JP2004347575A - Fbg sensing device - Google Patents

Fbg sensing device Download PDF

Info

Publication number
JP2004347575A
JP2004347575A JP2003168401A JP2003168401A JP2004347575A JP 2004347575 A JP2004347575 A JP 2004347575A JP 2003168401 A JP2003168401 A JP 2003168401A JP 2003168401 A JP2003168401 A JP 2003168401A JP 2004347575 A JP2004347575 A JP 2004347575A
Authority
JP
Japan
Prior art keywords
fbg
light
amount
light source
sensing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168401A
Other languages
Japanese (ja)
Other versions
JP4284115B2 (en
Inventor
Yusuke Takei
裕介 武井
Hiromi Yasujima
弘美 安島
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003168401A priority Critical patent/JP4284115B2/en
Publication of JP2004347575A publication Critical patent/JP2004347575A/en
Application granted granted Critical
Publication of JP4284115B2 publication Critical patent/JP4284115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FBG sensing device having high reliability without a drive part in a light source or a wavelength measurement part, suitable for high-speed measurement such as vibration measurement, having sufficiently large light source output to sufficiently perform remote measurement, having low production cost, and allowing construction of a system simply processing data. <P>SOLUTION: This FBG sensing device has: an FBG (a fiber Bragg grating)reflecting a specific wavelength band, and having a characteristic wherein the reflection wavelength band shifts by receiving strain; the light source outputting light in the FBG reflection wavelength band; and a light receiver detecting light intensity outputted from the light source, and reflected from the FBG. By measuring a change amount of the reflected light intensity caused by the shift of the reflection wavelength band of the FBG, a strain amount of the FBG is detected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバからなるFBGを用いて歪(圧力)計測を行うFBGセンシング装置に関するものである。
【0002】
【従来の技術】
近年、高度成長期の急激に建設された構造物の劣化が進み、構造物の健全度を評価する方法について、政府を中心に研究が活発に行われている。従来、構造物の歪を計測する方法として、抵抗線ひずみゲージを用いた電気的な方法が主流であったが、信頼性、落雷、電磁ノイズ等の問題があり、これら問題のない光ファイバによる計測(センシング)が注目されている。また光ファイバは伝送損失が小さいため、遠隔距離での監視が可能であり注目されている。
【0003】
光ファイバセンシング分野において、FBG(ファイバ・ブラッグ・グレーティング)は広帯域光源や波長可変光源と組み合わせて、構造物の歪計測に用いられている。FBGはグレーティング間隔で決まる特定波長の光を反射する。FBGに応力が加わり延び縮みする(FBGが歪む)と、グレーティング間隔が変移しFBGの反射波長が変化する。このFBGを構造物の測定個所に取り付け、広帯域光源や波長可変光源を入射し、反射波長を測定することでFBGの歪み、すなわち構造物の歪みが計測できる。また、高速に測定することで構造物の振動も測定でき、地震計としても応用される。
【0004】
FBGの反射波長を測定する方法として、特許文献1では光源に広帯域光源を用い、ファブリペローフィルタ(以下FPフィルタと示す。)を用いた方法が提案されている。
【0005】
図9は特許文献1に示す構成の概略を示す図である。
【0006】
広帯域光源101から導出された光は光分岐器102を透過し、光ファイバ108を透過し、FBG103に達する。FBG103にて特定波長の光が反射され、光ファイバ108を透過し、光分岐器102を透過し、FPフィルタ109を透過し、受光器104に到達する。受光器104において光量を電流に変換する。
【0007】
FPフィルタ109はエタロン板を用いた干渉器であり、2枚の平行に向き合うエタロン板の間隔を圧電素子により駆動させ、干渉距離を操作する。FPフィルタを透過する光は干渉距離により特定波長が透過する。干渉距離を任意の長さに変化させることで広帯域光源101から出力される全ての波長帯域の反射光を検知できる。圧電素子は電圧により駆動距離が決まるため駆動電圧に対し、波長を設定することができる。駆動電圧に対応した受光器104の光量を検出することでFBG103からの反射スペクトラムを検知し、反射ピーク波長を特定することができる。
【0008】
また、特許文献2においてはFPフィルタを光源に用いて、波長可変光源としたFBGセンシング装置について提案されている。特許文献1で説明したことと同様に、FPフィルタの駆動電圧に対応した受光量により、FBGからの反射スペクトラムを検知し、反射ピーク波長を特定することができる。
【0009】
こうしたFPフィルタを用いた装置は駆動部があり、信頼性に問題が生じる。また、測定領域のスペクトラムに応じた全ての波長の光量を検知する必要があるため、データ数は膨大になり、高精度な演算処理機が必要になる。こうした演算処理機を使用することは信頼性的に劣る。また、FPフィルタは波長挿引周波数が10Hzから100Hz程度である。非特許文献1によれば波長計測の応答速度は、地震時の振動計測を想定すると100〜200Hzが求められている。このためFPフィルタを用いる場合は振動計測に適さない。
【0010】
特許文献3においては波長計測部に駆動部を持たない2つ狭帯域フィルタを用いることが提案されている。
【0011】
図10(a)は特許文献3に示されているFBGセンシング装置の構成図について、特に波長を計測する波長計測部について詳しく述べたものである。
【0012】
広帯域光源201、光を分岐する2×2カプラ202、歪みセンサーであるFBG203、光を分岐する2×2カプラ210、波長依存性を持つ狭帯域フィルタ209、受光器204および光ファイバ208で構成されている。
【0013】
広帯域光源201から出力された光は2×2カプラ202を経由し、光ファイバ208を透過し、FBG203に導かれる。FBG203では特定の波長が反射され、光ファイバ208を透過し、2×2カプラ202に戻り、分岐され2×2カプラ210に導かれてさらにAとBの2つに分岐されて狭帯域フィルタ209を通過し受光器204で電気信号に変換される。
【0014】
狭帯域フィルタ209は図10(b)に示すような波長依存性を持ち、FBG203の反射波長を検出することが出来る。
【0015】
一般に広帯域光源にはSLD(スーパー・ルミネッセンス・ダイオード)光源やASE(Amplified Sponteneous Emisson)光源が用いられる。
【0016】
ASE光源はエルビウムの添加された光ファイバに特定波長の励起光を入射することで、広帯域かつ高出力の自然放出光を発生させる。およそSLD光源の100倍(20dB向上)の出力を得られるが、より高出力な光源を使用することで、光源に対する測定箇所(FBG)をより遠隔地に配置することを可能とする。
【0017】
光ファイバの伝送損失が小さいことは既に述べたが、その損失量はおよそ0.25dB/kmである。光源の出力が100倍、すなわち20dB向上すれば、遠隔距離はおよそ40km(往復で80km:80km×0.25dB/km=20dB)延ばすことが可能となる。
【0018】
しかしながら、ASE光源の出力は−10dBm/nm程度と十分に大きい値ではない。図10に示す構成においては、狭帯域フィルタ209が図10(b)に示すような波長依存性を持つため、受光器204には減衰した光が入力される。一般的に狭帯域フィルタ209での減衰量は最大(図10(b)のスペクトラムの裾部)で20dB程度である。受光器204の最小受光感度は−50dBm程度であるため、光源の出力と狭帯域フィルタ209の減衰量を考えると、光ファイバの伝送損失による許容範囲は20dB程度しかない。他の部品の損失や、システムのマージンを考えると更に許容範囲は小さくなる。つまり十分に遠隔距離をとる測定が出来ない。
【0019】
【特許文献1】特開2003−21576号
【特許文献2】特表2001−511895号
【特許文献3】特開2000−223761号
【非特許文献1】三田 彰、第25回光波センシング技術研究会講演論文集、2000年6月、LST25−16,PP111〜116
【0020】
【発明が解決しようとする課題】
以上の従来技術では、光源や波長計測部に駆動部があり信頼性が低く、振動計測のような高速測定に適さない問題があり、また駆動部がなく高速測定に適していても光源出力が不十分で遠隔計測が十分に出来ないといった欠点があった。また波長可変光源や広帯域光源といった製造コストの高いものや、波長検出部についても製造コストが高いものを使用しており、構造物歪計測分野の主流である電気式と比較して、製造コストが非常に高くなる欠点があった。
【0021】
ここでは光源や波長計測部に駆動部がなく信頼性が高く、振動計測のような高速測定に適しており、かつ光源出力が十分に大きく、遠隔計測が十分に出来、かつ製造コストが安価で、かつデータ処理が簡素なシステムの構築が可能なFBGセンシング装置を提供することを課題とする。
【0022】
【課題を解決するための手段】
