JP2004347316A - Photoresponse type molecule identification material - Google Patents

Photoresponse type molecule identification material Download PDF

Info

Publication number
JP2004347316A
JP2004347316A JP2003103781A JP2003103781A JP2004347316A JP 2004347316 A JP2004347316 A JP 2004347316A JP 2003103781 A JP2003103781 A JP 2003103781A JP 2003103781 A JP2003103781 A JP 2003103781A JP 2004347316 A JP2004347316 A JP 2004347316A
Authority
JP
Japan
Prior art keywords
identification
molecular
light
molecule
target molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103781A
Other languages
Japanese (ja)
Other versions
JP4058517B2 (en
Inventor
Norihiko Minoura
憲彦 箕浦
Masayo Ogiso
真佐代 小木曽
Orekesandoru Rachikofu
オレケサンドル ラチコフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003103781A priority Critical patent/JP4058517B2/en
Priority to PCT/JP2004/004987 priority patent/WO2004090529A1/en
Publication of JP2004347316A publication Critical patent/JP2004347316A/en
Application granted granted Critical
Publication of JP4058517B2 publication Critical patent/JP4058517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoresponse type molecule identification material that can easily identify/separate and extract a target substance by controlling adsorption/desorption performance of the target substance to an identification part simply by irradiation with light without adding any chemical substances. <P>SOLUTION: The photoresponse type molecule identification material has a large hole in a specific shape for capturing an identification target molecule, and the molecule identification part causes a reversible photoisomerization reaction by the irradiation with light having a different wavelength and is formed by a substance containing a photochromic group having a capturing capability of an identification target molecule. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光応答型分子識別材料に関し、更に詳しくは、異なる波長の光照射により識別目的分子の脱吸着能を制御することが可能な光応答型分子識別材料に関する。
【0002】
【従来の技術】
物質の識別、分離、分取技術は、化学工業分野のみならずバイオ産業、実験化学の分野に至るまで広く実用化され、欠かすことのできない化学技術の1つである。
この代表的な方法として、分子の大きさ、重さ等に基づく分子ふるい法、遠心分離法、膜分離法、相変化に基づく蒸留法、物質の相互作用を利用したクロマトグラフィー等が挙げられる。
【0003】
しかしながら、これらの方法を実施するためには、特別な器具や装置、大量の溶媒等を必要とし、また、あらかじめ分子量、密度、沸点、分子表面の荷電や疎水性等の分取目的分子に関する情報を調査し、分離条件の設計を行う必要がある。また、全く未知の物質を分離、分取するためには、これらの情報を得るための調査や予備実験に時間を費やす必要が生じる。
【0004】
最近、これらの問題を解決する方法として、分子インプリンティング法が提案されている(非特許文献1、2等)。
この分子インプリンティング法で用いられる分子識別材料は、以下の3段階を経て作成される。
すなわち、1)識別分子に相互作用する部位と支持体に固定するためのビニル基を合わせ持った機能性物質に、識別分子を混入し、機能性物質と識別分子の自己集合体を形成させる段階、2)自己集合体を含む溶液に支持体原料モノマーを加え、重合させ支持体を合成する段階、3)支持体中に残った識別分子を何らかの方法で取り除く段階である。
【0005】
このようにして得られた分子識別材料には、識別分子表面の立体的特徴を写し取った空孔と、その空孔壁に識別分子に適合する様、機能性物質が配置されている。分子インプリンティング法は、上述の空孔、すなわち分子識別部位を利用して目的物質の識別、分離、分取を行う。従って、純度の高い識別分子が得られれば、分子量、分子表面の荷電等の分離条件の設計に必要な情報を得ることなしに、また、特別な装置も必要とせず、簡単に分子識別材料を作成することができるので、現在、タンパク質などの生物由来高分子の吸着(特許文献1)、トリアジン系除草剤の抽出(特許文献2)、ヒスタミンの分離(特許文献3)等に応用されるに至っている。
【0006】
【非特許文献1】Wulff, G. Molecular imprinting in cross−linked materials with the aid of molecular templates − a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34, 1812−1832 (1995).
【非特許文献2】Mosback, K. & Ramstrom,O. The emerging technique of molecular imprinting and its future impact on biotechnology. Bio/technology 14, 163−170 (1996)
【特許文献1】特表平6−510474号公報
【特許文献2】特開平10−239293号公報
【特許文献3】特開2000−241403号公報
【0007】
【発明が解決しようとする課題】
ところで、上述の分子インプリンティング法による分子の識別は、分子識別部位の空孔の形状と空孔中に配置した機能性分子(官能基)の相互作用効果によるものである。
【0008】
このため、識別部位に吸着させた識別分子を抽出するためには、機能性分子(官能基)と識別分子との相互作用を弱める必要があり、この相互作用に対応した様々な方法が用いられている。例えば1)疎水性効果に基づく相互作用には、有機溶媒を系に混入して、疎水性効果を弱め目的物質を抽出する方法が、2)荷電に基づく相互作用には、塩濃度やpHを変化させた緩衝液を利用し、荷電の効果を弱め目的物質を抽出する方法が、3)水素結合に基づく相互作用には、高濃度の尿素や塩酸グアニジンを系に混入し、水素結合を弱め目的物質を抽出する方法がとられる。いずれの方法も、抽出系に化学物質を加えるため、抽出操作後、混入された塩などを除くための後処理を行う必要があり、また、有機溶媒や化学薬品を含んだ抽出溶液が廃水に含まれる恐れがあり、環境に対しても悪影響を与えるといった難点があった。
【0009】
本発明は、こうした問題点を克服し、有機溶媒や化学薬品等の化学物質を添加することなく、単に光照射するだけで、目的物質の識別部位への吸脱着能をコントロールし、目的物質を環境を汚染することなく、簡便に識別・分離抽出できる光応答型分子識別材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、化学物質の使用や後処理操作の必要がなく、かつ廃棄溶媒のない分子インプリンティング材料を得るべく鋭意研究を進めた結果、分子識別部位を構成する機能性材料として、光照射により構造変化を伴うフォトクロミック物質を用いたものが有効であることを知見し本発明を完成するに至った。
すなわち、本発明によれば、以下の発明が提供される。
(1)識別目的分子を捕捉する所定形状の大きさの空孔を持ち、かつ分子識別部位が、異なる波長の光照射により可逆的な光異性化反応を起こすと共に識別目的分子の捕捉能を有するフォトクロミック基を含有する物質から形成されていることを特徴とする光応答型分子識別材料。
(2)当該分子識別部位は、異なる波長の光照射により可逆的な光異性化反応を起こし、識別目的分子に対する吸脱着能が可逆的に制御されるものであることを特徴とする上記(1)に記載の光応答型分子識別材料。
(3)識別目的分子を捕捉する所定形状の大きさの空孔が、あらかじめ含有させた識別目的分子の溶出除去跡に形成されたものであることを特徴とする上記(1)又は(2)に記載の光応答型分子識別材料。
(4)フォトクロミック基を含有する物質が、側鎖にフォトクロミック基を有する高分子化合物であることを特徴とする上記(1)乃至(3)何れかに記載の光応答型分子識別材料。
(5)高分子化合物が、ビニルモノマーの重合体であることを特徴とする上記(4)に記載の光応答型分子識別材料。
(6)ビニルモノマーが、下記一般式(I)で表される不飽和カルボン酸誘導体であることを特徴とする上記(5)に記載の光応答型分子識別材料。
【化2】

