from the speaker device 100 according to the first embodiment in that one end 11a of the magnetostrictive element 11 is fixed to the yoke 14, and therefore, the speaker according to the first embodiment is different. Compared with the device 100, the amplitude of the vibration of the magnetostrictive element 11 is approximately doubled. Therefore, the speaker device 200 according to the second embodiment can reproduce higher frequency sounds.
[0043]
As described above, the speaker device 200 according to the second embodiment enables the low-frequency reproduction by applying the principle of the electrodynamic loudspeaker to the speaker device using the magnetostrictive element suitable for high-frequency reproduction. Therefore, it is possible to reproduce the audio signal over a wide band from a low band to a high band. Therefore, it is possible to provide an extended tweeter in a low frequency range.
[0044]
Next, various examples of electronic circuits that can be applied to the speaker device 200 according to the second embodiment are shown in FIGS.
[0045]
First, in FIG. 4A, a closed circuit C2 for driving the diaphragm 22 (tweeter) for high-frequency reproduction and a closed circuit C3 for driving the diaphragm 18 (woofer) for low-frequency reproduction are connected in parallel. The illustrated electronic circuit C100 is shown.
[0046]
In the closed circuit C2 shown in FIG. 4A, a closed circuit is configured by connecting the magnetic field generating coil 16 for driving the diaphragm 22 for high-frequency reproduction and the high-pass filter Hf in series. Therefore, when a voice current is applied to the input terminal S1, the high-pass filter Hf cuts the low-frequency component voice current in the closed circuit C2 and supplies a constant high-frequency component voice current to the magnetic field generating coil 16 side. . When a constant high-frequency audio current flows through the magnetic field generating coil 16, the magnetostrictive element 11 expands and contracts (vibrates) in the axial direction of the speaker device 200, and vibrates the diaphragm 22 for high-frequency reproduction. Therefore, the high-frequency sound is reproduced through the high-frequency reproduction diaphragm 22 by the closed circuit C2.
[0047]
On the other hand, in a closed circuit C3 shown in FIG. 4A, a closed circuit is configured by connecting a movable coil 20 for driving the diaphragm 18 for low-frequency reproduction and a low-pass filter Lf in series. For this reason, when a voice current is applied to the input terminal S1, the low-pass filter Lf cuts the high-frequency component voice current in the closed circuit C3 and supplies a constant low-frequency component voice current to the movable coil 20. When a constant low-frequency audio current flows through the movable coil 20, the voice coil bobbin 21 is displaced, and the diaphragm 18 for low-frequency reproduction vibrates. Therefore, the low-frequency sound is reproduced through the low-frequency reproduction diaphragm 18 by the closed circuit C3.
[0048]
As described above, by applying the electronic circuit C100 shown in FIG. 4A to the speaker device 200, it is possible to reproduce sound in a wide band from a low band to a high band.
[0049]
Next, FIG. 4B shows an electronic circuit C200 in which a closed circuit C5 for driving the diaphragm 22 for high-frequency reproduction and a closed circuit C6 for driving the diaphragm 18 for low-frequency reproduction are connected in parallel. Is shown.
[0050]
Unlike the closed circuit C2 shown in FIG. 4A, the closed circuit C5 shown in FIG. 4B does not include the high-pass filter Hf. Therefore, in the closed circuit C5, when a sound current including a low-frequency component and a high-frequency component is applied to the input terminal S1, the sound current flows through the magnetic field generating coil 16. However, since the magnetostrictive element 11 has a property that the oscillation speed is small depending on the change in the magnetic field corresponding to the audio current of the low frequency component, the magnetostrictive element 11 oscillates at a large oscillation speed only by the change of the magnetic field corresponding to the audio current of the high frequency component. become. Therefore, only the high-frequency audio signal is reproduced through the high-frequency reproduction diaphragm 22 by the closed circuit C5.
[0051]
Further, unlike the closed circuit C3 shown in FIG. 4A, the closed circuit C6 shown in FIG. 4B does not include the low-pass filter Lf. However, in the closed circuit C6, when the audio current of the low frequency component is applied to the input terminal S1, the audio current flows through the movable coil 20, and the voice coil bobbin 21 vibrates in the axial direction of the speaker device 200. Thereby, the diaphragm 18 for low-frequency reproduction is vibrated. Therefore, the low-frequency audio signal is reproduced through the low-frequency reproduction diaphragm 18 by the closed circuit C6.
[0052]
As described above, when the electronic circuit C200 shown in FIG. 4B is applied to the speaker device 200, the reproduction of the audio signal over a wide band from the low band to the high band without providing the high-pass filter Hf or the low-pass filter Lf. Is performed.
[0053]
