JP2004342987A - Stage apparatus - Google Patents

Stage apparatus Download PDF

Info

Publication number
JP2004342987A
JP2004342987A JP2003140467A JP2003140467A JP2004342987A JP 2004342987 A JP2004342987 A JP 2004342987A JP 2003140467 A JP2003140467 A JP 2003140467A JP 2003140467 A JP2003140467 A JP 2003140467A JP 2004342987 A JP2004342987 A JP 2004342987A
Authority
JP
Japan
Prior art keywords
weight
stage
fine movement
self
movement stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003140467A
Other languages
Japanese (ja)
Inventor
Tsuneo Takashima
常雄 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003140467A priority Critical patent/JP2004342987A/en
Publication of JP2004342987A publication Critical patent/JP2004342987A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stage apparatus that can be easily and accurately adjusted and be also finely adjusted even while a device is mounted, and can be easily readjusted many times even if any change occurs over aging in a dead-weight compensating means, by nearly matching the floating force of the dead-weight compensating means with that required for compensating both a dead weight and a posture of a fine motion stage or either thereof, and by adjusting a weight adjusting means so as to match both a weight and the center of gravity of the fine motion stage or either thereof with an adjusted floating force of the dead-weight compensating means. <P>SOLUTION: The movable part (fine motion top plate) of the fine motion stage is provided with a weight adjusting means. The dead-weight compensating means is roughly adjusted, and a correction difference is corrected by fine adjustment of the weight adjusting means of the movable part of the fine motion stage. The weight adjusting means uses a balancer weight provided on the fine motion top plate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体露光装置においてウエハ基板などを微小位置決めするための微動ステージ等に用いられる支持装置を備えたステージ装置、特にリニアモータで6軸が直接位置決め制御される微動ステージの支持装置を備えたステージ装置に関する。
【0002】
【従来の技術】
従来、半導体露光装置におけるウェハなどの基板の精密位置決め機構として、微小直進機能と微小回転機能を有する微動ステージと、xy方向の大ストローク移動機能を有する粗動ステージとから構成されるステージ装置が一般的によく知られている。この様なステージ装置は、粗動ステージに構成される粗動アクチュエータによってxy方向の大ストロークの移動を行いつつ、微動ステージに構成される微動アクチュエータによって、搭載する基板の精密位置決め動作を行う。また、一般的に粗動アクチュエータや微動アクチュエータは、高速かつ高精度の移動を行えるよう、非接触で駆動するため、ローレンツ力を用いたリニアモータが多用されている。
【0003】
しかし、この様なステージ装置における微動ステージには、次のような問題がある。すなわち、基板サイズの大型化から微動ステージの重量も増加し、これをリニアモータの推力で支持する為には、アクチュエータに常時電流を通電しなくてはならず、これが熱源となり微動ステージを熱変形させたり、計測によく用いられるレーザー干渉計や光学エンコーダ等の測定誤差を生じてしまい、ひいては最終的な位置決め精度を劣化させてしまう。このような問題を解決するため、特開2001−358058号公報に示される様に、ばねまたは磁石によって微動ステージの重量を支持する方法、すなわち自重補償の方法が知られている。図8は、この従来例に示される微動ステージの自重補償の構成を模式的に示したものである。図中、101は微動ステージ、102は粗動ステージ、103a〜103cは自重補償手段としてのコイルばね、104a〜104cは微動アクチュエータである。微動ステージ101は、粗動ステージ102に対して、微動アクチュエータ104a〜104cの発生する推力によってその高さと傾きが所定座標になるよう位置決めされる。ところが、所定の高さと傾きを維持するように、微動ステージ101の重量を微動アクチュエータ104a〜104cの推力のみを用いて支えると、微動アクチュエータ104a〜104cには常時電流が通電されるため、常に一定の発熱が生じる。この熱はステージの精度に悪影響を与えるため、極力小さくする必要がある。そこで、この微動ステージ101を一定高さに浮上させるため、自重補償手段であるコイルばね103a〜103cが構成されている。すなわち、定常的な重量支持についてはコイルばね103a〜103cが行い、微小位置決めの為の駆動や、粗動アクチュエータ動作による加減速時の姿勢変動の修正動作などについては微動アクチュエータ104a〜104cが行う。これにより微動アクチュエータ104が発する熱量を最小にできる。ただし、コイルばね103a〜103cによる浮上力が、微動ステージ重量に対して大きくても小さくても、その差分は微動アクチュエータ104a〜104cの発熱につながるので、浮上力は正確に調整する事が必要である。
【0004】
また、自重補償手段として、コイルばねではなく、磁石の反発力を用いたり、空気シリンダーの駆動力を用いたりする場合であっても、構成と機能はまったく同じである。
【0005】
【発明が解決しようとする課題】
しかしながら、一般に自重補償手段としては、補償する微動ステージの重量は当然ながら浮上位置に依存せず一定であるため、自重補償手段の浮上力も浮上位置の依存性を極力小さくして、微動ステージの高さに因らずほぼ一定とする事が望ましい。また、粗動ステージ側の振動をできるだけ微動ステージに伝え難くするため、すなわち振動遮断特性を向上させるためには、粗動ステージと微動ステージの相対変位に関わらず常に一定の浮上力が生じる事が望ましい。これは、自重補償手段としてばね等の弾性体を用いる場合、そのばね定数は極力小さくあらねばならない事になる。これを逆に言えば、わずかな浮上力の変化で微動ステージの浮上位置が大きく変化してしまう事を意味する。そのため上記従来例では、その調整は敏感度が高くて困難なものであった。また、自重補償手段単体では何らかの治工具を用いて容易に調整できるよう工夫をしたとしても、微動ステージの重量や重心位置のばらつきを吸収するために、最終的には微動ステージに組み込んだ状態で実施する必要があり、やはり調整は困難であった。さらに、自重補償手段を3個以上の複数で構成した場合、それぞれの浮上力を調整した後に、それらの相互差も調整する必要があり、困難な調整を少なくとも二回実施する必要があった。また、わずかな経年変化が生じてもその浮上位置が大きく変化してしまうため、装置運用時において定期的に調整を実施する必要があるが、装置内は十分なメンテナンス空間がないため調整作業はさらに困難であった。場合によっては、この調整を行うためには装置を解体し、ステージを装置外部に取り出す必要があった。