Figure 2004347316
(式中、Rは不飽和炭化水素基、Aは酸素又は窒素、Bはフォトクロミック基を表す。)
(7)フォトクロミック基が、アゾベンゼン類、スピロベンゾピラン類、トリフェニルメタン類、フルギド類、サリチリデンアニリン類、チオインジゴ類、ジヒドロピレン類及びジアリールエテン類から選ばれた少なくとも一種の化合物から誘導された基であることを特徴とする上記(1)乃至(6)何れかに記載の光応答型分子識別材料。
【0011】
【発明の実施の形態】
フォトクロミック基を含有する物質は、異なる波長の光の作用により単一の化学種が吸収スペクトルの異なる2つの異性体に可逆的に変化する。例えば、アゾベンゼンは、紫外光−可視光照射でシス−トランス異性化による構造変化を起こし、その結果、ベンゼン環の4と4´の距離が5.5Åから9.0Åへと変化する。
【0012】
本発明の光応答型分子識別材料は、このようなフォトクロミック基含有物質の異なる波長の光照射によりその構造が変化する性質を巧みに利用したものであり、かかるフォトクロミック基含有物質を分子インプリンティング法における分子識別部位に配置させると、紫外光照射時と可視光照射時での分子識別部位の内部構造が変化し、紫外光照射時に識別部位に捕捉された分子が、可視光照射により放出され、あるいは、逆に、可視光照射時に識別部位に捕捉された分子が、紫外光照射により放出されるような構成としたものである。
【0013】
一例として、フォトクロミック基含有物質としてフェニルアゾアクリルアニリドを、識別目的分子としてダンシルアミドを用いた時の光応答型分子識別材料の光照射によるダンシルアミドの識別・分離回収の様子を図1に示す。本発明により作成された光応答型分子識別材料の識別部位(図1左側)にダンシルアミドを添加すると、ダンシルアミドは分子識別部位に配置されたフェニルアゾアクリルアニリドのアゾベンゼン部分と相互作用を起こし、識別部位に補足される(図1中央)。ここに紫外光を照射すると、アゾベンゼン部分が、トランス体からシス体に異性化し、識別部位の構造が変化して、ダンシルアミドとの相互作用が弱まる。その結果、ダンシルアミドが識別部位より遊離する(図1右側)。可視光を照射すると、シス体のアゾベンゼン部分は再びトランス体に戻り、ダンシルアミドを捕捉することが可能となる(図中央)。
【0014】
このような光応答型分子識別材料は、従来にはなく本発明者らが初めて見出した新規なものであり、従来の分子識別材料とは異なり、化学物質を添加することなく、また有機溶媒や化学薬品を含んだ抽出溶媒を使用することなしに、単に光照射するだけで、目的物質の識別部位への吸脱着能をコントロールすることができ、目的物質を環境を汚染することなく、簡便に識別・分離抽出することが可能となる。
【0015】
本発明の光応答型分子識別材料は、分子識別部位が、異なる波長の光照射により可逆的な光異性化反応を起こすと共に識別目的分子の捕捉能を有するフォトクロミック基を含有する物質から形成されていることを特徴としている。
【0016】
このような分子識別部位は、種々のものが用いられるが、支持体や基材の表面に分子インプリンティング法によりフォトクロミック基を含有する物質を配置することにより作成することができる。
支持体や基材としては、通常、ビニルモノマー(ビニル基を有する有機化合物)と架橋剤をラジカル重合させて作成した、形状保持性を有する高分子化合物が用いられる。ビニルモノマーとしては、例えばアクリル酸、メタクリル酸、スチレンスルホン酸、これらの酸のアルカリ金属塩、アクリルアミド、メタクリルアミド、N,N−ジメチルアミド等が挙げられる。架橋剤としては、分子中にビニル基を少なくとも2つ以上有する有機化合物が用いられる。例えばN,N´−(1,2−ジヒドロキシエチレン)ビスアクリルアミド、N,N´−メチレンビスアクリルアミド等である。
この場合、ビニルモノマーとして、フォトクロミック基を含有するビニルモノマーを用いれば、別途に支持体や基材を構成する材料を用いる必要がないので有利である。
【0017】
以下、分子識別部位がフォトクロミック基を含有する高分子材料で形成されている本発明の光応答型分子識別材料の代表的な作成法を説明する。
この光応答型分子識別材料は、識別目的分子表面に機能性物質としてのフォトクロミック基を含むモノマー分子(以下機能性モノマーともいう)を自己集合させる工程(第1工程)、第1工程で作成した自己集合体を重合させる工程(第2工程)、第2工程で得られた高分子材料から自己集合体形成に用いた識別目的分子を除去し、識別部位を作成する工程(第3工程)を経て作成される。
【0018】
第1工程では、識別目的分子を含む溶液に機能性モノマーを混合し、識別目的分子表面に機能性モノマーを自己集合させる操作を行う。この工程で用いられる機能性モノマーは、識別目的分子と自己集合を引き起こし、かつ構造変化を伴うフォトクロミック基と高分子材料に重合させるためのビニル基等の重合基を有するモノマーが用いられる。
【0019】
このような機能性モノマーとしては、フォトクロミック基を含有する不飽和カルボン酸またはその誘導体、たとえばそのアミド、ハロゲン化アシル、エステル、酸無水物等が挙げられる。この中でも、下記一般式(I)で表される不飽和カルボン酸誘導体が好ましく使用される。
【化3】
Figure 2004347316
(式中、Rは不飽和炭化水素基、Aは酸素又は窒素、Bはフォトクロミック基を表す。)
【0020】
一般式(I)におけるRは、高分子材料等にフォトクロミック基を固定するためのビニル基を1つ以上有する不飽和炭化水素基部分で、炭素数2〜3のアルケニル基、例えばエテニル基、アリル基、エチン等が用いられる。一般式(I)におけるAは、酸素又は窒素が用いられる。また、一般式(I)におけるBは、フォトクロミック基部分で、識別目的分子と自己集合を起こし、かつフォトクロミズム現象を引き起こす役割を持つ部分である。ここで用いられるフォトクロミック基としては、アゾベンゼン類、スピロベンゾピラン類、トリフェニルメタン類、フルギド類、サリチリデンアニリン類、チオインジゴ類、ジヒドロピレン類及びジアリールエテン類から選ばれた少なくとも一種の化合物から誘導された基が挙げられる。
これらの条件を満たす一般式(1)で示される不飽和カルボン酸誘導体としては、例えば、フェニルアゾアクリルアニリド、フェニルアゾアクリル酸フェニル等が挙げられる。
【0021】
これらの機能性モノマーは識別目的分子溶液に単独あるいは2種以上混合させて用いられる。識別目的分子や機能性モノマーを溶解する溶媒は、これらを溶解することができ、かつ識別目的分子の構造に影響を与えないものが好ましい。例えば、アセトニトリル、テトラヒドロフラン、クロロホルム、メタノール、エタノール等が用いられる。
識別目的分子が有機溶媒により構造変化してしまう場合には、有機溶媒と水溶媒の混合液あるいは水溶媒が用いられる。
【0022】
水溶媒としては、例えば、蒸留水、精製水、超純水等の水の他、各種塩溶液、リン酸等から成るpH緩衝液が使用される。識別目的分子と機能性モノマーの混合比は識別目的分子により異なる。識別目的分子と機能性モノマーは混合後、室温あるいは冷蔵庫で2時間以上放置し、識別目的分子表面に機能性モノマーを自己集合させる。
【0023】
第2工程では、第1工程で作成した識別目的分子と機能性モノマーとの自己集合体を含む溶液と架橋剤を混合し、重合触媒を加えて重合させる操作を行う。
ここで用いられる架橋剤は、たとえば、分子中にビニル基を少なくても2個以上有する有機化合物が用いられる。このような架橋剤としては、例えば、N,N´−(1,2−ジヒドロキシエチレン)ビスアクリルアミド、N,N´−メチレンビスアクリルアミド(BIS)、エチレングリコールジメタクリレート(EGDMA)、テトラエチレングリコールジメタクリレート(Tetra−EGDA)、ジビニルベンゼン等が挙げられる。これらの架橋剤は単独又は2種以上混合させて用いられる。
【0024】
柔軟で高強度の材料を作成するためには、EGDMAとTetra−EGDAを混合して使用することが好ましい。EGDMA:Tetra−EGDAの混合比はモル比で4:6〜1:9が好ましい。より好ましくはモル比で4:6〜3:7である。4:6よりEGDMAのモル比が大きくなる(あるいはTetra−EGDAのモル比が小さくなる)と材料が脆くなり材料の成形が困難となる。また、1:9よりEGDMAのモル比が小さくなる(あるいはTetra−EGDAのモル比が大きくなる)と材料が柔軟すぎて取扱い難くなる。
【0025】
識別目的分子と機能性モノマーの自己集合体溶液に混合する架橋剤の体積比は、自己集合体液:架橋剤=9:1〜3:7の範囲が好ましい。より好ましくは、5:5〜3:7である。9:1より自己集合体液の体積比が多い(あるいは架橋剤の体積比が少ない)と支持体材料が柔軟すぎて取り扱い難くなる。また、3:7より自己集合体液の体積比が少ない(あるいは、架橋剤の体積比が多い)と光の照射によるフォトクロミック基の光異性化反応速度が遅くなる。
【0026】
自己集合体液と架橋剤を混合した後、窒素ガスをバブリングして溶液中の酸素を追い出し、重合触媒(例えばアゾビスイソブチロニトリル、アゾビスメトキシジメチルバレロニトリル等)を加え、重合終了まで静置し高分子材料を得る。重合時の温度は、20〜50℃が望ましい。20℃より低いと重合終了までの時間がかかりすぎてしまい、不均一な支持体材料ができてしまう恐れがある。重合圧力は一気圧程度である。高分子材料は、重合の際に用いられる容器の形に応じて成形されるので、使用目的に応じて材料の形状を決めることが可能である。例えば識別能を向上させるためには、識別目的分子を含む溶液等との接触面積を増やすため、薄い板状あるいは細かい粒状に成形し、材料の表面積をより大きくすることが好ましい。
【0027】
第3工程では、重合終了後の高分子材料を洗浄し、鋳型分子として用いた識別目的分子を除いて、分子識別部位を作成し、光応答型分子識別材料を完成させる操作を行う。
【0028】
高分子材料の洗浄液は、識別目的分子により異なり、効果的に識別目的分子を除去できる溶媒が選ばれる。一般的にアセトニトリル、テトラヒドロフラン、クロロホルム、メタノール、エタノール等の有機溶媒、蒸留水、精製水、超純水等の水の他、各種塩溶液、リン酸等から成るpH緩衝液等の水溶媒および有機溶媒と水溶媒の混合溶媒などが使用される。洗浄は、洗浄液中に識別目的分子が検出されなくなるまで、洗浄液を入れ替えて繰り返し行う。
【0029】
このように作成された光応答型分子識別材料は、材料表面に識別目的分子を捕捉する大きさの空孔を持ち、その空孔の表面に目的分子を識別するための異なる波長の光照射により可逆的な光異性化反応を起こすと共に識別目的分子の捕捉能を有するフォトクロミック基を含有する物質(以下、機能性性物質ともいう)が配置されている。従って、識別目的分子と他の分子を含む混合溶液より、識別目的分子を捕捉することが可能である。目的分子を捕捉後、この光応答型分子識別材料に紫外線を照射することにより、空孔に配置された機能性物質がフォトクロミック現象による構造変化を起こし、空孔の形が変化して識別目的分子に対する識別能が低下する。その結果、識別目的分子は分子識別材料から離れ、これを回収することにより、目的分子を分離分取することが可能となる。
【0030】
本発明の光応答型識別材料の識別対象となる分子としては、用いる機能性物質の関連において適宜定められるが、少なくとも機能性物質の光異性化を引き起こすフォトクロミック基(官能基部分)と自己集合を起こす分子から選ばれる。例えば機能性物質にフェニルアゾアクリルアニリドを用いた場合、ベンゼン、ナフタレン、アントラセン、ステロイド等の骨格を有する化合物が対象となる。中でも、蛍光標識に用いられるダンシル化化合物、プロゲステロン等のステロイドホルモン、甲状腺ホルモン、抗癌剤等が好ましく、特に好ましくは、ダンシル化化合物の一種のダンシルアミドである。
【0031】
【実施例】
次に本発明を実施例によりさらに詳細に説明するが、本発明を限定することを意図するものではない。
【0032】
参考例 機能性モノマーとして用いるp−フェニルアゾアクリルアニリド(PhaAAn)の合成(図2)
3.94g(20mmol)の4−フェニルアゾアニリンを28mlのテトラヒドロフラン(THF)に溶解し、氷浴中で保存した。次に1.62mlの塩化アクリロイルをTHFで5倍に希釈(4mmol)し、氷浴中で保存した4−フェニルアゾアニリンのTHF溶液に1分間に3〜4滴のペースで滴下した。さらに反応中に生成するHClを中和するため、3ml(22mmol)のトリエチルアミンを加えた。1時間以上撹拌し、反応混合物を得た。原料および副生成物を除くため、反応混合物を3倍容量の水に注ぎ、生成した沈澱物を遠心して集めた。沈殿物は30mlのTHFに溶解させ、再び3倍容量の水に注ぎ沈澱させた。この操作を3回繰り返した後、THFと水の混合溶媒を回転式エバポレータで蒸発させ、恒量になるまで真空乾燥を行った。得られた生成物は、赤外線吸収スペクトル、元素分析、質量分析の結果により、PhaAAnであることが確認された。
【0033】
実施例1 ダンシルアミドを識別する分子識別材料の調製
ダンシルクロリド、ダンシルフルオリドは、タンパク質やペプチドのN末端アミノ基の微量分析やこれらに蛍光標識をするために多用される。これらダンシル化化合物のダンシルアミド部分を識別する光応答型分子識別材料を作成すべく以下の操作を行った。
【0034】
0.55mlのアセトニトリルに、参考例で得たPhaAAn50.4mg、ダンシルアミド(DA)12.5mgを溶解し、冷暗所に一晩放置することによりPhaAAn−DA自己集合体を含む溶液を作成した。翌日、この自己集合体を含む溶液に、架橋剤としてEGDMA 283μlとTetra−EGDA 404μl(EGDMA、Tetra−EGDA 共に1.5 mmol、モル比は5:5)を加え、自己集合体液(後に加える2%(W/V) のアゾビスメトキシジメチルバレロニトリル137μlを含めた容量):架橋剤液の容量比、5:5の混合液を作成した。3分間窒素ガスでバブリングした後、2%(W/V) のアゾビスメトキシジメチルバレロニトリル137μlを加え手早く混合し、四方の端に厚さ80μmのスペーサをはさんだ2枚のスライドグラス中に、この液を100μl注入して、40℃で2〜3時間放置することによって重合した。重合後、できあがった高分子材料を、アセトニトリルに浸し、振とうすることにより洗浄した。アセトニトリル中にDA が検出(251.5nmの吸光度で確認)されなくなるまで、新たな洗浄液を入れ替え、洗浄操作を繰り返した。以上の操作で、長さ28mm、幅8mm、厚さ0.08mmの膜状のDA 識別材料を得た。この識別膜中のDA:PhaAAnのモル比は1:4である。
【0035】
比較例1 分子識別材料の調製
自己集合体を含む溶液を作成する際に、ダンシルアミドを加えなかった他は、実施例1と同様に操作した。この分子識別膜には、DA識別部位が作成されていないが、実施例1と同量のPhaAAnが材料全体にランダムに重合されている状態である。コントロール膜として調製した。
【0036】
実施例2 ダンシルアミドの吸着効果の実験
実施例1及び比較例1で作成した分子識別膜の目的分子識別能を確認するため、DA吸着実験を行った。
実施例1及び比較例1の分子識別膜(28mm×8mm×0.08mm)を10μMのDA/アセトニトリル溶液(3ml)にそれぞれ浸漬し、25℃、数時間放置した。
分子識別膜浸漬前後のDA /アセトニトリル溶液中のDA濃度を251.5nmの吸光度より算出し、DA 濃度の減少量から、識別膜1cm当たりに吸着したDA量を算出した結果、実施例1の分子識別膜は、膜1cm当たりに吸着したDA量は170 nmolであり、比較例1のそれは70 nmolであった。なお、膜作成時に使用したPhaAAnのモル数が低い膜ほど、DA吸着量が低いという結果が確認されている。
【0037】
実施例3 光照射によるDAの抽出効果の実験
実施例1及び比較例1で作成した分子識別膜(28mm×8mm×0.08mm)を10μMのDA/アセトニトリル溶液(3ml)にそれぞれ浸漬し、25℃、2時間暗所で放置し、分子識別膜にDAを吸着させた(図3の暗所)。この後、光源装置(UI−501C、ウシオ電気製)と色ガラスフィルター(UV−D35、旭テクノグラス製)を用いて、分子識別膜に紫外光を1時間照射した。次に可視光を通す色ガラスフィルター(Y−43、旭テクノグラス製)に変えて可視光を1時間照射した。この操作の間、10分ごとにDA/アセトニトリル溶液中のDA 濃度を251.5nmの吸光度を測定することによりモニターした。結果を図3に示した。比較例1の分子識別膜は、紫外光、可視光照射による251.5nmの吸光度の反応は見られなかったが、実施例1の分子識別膜は、紫外光照射により吸光度が上昇し、可視光照射により吸光度が減少することが観察された。吸光度の上昇は、DA/アセトニトリル溶液中のDA濃度が高くなったこと、すなわち、分子識別膜よりDA/アセトニトリル溶液中へDAが放出されたことを意味する。また、吸光度の減少は、DA/アセトニトリル溶液中のDA濃度が低くなったこと、すなわち、分子識別膜にDA/アセトニトリル溶液中のDAが吸収されたことを意味する。この結果より、実施例1の分子識別膜は、紫外光と可視光の照射によりDAの識別能が変化し、DAを脱吸着することがわかった。
【0038】
実施例4 DAに対する選択識別性の確認
実施例1の光応答型分子識別膜のDA選択識別性を調べるため、DAとDA類似化合物との吸着能を比較した。DA類似化合物として、DAと類似の骨格構造を持ち、分子量の異なる化合物を選択した(化3参照)。
【0039】
【化4】
Figure 2004347316
【0040】
すなわち、DAの分子量250.32に対し、これより分子量の低いN,N´−ジメチルアニリン(NNDA、分子量121.18)、分子量のほぼ等しいN,N´−ジメチル−1−ナフチルアミン(NNDNA 、分子量171.24)、分子量の大きいダンシル−L−ロイシン(DLL、分子量364.46)である。
実施例1の光応答型DA識別膜を4枚用意し、10μの各DA類似化合物/アセトニトリル溶液(3ml)に各々浸漬し、25℃で数時間放置した。分子識別膜を浸漬した前後の各DA類似化合物/アセトニトリル溶液中のDA類似化合物の濃度を251.5nmの吸光度より算出し、DA類似化合物濃度の減少量から、光応答型分子識別膜へのDA類似化合物の吸着量を算出した。DAに対しても同様に実験を行った。光応答型識別膜への各DA類似化合物の吸着量は、DAの吸着量を100%とした時の吸着率で示した(表1)。その結果、NNDNA はDAのスルホニルアミドがないだけの違いであるにも関わらず、吸着率が73.0%とDAとの差がはっきりとみられ、識別膜のDA識別能力は高いことがわかった。NNDAとDLLの結果より、分子量がDAより大きい類似化合物や小さい類似化合物に対する吸着率は、それぞれ41.3%、15.3%とかなり落ちること、分子量が小さい類似化合物より大きい類似化合物の方がより吸着率の減少に大きく影響することがわかった。
【0041】
【表1】
Figure 2004347316
【0042】
【発明の効果】
本発明の光応答型分子識別材料は、従来の分子識別材料とは異なり、化学物質を添加することなく、また有機溶媒や化学薬品を含んだ抽出溶媒を使用することなしに、単に光照射するだけで、目的物質の識別部位への吸脱着能をコントロールすることができ、目的物質を簡便に識別・分離抽出することが可能となる。
したがって、従来の技術で問題になっていた、目的物質抽出のための有機溶媒や化学薬品を含んだ抽出溶媒の使用や、抽出後、系に混入した塩等を除くための後処理操作を行う必要もなくなり、省資源、省エネルギーな物質識別・分離材料として極めて有用なものである。
【図面の簡単な説明】
【図1】機能性物質にフェニルアゾアクリルアニリドを用いた時の光応答型分子識別材料のダンシルアミド分子の識別・分離回収の説明図。
【図2】p−フェニルアゾアクリルアニリド(PhaAAn)の合成反応式。
【図3】実施例1の光応答型分子識別材料の光照射によるダンシルアミドの抽出効果の測定グラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-responsive molecular identification material, and more particularly, to a light-responsive molecular identification material capable of controlling the desorption ability of a target molecule by irradiation with light of different wavelengths.
[0002]
[Prior art]
2. Description of the Related Art Techniques for identifying, separating and separating substances are widely put to practical use not only in the chemical industry but also in the fields of biotechnology and experimental chemistry, and are one of the indispensable chemical techniques.
Typical examples of the method include a molecular sieving method based on molecular size and weight, a centrifugal separation method, a membrane separation method, a distillation method based on a phase change, a chromatography utilizing the interaction of substances, and the like.
[0003]
However, in order to carry out these methods, special tools and equipment, a large amount of solvents, etc. are required, and information on the target molecules such as molecular weight, density, boiling point, charge on the molecular surface, hydrophobicity, etc. It is necessary to investigate and to design the separation conditions. Further, in order to separate and separate completely unknown substances, it is necessary to spend time on investigations and preliminary experiments to obtain such information.
[0004]
Recently, a molecular imprinting method has been proposed as a method for solving these problems (Non-Patent Documents 1, 2 and the like).
The molecular identification material used in this molecular imprinting method is created through the following three steps.