本発明はこれらの課題を解決するためのものであり、特定波長帯域の光を反射し、歪を受けることで反射波長帯域が変移する特徴を有するFBG(ファイバ・ブラッグ・グレーティング)と、該FBG反射波長帯域の光を出力する光源と、該光源から出力され、前記FBGから反射された光量を検出する受光器を備えたFBGセンシング装置において、前記FBGの反射波長帯域の変移による反射光量の変位量を計測することで、FBGの歪量を検出するようにしたことを特徴とする。
【0023】
さらに本発明は、前記光源の出力波長帯域が前記FBGの反射波長帯域より狭いことを特徴とする。
【0024】
また本発明は、前記光源の出力波長がFBG反射ピーク波長より短波長側にあることを特徴とする。
【0025】
また本発明は、前記FBGからの反射光量の対数換算値が、歪量と近似的に線形的であるように、前記光源の出力波長を調整したことを特徴とする。
【0026】
また本発明は、前記光源の任意の出力波長に対して、前記FBGからの反射光量の対数換算値が歪量と近似的に線形的であるように、前記FBGが設計されたことを特徴とする。
【0027】
また本発明は、前記光源の任意の出力波長に対して、前記FBGからの反射光量が歪量と近似的に線形的であるように、前記FBGが設計されたことを特徴とする。
【0028】
また本発明は、前記光源の出力光を複数に分岐する光分岐器を備え、分岐したそれぞれのポートに前記FBGを備え、該FBGに対になる受光器を備えたことを特徴とする。
【0029】
また本発明は、反射波長帯域の異なる前記FBGを複数備え、該FBGが直列に配置され、該FBG反射波長帯域の光を出力する複数の光源と、該光源から出力され、前記FBGから反射された光量を検出する複数の受光器を備え、前記複数の光源の出力を合波する合分波器を備えたことを特徴とする。
【0030】
また本発明は、反射波長帯域の異なる前記FBGを複数備え、該FBGが並列に配置され、該FBG反射波長帯域の光を出力する複数の光源と、該光源から出力され、前記FBGから反射された光量を検出する複数の受光器を備え、前記複数の光源の出力を合波する合分波器と合波された出力光を分波する合分波器を備えたことを特徴とする。
また本発明は、反射波長帯域の異なる前記FBGを複数備え、該FBGが直列もしくは並列に配置され、該FBG反射波長帯域の光を出力する複数の光源と、該光源から出力され、前記FBGから反射された光量を検出する複数の受光器を備え、前記複数の光源の出力を合波する合分波器と合波された出力光を分波する合分波器を備えたFBGセンシング装置において、前記光源と前記FBGの間に配置される光ファイバ等に掛かる外的因子により変動する反射光量を補償するため、前記FBGの少なくとも1つを歪および温度に影響のないように設置して反射光量変動の基準としたことを特徴とする。
【0031】
また本発明は、反射波長帯域の異なる前記FBGを複数備え、該FBGが直列もしくは並列に配置され、該FBG反射波長帯域の光を出力する複数の光源と、該光源から出力され、前記FBGから反射された光量を検出する複数の受光器を備え、前記複数の光源の出力を合波する合分波器と合波された出力光を分波する合分波器を備えたFBGセンシング装置において、前記光源と前記FBGの間に配置される光ファイバ等に掛かる外的因子により変動する反射光量を補償するため、前記FBGの少なくとも1つを歪および温度に影響のないように設置し、前記受光器に入射する反射光量の変動がなくなるように前記FBGの反射波長帯域の光を出力する光源の出力を調整するとともに、他の少なくとも一つの異なる波長帯域の光源の出力を調整する機能を備えたことを特徴とする。
【0032】
また本発明は、前記光源がインコヒーレントな光源であることを特徴とする。
【0033】
【発明の実施の形態】
以下に本発明によるFBGセンシング装置について説明する。
【0034】
図1は本発明のFBGセンシング装置の構成を示す図である。
【0035】
光源1、受光器4、光分岐器2、FBG3および光ファイバ8で構成されており、各部品は光ファイバで結合されている。光分岐器2は2分岐カプラでも光サーキュレータでも良い。また光源1、受光器4、光分岐器2は光学的に結合されている一体化モジュールでも良い。光ファイバ8は計測距離により設定でき、1m以内でも10km以上であってもよい。
【0036】
図2は歪量に応じたFBG3の反射スペクトラムを示す図である。ここでの歪量はFBG3を伸ばして、発生させている。歪量はFBG3の反射波長のシフト量に対し、線形的に変化し、一般的に1μεの歪に対し1.2pmの波長変位が生じることが知られており、ここでは波長シフト量から歪量を換算してある。
【0037】
光源1から出力された光は光分岐器2を透過し、光ファイバ8を透過し、FBG3に達する。FBG3で特定波長の光が反射される。図2に示すように、例えば光源1の波長が1556.7nm(図2の▲2▼)であり、歪量が0μεの場合、反射損失は0dBであるが、FBG3に100μεの歪が懸かるとFBG3の反射帯域は変移し、光源1の波長1556.7nmの反射損失は−5dBに変化する。このように歪量に応じて反射損失が変位する。反射された光は光ファイバ8を透過し、光分岐器2を透過し、受光器4に達する。受光器4において反射光量の変位を線形的に電気信号に変換し、FBG3に懸かる歪量を検出する。
【0038】
このようにFBG3に懸かる歪量を反射光量の変位により計測することができ、受光器に複雑な波長検出器を用いず、受光器4で得るデータも簡素であり、高速かつ信頼性の高い計測方法を提案できる。
【0039】
また、ここで光源1は波長スペクトラムが狭帯域な光源が望ましい。
【0040】
図2に示すようにFBG3の半値全幅(−3dB)は0.2nm程度である。各歪量に応じて波長は変移するが反射率、スペクトラムの変形は見られない。今仮に光源1のスペクトラムが波長帯域を有しない1556.6nmの線スペクトラムであるとすると、各歪量での反射損失は図2における▲3▼の点線と各歪量の反射損失スペクトラムとの交点の位置に示される。一方、光源1のスペクトラムが広くFBGの反射波長帯域より広くなると歪量に応じた反射損失は変位量が小さくなることが図2から容易に予想できる。このように、より精度の高い計測をするために光源1のスペクトラムはFBG3の反射波長帯域より十分に狭いことが望ましい。
【0041】
光通信用光源に使用されるDFBレーザーは出力波長の半値全幅は1pm以下と十分に狭帯域であり本発明に適している。また出力は5dBm以上と高く、高出力な広帯域光源(ASE光源)より15dB以上高い。
【0042】
このように本発明では、高出力を得やすい狭帯域光源が適しており、光ファイバ8による伝送損失を十分に補償することができ長距離計測にも適している。FBG3の反射波長帯域について、より半値全幅の広いものを用いれば反射損失が小さくなり、より長距離な計測に適すことが分かる。
【0043】
また、光源1は任意に出力波長を選択できることが望ましい。一般的にFBG3の反射波長の製造バラツキは0.5nm程度あり、光源1の出力波長が固定されていた場合と、図2からFBG3の反射波長帯域と一致させることは難しい。
【0044】
先に述べたDFBレーザーはレーザーの温度を制御することで出力波長を1nm程度調整することが可能で本発明の光源として望ましい。
【0045】
また、光源1の出力波長はFBG3の歪がない時の反射ピーク波長より短波長域にあることが望ましい。
【0046】
図2に示すように例えば光源1の出力波長がFBG3の歪がない時の反射ピーク波長より長波長域の1556.8nmにある場合、歪がない場合と歪がある場合(図2:100μεの時)の反射損失が同等で歪量が計測できない問題が生じる。光源1の出力波長がFBG3の歪がない時の反射ピーク波長より短波長域にあれば、歪量に対し反射損失は一義的に決まり、このような問題は生じない。
【0047】
図2の歪量は伸び方向のみの歪を示しているが、縮み方向の歪についても、光源1の出力波長がFBG3における最大に縮んだ時の反射ピーク波長より短波長域にあれば良い。
【0048】
図3は光源1の出力波長で決まるFBG3の反射損失を示した図である。▲1▼から▲4▼は図2に示す波長を示している。▲1▼は歪がない時のFBG3の反射ピーク波長であるが、この波長よりわずかに短い波長の▲2▼において歪量と反射損失の対数換算値は近似的に線形的になる。このとき受光器5の電気出力にログアンプ(対数変換する電気増幅器)を使用すれば、歪量は電気量に対し線形的に示され、極めて簡素な計測方法を提案できる。このようにFBG3からの反射光量の対数換算値が、歪量と近似的に線形的であるように、光源1の出力波長を調整すれば、より簡素なシステムを提案できる。
【0049】
また図3の▲2▼のような特定波長だけではなく、任意の波長でFBG3の反射光量の対数換算値が、歪量と近似的に線形的になるようにFBG3を設計すれば、よりシステムの構築が簡素にすることができる。すなわち図2においてFBG3の反射スペクトラムの波長と反射損失(対数換算値)が線形的な関係を示せれば良い。さらに任意の波長でFBG3の反射光量が、歪量と近似的に線形的になるように、すなわちFBG3の反射スペクトラムの波長と反射損失の絶対量が線形的な関係を示すように設計すれば、さらにシステムの構築が簡素にできる。
【0050】
次に本発明の第2の実施形態について説明する。
【0051】
図5は本発明の第2の実施形態を示すFBGセンシング装置の構成図である。光源11、受光器14、光分岐器12、15、FBG13および光ファイバ18で構成されており、各部品は光ファイバで結合されている。光分岐器12は2分岐カプラでも光サーキュレータでも良い。
【0052】
光源11から出力された光は光分岐器16を透過する。このとき光量はおよそ1/2(−3dB)に低下する。4分岐した場合の光量は1/4(−6dB)に低下する。先に述べたように一般的な狭帯域光源であるDFBレーザーは出力が十分に大きいため光量が低下しても、広帯域光源より高い出力が得ら、長距離計測に適している。
【0053】
光分岐器16を透過した後は第1の実施例と同様に光分岐器12を透過し、光ファイバ18を透過し、FBG13に達する。FBG13で特定波長の光が反射される。第1の実施形態と同様に歪量に応じて反射損失が変位する。反射された光は光ファイバ18を透過し、光分岐器12を透過し、受光器14に達する。受光器14において反射光量の変位を線形的に電気信号に変換し、FBG13に懸かる歪量を検出する。
【0054】
このように光源11の出力を分岐することで、一つの光源で複数の箇所の歪量を検出することが可能となる。
【0055】
次に本発明の第3の実施形態について説明する。
【0056】
図6は本発明の第3の実施形態を示すFBGセンシング装置の構成図である。光源21a、21b、受光器24、光分岐器22、FBG23a、23b、光波長合分波器26および光ファイバ28で構成されており、各部品は光ファイバで結合されている。光分岐器22は2分岐カプラでも光サーキュレータでも良い。また光源21、受光器25、光分岐器22は光学的に結合されている一体化モジュールでも良い。
【0057】
光源21a、21bから出力された光は光分岐器22を透過し、光波長合分波器26を透過し合波される。各光源21a、21bはそれぞれ異なる波長の光を出力しており、各FBG23a、23bの反射波長帯域内にあるように調整されている。合波された光は光ファイバ28を透過し、各FBG23a、23bに達し、反射する。それぞれFBG23は反射波長帯域以外の光は透過するため、互いの影響は受けない。第1の実施形態と同様にFBG23は歪量に応じて反射損失が変位する。反射された光は光ファイバ28を透過し、波長合分波器26で分波され、それぞれの光分岐器22を透過し、それぞれの受光器24に達し、電気信号に変換される。第1の実施形態と同様に電気信号に換算された受光量からFBG23a、23bにおける歪量を検知する。このように光波長合分波器26を用いれば1本の光ファイバ18により複数の歪量を検知することが出来る。