【0006】
特に、リニアモータで6軸が直接位置決め制御される微動ステージの場合においては、上述した振動遮断特性を向上させる目的から、非接触に自重補償を行う事が望ましい。そのため、多くの場合、磁気反発力を利用した自重補償手段が用いられている。しかし、永久磁石の磁気特性はばらつきが大きく、経年変化も無視できない。さらに、浮上力の調整方法としては、着磁強度調整、磁石寸法調整、ギャップ寸法調整程度しかなく、いずれも簡便な調整は困難であるため、上述の問題は深刻であった。
【0007】
また、例えば自重補償手段としてばねなどの弾性体や永久磁石等の磁力を用いた場合でも、同様に上記の問題点は避けられないものであった。
【0008】
さらに、自重補償手段として、空気圧シリンダーを用いた場合、装置外部から圧力調整を行う事で、上述した調整の困難さの一部は解決できるが、本質的に調整の敏感度が高い問題は避けられず、調整に用いるレギュレータの精度が、必要とされる調整の敏感度を満足しない事が多かった。また、空気圧シリンダーでは、これを介して粗動ステージの振動が微動ステージに伝わりやすいため、上述したリニアモータで6軸が直接位置決め制御される微動ステージの場合には適さないものだった。
【0009】
【課題を解決するための手段】
上記問題点を解決するため、本発明のステージ装置は、保持面を有する微動ステージと、前記微動ステージの自重および姿勢またはそのうちの一方を補償する1個又は少なくとも3個の自重補償手段と、前記微動ステージを鉛直方向に駆動する少なくとも3個のアクチュエータと、前記微動ステージの重量及び重心またはそのうちの一方を調整する少なくとも3個所に配置された重量調整手段とを有し、前記自重補償手段の浮上力を前記微動ステージの自重及び姿勢またはそのうちの一方を補償する為に必要な浮上力におおむね一致させ、次に前記微動ステージの重量及び重心またはそのうちの一方を、前記自重補償手段の調整された浮上力に一致させるよう前記重量調整手段を調整するようにしたものである。
【0010】
【発明の実施の形態】
(実施例)
図1から図4は、本発明の第一の実施例を示す図である。
【0011】
図1は、半導体露光装置において、リニアモータで6軸(6自由度)が直接位置決め制御される微動ステージを搭載したステージ装置の詳細を示す。
【0012】
このステージ装置は、ベース定盤1上にYヨーガイド2が固定され、Yヨーガイド2の側面とベース定盤1の上面でガイドされるYステージ3が、ベース定盤1の上にY方向に不図示のエアスライドにより、滑動自在に支持されている。Yステージ3は、主に2本のXヨーガイド4a4bと、その前端部材5及び奥端部材6の四つの部材から構成され、奥端部材6は、その側面及び下面に設けた不図示のエアパッドを介してYヨーガイド2の側面及びベース定盤1の上面と対面し、前端部材5は、その側面に設けた不図示のエアパッドを介してベース定盤1の上面と対面している。この結果、Yステージ3全体としては、前述のように、Yヨーガイド2の側面とベース定盤1の上面でY方向に滑動自在に支持されることになる。
【0013】
一方、Yステージ3の構成部品である2本のXヨーガイド4の側面とベース定盤1の上面とでガイドされるXステージ7は、X軸まわりにYステージ3の部分を囲むように設けられ、不図示のエアスライドにより、X方向に滑動自在に支持されている。Xステージ7は、主に2枚のXステージ側板8と、上板9及び下板10の四つの部材から構成され、下板10は、その下面に設けた不図示のエアパッドを介してベース定盤1の上面と対面し、2枚のXステージ側板8は、その側面に設けた不図示のエアパッドを介してYステージ3の構成部材である2本のXヨーガイド4a4bの側面と対面している。上板9の下面とXヨーガイド4a4bの上面、及び下板10の上面とXヨーガイド4a4bの下面は、非接触になっている。この結果、Xステージ7全体としては、前述のように、2本のXヨーガイド4の側面とベース定盤1の上面でX方向に滑動自在に支持されることになる。
【0014】
駆動機構は、X駆動用として1本、Y駆動用として2本の多相コイル切り替え方式のリニアモータが用いられている。
【0015】
YリニアモータY1とY2は、それぞれYリニアモータ可動子Y1a、Y2aとYリニアモータ固定子Y1b、Y2bから構成され、Yリニアモータ可動子Y1a、Y2aには可動子磁石が配置され、同じくYリニアモータ固定子Y1bおよびY2bには複数個のコイルが配置されている。そしてこのYリニアモータ可動子Y1a、Y2aの位置に応じて、Yリニアモータ固定子Y1b、Y2bの複数のコイルのうちの所定のコイルに選択的に電流を流す事によって、推力が発生する。また13は前側取り付け板、14は奥側取り付け板であり、それぞれ前端部材5及び奥端部材6に締結され、YリニアモータY1、Y2が発生させた推力をYステージ3に伝達する。XリニアモータX1は、図示しないXリニアモータ可動子X1aとXリニアモータ固定子X1bとからなる。図示しないXリニアモータ可動子X1aは、Xステージ7の上板9及び下板10に固定され、固定子磁石を設けている。Xリニアモータ可動子X1bは2本のXヨーガイド4a4bに固定され、複数個のコイルが配置されている。そしてこのXリニアモータ可動子X1aの位置、すなわちXステージ7の位置に応じて、Xリニアモータ固定子X1bの複数のコイルのうちの所定のコイルに選択的に電流を流す事によって、推力が発生する。
【0016】
図2は微動ステージの詳細を示す分解斜視図である。
【0017】
微動ステージは、Xステージ7の上板9の上にある中間板12の上に構成され、位置決めの対象物であるウエハをXYθ方向及びZチルト方向に位置決めするものである。中間板12は、微動ステージを単体で交換する場合に容易にするために設けられているが、中間板12を設けず直接上板9の上に微動ステージを構成してもかまわない。
【0018】
微動ステージは、三つのZ微動リニアモータZLM(ZLMaが可動子、ZLMbが固定子)と、二つずつ設けられたX微動リニアモータXLM(XLMaが可動子、XLMbが固定子)及びY微動リニアモータYLM(YLMaが可動子、YLMbが固定子)で天板11をXYθ方向及びZチルト方向に駆動して位置決めするようになっている。
【0019】
ウエハ天板11の上面にはXバーミラー15a及びYバーミラー15bが設けられ、ウエハ天板11の6軸方向の位置を非図示のレーザ干渉計で精密に計測できるようになっている。
【0020】
第一の実施例における自重補償手段は、反発可動子16と反発固定子17とから構成される。
【0021】
図3は第一の実施例における自重補償手段の詳細を示す斜視図である。
【0022】
反発可動子16は反発可動磁石16aと反発可動磁石ホルダ16bとからなる。反発可動磁石16aは、板状の単極永久磁石であって、板厚方向に着磁されている。
【0023】
反発固定子17は、前側ヨーク17a、後側ヨーク17b、2個の横ヨーク17c、2枚の反発固定磁石17d、及び2個のギャップ調整スペーサー17eからなる。
【0024】
前側ヨーク17aと後側ヨーク17bには、ギャップ調整スペーサー17eを介して、1枚ずつ反発固定磁石17dが接着されている。これらの反発固定磁石17dも板状の単極永久磁石であって、板厚方向、即ちこの図では、Y軸に平行な小矢印で示す方向に着磁されている。ただし、2枚とも極の方向は反発可動磁石16aと逆になっている。前側ヨーク17a、後側ヨーク17b、及び横ヨーク17cは、反発固定磁石17dの磁束を循環させるためのものであって、鉄等の軟磁性体が用いられる。上記ギャップ調整スペーサーも同様に軟磁性材料が用いられる。図中、前側ヨーク17a側の反発固定磁石17dの奥側から出た磁束は、後側ヨーク17bの表面についている反発固定磁石17dの手前側に入り、その反発固定磁石17cの奥側から出た磁束は、後側ヨーク17bに入り、左右(この場合X軸のプラス方向とマイナス方向)に分かれて2枚の横ヨーク17cに入り、2枚の横ヨーク17c中をY軸のプラス方向に流れて前側ヨーク17aに入り、前側ヨーク17a中でヨーク中央に向かうように流れて前側ヨーク17a側の反発固定磁石17dに達する。つまり、この自重補償手段は、自重補償方向を法線とする面内で循環するような磁路を形成している。このような磁路を形成して反発固定子17d単体で存在するときの磁束を増やすようにすることで、ヨーク部材を非磁性で構成した場合に比べて反発可動磁石16aが対面したときの反発力を増やすことが出来る。