That is, 1) a step of mixing a discriminating molecule with a functional substance having a site that interacts with the discriminating molecule and a vinyl group for fixing to a support to form a self-assembly of the functional substance and the discriminating molecule. 2) a step of adding a support raw material monomer to a solution containing a self-assembly and polymerizing to synthesize a support; 3) a step of removing the identification molecules remaining in the support by some method.
[0005]
In the molecular identification material obtained in this manner, a vacancy that captures the three-dimensional characteristics of the surface of the identification molecule, and a functional substance is arranged on the pore wall so as to be compatible with the identification molecule. In the molecular imprinting method, the target substance is identified, separated, and fractionated using the above-mentioned vacancy, that is, the molecular identification site. Therefore, if a high-purity identification molecule can be obtained, the molecular identification material can be easily prepared without obtaining information necessary for designing separation conditions such as molecular weight and charge on the surface of the molecule, and without requiring any special device. Since it can be made, it is currently applied to the adsorption of biological polymers such as proteins (Patent Document 1), extraction of triazine herbicides (Patent Document 2), separation of histamine (Patent Document 3), etc. Has reached.
[0006]
[Non-Patent Document 1] Wulff, G .; Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artifical antibodies. Angew. Chem. Int. Ed. Engl. 34, 1812-1832 (1995).
[Non-Patent Document 2] Mosback, K .; & Ramstrom, O.M. The engineering technique of molecular imprinting and it's feature impact on biotechnology. Bio / technology 14, 163-170 (1996)
[Patent Document 1] Japanese Patent Publication No. Hei 6-510474
[Patent Document 2] JP-A-10-239293
[Patent Document 3] JP-A-2000-241403
[0007]
[Problems to be solved by the invention]
The identification of molecules by the molecular imprinting method described above is based on the interaction between the shape of the pores at the molecular identification site and the functional molecules (functional groups) arranged in the pores.
[0008]
For this reason, in order to extract the identification molecule adsorbed on the identification site, it is necessary to weaken the interaction between the functional molecule (functional group) and the identification molecule, and various methods corresponding to this interaction are used. ing. For example, 1) the interaction based on the hydrophobic effect is a method in which an organic solvent is mixed into the system to weaken the hydrophobic effect and the target substance is extracted. 2) The interaction based on the charge requires a salt concentration or pH. The method of extracting the target substance by weakening the effect of charging using the changed buffer solution is 3) For the interaction based on the hydrogen bond, a high concentration of urea or guanidine hydrochloride is mixed into the system to weaken the hydrogen bond. A method of extracting a target substance is used. In any method, after adding chemical substances to the extraction system, it is necessary to perform post-treatment to remove the contaminated salts, etc. after the extraction operation, and the extraction solution containing organic solvents and chemicals is converted to wastewater. There was a drawback that it could be included and had a negative impact on the environment.
[0009]
The present invention overcomes these problems and controls the ability of the target substance to be adsorbed to and desorbed from the identification site by simply irradiating light without adding a chemical substance such as an organic solvent or a chemical. An object of the present invention is to provide a light-responsive molecular identification material that can be easily identified, separated and extracted without polluting the environment.
[0010]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to obtain a molecular imprinting material that does not require the use of chemical substances or post-processing operations, and that does not require a waste solvent. As a result, the functional material constituting the molecular identification site is irradiated with light. As a result, they found that a photochromic substance using a structural change was effective, and completed the present invention.
That is, according to the present invention, the following inventions are provided.
(1) It has pores of a predetermined shape for capturing the identification target molecule, and the molecule identification site has a reversible photoisomerization reaction upon irradiation with light of different wavelengths and has the ability to capture the identification target molecule. A photoresponsive molecular identification material, which is formed from a substance containing a photochromic group.
(2) The molecular identification site is characterized in that a reversible photoisomerization reaction is caused by irradiation with light of a different wavelength, and the adsorption / desorption ability with respect to the identification target molecule is reversibly controlled. The light-responsive molecular identification material according to (1).
(3) The above (1) or (2), wherein the pores of a predetermined shape for capturing the identification target molecule are formed in the trace of elution removal of the identification target molecule contained in advance. 3. The light-responsive molecular identification material according to item 1.
(4) The photoresponsive molecular identification material according to any one of (1) to (3), wherein the substance containing a photochromic group is a polymer compound having a photochromic group in a side chain.
(5) The photoresponsive molecular identification material according to (4), wherein the polymer compound is a polymer of a vinyl monomer.
(6) The photoresponsive molecular identification material according to (5), wherein the vinyl monomer is an unsaturated carboxylic acid derivative represented by the following general formula (I).
Embedded image
Figure 2004347316
(In the formula, R represents an unsaturated hydrocarbon group, A represents oxygen or nitrogen, and B represents a photochromic group.)
(7) The photochromic group is derived from at least one compound selected from azobenzenes, spirobenzopyrans, triphenylmethanes, fulgides, salicylideneanilines, thioindigos, dihydropyrenes, and diarylethenes. The photoresponsive molecular identification material according to any one of the above (1) to (6), which is a group.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In a substance containing a photochromic group, a single chemical species is reversibly changed into two isomers having different absorption spectra by the action of light having different wavelengths. For example, azobenzene undergoes a structural change due to cis-trans isomerization upon irradiation with ultraviolet light and visible light, and as a result, the distance between 4 and 4 ′ of the benzene ring changes from 5.5 ° to 9.0 °.
[0012]
The photoresponsive molecular identification material of the present invention skillfully utilizes such a property that the structure of the photochromic group-containing substance changes when irradiated with light of different wavelengths, and the photochromic group-containing substance is subjected to a molecular imprinting method. When placed at the molecular identification site in the above, the internal structure of the molecular identification site at the time of ultraviolet light irradiation and visible light irradiation changes, molecules captured at the identification site at the time of ultraviolet light irradiation are released by visible light irradiation, Or, conversely, the configuration is such that molecules captured at the identification site during visible light irradiation are released by ultraviolet light irradiation.
[0013]
As an example, FIG. 1 shows a state of identification / separation / recovery of dansylamide by light irradiation of a photoresponsive molecular identification material when phenylazoacrylanilide is used as a photochromic group-containing substance and dansylamide is used as an identification target molecule. When dansylamide is added to the identification site (left side in FIG. 1) of the photoresponsive molecular identification material prepared according to the present invention, dansylamide interacts with the azobenzene portion of phenylazoacrylanilide disposed at the molecular identification site, It is supplemented to the identification site (FIG. 1, center). When ultraviolet light is irradiated here, the azobenzene moiety isomerizes from the trans form to the cis form, and the structure of the identification site changes, thereby weakening the interaction with dansylamide. As a result, dansylamide is released from the identification site (FIG. 1, right). Upon irradiation with visible light, the azobenzene portion of the cis form returns to the trans form again, and dansylamide can be captured (center in the figure).
[0014]
Such a light-responsive molecular identification material is a novel material that the present inventors have discovered for the first time, not before, and unlike a conventional molecular identification material, without adding a chemical substance, and without using an organic solvent or By simply irradiating light without using an extraction solvent containing chemicals, the ability of the target substance to be adsorbed and desorbed to the identification site can be controlled, and the target substance can be easily contaminated without polluting the environment. It becomes possible to identify, separate and extract.
[0015]
The light-responsive molecular identification material of the present invention is formed from a substance containing a photochromic group that has a reversible photoisomerization reaction by irradiating light of different wavelengths and has an ability to capture a molecule of interest for identification. It is characterized by having.
[0016]
Although various types of such molecular identification sites are used, they can be created by disposing a substance containing a photochromic group on the surface of a support or a substrate by a molecular imprinting method.