FIG. 4C shows an electronic circuit C300 in which the magnetic field generating coil 16 for driving the diaphragm 22 for high-frequency reproduction and the movable coil 20 for driving the diaphragm 18 for low-frequency reproduction are connected in series. .
[0054]
In the electronic circuit C300 shown in FIG. 4C, when a sound current including a low frequency component and a high frequency component is applied to the input terminal S1, the sound current flows to the magnetic field generating coil 16 and the movable coil 20. As a result, the magnetostrictive element 11 vibrates at a large vibration speed only by a change in the magnetic field corresponding to the audio current of the high frequency component, and reproduces high-frequency sound through the high-frequency reproduction diaphragm 22. On the other hand, when a voice current of a low-frequency component flows through the movable coil 20, the voice coil bobbin 21 vibrates in the axial direction of the speaker device 200. Thus, low-frequency sound is reproduced through the low-frequency reproduction diaphragm 18.
[0055]
Therefore, when the electronic circuit C300 shown in FIG. 4C is applied to the speaker device 200, the low-pass filter Hf and the low-pass filter Lf are not provided similarly to the electronic circuit C200 shown in FIG. The sound can be reproduced over a wide band from to high frequencies.
[0056]
[Third embodiment]
The speaker device 300 according to the third embodiment is configured such that the magnetic field generating coil 16 and the movable coil 20 in the speaker device 200 according to the second embodiment described above are configured by one coil.
[0057]
FIG. 5 shows a cross-sectional view of the speaker device 300 along the axial direction. The configuration of the speaker device 300 is almost the same as the configuration of the speaker device 200 according to the second embodiment described above. For this reason, only the configuration different from that of the speaker device 200 according to the second embodiment will be described. In the illustrated speaker device 300, the same components as those of the speaker device 200 according to the second embodiment are denoted by the same reference numerals.
[0058]
As shown in FIG. 5, the speaker device 300 of this embodiment uses a long voice coil bobbin 121 extending from the vicinity of the damper 12 to the vicinity of one end 11a of the magnetostrictive element 11, and the coil 120 is wound around the outer wall of the voice coil bobbin 121. . This coil 120 has both functions of the magnetic field generating coil 16 and the movable coil 20 in the second embodiment.
[0059]
In the speaker device 300 having such a configuration, when an audio current of a low-frequency component flows through the coil 120, the voice coil bobbin 121 vibrates in the axial direction X of the speaker device 300 due to the principle of electromagnetic action. Then, this vibration is transmitted to the diaphragm 18 for low-frequency reproduction, and a low-frequency sound wave is emitted from the diaphragm 18. At this time, a change in the magnetic field also occurs in the magnetostrictive element 11, but the vibration speed of the magnetostrictive element 11 is small depending on the change in the magnetic field corresponding to the audio current of the low frequency component. On the other hand, when an audio current of a high-frequency component flows through the magnetic field generating coil 120, a change in the magnetic field occurs in the axial direction X of the magnetostrictive element 11, causing the magnetostrictive element 11 to expand and contract (vibrate) in the axial direction X. Then, the vibration by the magnetostrictive element 11 is transmitted to the diaphragm 22 for high-frequency reproduction, and high-frequency sound waves are emitted from the diaphragm 22.
[0060]
As described above, the speaker device 300 according to the third embodiment can reproduce sound over a wide band from a low band to a high band using one coil.
[0061]
[Modification]
In the first to third embodiments, the bias magnetic field generating magnets 5 and 15 are provided to generate a magnetic field in the speaker devices 100, 200 and 300. However, instead of or in addition to this, a conductive wire is wound. A coil may be provided and a magnetic field may be generated by passing a current through the conductor. Further, an audio current may be superimposed on the current on the coil.
[Brief description of the drawings]
FIG. 1 is a sectional view taken along an axial direction of a speaker device according to a first embodiment of the present invention.
FIG. 2 shows a displacement state of each magnetostrictive element when one end of the magnetostrictive element is fixed and when both ends are not fixed.
FIG. 3 shows a sectional view of a speaker device according to a second embodiment of the present invention along an axial direction and a sectional view of a magnetic circuit portion.
FIG. 4 shows various examples of an electronic circuit applicable to the speaker device according to the second embodiment of the present invention.
FIG. 5 is a sectional view taken along an axial direction of a speaker device according to a third embodiment of the present invention.
[Explanation of symbols]
1,11 magnetostrictive element
4, 14 York
5, 15 Bias magnetic field generating magnet
6, 16 magnetic field generating coil
7, 17 frames
8, 18, 22 diaphragm
9, 19 void
20 Moving coil
21, 121 Voice coil bobbin
100, 200, 300 speaker device