【0058】
次に本発明の第4の実施形態について説明する。
【0059】
図7は本発明の第4の実施形態を示すFBGセンシング装置の構成図である。光源31、受光器34、光分岐器32、FBG33および光波長合分波器36、37で構成されており、各部品は光ファイバで結合されている。光分岐器32は2分岐カプラでも光サーキュレータでも良い。
【0060】
光源31a、31bから出力された光は光分岐器32を透過し、光波長合分波器36を透過し合波される。各光源31a、31bはそれぞれ異なる波長の光を出力しており、各FBG33a、33bの反射波長帯域内にあるように調整されている。合波された光は光ファイバ38を透過し、光波長合分波器37で分波され各FBG33a、33bに達し、反射する。第1の実施形態と同様にFBG33は歪量に応じて反射損失が変位する。反射された光は光波長合分波器37で合波し、光ファイバ38を透過し、波長合分波器36で分波され、それぞれの光分岐器32を透過し、それぞれの光受光器34に達し、電気信号に変換される。第1の実施形態と同様に電気信号に換算された光受光量からFBG33a、33bにおける歪量を検知する。このように光波長合分波器36,37を用いれば1本の光ファイバ38により複数の歪量を検知することが出来る。また、FBG33a(あるいはFBG33b)と光波長合分波器37の間で光ファイバの断線等の障害が起きても、FBG33b(あるいはFBG33a)は障害の影響を受けないため、より信頼性の高いシステムを提案できる。
【0061】
次に本発明の第5の実施形態について説明する。
【0062】
本発明の第5の実施形態は図6に示す構成のFBGセンシング装置において、ひとつのFBG23aが歪を受けることのない位置に設置されており、また温度の影響を受けないようにペルチェ素子やヒーターなどで温度制御されている。これらの制御は電気的制御で給電が必要なため、線熱膨張係数が負の特性をもつインバー等に実装され、FBGに縮みを与えることで温度特性をキャンセルする制御のほうが望ましい。
【0063】
光源21a、21bから出力された光は光分岐器22を透過し、光波長合分波器26を透過し合波される。各光源21a、21bはそれぞれ異なる波長の光を出力しており、各FBG23a、23bの反射波長帯域内にあるように調整されている。合波された光は光ファイバ28を透過し、各FBG23a、23bに達し、反射する。それぞれFBG23は反射波長帯域以外の光は透過するため、互いの影響は受けない。第1の実施形態と同様にFBG23bは歪量に応じて反射損失が変位するが、FBG23aは歪を受けないように設置されているため反射損失は変化しない。反射された光は光ファイバ28を透過し、波長合分波器26で分波され、それぞれの光分岐器22を透過し、それぞれの受光器24に達し、電気信号に変換される。第1の実施形態と同様に電気信号に換算された受光量からFBG23a、23bにおける歪量を検知する。
【0064】
ここで、光ファイバ28に物理的な負荷が加わり光ファイバ28の透過損失に変化が生じた場合を考える。
【0065】
それぞれのFBG23a、23bから受光器24に入る反射光量が変化し、FBG23bの歪量を正確に検知できない。しかしながらFBG23aとFBG23bの光ファイバ28による反射光量変化は同等であるためFBG23aの反射光量変化分をFBG23bの反射光量に与えることでFBG23bに掛かる歪量を補償して正確に検知することができる。
【0066】
このように歪量(および温度)に影響のないFBG23aを設置することで光ファイバ18に加わる負荷に関係なく歪量を正確に検知することが出来る。
【0067】
また、本発明の実施形態は図7に示す構成のFBGセンシング装置においても、FBG33aをひずみと温度の影響のないように設置することで、同様な効果が得られる。
【0068】
次に本発明の第6の実施形態について説明する。
【0069】
図8は本発明のFBGセンシング装置の構成を示す図である。
【0070】
本発明は第5実施例と同様に図8に示す構成のFBGセンシング装置において、FBG43aが歪を受けることのない位置に設置されており、また温度の影響を受けないように制御されている。
【0071】
光源41a、41bから出力された光は光分岐器42を透過し、光波長合分波器46を透過し合波される。各光源41a、41bはそれぞれ異なる波長の光を出力しており、各FBG43a、43bの反射波長帯域内にあるように調整されている。合波された光は光ファイバ48を透過し、各FBG43a、43bに達し、反射する。それぞれFBG43は反射波長帯域以外の光は透過するため、互いの影響は受けない。第1の実施形態と同様にFBG43bは歪量に応じて反射損失が変位するが、FBG43aは歪を受けないように設置されているため反射損失は変化しない。反射された光は光ファイバ48を透過し、波長合分波器46で分波され、それぞれの光分岐器42を透過し、それぞれの受光器44に達し、電気信号に変換される。第1の実施形態と同様に電気信号に換算された受光量からFBG43a、43bにおける歪量を検知する。
【0072】
ここで、光ファイバ48に物理的な負荷が加わり光ファイバ48の透過損失に変化が生じ、それぞれのFBG43a、43bから受光器44a、44bに入る反射光量が変化した場合、FBG43bの歪量を正確に検知できなくなる。
【0073】
本発明では受光器44aで受けるFBG43aからの反射光量を常に一定になるように光源出力制御回路49で光源41aの出力を制御するとともに、光源41bの出力を制御することで、FBG43aからの反射光量は常に一定となり、また光源41bを同時に制御するため、FBG43bの歪量を正確に検知することができる。光源41a、41bがDFBレーザーである場合、光源出力はレーザー電流とほぼ比例関係を示すため、光源41aに生じたレーザー電流の変動量(比率)を光源42bに与えればよい。
【0074】
このように歪量(および温度)に影響のないFBG43aを設置し、さらにFBG43aからの反射光量を一定になるように光源41a、41bを制御することで光ファイバ18に加わる負荷に関係なく歪量を正確に検知することが出来る。
【0075】
また、図8は図6に光源の制御機能を付加した図であるが、同様に図7に光源の制御機能を付加した構成でも、光ファイバ18に加わる負荷に関係なく歪量を正確に検知することが出来る。
【0076】
以上の実施形態における光源として、DFBレーザーを例に挙げているがEDFを用いたリングレーザー等のコヒーレンシーが低レーザーを用いると、光ファイバの温度変動などの影響により安定した出力が得られる。
【0077】
【実施例】
本発明の第1の実施形態に示すFBGセンシング装置を作成した。
【0078】
光源1は光通信で一般的に使用されるDFBレーザーを用いた。最大出力は約3mWで出力波長は1556nm近傍である。波長スペクトラムの半値全幅は1pmである。また温度制御機能を持っており、制御温度を15℃〜35℃に設定することで出力波長のピークはおよそ1nm操作することができる。本実験では1556.70nmに調整した。
【0079】
受光器4も光通信で一般的に使用されるピンフォトダイオードを用いた。受光感度は−50dBmであり、波長帯域は1000nm〜1600nmで平坦な特性を得ている。また受光量と電流の関係も−50dBm〜0dBmまで線形的である。
【0080】
光分岐器2には透過損失が0.5dB程度であり、透過損失の波長特性も0.1dB未満であるサーキュレータを用いた。
【0081】
FBG3は反射率95%以上、反射スペクトラムの半値全幅0.25nm以下、反射ピーク波長が1556.72nmのものを使用した。
【0082】
本実施例の結果を図4に示す。
【0083】
図2に示す▲2▼とほぼ等しい結果が得られた。近似曲線との誤差は歪量で10με以下でほぼ一致していることを確認した。
【0084】
同様に本発明の第3、第4、第5および第6の実施形態についてもFBGセンシング装置を作製し、第1の実施形態に基づく実験と同様な結果が得られた。
【0085】
FBG23aまたはFBG33aについてはFBG3と同じものを用い、FBG23bまたはFBG33bには反射ピーク波長が1533.52nmのものを使用した。光波長合分波26、36、37には1545nm以上と1545nm以下に合分波する合分波器を用いた。それぞれの波長域での透過特性は波長依存性が20nmで0.1dB以下である。
【0086】
【発明の効果】
以上、本発明によれば、特定波長帯域を反射し、歪を受けることで反射波長帯域が変移する特徴を有するFBG(ファイバ・ブラッグ・グレーティング)と、該FBG反射波長帯域の光を出力する光源と、該光源から出力され、前記FBGから反射された光量を検出する受光器を備えたFBGセンシング装置において、前記FBGの反射波長帯域の変移による反射光量の変位量を計測することで、FBGの歪量を検出するようにしたことで、光源や波長計測部に駆動部がなく信頼性が高く、振動計測のような高速測定に適しており、かつ光源出力が十分に大きく、遠隔計測が十分に出来、かつ製造コストが安価で、かつデータ処理が簡素なシステムの構築が可能なFBGセンシング装置を提供することができる。
【図面の簡単な説明】
【図1】本発明のFBGセンシング装置の構成を示す図である。
【図2】歪量に応じたFBGの反射スペクトラムを示す図である。
【図3】光源の出力波長で決まるFBGのひずみと反射損失の関係を示す図である。
【図4】本発明実施例のFBGのひずみと反射損失の関係を示す図である。
【図5】本発明の第2の実施形態を示すFBGセンシング装置の構成図である。
【図6】本発明の第3の実施形態を示すFBGセンシング装置の構成図である。
【図7】本発明の第4の実施形態を示すFBGセンシング装置の構成図である。
【図8】本発明のFBGセンシング装置の構成を示す図である。
【図9】従来例の概略構成を示す図である。
【図10】(a)は従来例の概略構成を示す図、(b)はフィルタの透過特性を示す図である。
【符号の説明】
1:光源
2:光分岐器
3:FBG
4:受光器
8:光ファイバ
11:光源
12、15:光分岐器
13:FBG
14:受光器
18:光ファイバ
21a、21b:光源
22:光分岐器
23a、23b:FBG
24:受光器
26:光波長合分波器
28:光ファイバ
31a、31b:光源
32:光分岐器
33a、33b:FBG
34:受光器
36、37:光波長合分波器
38:光ファイバ
41a、41b:光源
42:光分岐器
43a、43b:FBG
44a、44b:受光器
46、47:光波長合分波器
48:光ファイバ
49:光源出力制御回路
101:広帯域光源
102:光分岐器
103:FBG
104:受光器
108:光ファイバ
109:FPフィルタ
201:広帯域光源
202、210:2×2カプラ
203:FBG
204:受光器
208:光ファイバ
209:狭帯域フィルタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an FBG sensing device that performs strain (pressure) measurement using an FBG made of an optical fiber.