As the support or the substrate, a polymer compound having a shape-retaining property, which is usually prepared by radical polymerization of a vinyl monomer (an organic compound having a vinyl group) and a crosslinking agent, is used. Examples of the vinyl monomer include acrylic acid, methacrylic acid, styrenesulfonic acid, alkali metal salts of these acids, acrylamide, methacrylamide, N, N-dimethylamide and the like. As the crosslinking agent, an organic compound having at least two vinyl groups in the molecule is used. For example, N, N '-(1,2-dihydroxyethylene) bisacrylamide, N, N'-methylenebisacrylamide and the like.
In this case, it is advantageous to use a vinyl monomer containing a photochromic group as the vinyl monomer, since it is not necessary to separately use a material constituting the support or the base material.
[0017]
Hereinafter, a typical method for producing the photoresponsive molecular identification material of the present invention in which the molecular identification site is formed of a polymer material containing a photochromic group will be described.
This photoresponsive molecular identification material was prepared in a step (first step) of self-assembly of a monomer molecule containing a photochromic group as a functional substance (hereinafter also referred to as a functional monomer) on the surface of the identification target molecule (first step), and was prepared in the first step. A step of polymerizing the self-assembly (second step) and a step of removing an identification target molecule used for forming the self-assembly from the polymer material obtained in the second step to create an identification site (third step) Created through.
[0018]
In the first step, an operation is performed in which a functional monomer is mixed with a solution containing the identification target molecule, and the functional monomer is self-assembled on the surface of the identification target molecule. As the functional monomer used in this step, a monomer that causes self-assembly with the identification target molecule and has a photochromic group accompanied by a structural change and a polymer group such as a vinyl group for polymerizing into a polymer material is used.
[0019]
Examples of such a functional monomer include an unsaturated carboxylic acid containing a photochromic group or a derivative thereof, such as an amide, an acyl halide, an ester, and an acid anhydride. Among these, unsaturated carboxylic acid derivatives represented by the following general formula (I) are preferably used.
Embedded image
Figure 2004347316
(In the formula, R represents an unsaturated hydrocarbon group, A represents oxygen or nitrogen, and B represents a photochromic group.)
[0020]
R in the general formula (I) is an unsaturated hydrocarbon group having at least one vinyl group for fixing a photochromic group to a polymer material or the like, and is an alkenyl group having 2 to 3 carbon atoms, for example, an ethenyl group or an allyl group. And ethyne. As A in the general formula (I), oxygen or nitrogen is used. B in the general formula (I) is a part of the photochromic group, which has a role of causing self-assembly with the identification target molecule and causing a photochromism phenomenon. The photochromic group used here is derived from at least one compound selected from azobenzenes, spirobenzopyrans, triphenylmethanes, fulgides, salicylideneanilines, thioindigos, dihydropyrenes and diarylethenes. Groups.
Examples of the unsaturated carboxylic acid derivative represented by the general formula (1) satisfying these conditions include phenylazoacrylanilide and phenyl phenylazoacrylate.
[0021]
These functional monomers are used alone or as a mixture of two or more of them in the molecule solution for identification. The solvent that dissolves the identification target molecule and the functional monomer is preferably one that can dissolve these and does not affect the structure of the identification target molecule. For example, acetonitrile, tetrahydrofuran, chloroform, methanol, ethanol and the like are used.
When the structure of the identification target molecule is changed by the organic solvent, a mixture of an organic solvent and an aqueous solvent or an aqueous solvent is used.
[0022]
As the water solvent, for example, water such as distilled water, purified water and ultrapure water, as well as a pH buffer solution composed of various salt solutions, phosphoric acid and the like are used. The mixing ratio between the identification target molecule and the functional monomer differs depending on the identification target molecule. After mixing the identification target molecule and the functional monomer, the mixture is left at room temperature or in a refrigerator for 2 hours or more to allow the functional monomer to self-assemble on the surface of the identification target molecule.
[0023]
In the second step, the solution containing the self-assembly of the identification target molecule and the functional monomer prepared in the first step is mixed with a crosslinking agent, and an operation of adding a polymerization catalyst and polymerizing is performed.
As the crosslinking agent used here, for example, an organic compound having at least two or more vinyl groups in the molecule is used. Examples of such a crosslinking agent include N, N '-(1,2-dihydroxyethylene) bisacrylamide, N, N'-methylenebisacrylamide (BIS), ethylene glycol dimethacrylate (EGDMA), and tetraethylene glycol diacrylate. Methacrylate (Tetra-EGDA), divinylbenzene and the like can be mentioned. These crosslinking agents are used alone or in combination of two or more.
[0024]
In order to produce a flexible and high-strength material, it is preferable to use a mixture of EGDMA and Tetra-EGDA. The mixing ratio of EGDMA: Tetra-EGDA is preferably from 4: 6 to 1: 9 in molar ratio. More preferably, the molar ratio is 4: 6 to 3: 7. If the molar ratio of EGDMA is larger than 4: 6 (or the molar ratio of Tetra-EGDA is smaller), the material becomes brittle and molding of the material becomes difficult. On the other hand, if the molar ratio of EGDMA is smaller than 1: 9 (or the molar ratio of Tetra-EGDA is larger), the material is too soft to handle.
[0025]
The volume ratio of the cross-linking agent mixed in the self-assembly solution of the identification target molecule and the functional monomer is preferably in the range of self-assembly solution: crosslinking agent = 9: 1 to 3: 7. More preferably, it is 5: 5 to 3: 7. If the volume ratio of the self-assembled liquid is larger than 9: 1 (or the volume ratio of the cross-linking agent is small), the support material is too soft and it becomes difficult to handle. Further, when the volume ratio of the self-assembled liquid is smaller than 3: 7 (or the volume ratio of the crosslinking agent is larger), the photoisomerization reaction rate of the photochromic group due to light irradiation becomes slow.
[0026]
After mixing the self-assembled assembly liquid and the crosslinking agent, nitrogen gas is bubbled out to expel oxygen in the solution, a polymerization catalyst (eg, azobisisobutyronitrile, azobismethoxydimethylvaleronitrile, etc.) is added, and the mixture is allowed to stand until polymerization is completed. To obtain a polymer material. The temperature at the time of polymerization is preferably 20 to 50 ° C. If the temperature is lower than 20 ° C., it takes too much time to complete the polymerization, and a non-uniform support material may be formed. The polymerization pressure is about one atmosphere. Since the polymer material is molded according to the shape of the container used in the polymerization, the shape of the material can be determined according to the purpose of use. For example, in order to improve the discriminating ability, in order to increase the contact area with a solution containing the molecule to be discriminated, it is preferable that the material is formed into a thin plate shape or fine granules to increase the surface area of the material.
[0027]
In the third step, an operation of washing the polymer material after the polymerization, excluding the identification target molecule used as the template molecule, creating a molecule identification site, and completing the photoresponsive molecule identification material is performed.
[0028]
The washing solution for the polymer material differs depending on the identification target molecule, and a solvent capable of effectively removing the identification target molecule is selected. Generally, organic solvents such as acetonitrile, tetrahydrofuran, chloroform, methanol, ethanol, etc., water such as distilled water, purified water, ultrapure water, etc., and water solvents such as pH buffers comprising various salt solutions, phosphoric acid, etc., and organic solvents A mixed solvent of a solvent and an aqueous solvent is used. Washing is repeated with replacement of the washing solution until no identification target molecule is detected in the washing solution.
[0029]
The light-responsive molecular identification material thus created has pores large enough to capture the identification target molecule on the material surface, and the surface of the pore is irradiated with light of a different wavelength to identify the target molecule. A substance containing a photochromic group that causes a reversible photoisomerization reaction and has the ability to capture a target molecule for identification (hereinafter, also referred to as a functional substance) is arranged. Therefore, it is possible to capture the identification target molecule from a mixed solution containing the identification target molecule and another molecule. After capturing the target molecule, the photoresponsive molecular identification material is irradiated with ultraviolet light, causing the functional substance located in the pore to undergo a structural change due to the photochromic phenomenon. The discriminating ability for is reduced. As a result, the identification target molecule is separated from the molecular identification material, and the target molecule can be separated and collected by recovering it.
[0030]
The molecule to be identified in the photoresponsive identification material of the present invention is appropriately determined in relation to the functional substance to be used. At least a photochromic group (functional group portion) that causes photoisomerization of the functional substance and a self-assembly are included. Selected from the molecules that cause it. For example, when phenylazoacrylanilide is used as the functional substance, compounds having a skeleton such as benzene, naphthalene, anthracene, and steroid are targeted. Among them, dansylated compounds used for fluorescent labeling, steroid hormones such as progesterone, thyroid hormones, anticancer agents and the like are preferred, and dansylamide, a kind of dansylated compound, is particularly preferred.