Claims (12)

磁歪素子と、
前記磁歪素子の伸縮方向に磁界を発生する磁界発生コイルと、
前記磁歪素子の両端を移動自在に支持する支持部材と、
前記磁歪素子の両端に異なる極性の直流磁界を付与する磁気回路と、
前記磁歪素子の一端に固定された振動板と、を備えることを特徴とする磁歪形スピーカ装置。
A magnetostrictive element,
A magnetic field generating coil for generating a magnetic field in the direction of expansion and contraction of the magnetostrictive element,
A support member for movably supporting both ends of the magnetostrictive element,
A magnetic circuit for applying DC magnetic fields of different polarities to both ends of the magnetostrictive element,
A diaphragm fixed to one end of the magnetostrictive element.
前記磁歪素子の前記両端には、非磁性体が設けられ、
前記磁歪素子は、前記非磁性体を介して前記支持部材に支持されると共に、一方の前記非磁性体に前記振動板が固定されることを特徴とする請求項1に記載の磁歪形スピーカ装置。
A non-magnetic material is provided at the both ends of the magnetostrictive element,
The magnetostrictive speaker device according to claim 1, wherein the magnetostrictive element is supported by the support member via the nonmagnetic material, and the diaphragm is fixed to one of the nonmagnetic materials. .
磁歪素子と、
前記磁歪素子の伸縮方向に磁界を発生する磁界発生コイルと、
前記磁歪素子の一端を固定するとともに前記磁歪素子の他端側に空隙を有し、前記磁歪素子の両端に異なる極性の直流磁界を付与する磁気回路と、
前記磁歪素子の他端を移動自在に支持する支持部材と、
前記空隙内に配置されたコイルボビンと、
前記コイルボビンに巻回された可動コイルと、
前記コイルボビンに固定された低域用振動板と、
前記磁歪素子の前記他端に固定された高域用振動板と、を備えることを特徴とする磁歪形スピーカ装置。
A magnetostrictive element,
A magnetic field generating coil for generating a magnetic field in the direction of expansion and contraction of the magnetostrictive element,
A magnetic circuit that fixes one end of the magnetostrictive element and has a gap on the other end side of the magnetostrictive element, and applies a DC magnetic field of a different polarity to both ends of the magnetostrictive element,
A support member for movably supporting the other end of the magnetostrictive element,
A coil bobbin arranged in the gap,
A movable coil wound around the coil bobbin;
A low-frequency diaphragm fixed to the coil bobbin,
A high-frequency diaphragm fixed to the other end of the magnetostrictive element.
前記磁界発生コイルと前記可動コイルは同一のコイルであることを特徴とする請求項3に記載の磁歪形スピーカ装置。The magnetostrictive speaker device according to claim 3, wherein the magnetic field generating coil and the movable coil are the same coil. 前記磁界発生コイルと前記可動コイルとを並列接続してなる入力回路を備え、前記入力回路は、入力音声信号の高域成分を前記磁界発生コイルに供給する高域通過フィルタと、前記入力音声信号の低域成分を前記可動コイルに供給する低域通過フィルタと、を有することを特徴とする請求項3に記載の磁歪形スピーカ装置。An input circuit formed by connecting the magnetic field generating coil and the movable coil in parallel, the input circuit comprising: a high-pass filter that supplies a high-frequency component of an input audio signal to the magnetic field generating coil; The magnetostrictive speaker device according to claim 3, further comprising: a low-pass filter that supplies the low-frequency component to the movable coil. 