【0025】
2枚の反発固定磁石17d間の距離は反発可動磁石16aの板厚より大きく設定されていて、反発可動磁石16aが2枚の反発固定磁石17dの間に、非接触で挿入可能になっている。また、反発可動磁石16aは、2枚の反発固定磁石17dの丁度中央の位置に挿入されるように設定されている。この構成において、反発可動子16が反発固定子17に挿入されると、両者は同じ極同士が対面するので、反発固定磁石17と反発可動磁石16の間に、Z上向きの反発力が働く。
【0026】
図3は、第一の実施例で用いられる自重補償要手段の単体調整方法を示す図である。図中、図2と同一の構成要素は同一の番号としており、説明は省略する。
【0027】
一対の直動ガイド22は、一対のガイド軸21とそれぞれ勘合し、反発可動子16の移動をz軸のみに規制する。工具ベース19は、全体を保持するベースであり、可動プレート20は直動ガイド22と締結されz軸方向のみに移動可能であり、この可動プレート20に反発可動子ホルダー16bが固定されている。ダミーウェイト23は可動プレート20の上に搭載され自重補償要素の発生する浮上力と等しい荷重を与える。ギャップ調整スペーサ17eは、自重補償手段の浮上力を調整するものであり、すなわち反発固定磁石間のギャップを調整し、狭ければ大きな浮上力を、広ければ小さな浮上力を得る事ができる。この構成により、非図示の高さ測定手段によって高さを測りつつ、所定の荷重を加えた状態での浮上力を調整できる。ただし、この調整方法では、微動ステージの重量ばらつきや、重心位置のばらつきによる姿勢ばらつきは調整できない。また、スペーサの厚さ研磨という工程となるので、ひとたび調整を終えて微動ステージに組み込んだ後は、再調整は困難になる。よって、この調整は粗調整として位置づけられるべき物である。
【0028】
そこで、図2に示されるバランサーウェイト18a,18b,18c,18d(18dのみ図示せず)が必要になる。バランサーウェイトは複数厚さの板材からなり、厚さの種類及び枚数を選択する事で、重量を調整する事ができる。すなわち、図4で示す粗調整が完了した反発固定子17および反発可動子16を微動ステージに組み込み、微動ステージの高さ及び姿勢を非図示のレーザー干渉計で測定しつつ、バランサーウェイト18a,18b,18c,18dの重量をそれぞれ調整する。これは最終形態の調整になり、かつステージ装置が露光装置内に搭載された後でも調整手切る事から、微調整として位置づけられるべき物である。またこの時、ステージ装置をサーボON状態にし、所定の位置及び姿勢に微動ステージを静止させ、その時にz微動リニアモータZLMa,ZLMbに必要な電流を測定することができ、この電流がほぼゼロになるようにバランサーウェイトの重量をそれぞれ調整する事もできる。
【0029】
以上述べたように、反発固定子17を個別に調整する粗調整と、ステージ組み込み状態で行う微調整の二段階で行う本発明の調整方法によれば、微動ステージの重量ばらつきや傾きのばらつきを容易に調整できるばかりではなく、装置運用状態において経年変化が生じた場合でも、再調整が容易にかつ正確に行える。
【0030】
また、本実施例では、自重補償手段として、同じ極を対面配置して、対面方向と直角方向の反発力を浮上力に用いた反発磁石を用いた例について述べたが、より一般的な、対面方向の反発力を浮上力に用いた反発磁石を用いても、その構成と効果は同一である。
【0031】
(他の実施例1)
図5は本発明の第二の実施例を示す図である。
【0032】
第一の実施例と異なる点は、反発可動子16及び反発固定子17を中央に一組だけ配置するのではなく、周辺三個所に三対の反発固定子24a,24b,24c及び反発可動子25a,25b,25cを配置したものである。
【0033】
これにより、第一の実施例では微動ステージの傾きの調整が、反発固定子の浮上力調整によっては出来なかったのに対し、本第二の実施例では可能となる点である。しかし、反面、自重補償手段を3個にしたため、これらの相互差を調整する必要も生じている。しかしながら、これも本発明によるバランサーウェイトによる微調整によって、容易にかつ正確に調整できるものである。
【0034】
また、本実施例ではにおいても、自重補償手段として、同じ極を対面配置して、対面方向と直角方向の反発力を浮上力に用いた反発磁石を用いた例について述べたが、より一般的な、対面方向の反発力を浮上力に用いた反発磁石を用いても、その構成と効果は同一である。
【0035】
(他の実施例2)
図6は本発明の第三の実施例を示す図である。
【0036】
第三の実施例は、自重補償要素としてコイルばね26a,26b,26cを配置した物である。この場合も、調整の敏感度が高いため、正確な調整は困難であるとともに、再調整や、装置内における調整は困難であり、本発明のバランサーウェイト18a,18b,18c,18dによる微調整手段は不可欠である。
【0037】
本実施例では、三個の自重補償要素として説明してきたが、第一の実施例と同様に中央に一個だけコイルバネを配置した場合も、同様の効果が得られる。
【0038】
また、本実施例は自重補償要素としてコイルばねを用いた例について説明してきたが、弾性体として板ばねや他の弾性体を用いても、その構成と効果はまったく同一である。
【0039】
(他の実施例3)
図7は本発明の第四の実施例を示す図である。
【0040】
第四の実施例は、自重補償要素としてエアーシリンダー27a,27b,27cを用いた物である。エアーシリンダーを用いた場合、それによる浮上力は、ステージ装置外部からの供給圧力によって調整できる。すなわち、第一から第三の実施例で述べたような、ステージ装置組み込み状態や露光装置搭載状態であっても、比較的容易に調整できる。しかしながら、浮上力の調整は今まで述べてきたように敏感度が高い調整であるため、高精度のレギュレーターが必要であったり、経年変化の極めて小さいレギュレーターが必要だった。その点、本発明のバランサーウェイト18a,18b,18c,18dを設ける事で、空気圧力による浮上力調整は、さほど正確さは要求されないため、空気圧調整手段のコストダウンが実現できる。
【0041】
【発明の効果】
本発明によれば、保持面を有する微動ステージと、前記微動ステージの自重および姿勢またはそのうちの一方を補償する1個又は少なくとも3個の自重補償手段と、前記微動ステージを鉛直方向に駆動する少なくとも3個のアクチュエータと、前記微動ステージの重量及び重心またはそのうちの一方を調整する少なくとも3個所に配置された重量調整手段とを有し、前記自重補償手段の浮上力を前記微動ステージの自重及び姿勢またはそのうちの一方を補償する為に必要な浮上力におおむね一致させ、次に前記微動ステージの重量及び重心またはそのうちの一方を、前記自重補償手段の調整された浮上力に一致させるよう前記重量調整手段を調整するようにしたため、調整が容易かつ正確に実施できるようになる。また、重量調整手段を装置内で容易にアクセスできる位置に配置する事により、装置搭載状態でも微調整が容易にできるようになる。同様に、自重補償手段に経年変化を生じた場合でも容易に何度でも再調整ができるようになる。また制御状態を維持しながら調整ができるので、正確な調整が可能となる。
【図面の簡単な説明】
【図1】本発明における第一の実施例の全体像。
【図2】本発明における第一の実施例の詳細。
【図3】本発明の第一の実施例における自重補償機構。
【図4】本発明の第一の実施例における粗調整方法。
【図5】本発明の第二の実施例。
【図6】本発明の第三の実施例。
【図7】本発明の第四の実施例。
【図8】従来例。
【符号の説明】
1 ベース定盤
2 Yヨーガイド
3 Yステージ
4a4b Xヨーガイド
5 前端部材
6 奥端部材
7 Xステージ
8 Xステージ側板
9 上板
10 下板
11 ウエハ天板
12 中間板
13 前側取り付け板
14 奥側取り付け板
15a Xバーミラー
15b Yバーミラー
16 反発可動子
17 反発固定子