[0031]
【Example】
Next, the present invention will be described in more detail with reference to Examples, but it is not intended to limit the present invention.
[0032]
Reference Example Synthesis of p-phenylazoacrylanilide (PhaAAn) used as a functional monomer (FIG. 2)
3.94 g (20 mmol) of 4-phenylazoaniline was dissolved in 28 ml of tetrahydrofuran (THF) and stored in an ice bath. Next, 1.62 ml of acryloyl chloride was diluted 5-fold (4 mmol) with THF, and added dropwise to a THF solution of 4-phenylazoaniline stored in an ice bath at a rate of 3 to 4 drops per minute. Further, 3 ml (22 mmol) of triethylamine was added to neutralize HCl generated during the reaction. The mixture was stirred for 1 hour or more to obtain a reaction mixture. The reaction mixture was poured into three volumes of water to remove raw materials and by-products, and the resulting precipitate was collected by centrifugation. The precipitate was dissolved in 30 ml of THF and again poured into 3 volumes of water to precipitate. After repeating this operation three times, the mixed solvent of THF and water was evaporated by a rotary evaporator, and vacuum-dried until the weight became constant. The obtained product was confirmed to be PhaAAn by the results of infrared absorption spectrum, elemental analysis, and mass spectrometry.
[0033]
Example 1 Preparation of molecular identification material for identifying dansylamide
Dansyl chloride and dansyl fluoride are frequently used for microanalyzing the N-terminal amino group of proteins and peptides and for fluorescently labeling them. The following operation was performed to prepare a photoresponsive molecular identification material for identifying the dansylamide portion of these dansylated compounds.
[0034]
50.4 mg of PhaAAn obtained in Reference Example and 12.5 mg of dansylamide (DA) were dissolved in 0.55 ml of acetonitrile, and left overnight in a cool and dark place to prepare a solution containing a PhaAAn-DA self-assembly. The next day, 283 μl of EGDMA and 404 μl of Tetra-EGDA (1.5 mmol for both EGDMA and Tetra-EGDA, molar ratio: 5: 5) were added to the solution containing the self-assembly as a cross-linking agent. % (W / V) of azobismethoxydimethylvaleronitrile (volume including 137 μl)): A cross-linking agent solution in a volume ratio of 5: 5 was prepared. After bubbling with nitrogen gas for 3 minutes, 137 μl of 2% (W / V) azobismethoxydimethylvaleronitrile was added and mixed quickly, and placed in two slide glasses with a spacer of 80 μm in thickness at each end. 100 μl of this solution was injected and left at 40 ° C. for 2 to 3 hours for polymerization. After the polymerization, the completed polymer material was washed by dipping in acetonitrile and shaking. Until DA was not detected in acetonitrile (confirmed by absorbance at 251.5 nm), a new washing solution was replaced and the washing operation was repeated. Through the above operations, a film-form DA identification material having a length of 28 mm, a width of 8 mm, and a thickness of 0.08 mm was obtained. The molar ratio of DA: PhaAAn in this identification film is 1: 4.
[0035]
Comparative Example 1 Preparation of molecular identification material
The operation was performed in the same manner as in Example 1 except that dansylamide was not added when preparing a solution containing a self-assembly. Although no DA identification site was formed on this molecular identification film, the same amount of PhaAAn as in Example 1 was randomly polymerized throughout the material. It was prepared as a control membrane.
[0036]
Example 2 Experiment of Adsorption Effect of Dansylamide
In order to confirm the target molecule discriminating ability of the molecular discriminating films prepared in Example 1 and Comparative Example 1, a DA adsorption experiment was performed.
The molecular recognition films (28 mm × 8 mm × 0.08 mm) of Example 1 and Comparative Example 1 were immersed in a 10 μM DA / acetonitrile solution (3 ml), respectively, and left at 25 ° C. for several hours.
The DA concentration in the DA / acetonitrile solution before and after immersion in the molecular identification film was calculated from the absorbance at 251.5 nm, and the amount of decrease in the DA concentration was calculated as 1 cm for the identification film. 3 As a result of calculating the amount of DA adsorbed per unit, the molecular recognition film of Example 1 was 1 cm in film. 3 The amount of DA adsorbed per time was 170 nmol, and that of Comparative Example 1 was 70 nmol. It has been confirmed that the smaller the number of moles of PhaAAn used in forming the film, the lower the DA adsorption amount.
[0037]
Example 3 Experiment of DA extraction effect by light irradiation
The molecular identification films (28 mm × 8 mm × 0.08 mm) prepared in Example 1 and Comparative Example 1 were immersed in a 10 μM DA / acetonitrile solution (3 ml), respectively, and allowed to stand at 25 ° C. for 2 hours in a dark place to identify molecules. DA was adsorbed on the membrane (dark place in FIG. 3). Thereafter, using a light source device (UI-501C, manufactured by Ushio Electric) and a color glass filter (UV-D35, manufactured by Asahi Techno Glass), the molecular identification film was irradiated with ultraviolet light for 1 hour. Next, it was changed to a color glass filter (Y-43, manufactured by Asahi Techno Glass) that allows visible light to pass therethrough, and then irradiated with visible light for 1 hour. During this operation, the DA concentration in the DA / acetonitrile solution was monitored every 10 minutes by measuring the absorbance at 251.5 nm. The results are shown in FIG. The molecular identification film of Comparative Example 1 did not show a reaction of absorbance at 251.5 nm due to irradiation with ultraviolet light or visible light, but the molecular identification film of Example 1 had an increase in absorbance due to irradiation with ultraviolet light and visible light. It was observed that the absorbance decreased upon irradiation. An increase in the absorbance means that the DA concentration in the DA / acetonitrile solution was increased, that is, DA was released from the molecular recognition membrane into the DA / acetonitrile solution. Further, a decrease in absorbance means that the DA concentration in the DA / acetonitrile solution has decreased, that is, DA in the DA / acetonitrile solution has been absorbed by the molecular recognition membrane. From this result, it was found that the molecular discriminating film of Example 1 changed the discriminating ability of DA by irradiation of ultraviolet light and visible light, and desorbed DA.
[0038]
Example 4 Confirmation of Selective Identity for DA
In order to examine the DA selective discrimination of the photoresponsive molecule discriminating membrane of Example 1, the adsorption capacities of DA and a DA analog were compared. As the DA analog compound, a compound having a similar skeletal structure to DA and having a different molecular weight was selected (see Chemical Formula 3).
[0039]
Embedded image
Figure 2004347316
[0040]
That is, with respect to the molecular weight of DA of 250.32, N, N'-dimethylaniline (NNDA, molecular weight 121.18) having a lower molecular weight and N, N'-dimethyl-1-naphthylamine (NNDNA, molecular weight 171.24) and dansyl-L-leucine (DLL, molecular weight 364.46) having a large molecular weight.
Four light-responsive DA identification films of Example 1 were prepared, immersed in 10 μ of each DA analog / acetonitrile solution (3 ml), and left at 25 ° C. for several hours. The DA analog compound concentration in each DA analog compound / acetonitrile solution before and after immersion of the molecule identification film was calculated from the absorbance at 251.5 nm, and the DA decrease in the DA analog compound concentration was calculated based on the decrease in the DA analog compound concentration. The amount of adsorption of the similar compound was calculated. The same experiment was performed for DA. The amount of each DA analog compound adsorbed on the photoresponsive discriminating film was shown as an adsorption rate when the amount of DA adsorbed was 100% (Table 1). As a result, although NNDNA was different only in that there was no sulfonylamide of DA, the adsorption rate was 73.0%, which was a clear difference between DA and DA recognition ability of the discrimination membrane was found to be high. . From the results of NNDA and DLL, the adsorption rates for analogous compounds having a molecular weight larger than DA and analogous compounds having a smaller molecular weight are considerably reduced to 41.3% and 15.3%, respectively. It was found that this greatly affected the decrease in the adsorption rate.
[0041]
[Table 1]
Figure 2004347316
[0042]
【The invention's effect】
The light-responsive molecular identification material of the present invention, unlike conventional molecular identification materials, is simply irradiated with light without adding a chemical substance and without using an extraction solvent containing an organic solvent or a chemical. By itself, the ability to adsorb and desorb the target substance to the identification site can be controlled, and the target substance can be easily identified, separated and extracted.
Therefore, use of an extraction solvent containing an organic solvent or a chemical for extraction of a target substance, which has been a problem in the conventional technology, and a post-treatment operation for removing salts and the like mixed into the system after the extraction are performed. It is no longer necessary and is extremely useful as a resource- and energy-saving material identification / separation material.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of identification / separation / recovery of dansylamide molecules of a photoresponsive molecular identification material when phenylazoacrylanilide is used as a functional substance.
FIG. 2 is a synthetic reaction formula of p-phenylazoacrylanilide (PhaAAn).
FIG. 3 is a measurement graph of the effect of extracting dansylamide by light irradiation of the photoresponsive molecular identification material of Example 1.