[0002]
[Prior art]
In recent years, structures rapidly constructed during the high growth period have been deteriorating, and governments have been actively researching methods for evaluating the soundness of structures. Conventionally, as a method of measuring the strain of a structure, an electrical method using a resistance wire strain gauge has been the mainstream, but there are problems such as reliability, lightning strike, electromagnetic noise, etc. Measurement (sensing) is drawing attention. Optical fibers have attracted attention because they have a small transmission loss and can be monitored at remote distances.
[0003]
In the field of optical fiber sensing, an FBG (fiber Bragg grating) is used for strain measurement of a structure in combination with a broadband light source or a variable wavelength light source. The FBG reflects light of a specific wavelength determined by the grating interval. When stress is applied to the FBG and the FBG expands and contracts (distortion of the FBG), the grating interval changes, and the reflection wavelength of the FBG changes. The FBG is attached to a measuring point of the structure, a broadband light source or a variable wavelength light source is incident, and the reflection wavelength is measured to measure the FBG distortion, that is, the distortion of the structure. Also, by measuring at high speed, the vibration of the structure can be measured, and it is applied as a seismometer.
[0004]
As a method of measuring the reflection wavelength of the FBG, Patent Document 1 proposes a method using a broadband light source as a light source and using a Fabry-Perot filter (hereinafter, referred to as an FP filter).
[0005]
FIG. 9 is a diagram showing an outline of the configuration shown in Patent Document 1. As shown in FIG.
[0006]
Light derived from the broadband light source 101 passes through the optical splitter 102, passes through the optical fiber 108, and reaches the FBG 103. Light of a specific wavelength is reflected by the FBG 103, passes through the optical fiber 108, passes through the optical splitter 102, passes through the FP filter 109, and reaches the light receiver 104. The light quantity is converted into a current in the light receiver 104.
[0007]
The FP filter 109 is an interferometer using an etalon plate, and drives the distance between two parallel etalon plates by a piezoelectric element to control the interference distance. The light transmitted through the FP filter transmits a specific wavelength depending on the interference distance. By changing the interference distance to an arbitrary length, reflected light in all wavelength bands output from the broadband light source 101 can be detected. Since the driving distance of the piezoelectric element is determined by the voltage, the wavelength can be set for the driving voltage. By detecting the light amount of the light receiver 104 corresponding to the drive voltage, the reflection spectrum from the FBG 103 can be detected, and the reflection peak wavelength can be specified.
[0008]
Further, Patent Document 2 proposes an FBG sensing device using an FP filter as a light source and using the wavelength variable light source. As described in Patent Document 1, the reflection spectrum from the FBG can be detected based on the amount of light received corresponding to the drive voltage of the FP filter, and the reflection peak wavelength can be specified.
[0009]
An apparatus using such an FP filter has a driving unit, and causes a problem in reliability. Further, since it is necessary to detect the light amounts of all the wavelengths according to the spectrum of the measurement area, the number of data becomes enormous, and a high-precision arithmetic processor is required. Use of such an arithmetic processor is inferior in reliability. The FP filter has a wavelength-swapping frequency of about 10 Hz to 100 Hz. According to Non-Patent Document 1, the response speed of wavelength measurement is required to be 100 to 200 Hz assuming vibration measurement during an earthquake. Therefore, when the FP filter is used, it is not suitable for vibration measurement.
[0010]
Patent Document 3 proposes to use two narrow band filters having no drive unit in the wavelength measurement unit.
[0011]
FIG. 10A illustrates a configuration diagram of the FBG sensing device disclosed in Patent Document 3, specifically describing a wavelength measurement unit that measures a wavelength.
[0012]
It is composed of a broadband light source 201, a 2 × 2 coupler 202 for splitting light, an FBG 203 as a distortion sensor, a 2 × 2 coupler 210 for splitting light, a narrow band filter 209 having wavelength dependency, a light receiver 204, and an optical fiber 208. ing.
[0013]
Light output from the broadband light source 201 passes through the 2 × 2 coupler 202, passes through the optical fiber 208, and is guided to the FBG 203. The FBG 203 reflects a specific wavelength, transmits through the optical fiber 208, returns to the 2 × 2 coupler 202, branches and is guided to the 2 × 2 coupler 210, further branches into two of A and B, and narrows the narrow band filter 209. , And is converted into an electric signal by the light receiver 204.
[0014]
The narrow band filter 209 has a wavelength dependency as shown in FIG. 10B, and can detect the reflection wavelength of the FBG 203.
[0015]
Generally, an SLD (super luminescence diode) light source or an ASE (Amplified Spontaneous Emisson) light source is used as a broadband light source.
[0016]
The ASE light source generates a broadband, high-power spontaneous emission light by injecting excitation light of a specific wavelength into an optical fiber doped with erbium. Although an output that is approximately 100 times (20 dB higher) than the SLD light source can be obtained, the use of a higher output light source makes it possible to arrange a measurement point (FBG) for the light source at a more remote location.
[0017]
As described above, the transmission loss of the optical fiber is small, but the loss is about 0.25 dB / km. If the output of the light source is improved by 100 times, that is, by 20 dB, the remote distance can be extended by about 40 km (80 km in round trip: 80 km × 0.25 dB / km = 20 dB).
[0018]
However, the output of the ASE light source is not a sufficiently large value of about -10 dBm / nm. In the configuration shown in FIG. 10, since the narrow band filter 209 has the wavelength dependency as shown in FIG. In general, the attenuation in the narrow band filter 209 is about 20 dB at the maximum (the bottom of the spectrum in FIG. 10B). Since the minimum light receiving sensitivity of the light receiver 204 is about −50 dBm, the allowable range due to the transmission loss of the optical fiber is only about 20 dB in consideration of the output of the light source and the attenuation of the narrow band filter 209. Considering the loss of other components and the margin of the system, the allowable range is further reduced. In other words, it is not possible to measure sufficiently long distances.
[0019]
[Patent Document 1] JP-A-2003-21576
[Patent Document 2] JP-T 2001-511895
[Patent Document 3] JP-A-2000-223761
[Non-Patent Document 1] Akira Mita, Proceedings of the 25th Workshop on Lightwave Sensing Technology, June 2000, LST25-16, PP111-116
[0020]
[Problems to be solved by the invention]
In the above prior art, there is a problem that the drive unit is provided in the light source and the wavelength measurement unit, which has low reliability and is not suitable for high-speed measurement such as vibration measurement. There was a disadvantage that remote measurement could not be performed sufficiently because it was insufficient. In addition, high production costs such as wavelength tunable light sources and broadband light sources, and high production costs are used for the wavelength detection unit, and the production cost is lower than that of the mainstream electric type in the field of structural strain measurement. There was a drawback that would be very high.
[0021]
Here, there is no drive unit in the light source and the wavelength measurement unit, which is highly reliable, suitable for high-speed measurement such as vibration measurement, and has a sufficiently large light source output, sufficient remote measurement, and low manufacturing cost. Another object of the present invention is to provide an FBG sensing device capable of constructing a system with simple data processing.