18a,18b,18c,18d バランサーウェイト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a stage device having a supporting device used as a fine moving stage for fine positioning of a wafer substrate or the like in a semiconductor exposure apparatus, particularly a supporting device for a fine moving stage in which six axes are directly positioned and controlled by a linear motor. Stage device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a precision positioning mechanism for a substrate such as a wafer in a semiconductor exposure apparatus, a stage apparatus including a fine movement stage having a fine linear movement function and a fine rotation function and a coarse movement stage having a large stroke movement function in the xy directions is generally used. Well-known. Such a stage device performs a fine positioning operation of a substrate to be mounted by a fine movement actuator constituted by a fine movement stage while moving a large stroke in the xy direction by a coarse movement actuator constituted by a coarse movement stage. Further, in general, a coarse motor and a fine actuator are driven in a non-contact manner so as to perform high-speed and high-precision movement, and therefore a linear motor using Lorentz force is often used.
[0003]
However, the fine movement stage in such a stage device has the following problems. In other words, the weight of the fine movement stage also increases due to the increase in the size of the substrate, and in order to support the fine movement stage with the thrust of the linear motor, it is necessary to constantly supply an electric current to the actuator. Or a measurement error of a laser interferometer, an optical encoder, or the like, which is often used for measurement, and eventually deteriorates final positioning accuracy. In order to solve such a problem, a method of supporting the weight of the fine movement stage by a spring or a magnet, that is, a method of compensating its own weight is known as disclosed in Japanese Patent Application Laid-Open No. 2001-358058. FIG. 8 schematically shows a configuration of self-weight compensation of the fine movement stage shown in this conventional example. In the figure, 101 is a fine movement stage, 102 is a coarse movement stage, 103a to 103c are coil springs as self-weight compensating means, and 104a to 104c are fine movement actuators. The fine movement stage 101 is positioned with respect to the coarse movement stage 102 such that the height and inclination thereof are at predetermined coordinates by the thrust generated by the fine movement actuators 104a to 104c. However, if the weight of the fine movement stage 101 is supported using only the thrust of the fine movement actuators 104a to 104c so as to maintain the predetermined height and inclination, current is always supplied to the fine movement actuators 104a to 104c, so that the constant Generates heat. Since this heat adversely affects the accuracy of the stage, it is necessary to minimize the heat. Therefore, coil springs 103a to 103c, which are self-weight compensating means, are configured to float the fine movement stage 101 to a certain height. That is, the coil springs 103a to 103c perform steady weight support, and the fine movement actuators 104a to 104c perform drive for fine positioning and correction of posture fluctuation during acceleration / deceleration due to coarse movement actuator operation. Thus, the amount of heat generated by the fine movement actuator 104 can be minimized. However, even if the levitation force of the coil springs 103a to 103c is larger or smaller than the fine movement stage weight, the difference leads to heat generation of the fine movement actuators 104a to 104c, so that the levitation force needs to be adjusted accurately. is there.
[0004]
Further, even when the self-weight compensating means uses a repulsive force of a magnet or a driving force of an air cylinder instead of a coil spring, the configuration and function are exactly the same.