Claims (7)

識別目的分子を捕捉する所定形状の大きさの空孔を持ち、かつ分子識別部位が、異なる波長の光照射により可逆的な光異性化反応を起こすと共に識別目的分子の捕捉能を有するフォトクロミック基を含有する物質から形成されていることを特徴とする光応答型分子識別材料。A photochromic group that has pores of a predetermined shape that captures the identification target molecule and that has a molecule identification site that has a reversible photoisomerization reaction when irradiated with light of different wavelengths and has the ability to capture the identification target molecule. A light-responsive molecular identification material characterized by being formed from a contained substance. 当該分子識別部位は、異なる波長の光照射により可逆的な光異性化反応を起こし、識別目的分子に対する吸脱着能が可逆的に制御されるものであることを特徴とする請求項1に記載の光応答型分子識別材料。2. The molecular identification site according to claim 1, wherein the molecule identification site undergoes a reversible photoisomerization reaction upon irradiation with light of a different wavelength, and the adsorption / desorption ability for the identification target molecule is reversibly controlled. Light-responsive molecular identification material. 識別目的分子を捕捉する所定形状の大きさの空孔が、あらかじめ含有させた識別目的分子の溶出除去跡に形成されたものであることを特徴とする請求項1又は2に記載の光応答型分子識別材料。The photoresponsive type according to claim 1 or 2, wherein the pores of a predetermined shape for capturing the identification target molecule are formed in traces of elution and removal of the identification target molecule contained in advance. Molecular identification material. フォトクロミック基を含有する物質が、側鎖にフォトクロミック基を有する高分子化合物であることを特徴とする請求項1乃至3何れかに記載の光応答型分子識別材料。4. The photoresponsive molecular identification material according to claim 1, wherein the substance containing a photochromic group is a polymer compound having a photochromic group in a side chain. 高分子化合物が、ビニルモノマー重合体であることを特徴とする請求項4に記載の光応答型分子識別材料。The photoresponsive molecular identification material according to claim 4, wherein the polymer compound is a vinyl monomer polymer. ビニルモノマーが、下記一般式(I)で表される不飽和カルボン酸誘導体であることを特徴とする請求項5に記載の光応答型分子識別材料。
Figure 2004347316
(式中、Rは不飽和炭化水素基、Aは酸素又は窒素、Bはフォトクロミック基を表す。)
The photoresponsive molecular identification material according to claim 5, wherein the vinyl monomer is an unsaturated carboxylic acid derivative represented by the following general formula (I).
Figure 2004347316
(In the formula, R represents an unsaturated hydrocarbon group, A represents oxygen or nitrogen, and B represents a photochromic group.)
フォトクロミック基が、アゾベンゼン類、スピロベンゾピラン類、トリフェニルメタン類、フルギド類、サリチリデンアニリン類、チオインジゴ類、ジヒドロピレン類及びジアリールエテン類から選ばれた少なくとも一種の化合物から誘導された基であることを特徴とする請求項1乃至6何れかに記載の光応答型分子識別材料。The photochromic group is a group derived from at least one compound selected from azobenzenes, spirobenzopyrans, triphenylmethanes, fulgides, salicylideneanilines, thioindigos, dihydropyrenes, and diarylethenes. The light-responsive molecular identification material according to any one of claims 1 to 6, wherein:
JP2003103781A 2003-04-08 2003-04-08 Photoresponsive molecular identification material Expired - Lifetime JP4058517B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003103781A JP4058517B2 (en) 2003-04-08 2003-04-08 Photoresponsive molecular identification material
PCT/JP2004/004987 WO2004090529A1 (en) 2003-04-08 2004-04-07 Photoresponsive molecule identification material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103781A JP4058517B2 (en) 2003-04-08 2003-04-08 Photoresponsive molecular identification material