前記磁界発生コイルと前記可動コイルとを並列接続してなる入力回路を備え、前記入力音声信号は前記磁界発生コイルと前記可動コイルに並列に入力されることを特徴とする請求項3に記載の磁歪形スピーカ装置。4. The input circuit according to claim 3, further comprising an input circuit formed by connecting the magnetic field generating coil and the movable coil in parallel, wherein the input audio signal is input to the magnetic field generating coil and the movable coil in parallel. Magnetostrictive speaker device. 前記磁界発生コイルと前記可動コイルとを直列接続してなる入力回路を備え、前記入力音声信号は前記磁界発生コイルと前記可動コイルに直列に入力されることを特徴とする請求項3に記載の磁歪形スピーカ装置。4. The input circuit according to claim 3, further comprising an input circuit formed by connecting the magnetic field generating coil and the movable coil in series, wherein the input audio signal is input to the magnetic field generating coil and the movable coil in series. Magnetostrictive speaker device. 前記磁界発生コイルは、前記磁歪素子と非接触で前記磁気回路に固定されることを特徴とする請求項1乃至6のいずれか一項に記載の磁歪形スピーカ装置。The magnetostrictive speaker device according to any one of claims 1 to 6, wherein the magnetic field generating coil is fixed to the magnetic circuit without contacting the magnetostrictive element. 前記磁歪素子は、超磁歪素子を含むことを特徴とする請求項1乃至7のいずれか一項に記載の磁歪形スピーカ装置。The magnetostrictive speaker device according to any one of claims 1 to 7, wherein the magnetostrictive element includes a giant magnetostrictive element. 前記支持部材は、前記磁歪素子を前記磁歪素子の伸縮方向に移動自在に支持することを特徴とする請求項1乃至8のいずれか一項に記載の磁歪形スピーカ装置。9. The magnetostrictive speaker device according to claim 1, wherein the support member supports the magnetostrictive element movably in a direction in which the magnetostrictive element expands and contracts. 10. 前記磁気回路は、磁界発生手段と、前記磁界発生手段から生じる磁界に従って着磁したヨークと、を含むことを特徴とする請求項1乃至9のいずれか一項に記載の磁歪形スピーカ装置。The magnetostrictive speaker device according to any one of claims 1 to 9, wherein the magnetic circuit includes a magnetic field generating means and a yoke magnetized according to a magnetic field generated by the magnetic field generating means. 前記磁界発生手段は、磁石及び/又は導線が巻回されたコイルであることを特徴とする請求項10に記載の磁歪形スピーカ装置。The magnetostrictive speaker device according to claim 10, wherein the magnetic field generating means is a coil around which a magnet and / or a conductive wire is wound.
JP2003160193A 2003-06-05 2003-06-05 Magnetostrictive speaker Abandoned JP2004363967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160193A JP2004363967A (en) 2003-06-05 2003-06-05 Magnetostrictive speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160193A JP2004363967A (en) 2003-06-05 2003-06-05 Magnetostrictive speaker