[0022]
[Means for Solving the Problems]
The present invention has been made to solve these problems, and an FBG (Fiber Bragg Grating) having a characteristic of reflecting light in a specific wavelength band and changing a reflection wavelength band by receiving distortion, and the FBG In an FBG sensing device including a light source that outputs light in a reflection wavelength band and a light receiver that detects the light amount output from the light source and reflected from the FBG, the displacement of the reflected light amount due to a change in the reflection wavelength band of the FBG The amount of FBG distortion is detected by measuring the amount.
[0023]
Further, the present invention is characterized in that an output wavelength band of the light source is narrower than a reflection wavelength band of the FBG.
[0024]
Further, the present invention is characterized in that the output wavelength of the light source is on the shorter wavelength side than the FBG reflection peak wavelength.
[0025]
Further, the invention is characterized in that the output wavelength of the light source is adjusted so that the logarithmic conversion value of the amount of reflected light from the FBG is approximately linear with the amount of distortion.
[0026]
Further, the present invention is characterized in that the FBG is designed such that, for an arbitrary output wavelength of the light source, the logarithmic conversion value of the amount of reflected light from the FBG is approximately linear with the amount of distortion. I do.
[0027]
Further, the present invention is characterized in that the FBG is designed such that, for an arbitrary output wavelength of the light source, the amount of reflected light from the FBG is approximately linear with the amount of distortion.
[0028]
Further, the invention is characterized in that it comprises an optical splitter for splitting the output light of the light source into a plurality of light beams, the above-mentioned FBGs provided at the respective branched ports, and a photodetector paired with the FBGs.
[0029]
Further, the present invention includes a plurality of the FBGs having different reflection wavelength bands, the FBGs are arranged in series, a plurality of light sources outputting light in the FBG reflection wavelength band, and a plurality of light sources output from the light sources and reflected from the FBGs. A plurality of light receivers for detecting the amounts of light emitted from the light sources, and a multiplexer / demultiplexer for multiplexing the outputs of the plurality of light sources.
[0030]
Also, the present invention includes a plurality of the FBGs having different reflection wavelength bands, the FBGs are arranged in parallel, a plurality of light sources outputting light in the FBG reflection wavelength band, and a plurality of light sources output from the light sources and reflected from the FBGs. A plurality of light receivers for detecting the amount of light, a multiplexer / demultiplexer for multiplexing the outputs of the plurality of light sources, and a multiplexer / demultiplexer for demultiplexing the multiplexed output light.
In addition, the present invention includes a plurality of the FBGs having different reflection wavelength bands, the FBGs are arranged in series or in parallel, a plurality of light sources outputting light in the FBG reflection wavelength band, output from the light source, and An FBG sensing device comprising: a plurality of light receivers for detecting the amount of reflected light; and a multiplexer / demultiplexer for multiplexing the outputs of the plurality of light sources and a multiplexer / demultiplexer for demultiplexing the multiplexed output light. In order to compensate for the amount of reflected light that fluctuates due to an external factor applied to an optical fiber or the like disposed between the light source and the FBG, at least one of the FBGs is installed so as not to affect the distortion and the temperature. It is characterized in that it is used as a reference for light quantity fluctuation.
[0031]
In addition, the present invention includes a plurality of the FBGs having different reflection wavelength bands, the FBGs are arranged in series or in parallel, a plurality of light sources outputting light in the FBG reflection wavelength band, output from the light source, and An FBG sensing device comprising: a plurality of light receivers for detecting the amount of reflected light; and a multiplexer / demultiplexer for multiplexing the outputs of the plurality of light sources and a multiplexer / demultiplexer for demultiplexing the multiplexed output light. In order to compensate for the amount of reflected light that fluctuates due to external factors applied to an optical fiber or the like disposed between the light source and the FBG, at least one of the FBGs is installed so as not to affect distortion and temperature, The output of the light source that outputs light in the reflection wavelength band of the FBG is adjusted so that the amount of reflected light incident on the light receiver does not fluctuate, and the output of the light source in another at least one different wavelength band is adjusted. Characterized by comprising a function of integer.
[0032]
Further, the invention is characterized in that the light source is an incoherent light source.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the FBG sensing device according to the present invention will be described.
[0034]
FIG. 1 is a diagram showing a configuration of the FBG sensing device of the present invention.
[0035]
It comprises a light source 1, a light receiver 4, an optical splitter 2, an FBG 3, and an optical fiber 8, and the components are connected by an optical fiber. The optical splitter 2 may be a two-branch coupler or an optical circulator. The light source 1, the light receiver 4, and the optical splitter 2 may be an integrated module that is optically coupled. The optical fiber 8 can be set according to the measurement distance, and may be within 1 m or 10 km or more.
[0036]
FIG. 2 is a diagram illustrating a reflection spectrum of the FBG 3 according to the amount of distortion. The amount of distortion here is generated by extending FBG3. It is known that the amount of distortion changes linearly with respect to the shift amount of the reflection wavelength of the FBG3, and that a wavelength displacement of 1.2 pm generally occurs for a strain of 1 με. Is converted.
[0037]
Light output from the light source 1 passes through the optical splitter 2, passes through the optical fiber 8, and reaches the FBG 3. Light of a specific wavelength is reflected by the FBG 3. As shown in FIG. 2, for example, when the wavelength of the light source 1 is 1556.7 nm ((2) in FIG. 2) and the amount of distortion is 0 με, the reflection loss is 0 dB, but if 100 με of distortion is applied to the FBG3, The reflection band of the FBG 3 shifts, and the reflection loss of the light source 1 at the wavelength of 1556.7 nm changes to -5 dB. Thus, the reflection loss is displaced according to the amount of distortion. The reflected light passes through the optical fiber 8, passes through the optical splitter 2, and reaches the light receiver 4. The light receiver 4 linearly converts the displacement of the amount of reflected light into an electric signal, and detects the amount of distortion applied to the FBG 3.
[0038]
As described above, the amount of distortion applied to the FBG 3 can be measured by the displacement of the amount of reflected light, the data obtained by the light receiver 4 is simple without using a complicated wavelength detector as the light receiver, and high-speed and highly reliable measurement is possible. I can suggest a method.
[0039]
Here, the light source 1 is desirably a light source having a narrow wavelength spectrum.
[0040]
As shown in FIG. 2, the full width at half maximum (−3 dB) of the FBG 3 is about 0.2 nm. The wavelength shifts according to each distortion amount, but no change in reflectance or spectrum is observed. Assuming now that the spectrum of the light source 1 is a 1556.6 nm line spectrum having no wavelength band, the reflection loss at each distortion amount is the intersection of the dotted line of (3) in FIG. 2 with the reflection loss spectrum of each distortion amount. Is shown in the position. On the other hand, it can be easily predicted from FIG. 2 that, when the spectrum of the light source 1 is wide and wider than the reflection wavelength band of the FBG, the displacement of the reflection loss according to the amount of distortion becomes smaller. As described above, it is desirable that the spectrum of the light source 1 be sufficiently narrower than the reflection wavelength band of the FBG 3 in order to perform more accurate measurement.
[0041]
The DFB laser used for the light source for optical communication has a sufficiently narrow band of 1 pm or less in full width at half maximum of the output wavelength and is suitable for the present invention. The output is as high as 5 dBm or more, which is 15 dB or more higher than that of a high-output broadband light source (ASE light source).
[0042]
As described above, in the present invention, a narrow-band light source that easily obtains high output is suitable, and transmission loss due to the optical fiber 8 can be sufficiently compensated for, so that it is also suitable for long-distance measurement. With respect to the reflection wavelength band of the FBG 3, it is found that the use of a reflection wavelength band having a wider full width at half maximum reduces the reflection loss and is suitable for longer distance measurement.
[0043]
It is desirable that the light source 1 can arbitrarily select an output wavelength. Generally, the manufacturing variation of the reflection wavelength of the FBG 3 is about 0.5 nm, and it is difficult to match the case where the output wavelength of the light source 1 is fixed and the reflection wavelength band of the FBG 3 from FIG.
[0044]
The above-mentioned DFB laser can adjust the output wavelength by about 1 nm by controlling the temperature of the laser, and is desirable as the light source of the present invention.
[0045]
Further, it is desirable that the output wavelength of the light source 1 be in a shorter wavelength range than the reflection peak wavelength when there is no distortion of the FBG 3.
[0046]
As shown in FIG. 2, for example, when the output wavelength of the light source 1 is at 1556.8 nm, which is a longer wavelength region than the reflection peak wavelength when there is no distortion of the FBG 3, there is no distortion and there is distortion (FIG. 2: 100 με). At the same time), there is a problem that the distortion amount cannot be measured. If the output wavelength of the light source 1 is in a wavelength region shorter than the reflection peak wavelength when there is no distortion of the FBG 3, the reflection loss is uniquely determined with respect to the distortion amount, and such a problem does not occur.
[0047]
Although the distortion amount in FIG. 2 shows the distortion only in the elongation direction, the distortion in the contraction direction may be any wavelength as long as the output wavelength of the light source 1 is shorter than the reflection peak wavelength when the FBG 3 contracts to the maximum.
[0048]
FIG. 3 is a diagram illustrating the reflection loss of the FBG 3 determined by the output wavelength of the light source 1. (1) to (4) indicate the wavelengths shown in FIG. (1) is the reflection peak wavelength of the FBG 3 when there is no distortion, and in (2) of a wavelength slightly shorter than this wavelength, the logarithmic conversion value of the distortion amount and the reflection loss becomes approximately linear. At this time, if a log amplifier (electric amplifier that performs logarithmic conversion) is used for the electric output of the photodetector 5, the amount of distortion is linearly represented with respect to the amount of electricity, and an extremely simple measurement method can be proposed. By adjusting the output wavelength of the light source 1 such that the logarithmic conversion value of the amount of light reflected from the FBG 3 is approximately linear with the amount of distortion, a simpler system can be proposed.