[0005]
[Problems to be solved by the invention]
However, in general, as the self-weight compensating means, the weight of the fine movement stage to be compensated is naturally independent of the flying position and is constant, so that the floating force of the self-weight compensating means minimizes the dependency of the floating position as much as possible, and Regardless, it is desirable to keep it almost constant. Also, in order to make it difficult to transmit the vibration of the coarse movement stage to the fine movement stage as much as possible, that is, to improve the vibration isolation characteristics, a constant levitation force is always generated regardless of the relative displacement between the coarse movement stage and the fine movement stage. desirable. This means that when an elastic body such as a spring is used as the self-weight compensating means, its spring constant must be as small as possible. In other words, a slight change in the levitation force significantly changes the levitation position of the fine movement stage. Therefore, in the above-described conventional example, the adjustment is difficult because of high sensitivity. Even if the self-weight compensator is designed so that it can be easily adjusted using some jigs and tools, it must be installed in the fine movement stage in order to absorb variations in the weight and center of gravity of the fine movement stage. It had to be done and again the adjustment was difficult. Furthermore, when the self-weight compensating means is composed of a plurality of three or more, it is necessary to adjust the levitation force and then to adjust the mutual difference thereof, and it is necessary to perform difficult adjustment at least twice. In addition, even if a slight aging occurs, the flying position changes greatly, so it is necessary to perform adjustment periodically during operation of the equipment.However, since there is not enough maintenance space inside the equipment, adjustment work is required. It was even more difficult. In some cases, in order to perform this adjustment, it was necessary to disassemble the apparatus and take the stage out of the apparatus.
[0006]
In particular, in the case of a fine movement stage in which six axes are directly positioned and controlled by a linear motor, it is desirable to perform non-contact weight compensation in a non-contact manner in order to improve the above-described vibration isolation characteristics. Therefore, in many cases, self-weight compensation means using magnetic repulsion is used. However, the magnetic properties of permanent magnets vary widely, and aging cannot be ignored. Further, the only method for adjusting the levitation force is the adjustment of the magnetizing strength, the adjustment of the magnet size, and the adjustment of the gap size, and it is difficult to easily adjust them all. Therefore, the above problem is serious.
[0007]
Also, for example, even when an elastic body such as a spring or a magnetic force such as a permanent magnet is used as the self-weight compensating means, the above-described problem cannot be avoided.
[0008]
Furthermore, when a pneumatic cylinder is used as the self-weight compensating means, by adjusting the pressure from the outside of the device, it is possible to solve some of the above-mentioned difficulties of the adjustment, but to avoid the problem that the sensitivity of the adjustment is inherently high. In many cases, the accuracy of the regulator used for the adjustment does not satisfy the required sensitivity of the adjustment. Further, in the case of the pneumatic cylinder, the vibration of the coarse movement stage is easily transmitted to the fine movement stage via the pneumatic cylinder. Therefore, it is not suitable for the fine movement stage in which six axes are directly positioned and controlled by the above-described linear motor.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a stage device of the present invention includes a fine moving stage having a holding surface, one or at least three own weight compensating means for compensating the weight and / or posture of the fine moving stage, and At least three actuators for driving the fine movement stage in the vertical direction, and weight adjusting means for adjusting the weight and / or the center of gravity of the fine movement stage, and at least three of the actuators are arranged at at least three positions. The force was approximately matched to the levitation force required to compensate for the weight and / or attitude of the fine movement stage, and then the weight and / or center of gravity of the fine movement stage was adjusted by the weight compensation means. The weight adjusting means is adjusted to match the levitation force.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example)
1 to 4 show a first embodiment of the present invention.
[0011]
FIG. 1 shows details of a stage apparatus in which a fine movement stage in which six axes (six degrees of freedom) are directly positioned and controlled by a linear motor is mounted in a semiconductor exposure apparatus.
[0012]
In this stage device, a Y yaw guide 2 is fixed on a base platen 1, and a Y stage 3 guided by a side surface of the Y yaw guide 2 and an upper surface of the base platen 1 is not mounted on the base platen 1 in the Y direction. It is slidably supported by the illustrated air slide. The Y stage 3 mainly includes two X yaw guides 4a and 4b, and four members including a front end member 5 and a rear end member 6, and the rear end member 6 includes an air pad (not shown) provided on a side surface and a lower surface thereof. The front end member 5 faces the upper surface of the base surface plate 1 via an air pad (not shown) provided on the side surface of the Y yaw guide 2 and the upper surface of the base surface plate 1. As a result, the entire Y stage 3 is slidably supported in the Y direction by the side surface of the Y yaw guide 2 and the upper surface of the base platen 1 as described above.
[0013]
On the other hand, the X stage 7 guided by the side surfaces of the two X yaw guides 4 that are components of the Y stage 3 and the upper surface of the base platen 1 is provided so as to surround the Y stage 3 around the X axis. , Is slidably supported in the X direction by an air slide (not shown). The X stage 7 is mainly composed of two X stage side plates 8 and four members of an upper plate 9 and a lower plate 10, and the lower plate 10 is fixed to a base via an air pad (not shown) provided on its lower surface. The two X stage side plates 8 face the upper surface of the board 1 and face the side surfaces of two X yaw guides 4a4b, which are constituent members of the Y stage 3, via air pads (not shown) provided on the side surfaces. . The lower surface of the upper plate 9 and the upper surface of the X yaw guide 4a4b, and the upper surface of the lower plate 10 and the lower surface of the X yaw guide 4a4b are in non-contact. As a result, the entire X stage 7 is slidably supported in the X direction by the side surfaces of the two X yaw guides 4 and the upper surface of the base platen 1 as described above.
[0014]
As the drive mechanism, one linear motor of a multi-phase coil switching type is used for X drive and two for Y drive.
[0015]
The Y linear motors Y1 and Y2 are respectively composed of Y linear motor movers Y1a and Y2a and Y linear motor stators Y1b and Y2b, and mover magnets are arranged on the Y linear motor movers Y1a and Y2a. A plurality of coils are arranged on the motor stators Y1b and Y2b. Then, a thrust is generated by selectively supplying a current to a predetermined coil among a plurality of coils of the Y linear motor stators Y1b and Y2b according to the positions of the Y linear motor movers Y1a and Y2a. A front mounting plate 13 and a rear mounting plate 14 are fastened to the front end member 5 and the rear end member 6, respectively, and transmit the thrust generated by the Y linear motors Y1 and Y2 to the Y stage 3. The X linear motor X1 includes an X linear motor mover X1a and an X linear motor stator X1b (not shown). The X linear motor mover X1a (not shown) is fixed to the upper plate 9 and the lower plate 10 of the X stage 7, and has a stator magnet. The X linear motor mover X1b is fixed to two X yaw guides 4a4b, and a plurality of coils are arranged. Thrust is generated by selectively flowing current to a predetermined coil among a plurality of coils of the X linear motor stator X1b in accordance with the position of the X linear motor movable element X1a, that is, the position of the X stage 7. I do.
[0016]
FIG. 2 is an exploded perspective view showing details of the fine movement stage.