Publications (1)

Publication Number Publication Date
JP2004363967A true JP2004363967A (en) 2004-12-24

Family

ID=34053040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160193A Abandoned JP2004363967A (en) 2003-06-05 2003-06-05 Magnetostrictive speaker

Country Status (1)

Country Link
JP (1) JP2004363967A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138886A1 (en) 2006-05-29 2007-12-06 Sony Corporation Hybrid actuator, loudspeaker and sound output method
JP2010124322A (en) * 2008-11-20 2010-06-03 Sony Corp Speaker device and speaker system
JP2010141540A (en) * 2008-12-11 2010-06-24 Taisei Corp Sound wave transmitter
JP2015122728A (en) * 2013-10-22 2015-07-02 ヤマハ株式会社 Electro-acoustic transducer
WO2015119627A3 (en) * 2014-02-08 2015-11-19 Empire Technology Development Llc Mems-based audio speaker system with modulation element
US9866948B2 (en) 2011-08-16 2018-01-09 Empire Technology Development Llc Techniques for generating audio signals
US10123126B2 (en) 2014-02-08 2018-11-06 Empire Technology Development Llc MEMS-based audio speaker system using single sideband modulation
US10271146B2 (en) 2014-02-08 2019-04-23 Empire Technology Development Llc MEMS dual comb drive
US10284961B2 (en) 2014-02-08 2019-05-07 Empire Technology Development Llc MEMS-based structure for pico speaker
CN109862495A (en) * 2019-04-11 2019-06-07 贵州电网有限责任公司 A kind of communication system of power grids equipment magnetostriction loudspeaker
EP3041263B1 (en) * 2014-12-30 2022-01-05 Sonion Nederland B.V. Hybrid receiver module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138886A1 (en) 2006-05-29 2007-12-06 Sony Corporation Hybrid actuator, loudspeaker and sound output method
JP2010124322A (en) * 2008-11-20 2010-06-03 Sony Corp Speaker device and speaker system
JP2010141540A (en) * 2008-12-11 2010-06-24 Taisei Corp Sound wave transmitter
US10448146B2 (en) 2011-08-16 2019-10-15 Empire Technology Development Llc Techniques for generating audio signals
US9866948B2 (en) 2011-08-16 2018-01-09 Empire Technology Development Llc Techniques for generating audio signals
JP2015122728A (en) * 2013-10-22 2015-07-02 ヤマハ株式会社 Electro-acoustic transducer
US9913048B2 (en) 2014-02-08 2018-03-06 Empire Technology Development Llc MEMS-based audio speaker system with modulation element
US10123126B2 (en) 2014-02-08 2018-11-06 Empire Technology Development Llc MEMS-based audio speaker system using single sideband modulation
US10271146B2 (en) 2014-02-08 2019-04-23 Empire Technology Development Llc MEMS dual comb drive
US10284961B2 (en) 2014-02-08 2019-05-07 Empire Technology Development Llc MEMS-based structure for pico speaker
WO2015119627A3 (en) * 2014-02-08 2015-11-19 Empire Technology Development Llc Mems-based audio speaker system with modulation element
EP3041263B1 (en) * 2014-12-30 2022-01-05 Sonion Nederland B.V. Hybrid receiver module
CN109862495A (en) * 2019-04-11 2019-06-07 贵州电网有限责任公司 A kind of communication system of power grids equipment magnetostriction loudspeaker

Similar Documents

Publication Publication Date Title
US7706563B2 (en) Concentric radial ring motor
JP6915167B2 (en) Transducer placement
KR101596891B1 (en) Electromagnetic drive slim speaker
JP2001086589A (en) Loudspeaker
US10218250B2 (en) Vibrating actuator
JP5032708B2 (en) Multi-function micro speaker
KR101851702B1 (en) Speaker having all movable frequency band using magneto-rheological elastomer
JP2004363967A (en) Magnetostrictive speaker
JP2003079123A (en) Multifunction actuator
JP4687400B2 (en) Speaker device
JPH02170700A (en) Wide band nondirectional speaker
US7873180B2 (en) Voice coil actuator
JP4431623B2 (en) Speaker and speaker system
JP2016502323A (en) Electromagnetic transducer and vibration control system
KR100803744B1 (en) Speaker
KR101775427B1 (en) Speaker Unit
JP2002112387A (en) Speaker and speaker system
CN105282666A (en) Miniature loudspeaker
KR19990041872A (en) Speaker structure with double voice coil
JPH077794A (en) Opposite phase vibration body
KR102374602B1 (en) Solenoid Speaker
KR100545069B1 (en) Speaker
JP2003163991A (en) Speaker
JPH0323758Y2 (en)
JPH05344592A (en) Speaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070806