Publications (2)

Publication Number Publication Date
JP2004347316A true JP2004347316A (en) 2004-12-09
JP4058517B2 JP4058517B2 (en) 2008-03-12

Family

ID=33156834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103781A Expired - Lifetime JP4058517B2 (en) 2003-04-08 2003-04-08 Photoresponsive molecular identification material

Country Status (2)

Country Link
JP (1) JP4058517B2 (en)
WO (1) WO2004090529A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108443A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Molecule recognition polymer enabling reconstruction of recognition field for target molecule and method of producing the same
JP2010064038A (en) * 2008-09-12 2010-03-25 Tokyo Denki Univ Photoresponsive copper ion adsorption material and copper ion recovery method
JP2015158382A (en) * 2014-02-21 2015-09-03 日本ポリプロ株式会社 Method for quantitative analysis of sorbitol compound in polyolefin
JP2020041981A (en) * 2018-09-13 2020-03-19 株式会社東芝 Organic substance probe and molecule detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497544B (en) * 2016-10-20 2019-03-05 上海电力学院 A kind of organic photochromic material and its preparation method and application based on diarylethene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107759A (en) * 1989-09-21 1991-05-08 Shimadzu Corp Column packing material
JPH06510474A (en) * 1991-09-06 1994-11-24 グラド、マグヌス Selective affinity materials, their production by monocular imprinting, and uses of said materials
JPH10227776A (en) * 1997-02-17 1998-08-25 Shimadzu Corp High-speed liquid chromatography column equipped with light switching function
JPH10239293A (en) * 1997-02-26 1998-09-11 Nissan Chem Ind Ltd Selective solid-phase extraction method of triazine herbicide
JP2000241403A (en) * 1999-02-24 2000-09-08 Sysmex Corp Histamine reception polymer and separating method using it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641301B2 (en) * 1995-08-09 2005-04-20 株式会社セルシード Stimulation response type separation material and separation purification method
JP3062745B1 (en) * 1999-01-20 2000-07-12 工業技術院長 Material capable of selectively adsorbing and desorbing protein and method for producing the same
JP5109003B2 (en) * 2000-10-13 2012-12-26 岡野 光夫 Separation material such as stimulus-responsive affinity chromatography material and separation purification method
JP2003321492A (en) * 2002-05-08 2003-11-11 National Institute Of Advanced Industrial & Technology Heat-responsible polymer gel having protein molecule- identifying function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107759A (en) * 1989-09-21 1991-05-08 Shimadzu Corp Column packing material
JPH06510474A (en) * 1991-09-06 1994-11-24 グラド、マグヌス Selective affinity materials, their production by monocular imprinting, and uses of said materials
JPH10227776A (en) * 1997-02-17 1998-08-25 Shimadzu Corp High-speed liquid chromatography column equipped with light switching function
JPH10239293A (en) * 1997-02-26 1998-09-11 Nissan Chem Ind Ltd Selective solid-phase extraction method of triazine herbicide
JP2000241403A (en) * 1999-02-24 2000-09-08 Sysmex Corp Histamine reception polymer and separating method using it