[0049]
Further, if the FBG 3 is designed so that the logarithmic conversion value of the reflected light amount of the FBG 3 at an arbitrary wavelength, not only at a specific wavelength as shown in (2) of FIG. The construction of can be simplified. That is, in FIG. 2, it is sufficient that the wavelength of the reflection spectrum of the FBG 3 and the reflection loss (logarithmic conversion value) show a linear relationship. Further, if the reflection light amount of the FBG 3 is designed to be approximately linear with the distortion amount at an arbitrary wavelength, that is, if the wavelength of the reflection spectrum of the FBG 3 and the absolute amount of the reflection loss show a linear relationship, Further, the construction of the system can be simplified.
[0050]
Next, a second embodiment of the present invention will be described.
[0051]
FIG. 5 is a configuration diagram of an FBG sensing device according to a second embodiment of the present invention. It is composed of a light source 11, a light receiver 14, optical splitters 12, 15, an FBG 13, and an optical fiber 18, and each component is connected by an optical fiber. The optical splitter 12 may be a two-branch coupler or an optical circulator.
[0052]
The light output from the light source 11 passes through the optical splitter 16. At this time, the light amount is reduced to about 1 / (−3 dB). The light quantity in the case of four branches is reduced to 1 / (−6 dB). As described above, the DFB laser, which is a general narrow-band light source, has a sufficiently large output, so that even if the light amount is reduced, an output higher than that of the broad-band light source is obtained, which is suitable for long-distance measurement.
[0053]
After passing through the optical splitter 16, the light passes through the optical splitter 12, passes through the optical fiber 18, and reaches the FBG 13 as in the first embodiment. Light of a specific wavelength is reflected by the FBG 13. As in the first embodiment, the reflection loss changes according to the amount of distortion. The reflected light passes through the optical fiber 18, passes through the optical splitter 12, and reaches the light receiver 14. The light receiver 14 linearly converts the displacement of the amount of reflected light into an electric signal, and detects the amount of distortion applied to the FBG 13.
[0054]
By branching the output of the light source 11 in this manner, it is possible to detect the amount of distortion at a plurality of locations with one light source.
[0055]
Next, a third embodiment of the present invention will be described.
[0056]
FIG. 6 is a configuration diagram of an FBG sensing device according to a third embodiment of the present invention. It comprises light sources 21a, 21b, light receiver 24, optical splitter 22, FBGs 23a, 23b, optical wavelength multiplexer / demultiplexer 26, and optical fiber 28, and each component is connected by an optical fiber. The optical splitter 22 may be a two-branch coupler or an optical circulator. Further, the light source 21, the light receiver 25, and the optical splitter 22 may be an integrated module optically coupled.
[0057]
The lights output from the light sources 21a and 21b pass through the optical splitter 22, pass through the optical wavelength multiplexer / demultiplexer 26, and are multiplexed. Each of the light sources 21a and 21b outputs light of a different wavelength, and is adjusted to be within the reflection wavelength band of each of the FBGs 23a and 23b. The multiplexed light passes through the optical fiber 28, reaches the FBGs 23a and 23b, and is reflected. Since the FBG 23 transmits light outside the reflection wavelength band, the FBG 23 is not affected by each other. As in the first embodiment, the reflection loss of the FBG 23 changes in accordance with the amount of distortion. The reflected light passes through an optical fiber 28, is split by a wavelength multiplexer / demultiplexer 26, passes through each optical splitter 22, reaches each light receiver 24, and is converted into an electric signal. As in the first embodiment, the amount of distortion in the FBGs 23a and 23b is detected from the amount of received light converted into an electric signal. As described above, if the optical wavelength multiplexer / demultiplexer 26 is used, a plurality of distortion amounts can be detected by one optical fiber 18.
[0058]
Next, a fourth embodiment of the present invention will be described.
[0059]
FIG. 7 is a configuration diagram of an FBG sensing device according to a fourth embodiment of the present invention. It comprises a light source 31, a light receiver 34, an optical splitter 32, an FBG 33, and optical wavelength multiplexer / demultiplexers 36 and 37, and each component is connected by an optical fiber. The optical splitter 32 may be a two-branch coupler or an optical circulator.
[0060]
The lights output from the light sources 31a and 31b pass through the optical splitter 32, pass through the optical wavelength multiplexer / demultiplexer 36, and are multiplexed. Each of the light sources 31a and 31b outputs light of a different wavelength, and is adjusted to be within the reflection wavelength band of each of the FBGs 33a and 33b. The multiplexed light passes through the optical fiber 38, is demultiplexed by the optical wavelength multiplexer / demultiplexer 37, reaches the FBGs 33a and 33b, and is reflected. As in the first embodiment, the reflection loss of the FBG 33 changes in accordance with the amount of distortion. The reflected light is multiplexed by an optical wavelength multiplexer / demultiplexer 37, passes through an optical fiber 38, is demultiplexed by a wavelength multiplexer / demultiplexer 36, passes through each optical splitter 32, and receives each optical receiver 34, and is converted into an electric signal. As in the first embodiment, the amount of distortion in the FBGs 33a and 33b is detected from the amount of received light converted into an electric signal. As described above, if the optical wavelength multiplexers / demultiplexers 36 and 37 are used, a plurality of distortion amounts can be detected by one optical fiber 38. Further, even if a failure such as disconnection of the optical fiber occurs between the FBG 33a (or the FBG 33b) and the optical wavelength multiplexer / demultiplexer 37, the FBG 33b (or the FBG 33a) is not affected by the failure, so that a more reliable system is provided. Can be proposed.
[0061]
Next, a fifth embodiment of the present invention will be described.
[0062]
According to a fifth embodiment of the present invention, in the FBG sensing device having the configuration shown in FIG. 6, one FBG 23a is installed at a position where it is not subjected to distortion, and a Peltier element or a heater is provided so as not to be affected by temperature. The temperature is controlled by such means. Since these controls require electrical control and supply power, it is more desirable to implement control such that the temperature characteristics are canceled by applying shrinkage to the FBG by mounting it on an invar or the like having a negative linear thermal expansion coefficient.
[0063]
The lights output from the light sources 21a and 21b pass through the optical splitter 22, pass through the optical wavelength multiplexer / demultiplexer 26, and are multiplexed. Each of the light sources 21a and 21b outputs light of a different wavelength, and is adjusted to be within the reflection wavelength band of each of the FBGs 23a and 23b. The multiplexed light passes through the optical fiber 28, reaches the FBGs 23a and 23b, and is reflected. Since the FBG 23 transmits light outside the reflection wavelength band, the FBG 23 is not affected by each other. As in the first embodiment, the reflection loss of the FBG 23b is changed according to the amount of distortion, but the reflection loss does not change because the FBG 23a is installed so as not to receive distortion. The reflected light passes through an optical fiber 28, is split by a wavelength multiplexer / demultiplexer 26, passes through each optical splitter 22, reaches each light receiver 24, and is converted into an electric signal. As in the first embodiment, the amount of distortion in the FBGs 23a and 23b is detected from the amount of received light converted into an electric signal.
[0064]
Here, consider a case where a physical load is applied to the optical fiber 28 and the transmission loss of the optical fiber 28 changes.
[0065]
The amount of reflected light entering the light receiver 24 from each of the FBGs 23a and 23b changes, and the amount of distortion of the FBG 23b cannot be accurately detected. However, the change in the amount of light reflected by the optical fiber 28 between the FBG 23a and the FBG 23b is equivalent, so that the amount of change in the amount of light reflected by the FBG 23a is given to the amount of light reflected by the FBG 23b so that the amount of distortion applied to the FBG 23b can be compensated and accurately detected.
[0066]
By installing the FBG 23a that does not affect the amount of strain (and temperature) in this way, the amount of strain can be accurately detected regardless of the load applied to the optical fiber 18.
[0067]
In the embodiment of the present invention, the same effect can be obtained by installing the FBG 33a so as not to be affected by strain and temperature in the FBG sensing device having the configuration shown in FIG.
[0068]
Next, a sixth embodiment of the present invention will be described.
[0069]
FIG. 8 is a diagram showing a configuration of the FBG sensing device of the present invention.
[0070]
According to the present invention, in the FBG sensing device having the configuration shown in FIG. 8 as in the fifth embodiment, the FBG 43a is installed at a position where it is not subjected to distortion, and is controlled so as not to be affected by temperature.
[0071]
The lights output from the light sources 41a and 41b pass through the optical splitter 42, pass through the optical wavelength multiplexer / demultiplexer 46, and are multiplexed. Each of the light sources 41a and 41b outputs light of a different wavelength, and is adjusted to be within the reflection wavelength band of each of the FBGs 43a and 43b. The multiplexed light passes through the optical fiber 48, reaches the FBGs 43a and 43b, and is reflected. Since the FBG 43 transmits light outside the reflection wavelength band, the FBGs 43 are not affected by each other. As in the first embodiment, the reflection loss of the FBG 43b is displaced according to the amount of distortion, but the reflection loss does not change because the FBG 43a is installed so as not to receive distortion. The reflected light passes through an optical fiber 48, is split by a wavelength multiplexer / demultiplexer 46, passes through each optical splitter 42, reaches each light receiver 44, and is converted into an electric signal. As in the first embodiment, the amount of distortion in the FBGs 43a and 43b is detected from the amount of received light converted into an electric signal.