[0017]
The fine movement stage is formed on the intermediate plate 12 on the upper plate 9 of the X stage 7, and positions the wafer to be positioned in the XYθ direction and the Z tilt direction. The intermediate plate 12 is provided for facilitating replacement of the fine movement stage by itself. However, the fine movement stage may be configured directly on the upper plate 9 without providing the intermediate plate 12.
[0018]
The fine movement stage includes three Z fine movement linear motors ZLM (ZLMa is a mover and ZLMb is a stator), two X fine movement linear motors XLM (XLMa is a mover, XLMb is a stator) and a Y fine movement linear motor. The top plate 11 is driven by a motor YLM (YLMa is a movable element, YLMb is a fixed element) in the XYθ direction and the Z tilt direction to be positioned.
[0019]
An X-bar mirror 15a and a Y-bar mirror 15b are provided on the upper surface of the wafer top plate 11, so that the position in the 6-axis direction of the wafer top plate 11 can be accurately measured by a laser interferometer (not shown).
[0020]
The self-weight compensating means in the first embodiment includes a repulsive mover 16 and a repulsive stator 17.
[0021]
FIG. 3 is a perspective view showing details of the self-weight compensating means in the first embodiment.
[0022]
The repulsive movable element 16 includes a repulsive movable magnet 16a and a repulsive movable magnet holder 16b. The repulsive movable magnet 16a is a plate-shaped single-pole permanent magnet, and is magnetized in the plate thickness direction.
[0023]
The repulsion stator 17 includes a front yoke 17a, a rear yoke 17b, two horizontal yokes 17c, two repulsion fixed magnets 17d, and two gap adjusting spacers 17e.
[0024]
Repulsive fixed magnets 17d are bonded one by one to the front yoke 17a and the rear yoke 17b via a gap adjusting spacer 17e. These repulsive fixed magnets 17d are also plate-shaped single-pole permanent magnets, and are magnetized in the plate thickness direction, that is, in the direction shown by the small arrow parallel to the Y axis in this drawing. However, the direction of the poles of both sheets is opposite to that of the repulsive movable magnet 16a. The front yoke 17a, the rear yoke 17b, and the horizontal yoke 17c are for circulating the magnetic flux of the repulsion fixed magnet 17d, and are made of a soft magnetic material such as iron. Similarly, a soft magnetic material is used for the gap adjusting spacer. In the figure, the magnetic flux coming from the back side of the repulsion fixed magnet 17d on the front yoke 17a side enters the front side of the repulsion fixed magnet 17d on the surface of the rear yoke 17b and exits from the back side of the repulsion fixed magnet 17c. The magnetic flux enters the rear yoke 17b, splits right and left (in this case, the positive direction and the negative direction of the X axis), enters the two horizontal yokes 17c, and flows through the two horizontal yokes 17c in the positive direction of the Y axis. And enters the front yoke 17a, flows toward the center of the yoke in the front yoke 17a, and reaches the repulsive fixed magnet 17d on the front yoke 17a side. In other words, the self-weight compensating means forms a magnetic path that circulates in a plane whose normal line is the self-weight compensation direction. By forming such a magnetic path to increase the magnetic flux when the repulsion stator 17d is present alone, the repulsion when the repulsive movable magnet 16a faces compared to the case where the yoke member is made of non-magnetic material. You can increase your power.
[0025]
The distance between the two repulsive fixed magnets 17d is set to be larger than the thickness of the repulsive movable magnet 16a, so that the repulsive movable magnet 16a can be inserted between the two repulsive fixed magnets 17d in a non-contact manner. . Further, the repulsive movable magnet 16a is set so as to be inserted at a position exactly at the center of the two repulsive fixed magnets 17d. In this configuration, when the repulsion movable element 16 is inserted into the repulsion stator 17, the same poles face each other, so that a Z upward repulsive force acts between the repulsion fixed magnet 17 and the repulsion movable magnet 16.
[0026]
FIG. 3 is a diagram showing a method of adjusting the self-weight compensation required means used alone in the first embodiment. In the figure, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
[0027]
The pair of linear guides 22 respectively engage with the pair of guide shafts 21 to restrict the movement of the resilient mover 16 to only the z-axis. The tool base 19 is a base that holds the entirety, and the movable plate 20 is fastened to the linear guide 22 and can move only in the z-axis direction. The resilient mover holder 16b is fixed to the movable plate 20. The dummy weight 23 is mounted on the movable plate 20 and applies a load equal to the floating force generated by the self-weight compensation element. The gap adjusting spacer 17e adjusts the floating force of the self-weight compensating means. That is, the gap adjusting spacer 17e adjusts the gap between the repulsive fixed magnets, and can obtain a large floating force if it is narrow and a small floating force if it is wide. With this configuration, it is possible to adjust the levitation force in a state where a predetermined load is applied, while measuring the height by a height measuring unit (not shown). However, with this adjustment method, it is not possible to adjust the variation in weight of the fine movement stage and the variation in posture due to the variation in the position of the center of gravity. In addition, since the process is a process of polishing the thickness of the spacer, it is difficult to readjust after the adjustment is completed and the module is mounted on the fine movement stage. Therefore, this adjustment should be positioned as a coarse adjustment.
[0028]
Therefore, the balancer weights 18a, 18b, 18c, 18d (only 18d is not shown) shown in FIG. 2 are required. The balancer weight is made of a plate material having a plurality of thicknesses, and the weight can be adjusted by selecting the type and number of the thicknesses. That is, the repulsion stator 17 and the repulsion movable element 16 for which the coarse adjustment shown in FIG. 4 is completed are incorporated into the fine movement stage, and the height and the posture of the fine movement stage are measured by a laser interferometer (not shown), and the balancer weights 18a, 18b , 18c and 18d are adjusted respectively. This is an adjustment in the final form and should be positioned as a fine adjustment because the adjustment is cut off even after the stage apparatus is mounted in the exposure apparatus. Also, at this time, the stage device is set to the servo ON state, and the fine movement stage is stopped at a predetermined position and posture. At that time, the current required for the z fine movement linear motors ZLMa and ZLMb can be measured. It is also possible to adjust the weight of the balancer weight so that it becomes as possible.
[0029]
As described above, according to the adjustment method of the present invention in which the fine adjustment is performed in two stages, that is, the coarse adjustment for individually adjusting the repulsion stator 17 and the fine adjustment performed in the stage mounted state, the variation in the weight and inclination of the fine movement stage is reduced. Not only can it be easily adjusted, but even if aging occurs in the operation state of the device, readjustment can be performed easily and accurately.
[0030]
Further, in the present embodiment, as the self-weight compensating means, the same poles are arranged face-to-face, and an example is described in which a repulsion magnet using a repulsion force in a direction perpendicular to the facing direction as a levitation force is used. Even if a repulsion magnet using a repulsion force in the facing direction as a levitation force is used, the configuration and effect are the same.
[0031]
(Other Example 1)
FIG. 5 is a diagram showing a second embodiment of the present invention.
[0032]
The difference from the first embodiment is that a pair of repulsion stators 24a, 24b, 24c and a repulsion movable element 16 are not provided at the center of the repulsion movable element 16 and the repulsion stator 17 at three places around the center. 25a, 25b and 25c are arranged.
[0033]
Thus, in the first embodiment, the inclination of the fine movement stage cannot be adjusted by adjusting the levitation force of the repulsive stator, whereas in the second embodiment, the inclination can be adjusted. However, on the other hand, since three weight compensation means are used, it is necessary to adjust the mutual difference. However, this can be easily and accurately adjusted by fine adjustment using the balancer weight according to the present invention.
[0034]
Further, in the present embodiment, as the self-weight compensating means, an example is described in which the same poles are arranged facing each other, and a repulsive magnet using a repulsive force in a direction perpendicular to the facing direction as a levitation force is used. Even if a repulsion magnet using the repulsion force in the facing direction as a levitation force is used, the configuration and effect are the same.
[0035]
(Other Example 2)
FIG. 6 is a diagram showing a third embodiment of the present invention.
[0036]
In the third embodiment, coil springs 26a, 26b, 26c are arranged as self-weight compensating elements. Also in this case, since the sensitivity of the adjustment is high, it is difficult to perform accurate adjustment, and it is difficult to perform readjustment or adjustment in the apparatus. Therefore, the fine adjustment means by the balancer weights 18a, 18b, 18c, and 18d of the present invention. Is essential.
[0037]
In the present embodiment, three self-weight compensating elements have been described. However, similar effects can be obtained when only one coil spring is disposed at the center as in the first embodiment.
[0038]
Although the present embodiment has been described with respect to an example in which a coil spring is used as a self-weight compensating element, the configuration and effect are exactly the same even when a leaf spring or another elastic body is used as an elastic body.
[0039]
(Other Embodiment 3)
FIG. 7 is a diagram showing a fourth embodiment of the present invention.
[0040]
In the fourth embodiment, the air cylinders 27a, 27b, 27c are used as the weight compensation elements. When an air cylinder is used, the levitation force caused by the air cylinder can be adjusted by the supply pressure from outside the stage device. That is, adjustment can be made relatively easily even in the stage device built-in state or the exposure device mounted state as described in the first to third embodiments. However, since the adjustment of the levitation force is an adjustment with high sensitivity as described above, a regulator with high precision or a regulator with extremely small aging is required. In this regard, by providing the balancer weights 18a, 18b, 18c, and 18d of the present invention, the levitation force adjustment by air pressure is not required to be so precise, so that the cost of the air pressure adjustment means can be reduced.
[0041]
【The invention's effect】
According to the present invention, a fine movement stage having a holding surface, one or at least three self-weight compensating means for compensating for the weight and / or posture of the fine movement stage, and at least driving the fine movement stage in the vertical direction And three weighting means for adjusting the weight and / or the center of gravity of the fine movement stage, and at least three weight adjusting means for adjusting one of the weights and the gravity force of the fine movement stage. Alternatively, the levitation force required for compensating one of them is roughly matched, and then the weight adjustment is performed so that the weight and the center of gravity of the fine movement stage or one of them is adjusted to the adjusted levitation force of the self-weight compensation means. Since the means is adjusted, the adjustment can be performed easily and accurately. In addition, by arranging the weight adjusting means at a position easily accessible in the apparatus, fine adjustment can be easily performed even when the apparatus is mounted. Similarly, even if the self-weight compensating means changes over time, it can be easily readjusted many times. In addition, since the adjustment can be performed while maintaining the control state, accurate adjustment can be performed.
[Brief description of the drawings]
FIG. 1 is an overall view of a first embodiment of the present invention.
FIG. 2 shows details of a first embodiment of the present invention.
FIG. 3 shows a self-weight compensation mechanism according to the first embodiment of the present invention.
FIG. 4 shows a coarse adjustment method according to the first embodiment of the present invention.
FIG. 5 shows a second embodiment of the present invention.
FIG. 6 shows a third embodiment of the present invention.
FIG. 7 shows a fourth embodiment of the present invention.
FIG. 8 shows a conventional example.
[Explanation of symbols]
Reference Signs List 1 Base surface plate 2 Y yaw guide 3 Y stage 4a 4b X yaw guide 5 Front end member 6 Back end member 7 X stage 8 X stage side plate 9 Upper plate 10 Lower plate 11 Wafer top plate 12 Intermediate plate 13 Front mounting plate 14 Back mounting plate 15a X bar mirror 15b Y bar mirror 16 Repulsive mover 17 Repulsive stators 18a, 18b, 18c, 18d Balancer weight

Claims (12)

保持面を有する微動ステージと、前記微動ステージの自重および姿勢またはそのうちの一方を補償する浮上力を発生する自重補償手段と、前記微動ステージを鉛直方向に駆動するアクチュエータと、前記微動ステージの重量及び重心またはそのうちの一方を調整する重量調整手段とを有し、前記微動ステージの重量及び重心またはそのうちの一方を、前記自重補償手段の浮上力に一致させるよう前記重量調整手段を調整することを特徴とするステージ装置。A fine movement stage having a holding surface, a self-weight compensating means for generating a levitation force for compensating the own weight and posture of the fine movement stage, or one of them; an actuator for driving the fine movement stage in a vertical direction; Weight adjusting means for adjusting the center of gravity or one of them, wherein the weight adjusting means is adjusted so that the weight of the fine movement stage and the center of gravity or one of them coincides with the floating force of the self-weight compensating means. And stage equipment. 前記自重補償手段の浮上力を前記微動ステージの自重及び姿勢またはそのうちの一方を補償する為に必要な浮上力におおむね一致させ、次に前記微動ステージの重量及び重心またはそのうちの一方を、前記自重補償手段の上述のように調整された浮上力に一致させるよう前記重量調整手段を調整することを特徴とする請求項1に記載のステージ装置。The levitation force of the self-weight compensating means is substantially matched with the levitation force required to compensate for the self-weight and / or posture of the fine movement stage, and then the weight and / or the center of gravity of the fine movement stage is changed to the self-weight. 2. The stage apparatus according to claim 1, wherein the weight adjusting means is adjusted to match the levitation force of the compensating means adjusted as described above. 前記自重補償手段が、ひとつの浮上力発生手段から構成され、前記微動ステージの平面的な略重心位置に配置された事を特徴とする請求項1又は2に記載のステージ装置。The stage apparatus according to claim 1, wherein the self-weight compensating unit includes one levitation force generating unit, and is arranged at a position of a substantially center of gravity of the fine movement stage in a plane. 前記自重補償手段が、少なくとも3個の浮上力発生手段から構成され、平面的に離れた少なくとも三個所の位置に配置された事を特徴とする請求項1又は2に記載のステージ装置。3. The stage apparatus according to claim 1, wherein the self-weight compensating unit includes at least three levitation force generating units, and is disposed at at least three positions separated in a plane. 前記浮上力発生手段が、同じ極を対面配置した磁石を有し、対面方向の反発力を浮上力に用いた事を特徴とする、請求項3又は4に記載のステージ装置。The stage device according to claim 3, wherein the levitation force generating means includes a magnet having the same pole facing each other, and a repulsion force in a facing direction is used as a levitation force. 前記浮上力発生手段が、同じ極を対面配置した磁石を有し、対面方向と直角方向の反発力を浮上力に用いた事を特徴とする、請求項3又は4に記載のステージ装置。The stage device according to claim 3, wherein the levitation force generating means includes a magnet having the same poles facing each other, and a repulsion force in a direction perpendicular to the facing direction is used as the levitation force. 前記浮上力発生手段が、コイルばねである事を特徴とする、請求項3又は4に記載のステージ装置。The stage device according to claim 3, wherein the levitation force generating means is a coil spring. 前記浮上力発生手段が、板ばねである事を特徴とする、請求項3又は4に記載のステージ装置。The stage device according to claim 3, wherein the floating force generating unit is a leaf spring. 前記浮上力発生手段が、空気圧シリンダーである事を特徴とする、請求項3又は4に記載のステージ装置。The stage device according to claim 3, wherein the levitation generating means is a pneumatic cylinder. 前記アクチュエータが、少なくとも3個のリニアモータから構成され、前記微動ステージを非接触に駆動する事を特徴とする請求項1乃至9のいずれか1項に記載のステージ装置。The stage device according to claim 1, wherein the actuator includes at least three linear motors, and drives the fine movement stage in a non-contact manner. 前記重量調整手段が、微動ステージの少なくとも3個所に配置されたバランサーウェイトから構成される事を特徴とする請求項1乃至10のいずれか1項に記載のステージ装置。The stage apparatus according to any one of claims 1 to 10, wherein the weight adjusting unit includes balancer weights arranged at least at three positions on the fine movement stage. 請求項1乃至11のいずれか1項記載のステージ装置を有する事を特徴とする露光装置。An exposure apparatus comprising the stage device according to claim 1.
JP2003140467A 2003-05-19 2003-05-19 Stage apparatus Withdrawn JP2004342987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140467A JP2004342987A (en) 2003-05-19 2003-05-19 Stage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140467A JP2004342987A (en) 2003-05-19 2003-05-19 Stage apparatus

Publications (1)

Publication Number Publication Date
JP2004342987A true JP2004342987A (en) 2004-12-02

Family

ID=33529188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140467A Withdrawn JP2004342987A (en) 2003-05-19 2003-05-19 Stage apparatus

Country Status (1)

Country Link
JP (1) JP2004342987A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108148A1 (en) * 2007-03-06 2008-09-12 Kabushiki Kaisha Yaskawa Denki Precision positioning apparatus
WO2009057632A1 (en) * 2007-10-29 2009-05-07 Nikon Corporation Apparatus for connecting utility medium supply member, stage apparatus, apparatus for supporting projection optical system, and exposure apparatus
JP2013149996A (en) * 2006-03-30 2013-08-01 Nikon Corp Mobile device, exposure device, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2019214197A1 (en) * 2018-05-09 2019-11-14 哈尔滨工业大学 Cantilever linear motion reference device employing two-layer air suspension

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR101531801B1 (en) * 2006-03-30 2015-06-25 가부시키가이샤 니콘 Mobile device, micro-motion body and exposure device
JP2013149996A (en) * 2006-03-30 2013-08-01 Nikon Corp Mobile device, exposure device, and device manufacturing method
JP5170077B2 (en) * 2007-03-06 2013-03-27 株式会社安川電機 Precision positioning device
WO2008108148A1 (en) * 2007-03-06 2008-09-12 Kabushiki Kaisha Yaskawa Denki Precision positioning apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009057632A1 (en) * 2007-10-29 2009-05-07 Nikon Corporation Apparatus for connecting utility medium supply member, stage apparatus, apparatus for supporting projection optical system, and exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2019214197A1 (en) * 2018-05-09 2019-11-14 哈尔滨工业大学 Cantilever linear motion reference device employing two-layer air suspension
US11143529B2 (en) * 2018-05-09 2021-10-12 Harbin Institute Of Technology Cantilever linear motion reference device employing two-layer air suspension

Similar Documents

Publication Publication Date Title
JP4639517B2 (en) Stage apparatus, lithography system, positioning method, and stage apparatus driving method
US5991005A (en) Stage apparatus and exposure apparatus having the same
USRE40774E1 (en) Positioning device with a vibration-free object table, and lithographic device provided with such a positioning device
US5939852A (en) Stage feeding device
US7656062B2 (en) Split coil linear motor for z force
US20020117109A1 (en) Multiple stage, stage assembly having independent reaction force transfer
EP1341044A2 (en) Positioning device with a reference frame for a measuring system
US20100167556A1 (en) Three degree of movement mover and method for controlling a three degree of movement mover
JP2004342987A (en) Stage apparatus
JP5575802B2 (en) Integrated stage positioning system and method
JP2017083856A (en) Mechanical of operating at least one optical element in optical system
US6639225B2 (en) Six-axis positioning system having a zero-magnetic-field space
JP2000106344A (en) Stage device, aligner, manufacture of the device, and method for driving stage
WO1996038766A1 (en) Positioning device with a force actuator system for compensating centre-of-gravity displacements
JP2003022960A (en) Stage unit and its driving method
US6538348B2 (en) Stage device capable of moving an object to be positioned precisely to a target position
KR20120105355A (en) Vertical actuator drive having gravity compensation
US6597435B2 (en) Reticle stage with reaction force cancellation
US20040233412A1 (en) Multiple stage, stage assembly having independent stage bases
US9435642B2 (en) Position measuring apparatus, pattern transfer apparatus, and method for manufacturing a device
US6593997B1 (en) Stage assembly including a reaction assembly
JP3540239B2 (en) Stage equipment
JP2005297109A (en) Slow motion stage
JP2004334790A (en) Positioning device
KR102278378B1 (en) Motor assembly, lithographic apparatus and device manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801