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
LIGIA SIERRA, BETTY LOPEZ, AND JEAN-LOUIS GUTH: "Preparation of mesoporous silica particles with controlled morphology from sodium silicate solutions", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 39, JPN4007015801, 2000, pages 519 - 527, XP004217704, ISSN: 0000881513, DOI: 10.1016/S1387-1811(00)00227-4 *
LIGIA SIERRA, BETTY LOPEZ, AND JEAN-LOUIS GUTH: "Preparation of mesoporous silica particles with controlled morphology from sodium silicate solutions", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 39, JPN6007007505, 2000, pages 519 - 527, XP004217704, ISSN: 0000926673, DOI: 10.1016/S1387-1811(00)00227-4 *
三橋 和成,中釜 達朗,内山 一美,保母 敏行: "トリフェニルメタン誘導体を用いた新規光応答性液体クロマトグラフィー固定相の開発", 日本分析化学会第48年会講演要旨集, JPN4007016001, 25 August 1999 (1999-08-25), pages 272, ISSN: 0000881516 *
三橋 和成,中釜 達朗,内山 一美,保母 敏行: "トリフェニルメタン誘導体を用いた新規光応答性液体クロマトグラフィー固定相の開発", 日本分析化学会第48年会講演要旨集, JPN6007007510, 25 August 1999 (1999-08-25), pages 272, ISSN: 0000926676 *
石原 一彦,加藤 真二,篠原 功,岡野 光夫,片岡 一則,桜井 靖久: "光応答性高分子吸着体を利用した細胞粘着クロマトグラフィー", 高分子論文集, vol. 第39巻,第4号, JPN4007015799, 25 April 1982 (1982-04-25), JP, pages 271 - 276, ISSN: 0000881511 *
石原 一彦,加藤 真二,篠原 功,岡野 光夫,片岡 一則,桜井 靖久: "光応答性高分子吸着体を利用した細胞粘着クロマトグラフィー", 高分子論文集, vol. 第39巻,第4号, JPN6007007503, 25 April 1982 (1982-04-25), JP, pages 271 - 276, ISSN: 0000926671 *
石原 一彦,加藤 真二,篠原 功,岡野 光夫,片岡 一則,桜井 靖久: "光応答性高分子吸着体を利用した細胞粘着クロマトグラフィー", 高分子論文集, vol. 第39巻,第4号, JPNX007023878, 25 April 1982 (1982-04-25), JP, pages 271 - 276, ISSN: 0000848754 *
石原 一彦,篠原 功,岡野 光夫: "光応答性高分子による光制御クロマトグラフィー", 化学の領域, vol. 第37巻,第11号, JPN4007016002, 1 November 1983 (1983-11-01), pages 873 - 880, ISSN: 0000881517 *
石原 一彦,篠原 功,岡野 光夫: "光応答性高分子による光制御クロマトグラフィー", 化学の領域, vol. 第37巻,第11号, JPN6007007512, 1 November 1983 (1983-11-01), pages 873 - 880, ISSN: 0000926677 *
石原 一彦: "光制御クロマトグラフィー", 高分子, vol. 第35巻,3月号, JPN4007016000, 1 March 1986 (1986-03-01), pages 248 - 251, ISSN: 0000881515 *
石原 一彦: "光制御クロマトグラフィー", 高分子, vol. 第35巻,3月号, JPN6007007509, 1 March 1986 (1986-03-01), pages 248 - 251, ISSN: 0000926675 *
野口 順子,八島 栄次,岡本 佳男: "光学異性体の膜分離(VI) 光応答性セルロースカルバメート誘導体膜の不斉識別能", 高分子学会予稿集, vol. 第42巻,第3号, JPN4007015999, 12 May 1993 (1993-05-12), JP, pages 596, ISSN: 0000881514 *
野口 順子,八島 栄次,岡本 佳男: "光学異性体の膜分離(VI) 光応答性セルロースカルバメート誘導体膜の不斉識別能", 高分子学会予稿集, vol. 第42巻,第3号, JPN6007007507, 12 May 1993 (1993-05-12), JP, pages 596, ISSN: 0000926674 *
野口 順子,八島 栄次,岡本 佳男: "光学異性体の膜分離(VI) 光応答性セルロースカルバメート誘導体膜の不斉識別能", 高分子学会予稿集, vol. 第42巻,第3号, JPNX007023879, 12 May 1993 (1993-05-12), JP, pages 596, ISSN: 0000848755 *
黒田 一幸: "メソポーラス物質 −機能材料としての拡がり−", セラミックス, vol. 第36巻,第12号, JPN4007015800, 1 December 2001 (2001-12-01), pages 902 - 905, ISSN: 0000881512 *
黒田 一幸: "メソポーラス物質 −機能材料としての拡がり−", セラミックス, vol. 第36巻,第12号, JPN6007007504, 1 December 2001 (2001-12-01), pages 902 - 905, ISSN: 0000926672 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108443A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Molecule recognition polymer enabling reconstruction of recognition field for target molecule and method of producing the same
US8021893B2 (en) 2004-05-07 2011-09-20 Japan Science And Technology Agency Molecular recognition polymer enabling reconstruction of recognition field for target molecule and method of producing the same
JP5184780B2 (en) * 2004-05-07 2013-04-17 独立行政法人科学技術振興機構 Molecular recognition polymer capable of reconstructing recognition field of target molecule and method for producing the same
JP2010064038A (en) * 2008-09-12 2010-03-25 Tokyo Denki Univ Photoresponsive copper ion adsorption material and copper ion recovery method
JP2015158382A (en) * 2014-02-21 2015-09-03 日本ポリプロ株式会社 Method for quantitative analysis of sorbitol compound in polyolefin
JP2020041981A (en) * 2018-09-13 2020-03-19 株式会社東芝 Organic substance probe and molecule detector

Also Published As

Publication number Publication date
WO2004090529A1 (en) 2004-10-21
JP4058517B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
Sun et al. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion
AU767704B2 (en) New molecularly imprinted polymers grafted on solid supports
US11458453B2 (en) Molecularly imprinted polymer beads for extraction of metals and uses thereof
CA2624460C (en) Molecularly imprinted polymer ion exchange resins
US11389782B2 (en) Molecularly imprinted polymer beads for extraction of lithium, mercury, and scandium
CN104530314A (en) Preparation method and application of bionic temperature-sensitive molecular engram composite film
Yemiş et al. Molecularly imprinted polymers and their synthesis by different methods
JP4058517B2 (en) Photoresponsive molecular identification material
JP4414396B2 (en) Synthesis of ion-imprinted polymer particles
Ouimet et al. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations
Marx–Tibbon et al. Photostimulated imprinted polymers: A light-regulated medium for transport of amino acids
US6960645B2 (en) Synthesis of ion imprinted polymer particles
JP4072066B2 (en) Novel molecular recognition polymer and production method thereof
JP4919447B2 (en) Photoresponsive metal ion adsorbing material and metal ion recovery method
CN101418062B (en) Synthesis of ion imprinted polymer particle
Narayanaswamy et al. Molecularly imprinted polymers for optical sensing devices
CN104710646A (en) Preparation method for molecularly imprinted composite membrane initiated by surface functional prepolymerization system
Sellergren Enantiomer separations using designed imprinted chiral phases
Goś et al. Chemical structure, synthesis, and physical and chemical properties of porous polymers as materials applied in analytical chemistry and environmental protection
Asman MOLECULARLY IMPRINTED POLYMERS FOR WASTEWATER TREATMENT: SYNTHESIS AND APPLICATIONS
SE527299C2 (en) Molecularly imprinted material for use e.g. as a template in hierarchical imprinting to generate surface confined sites for larger peptides and proteins, and in drug discovery, comprises use of a solid phase synthesis product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

R150 Certificate of patent or registration of utility model

Ref document number: 4058517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term