[0072]
Here, when a physical load is applied to the optical fiber 48 to cause a change in the transmission loss of the optical fiber 48 and the amount of reflected light entering the photodetectors 44a and 44b from the respective FBGs 43a and 43b changes, the distortion amount of the FBG 43b is accurately calculated. Cannot be detected.
[0073]
In the present invention, the output of the light source 41a is controlled by the light source output control circuit 49 and the output of the light source 41b is controlled so that the amount of reflected light from the FBG 43a received by the light receiver 44a is always constant, so that the amount of reflected light from the FBG 43a is controlled. Is always constant, and since the light source 41b is simultaneously controlled, the amount of distortion of the FBG 43b can be accurately detected. When the light sources 41a and 41b are DFB lasers, the output of the light source shows a substantially proportional relationship with the laser current. Therefore, the variation (ratio) of the laser current generated in the light source 41a may be given to the light source 42b.
[0074]
By installing the FBG 43a that does not affect the amount of distortion (and temperature) and controlling the light sources 41a and 41b so that the amount of reflected light from the FBG 43a is constant, the amount of distortion is independent of the load applied to the optical fiber 18. Can be accurately detected.
[0075]
FIG. 8 is a diagram in which the control function of the light source is added to FIG. 6. Similarly, even in the configuration in which the control function of the light source is added to FIG. 7, the distortion amount is accurately detected regardless of the load applied to the optical fiber 18. You can do it.
[0076]
Although a DFB laser is taken as an example of the light source in the above embodiment, a low output laser such as a ring laser using EDF can provide a stable output due to the influence of temperature fluctuation of the optical fiber.
[0077]
【Example】
An FBG sensing device according to the first embodiment of the present invention was created.
[0078]
The light source 1 used was a DFB laser generally used in optical communication. The maximum output is about 3 mW and the output wavelength is around 1556 nm. The full width at half maximum of the wavelength spectrum is 1 pm. It also has a temperature control function, and the peak of the output wavelength can be adjusted by about 1 nm by setting the control temperature to 15 ° C. to 35 ° C. In this experiment, it was adjusted to 1556.70 nm.
[0079]
The photodetector 4 also used a pin photodiode generally used in optical communication. The light receiving sensitivity is -50 dBm, and the wavelength band is 1000 nm to 1600 nm, and flat characteristics are obtained. The relationship between the amount of received light and the current is linear from -50 dBm to 0 dBm.
[0080]
A circulator having a transmission loss of about 0.5 dB and a wavelength characteristic of the transmission loss of less than 0.1 dB was used for the optical branching device 2.
[0081]
The FBG3 used had a reflectance of 95% or more, a full width at half maximum of reflection spectrum of 0.25 nm or less, and a reflection peak wavelength of 1556.72 nm.
[0082]
FIG. 4 shows the results of this example.
[0083]
A result almost equal to (2) shown in FIG. 2 was obtained. It was confirmed that the error from the approximation curve almost coincided with the distortion amount at 10 με or less.
[0084]
Similarly, in the third, fourth, fifth, and sixth embodiments of the present invention, an FBG sensing device was manufactured, and the same result as the experiment based on the first embodiment was obtained.
[0085]
The same FBG23a or FBG33a as FBG3 was used, and the FBG23b or FBG33b having a reflection peak wavelength of 1533.52 nm was used. For the optical wavelength multiplexing / demultiplexing 26, 36, and 37, a multiplexer / demultiplexer that multiplexes / demultiplexes light at 1545 nm or more and 1545 nm or less was used. The transmission characteristics in each wavelength range have a wavelength dependency of 0.1 dB or less at 20 nm.
[0086]
【The invention's effect】
As described above, according to the present invention, an FBG (fiber Bragg grating) having a characteristic of reflecting a specific wavelength band and changing a reflection wavelength band by receiving distortion, and a light source for outputting light in the FBG reflection wavelength band And an FBG sensing device provided with a light receiver that detects the amount of light output from the light source and reflected from the FBG, by measuring the amount of displacement of the amount of reflected light due to a shift in the reflection wavelength band of the FBG. Since the amount of distortion is detected, there is no drive unit in the light source and wavelength measurement unit, so it is highly reliable, suitable for high-speed measurement such as vibration measurement, and has a sufficiently large light source output and sufficient remote measurement. It is possible to provide an FBG sensing device which can be constructed at a low cost, can be manufactured at low cost, and can construct a system with simple data processing.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an FBG sensing device of the present invention.
FIG. 2 is a diagram showing a reflection spectrum of an FBG according to a distortion amount.
FIG. 3 is a diagram showing the relationship between FBG distortion determined by the output wavelength of a light source and reflection loss.
FIG. 4 is a diagram illustrating a relationship between distortion and return loss of the FBG according to the embodiment of the present invention.
FIG. 5 is a configuration diagram of an FBG sensing device according to a second embodiment of the present invention.
FIG. 6 is a configuration diagram of an FBG sensing device according to a third embodiment of the present invention.
FIG. 7 is a configuration diagram of an FBG sensing device according to a fourth embodiment of the present invention.
FIG. 8 is a diagram showing a configuration of an FBG sensing device of the present invention.
FIG. 9 is a diagram showing a schematic configuration of a conventional example.
10A is a diagram illustrating a schematic configuration of a conventional example, and FIG. 10B is a diagram illustrating transmission characteristics of a filter.
[Explanation of symbols]
1: Light source
2: Optical splitter
3: FBG
4: Light receiver
8: Optical fiber
11: Light source
12, 15: Optical splitter
13: FBG
14: Receiver
18: Optical fiber
21a, 21b: light source
22: Optical splitter
23a, 23b: FBG
24: light receiver
26: Optical wavelength multiplexer / demultiplexer
28: Optical fiber
31a, 31b: light source
32: Optical branching device
33a, 33b: FBG
34: Receiver
36, 37: Optical wavelength multiplexer / demultiplexer
38: Optical fiber
41a, 41b: light source
42: Optical splitter
43a, 43b: FBG
44a, 44b: light receiver
46, 47: Optical wavelength multiplexer / demultiplexer
48: Optical fiber
49: Light source output control circuit
101: Broadband light source
102: Optical splitter
103: FBG
104: Receiver
108: Optical fiber
109: FP filter
201: Broadband light source
202, 210: 2 × 2 coupler
203: FBG
204: Receiver
208: Optical fiber
209: narrow band filter

Claims (12)

特定波長帯域の光を反射し、歪を受けることで反射波長帯域が変移する特徴を有するFBG(ファイバ・ブラッグ・グレーティング)と、該FBGの反射波長帯域の光を出力する光源と、該光源から出力され、前記FBGから反射された光量を検出する受光器を備えたFBGセンシング装置において、前記FBGの反射波長帯域の変移による反射光量の変位量を計測することで、FBGの歪量を検出するようにしたことを特徴とするFBGセンシング装置。An FBG (fiber Bragg grating) having a characteristic of reflecting light in a specific wavelength band and changing a reflection wavelength band by receiving distortion, a light source for outputting light in the reflection wavelength band of the FBG, and a light source In the FBG sensing device provided with a light receiver for detecting the amount of light output and reflected from the FBG, the amount of distortion of the FBG is detected by measuring the amount of displacement of the amount of reflected light due to the shift of the reflection wavelength band of the FBG. An FBG sensing device, characterized in that: 前記光源の出力波長帯域が前記FBGの反射波長帯域より狭いことを特徴とする請求項1記載のFBGセンシング装置。The FBG sensing device according to claim 1, wherein an output wavelength band of the light source is narrower than a reflection wavelength band of the FBG. 前記光源の出力波長が前記FBGの反射ピーク波長より短波長側にあることを特徴とする請求項1記載のFBGセンシング装置。The FBG sensing device according to claim 1, wherein an output wavelength of the light source is on a shorter wavelength side than a reflection peak wavelength of the FBG. 前記FBGからの反射光量の対数換算値がFBGの歪量と近似的に線形的であるように、前記光源の出力波長を調整したことを特徴とする請求項1記載のFBGセンシング装置。The FBG sensing device according to claim 1, wherein an output wavelength of the light source is adjusted such that a logarithmic conversion value of the amount of reflected light from the FBG is approximately linear with a distortion amount of the FBG. 前記光源の任意の出力波長に対して、前記FBGからの反射光量の対数換算値がFBGの歪量と近似的に線形的であるように、前記FBGが設計されたことを特徴とする請求項1記載のFBGセンシング装置。The FBG is designed such that, for an arbitrary output wavelength of the light source, the logarithmic conversion value of the amount of reflected light from the FBG is approximately linear with the amount of distortion of the FBG. 2. The FBG sensing device according to 1. 前記光源の任意の出力波長に対して、前記FBGからの反射光量がFBGの歪量と近似的に線形的であるように、前記FBGが設計されたことを特徴とする請求項1記載のFBGセンシング装置。2. The FBG according to claim 1, wherein the FBG is designed such that, for an arbitrary output wavelength of the light source, the amount of light reflected from the FBG is approximately linear with the amount of distortion of the FBG. 3. Sensing device. 前記光源の出力光を複数に分岐する光分岐器を備え、分岐したそれぞれのポートに前記FBGを備え、該FBGと対になる受光器を備えたことを特徴とする請求項1から6のいずれかに記載のFBGセンシング装置。7. An optical splitter for splitting the output light of the light source into a plurality of light beams, the FBGs provided at respective branched ports, and a photodetector paired with the FBGs is provided. An FBG sensing device according to any one of claims 1 to 3. 反射波長帯域の異なる前記FBGを複数、直列に配置し、各FBGの反射波長帯域の光を出力する複数の光源と、これらの光源の出力を合波する合分波器と、上記各光源から出力されて各FBGで反射された光量を検出する複数の受光器を備えたことを特徴とする請求項1から6のいずれかに記載のFBGセンシング装置。A plurality of the FBGs having different reflection wavelength bands are arranged in series, a plurality of light sources for outputting light in the reflection wavelength band of each FBG, a multiplexer / demultiplexer for multiplexing the outputs of these light sources, and The FBG sensing device according to any one of claims 1 to 6, further comprising a plurality of light receivers for detecting the amount of light output and reflected by each FBG. 反射波長帯域の異なる前記FBGを複数、並列に配置し、各FBGの反射波長帯域の光を出力する複数の光源と、これらの光源の出力を合波する合分波器と、上記各光源から出力されて各FBGで反射された光量を検出する複数の受光器を備えたことを特徴とする請求項1から6のいずれかに記載のFBGセンシング装置。A plurality of the FBGs having different reflection wavelength bands are arranged in parallel, a plurality of light sources for outputting light in the reflection wavelength band of each FBG, a multiplexer / demultiplexer for multiplexing the outputs of these light sources, and The FBG sensing device according to any one of claims 1 to 6, further comprising a plurality of light receivers for detecting the amount of light output and reflected by each FBG. 反射波長帯域の異なる前記FBGを複数備え、該FBGが直列もしくは並列に配置され、該FBG反射波長帯域の光を出力する複数の光源と、該光源から出力され、前記FBGから反射された光量を検出する複数の受光器を備え、前記複数の光源の出力を合波する合分波器と合波された出力光を分波する合分波器を備えたFBGセンシング装置において、前記光源と前記FBGの間に配置される光ファイバ等に掛かる外的因子により変動する反射光量を補償するため、前記FBGの少なくとも1つを歪および温度に影響のないように設置して反射光量変動の基準としたことを特徴とする請求項1から6のいずれかに記載のFBGセンシング装置。A plurality of the FBGs having different reflection wavelength bands are provided, the FBGs are arranged in series or in parallel, a plurality of light sources outputting light in the FBG reflection wavelength band, and a light amount output from the light sources and reflected from the FBGs. An FBG sensing device comprising: a plurality of photodetectors for detection; and a FBG sensing device including a multiplexer / demultiplexer for multiplexing the outputs of the plurality of light sources and a multiplexer / demultiplexer for demultiplexing the multiplexed output light. In order to compensate for the amount of reflected light that fluctuates due to external factors applied to an optical fiber or the like disposed between the FBGs, at least one of the FBGs is installed so as not to affect distortion and temperature, and The FBG sensing device according to any one of claims 1 to 6, wherein: 反射波長帯域の異なる前記FBGを複数備え、該FBGが直列もしくは並列に配置され、該FBG反射波長帯域の光を出力する複数の光源と、該光源から出力され、前記FBGから反射された光量を検出する複数の受光器を備え、前記複数の光源の出力を合波する合分波器と合波された出力光を分波する合分波器を備えたFBGセンシング装置において、前記光源と前記FBGの間に配置される光ファイバ等に掛かる外的因子により変動する反射光量を補償するため、前記FBGの少なくとも1つを歪および温度に影響のないように設置し、前記受光器に入射する反射光量の変動がなくなるように前記FBGの反射波長帯域の光を出力する光源の出力を調整するとともに、他の少なくとも一つの異なる波長帯域の光源の出力を調整する機能を備えたことを特徴とする請求項1から6のいずれかに記載のFBGセンシング装置。A plurality of the FBGs having different reflection wavelength bands are provided, the FBGs are arranged in series or in parallel, a plurality of light sources outputting light in the FBG reflection wavelength band, and a light amount output from the light sources and reflected from the FBGs. An FBG sensing device comprising: a plurality of photodetectors for detection; and a FBG sensing device including a multiplexer / demultiplexer for multiplexing the outputs of the plurality of light sources and a multiplexer / demultiplexer for demultiplexing the multiplexed output light. In order to compensate for the amount of reflected light that fluctuates due to an external factor applied to an optical fiber or the like disposed between FBGs, at least one of the FBGs is installed so as not to affect distortion and temperature, and is incident on the light receiver. The function of adjusting the output of the light source that outputs light in the reflection wavelength band of the FBG so as to eliminate the change in the amount of reflected light, and adjusting the output of the light source in at least one other different wavelength band. FBG sensing apparatus according to any one of 6 claim 1, characterized in that there was e. 前記光源がインコヒーレントな光源であることを特徴とする請求項1から11のいずれかに記載のFBGセンシング装置。12. The FBG sensing device according to claim 1, wherein the light source is an incoherent light source.
JP2003168401A 2003-03-26 2003-06-12 FBG sensing device Expired - Fee Related JP4284115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168401A JP4284115B2 (en) 2003-03-26 2003-06-12 FBG sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003084285 2003-03-26
JP2003168401A JP4284115B2 (en) 2003-03-26 2003-06-12 FBG sensing device

Publications (2)

Publication Number Publication Date
JP2004347575A true JP2004347575A (en) 2004-12-09
JP4284115B2 JP4284115B2 (en) 2009-06-24

Family

ID=33543013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168401A Expired - Fee Related JP4284115B2 (en) 2003-03-26 2003-06-12 FBG sensing device

Country Status (1)

Country Link
JP (1) JP4284115B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281507A (en) * 2007-05-14 2008-11-20 Ihi Inspection & Instrumentation Co Ltd Measuring device and measuring technique of rotor
JP2009524064A (en) * 2006-01-23 2009-06-25 ザイゴ コーポレーション Interferometer system for monitoring objects
TWI381152B (en) * 2009-07-14 2013-01-01 Univ Nat Pingtung Sci & Tech Vibration sensing method for fiber optic grating
JP2015172579A (en) * 2009-06-05 2015-10-01 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Optical device and method for using fiber bragg grating
WO2021111691A1 (en) * 2019-12-03 2021-06-10 日本電気株式会社 Optical fiber sensing system, measuring device, and measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141922A (en) * 1996-11-12 1998-05-29 Hitachi Cable Ltd Multipoint strain and temperature sensor
JP2002131022A (en) * 2000-10-23 2002-05-09 Oki Electric Ind Co Ltd Optical fiber sensing system and measuring method for wavelength of laser light
JP2002533711A (en) * 1998-12-24 2002-10-08 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Modulated fiber Bragg grating strain gauge assembly for absolute strain measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141922A (en) * 1996-11-12 1998-05-29 Hitachi Cable Ltd Multipoint strain and temperature sensor
JP2002533711A (en) * 1998-12-24 2002-10-08 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Modulated fiber Bragg grating strain gauge assembly for absolute strain measurement
JP2002131022A (en) * 2000-10-23 2002-05-09 Oki Electric Ind Co Ltd Optical fiber sensing system and measuring method for wavelength of laser light

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524064A (en) * 2006-01-23 2009-06-25 ザイゴ コーポレーション Interferometer system for monitoring objects
JP2008281507A (en) * 2007-05-14 2008-11-20 Ihi Inspection & Instrumentation Co Ltd Measuring device and measuring technique of rotor
JP2015172579A (en) * 2009-06-05 2015-10-01 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Optical device and method for using fiber bragg grating
TWI381152B (en) * 2009-07-14 2013-01-01 Univ Nat Pingtung Sci & Tech Vibration sensing method for fiber optic grating
WO2021111691A1 (en) * 2019-12-03 2021-06-10 日本電気株式会社 Optical fiber sensing system, measuring device, and measuring method
JPWO2021111691A1 (en) * 2019-12-03 2021-06-10
JP7347538B2 (en) 2019-12-03 2023-09-20 日本電気株式会社 Optical fiber sensing system, measuring device and measuring method

Also Published As

Publication number Publication date
JP4284115B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US7333680B2 (en) Fiber Bragg grating sensor system
US7366366B2 (en) FBG sensing system
Yu et al. Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system
Koo et al. Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing
JP5972403B2 (en) TDM and WDM based FBG sensor array systems
US20040113055A1 (en) Sensors system and method incorporating fibre bragg gratings
JP2008534981A (en) Optical fiber strain sensor
Azmi et al. Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating
CN102879022A (en) Method and device for demodulating fiber bragg grating (FBG) sensor
Yu et al. Large-scale multilongitudinal mode fiber laser sensor array with wavelength/frequency division multiplexing
TW200422668A (en) Fiber Bragg grating sensing system of light intensity and wave-divided multiplex
Akkaya et al. Time-division-multiplexed interferometric sensor arrays
Fu et al. A novel fiber Bragg grating sensor configuration for long-distance quasi-distributed measurement
JP4284115B2 (en) FBG sensing device
KR101480101B1 (en) optical fiber bragg grating sensor system
Dong et al. Time-division multiplexing fiber grating sensor with a tunable pulsed laser
JP4331978B2 (en) FBG sensing system
KR100614006B1 (en) Strain measurement module using temperature controllable tunable light generator and fiberoptic system thereof
Ecke et al. Low-cost optical temperature and strain sensing networks using in-line fiber gratings
KR100885408B1 (en) OSNR measuring apparatus
JP2004361284A (en) System for measuring reflected wavelength
US7043103B2 (en) Self-healing fiber Bragg grating sensor system
Abad et al. Multiplexing of fibre optic intensity sensors using fused biconical wavelength selective couplers
Xiao et al. Polarimetric Fiber Laser Sensor with Enhanced Sensitivity by Utilizing a Hi-Bi EDF
Tanaka et al. Wavelength-switchable fiber laser for thermally stabilized fiber Bragg grating vibration sensor array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees