JP2004338975A - Starting method of hydrogen production apparatus - Google Patents

Starting method of hydrogen production apparatus Download PDF

Info

Publication number
JP2004338975A
JP2004338975A JP2003134766A JP2003134766A JP2004338975A JP 2004338975 A JP2004338975 A JP 2004338975A JP 2003134766 A JP2003134766 A JP 2003134766A JP 2003134766 A JP2003134766 A JP 2003134766A JP 2004338975 A JP2004338975 A JP 2004338975A
Authority
JP
Japan
Prior art keywords
hydrogen
reforming
air
gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003134766A
Other languages
Japanese (ja)
Inventor
Akira Kobuchi
彰 小渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2003134766A priority Critical patent/JP2004338975A/en
Publication of JP2004338975A publication Critical patent/JP2004338975A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a starting method of a hydrogen production apparatus that accelerates the rapid starting and further enhances the high reforming efficiency, and that the downsizing of the apparatus is possible. <P>SOLUTION: The method comprises elevating a temperature of a reforming part 13 by causing an oxidation reaction by supplying a town gas 13A and air to the reforming part 13, then gradually supplying steam while gradually reducing the amount to be supplied of air to the reforming part 13 and finally terminating the supply of air, whereas only steam is supplied to the reforming part 13 and the step is transferred to the steam reforming reaction. Thereby, the rapid starting is accelerated and further the high reforming efficiency is realized as well as the apparatus can be compacted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素製造装置の起動方法、詳しくは改質部において原料炭化水素と空気とを導入して燃焼させることで昇温(部分酸化改質)し、その後、順次、空気を水蒸気に変換してオートサーマル改質に移行し、最終的には空気の導入量をゼロにして水蒸気改質に移行させることで、起動の迅速化および高い改質効率が図れる水素製造装置の起動方法に関する。
【0002】
【従来の技術】
例えば、燃料電池に水素を供給する方法として、メタノールや天然ガスなどの炭化水素系燃料ガスの触媒を用いた改質反応により水素含有ガスを生成する燃料改質装置が開発されている。
水素製造装置の起動時には、改質部の入口温度を400℃以上に昇温する必要がある。そのため、従前の水蒸気改質によれば、例えばメタンを例にとると、750〜800℃の高温下で反応がなされる。その起動時には、各ボンベに充填された窒素などの不活性ガスを使用していた。すなわち、この起動時には窒素ボンベより窒素を系内に流しながら、バーナなどで昇温する。そのため、窒素ボンベが必要であり、コスト高を招くとともに、設置スペースが大きくなるなどの問題があった。また、不活性ガスを切らしている場合には、起動操作を行えず、ボンベの取り替えが面倒であった。そのほか、小型装置(例えば、家庭用や自動車用の燃料電池に使用される水素製造装置)や諸事情などで、窒素ボンベを設置できない場合も考えられ、さらに窒素のインフラが整備されていないなどの問題点もあった。さらに、水蒸気改質は比較的大きな吸熱反応である。そのため、改質部に併設してヒータやバーナを設置する必要があり、起動に長時間を要していた。また、システム全体のエネルギー効率も低下していた。
【0003】
そこで、これを解消する従来技術として、発熱反応を伴う部分酸化改質が知られている。これは、エアコンプレッサにより酸化剤としての空気(N/O)を改質部に供給し、そこで原料炭化水素と空気とを混合し、部分酸化触媒を用いて原料炭化水素を部分的に酸化し、原料炭化水素を改質するものである。
しかしながら、部分酸化改質は発熱反応であり、バーナによる外部からの加熱が少なく起動時間は非常に短くて済むものの、酸化に伴う発熱が大きいため、その制御が難しく、また煤の発生抑制などの課題を有している。また、酸素はエアコンプレッサにより空気として供給されるが、反応に不要な窒素も供給される。このことが、改質部の大型化やコンプレッサの動力の増加に繋がる。しかも、燃料の投入量に対する水素の生成量からもエネルギー効率が悪かった。
【0004】
このような水蒸気改質と部分酸化改質との問題を解消する従来技術として、オートサーマル改質が知られている。オートサーマル改質は、水蒸気改質と部分酸化改質の反応熱の収支をバランスさせたもので、部分酸化反応で放出される熱量を利用し、吸熱反応である水蒸気改質の改質反応を同時に行う方法である。オートサーマル改質は、水蒸気改質に比べて起動時間も短く、初期に改質部の温度を設定温度に昇温すれば、バーナによる改質部の加熱は不要であり、急激な改質反応の増減に対応して外部からの熱供給あるいは冷却を追従させる必要がない。そのため、制御が容易になることから、近年、注目されている。
【0005】
しかしながら、オートサーマル改質によれば、吸熱反応を伴う水蒸気改質に比べれば起動時間は短いものの、発熱反応を伴う部分酸化改質に比べれば起動は迅速とは言えなかった。
また、オートサーマル改質では、部分酸化改質の場合と同じように、水蒸気とともに酸化剤として空気を改質部に導入する。そのため、反応に不要な窒素ガスが多量に改質部に供給されること、また、後段の精製工程から得られるオフガスの有効利用が図れないため、改質効率が低下していた。しかも、改質部やコンプレッサが大型化するという問題があった。
【0006】
【発明が解決しようとする課題】
本発明者は、鋭意研究の結果、起動時に、まず空気と原料炭化水素とを改質部に導入して酸化反応を行い、その後、徐々に空気を水蒸気に変換してオートサーマル改質に移行する。そして、最終的には空気の導入量をゼロとし、完全に水蒸気改質に移行させれば、起動の迅速化が図れ、しかも高い改質効率が図れるとともに、装置のコンパクト化も図れることを知見し、この発明を完成させた。
すなわち、本発明は、このような従来技術を背景になされたもので、起動の迅速化が図れ、しかも高い改質効率が図れるとともに、装置のコンパクト化も図ることができる水素製造装置の起動方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、原料炭化水素の硫黄分を除去する脱硫部と、上記脱硫部で脱硫された原料炭化水素に水蒸気を加えて改質することで水素含有ガスを生成する改質部と、上記水素含有ガス中の一酸化炭素を二酸化炭素および水素に転換するガス変成部と、該ガス変成部でガス変成された水素含有ガスを高純度水素に精製するPSA部とを備えた水素製造装置の起動方法において、上記改質部に原料炭化水素と空気とを供給して酸化反応を発生させることで改質部を昇温し、その後、該改質部への空気の供給量を徐々に低減させながら水蒸気を徐々に供給し、最終的に空気の供給を停止する一方、上記水蒸気だけを改質部に供給して水蒸気改質反応に移行させる水素製造装置の起動方法である。
【0008】
請求項2記載の発明は、上記改質部への原料炭化水素の導入前または導入と同時に、水素を上記改質部に導入し、上記水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法である。
【0009】
請求項3記載の発明は、上記改質部への原料炭化水素の導入前または導入と同時に、空気と水素とを上記脱硫部に導入し、上記水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法である。
【0010】
請求項4記載の発明は、上記改質部への原料炭化水素の導入前または導入と同時に、空気と水素とを上記ガス変成部に導入し、上記水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法である。
【0011】
請求項5記載の発明は、水素含有の可燃性ガスと空気中の酸素とを燃焼反応させ、上記改質部を外方から加熱する改質炉を有し、上記改質部への原料炭化水素の導入前または導入と同時に、水素および/または原料炭化水素を上記改質炉に導入し、上記水素および/または原料炭化水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法である。
【0012】
請求項6記載の発明は、上記水素を、上記PSA部により精製された高純度水素を貯留する蓄圧器または水素バッファータンクから得る請求項1〜請求項5のうち、何れか1項に記載の水素製造装置の起動方法である。
【0013】
【発明の実施の形態】
本発明の実施の形態を、図面に基づいて説明する。
図1は、本発明の一実施の形態に係る水素製造装置の起動方法を示す系統図である。
図1において、符号10は、都市ガス,LPG,灯油,メタノールなどを原料とする水素製造装置である。なお、ここでは、都市ガス13Aを採用している。
以下、この水素製造装置10の各構成部を説明する。符号11は、都市ガス13Aを脱硫部12へ供給する圧縮機である。この脱硫部12は、上流側の水素化触媒層と、下流側の脱硫剤層とに分かれている。脱硫部12では、圧縮機11により供給された都市ガス13Aに、後述するPSA部17で圧力吸着分離され、蓄圧器18に貯留された高純度水素(精製水素)の一部を水添脱硫用水素として添加することにより、都市ガス13A中の硫黄分が脱硫される。
【0014】
水素化触媒としては、ニッケル−モリブデンまたはコバルト−モリブデンなどの酸化物、または硫化物をシリカやアルミナなどの担体に担持させたNiMox触媒またはCoMox触媒などが挙げられる。また、脱硫剤としては、酸化亜鉛やニッケル系収着剤などが単独または適宜担体に担持して用いられる。水素化触媒層では、原料炭化水素中の硫黄分が水素化されて硫化水素が生成される。その反応温度は、300〜400℃であり、高純度水素を用いて脱硫を行うことで、脱硫効果も上がり、改質触媒の寿命も延びることになる。脱硫剤層では、例えば、HS+ZnO=ZnS+HOの反応が起きる。なお、脱硫後の原料炭化水素は、改質部13に供給される。ここでは、原料炭化水素中の硫黄化合物を水添脱硫方法を採用したが、そのほか例えば硫黄化合物を、直接、触媒に吸着させる方法でもよい。この場合の触媒としては、例えばニッケル,亜鉛,銅などの金属やその酸化物、または硫化物、さらにはゼオライトや活性炭などが挙げられる。活性炭としては、ナトリウムなどのアルカリ金属を添着したものなどを使用することができる。
【0015】
改質部13は、脱硫された都市ガス13Aに水または水蒸気を添加し、さらに充填された改質触媒を接触させて水蒸気改質することで、高濃度水素含有ガスを製造する。改質部13の周囲には、改質炉14が外装されている。改質炉14の下部には、改質部13を外方から加熱するバーナ14aが設けられている。改質触媒としては、ルテニウムまたはニッケルなどの元素をアルミナ,シリカなどの担体に担持させたものなどが挙げられる。このうち、ルテニウム系触媒の方が、炭素数の多い灯油などの原料を使用する場合は、炭素析出を抑制できるので好ましい。改質部13では、脱硫された炭化水素の水蒸気改質が行なわれる。ここでの反応を、次に示す。
+mHO→mCO+(m+n/2)H ・・・・・・(1)
CO+3H←→CH+HO ・・・・・(2)
CO+HO←→CO+H ・・・・・(3)
【0016】
また、起動時の改質部13には、図示しないエアコンプレッサを介して、酸化剤として、空気が供給される。このように空気を改質部13に供給し、脱硫された都市ガス13Aと空気とを混合し、触媒を用いて都市ガス13Aを酸化するものである。上記改質触媒は、酸化触媒を兼務する。
都市ガス13Aは、400℃以上の高温運転温度に保たれた改質部13を通過すると、下記(4)に示す燃焼反応が引き起こされる。
CH+2O→CO+2HO ・・・・・(4)
起動時、改質部13はバーナ14aにより加熱昇温される。しかしながら、触媒酸化に伴う発熱により、その運転温度(500〜700℃)を維持できるようになっている。
【0017】
オートサーマル改質は、水蒸気改質と部分酸化改質の反応熱の収支をバランスさせ、都市ガス13Aを空気中の酸素、水蒸気およびオートサーマル改質用の触媒の存在下、一酸化炭素および水素を含む改質ガスに変換する反応をいう。
この反応は、都市ガス13Aの一部を酸化する部分酸化反応と、水蒸気改質反応を含む。上記改質触媒はオートサーマル改質用の触媒を兼務する。酸化反応状態からオートサーマル改質へ移行する温度は400〜700℃、特に500〜600℃が好ましい。400℃未満では、反応が充分に進まないという不都合が生じる。一方、700℃を超えると触媒のシンタリングによる劣化が大きくなるという不都合が生じる。また、酸化反応状態からオートサーマル改質への移行時間は、系内の温度上昇の状況にもよるが、通常、5〜30分間、好ましくは10〜20分間である。5分間未満では、系内の温度が均一にならないという不都合が生じる。一方、30分間を超えると、無駄な待機時間が増加するという不都合が生じる。
【0018】
原料炭化水素の具体例としてはメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、シクロペンタン、シクロヘキサン、ドデカンなどの飽和脂肪族炭化水素、エチレン、プロピレン、ブテンなどの不飽和脂肪族炭化水素などを挙げることができる。また、これらの混合物も好適に使用でき、例として天然ガス、LPG、ナフサ、ガソリン、灯油、軽油など工業的に安価に入手できる材料を挙げることができる。また、ヘテロ原子を含む置換基を有する炭化水素化合物類の具体例としては、メタノール、エタノール、プロパノール、ブタノール、ジメチルエーテル、フェノール、アニソール、アセトアルデヒド、酢酸、アセトアミド、トリエチルアミンなどを挙げることができる。
【0019】
都市ガス13A中の硫黄濃度は、改質触媒を不活性化させる作用があるため、脱硫部12により脱硫し、なるべく低濃度にすることが望ましい。好ましくは1質量ppm以下、より好ましくは0.05質量ppm以下である。
オートサーマル改質時に供給される空気の量は、通常、水蒸気改質の吸熱反応をバランスできる熱量を発生し得る程度の量である。しかしながら、熱のロスや必要に応じて設置される外部加熱との関係において適宜添加量は決定される。その量は、都市ガス13Aに含まれる炭素原子モル数に対する酸素分子モル数の比(酸素/カーボン比)として好ましくは0.05〜1、より好ましくは0.1〜0.75、さらに好ましくは0.2〜0.6である。酸素/カーボン比が0.05未満では発熱が少なく、バーナ14aを使用して外部から多量の熱供給が必要となる。一方、酸素/カーボン比が1を超えると発熱が大きくなり過ぎて熱バランスが取り難くなってしまう。
【0020】
酸素は純粋な酸素でもよいが、他のガスで希釈されている状態のものも好適に使用でき、水蒸気、二酸化炭素、一酸化炭素、アルゴン、窒素などを含んでもよく、例えば入手容易性の点から酸素を含むガスとして空気が好適に使用される。
酸素を都市ガス13Aに添加する方法は制限されない。例えば、反応領域に都市ガス13Aと同時に導入してもよい。また、酸素含有ガスと都市ガス13Aとを反応領域の別々の位置から供給してもよい。さらには何回かに分けて一部ずつ導入してもよい。
【0021】
反応系に導入する水蒸気の量は、都市ガス13Aに含まれる炭素原子モル数に対する水分子モル数の比(スチーム/カーボン比)として規定され、この値は好ましくは0.3〜10、より好ましくは0.5〜5、さらに好ましくは1〜3とする。0.3未満では触媒上にコークが析出しやすくなるとともに、得られる水素分率が低下しやすい。一方、10を超えれば改質反応は進行するがスチーム発生設備、スチーム回収設備の肥大化を招く恐れがある。水蒸気を都市ガス13Aに添加する方法は限定されない。例えば、反応領域に都市ガス13Aと同時に導入してもよいし、反応領域の別々の位置からあるいは何回かに分けて一部ずつ導入してもよい。
【0022】
符号15は、改質部13で製造された高濃度水素含有ガス中の一酸化炭素を、二酸化炭素および水素に転換する変成触媒が充填されたガス変成部である。変成触媒としては、鉄−クロム(例えば、Fe−Cr系触媒)や、銅−亜鉛などの酸化物である銅系触媒が用いられる。反応温度は、Fe−Cr系触媒の場合では、300〜450℃、銅系触媒については200〜250℃までが好ましい。ここでの反応は、CO+HO=CO+Hとなる。
【0023】
符号16は、上記ガス変成部15でガス変成された高濃度水素含有ガスを冷却して、このガス中に含まれる水分を凝縮させて除去するKO(ノックアウト)ドラムである。符号17は、水蒸気が除去されたガス変成後の高濃度水素含有ガスから高純度水素を圧力吸着分離するPSA(Pressure Swing Absorption)部である。ここでいう圧力吸着分離とは、高濃度水素含有ガスから吸着剤により水素以外の不純なガスを吸着除去し、高純度水素を通過させて精製する方法である。符号18は、PSA部17で精製された高純度水素を貯蔵する蓄圧器である。蓄圧器18は、起動時に触媒燃焼用および水添ガス用に必要な量の水素を貯蔵できるものとし、コンパクト化を図るため、水素吸蔵合金が充填されたタンクの採用も考えられる。
【0024】
符号19は、蓄圧器18に一時貯蔵された高純度水素を、自動車の燃料電池用水素として供給するディスペンサである。PSA部17で不純物が除去された高純度水素は、ディスペンサ19を介して燃料電池自動車に供給され、ここで水を生成しながら電気エネルギーが得られる。このPSA部17で精製分離された高純度水素中の不純物は、10ppm以下である。そのため、自動車に搭載された固体高分子型燃料電池の電極が一酸化炭素によって被毒され、電池性能が低下する恐れが解消される。そして、PSA部17で得られた高純度水素の一部は、水添脱硫部12の水添脱硫用水素として再利用することができる。
【0025】
固体高分子型燃料電池は、電解質材料を有している。この電解質材料は、一般にイオン交換基としてスルフォン酸基をもつ高分子イオン交換膜を有する。セルに水素(燃料)、酸素(酸化剤)を供給すると、次式の反応によって電気エネルギーを外部へ取り出すことができる。
→2H+2e (5)
1/2O+2H+2e→HO (6)
(全反応)H+1/2O→HO (7)
式(5)によって生成された水素イオンは、高分子イオン交換膜中のイオン交換基を介して水(xHO)とともに移動し、式(6)のように酸素と反応して水(HO)を生成する。
【0026】
符号20は、PSA部17で吸着除去されたオフガスが、一時貯蔵されるオフガスホルダ(オフガス貯蔵部)であり、改質部13を加熱する燃料として改質炉14に供給される。また、このオフガスホルダ20には、起動時にKOドラム16で水分が除去されたガス変成後の高濃度水素含有ガスがPSA部17を迂回して供給される。
【0027】
記号E1は、圧縮機11から脱硫部12に供給される都市ガス13Aと、改質炉14からの燃焼ガスとを熱交換して、都市ガス13Aを300〜400℃の水添脱硫温度まで高める熱交換器である。記号E2は、改質部13に供給ポンプPにより供給される水と、改質炉14からの燃焼ガスとを熱交換して、水蒸気改質用の水蒸気を発生させる熱交換器である。記号E3は、冷却用のクーラである。
【0028】
なお、ここでの水素製造装置10は、圧縮機11,脱硫部12,改質部13,改質炉14,ガス変成部15,PSA部17,畜圧器(水素バッファータンクでもよい)18より構成されている。しかしながら、改質部13の後段に必ずしもガス変成部15を設けなくてもよい。ただし、ガス変成部15を設けた方が好ましい。それは、水素の量も増え、一酸化炭素も減らせるとともに、PSA部17での高純度水素の吸着分離が常温という比較的低温で行われるので、熱効率としてはガス変成部15を設置した方が好ましいからである。図中、符号21は、4方弁形式の流路切り換え装置(以下、4方弁という)である。
【0029】
上記構成の水素製造装置10の起動方法について、以下詳述する。
図1に示すように、バルブV11,V15を開き、図示しないエアコンプレッサにより系外の空気を4方弁21を経てバーナ14aに供給するとともに、改質部13に供給する。このように、起動時の改質部13には、酸化剤として、空気が供給される。一方、4方弁21を介して、都市ガス13Aもバーナ14aに供給する。また、バルブV2を開けて水素を系内に導入する。そのため、改質部13では、水素および/または都市ガス13Aと空気とが混合され、改質触媒が兼務する酸化触媒により、水素および/または都市ガス13Aが酸化される。
このとき、空気と都市ガス13Aがバーナ14aに供給されることで、改質炉14内でバーナ加熱が行われる。
【0030】
その後、改質部13の温度が約400℃に達すると、酸化反応状態からオートサーマル改質へ移行する。すなわち、バルブV15を徐々に閉じて改質部13への空気の供給量を徐々に減少させる一方、バルブV3を徐々に開いて改質部13へ水蒸気を徐々に供給する。水蒸気は、供給ポンプPから圧送された水が熱交換器E2を通過することで、加熱されて得られる。酸化反応状態からオートサーマル改質への移行時間は、10〜20分間である。
オートサーマル改質では、都市ガス13Aを空気中の酸素、水蒸気およびオートサーマル改質用の触媒の存在下、一酸化炭素および水素を含む改質ガスに変換し、水蒸気改質と酸化反応の反応熱の収支をバランスさせる。オートサーマル改質用の触媒は、部分酸化改質用の触媒と同じように、改質触媒が兼務する。
そして、改質部13内での燃焼反応が進み、最終的に改質部13の温度が400〜700℃で安定したなら、バルブV15を全閉するとともに、バルブV3を全開してオートサーマル改質から水蒸気改質に移行させる。
【0031】
改質炉14の燃焼ガス(排ガス)は、熱交換器E1,E2により熱交換され、その後、バルブV13を通って系外へ排出される。これにより、系内が安定した後、バルブV2からの水素は、水添脱硫に必要な量にコントロールし、圧縮機11によって脱硫部12に供給される都市ガス13Aに添加される。その後、都市ガス13Aおよび水添脱硫用水素は、熱交換器E1によって熱交換され、300〜400℃まで加熱・昇温される。
【0032】
都市ガス13Aを脱硫部12に徐々に供給しながら、改質部13における改質反応を開始して高濃度水素含有ガスを製造する。この高濃度水素含有ガスはガス変成部15に供給されてガス中の一酸化炭素が変成触媒により、二酸化炭素および水素に転換される。ガス変成部15でガス変成された高濃度水素含有ガスは熱交換器E3で冷却され、このガス中に含まれる水分がKOドラム16によって凝縮除去される。水分除去後の高濃度水素含有ガスの水素含有量が安定するまでバルブV16を開いてPSA部17を迂回させ、そのガスの一部または全部をオフガスホルダ20に貯蔵する。次いで、貯蔵された水素含有ガスは、バルブV9を開くことで、4方弁21を介して改質炉14に供給されて燃焼される。このように、起動時に高濃度水素含有ガスが安定するまでPSA部17をバイパスするのは、PSA部17における運転を最適に行うためであり、PSA部17から吸着分離される高純度水素を安定させるためである。
【0033】
その後、ガス変成後の高濃度水素含有ガスが安定してから、バルブV4,V5,V6を開弁し、PSA部17の運転を開始する。このうち、バルブV4,V5を開弁することで、ガス変成後の高濃度水素含有ガスが熱交換器E3、KOドラム16を通過してPSA部17に供給され、この高濃度水素含有ガスからPSA部17の吸着剤に吸着されなかった高純度水素が精製分離され、蓄圧器18に貯蔵される。一方、バルブV6を開弁することで、PSA部17で除去されたメタン,一酸化炭素,二酸化炭素,水蒸気,水素などのオフガスがオフガスホルダ20、熱交換器E3、バルブV9および4方弁21を通過して改質炉14に供給される。
脱硫部12内および改質部13内での反応が安定し、PSA部17内で高純度水素が安定的に精製分離されるようになったとき、バルブV7を開き、バルブV16を閉じる。このようにして、バルブV7を介して蓄圧器18からディスペンサ19を通して、自動車の燃料電池に高純度水素が供給される。
【0034】
このように、システム起動時には、まず空気と都市ガス13Aとを改質部13に導入して酸化反応を行い、その後、徐々に空気を水蒸気に変換してオートサーマル改質に移行し、最終的には空気の導入量をゼロとし、完全に水蒸気改質に移行させるようにしたので、起動の迅速化が図れ、しかも高い改質効率が図れるとともに、装置のコンパクト化も図ることができる。
【0035】
また、改質部13への都市ガス13Aの導入前または導入と同時に、水素を改質部13に導入し、水素と空気中の酸素とを燃焼反応させてもよい。さらに、改質部13への都市ガス13Aの導入前または導入と同時に、空気と水素とを脱硫部12に導入し、水素と空気中の酸素とを燃焼反応させてもよい。さらにまた、改質部13への都市ガス13Aの導入前または導入と同時に、空気と水素とをガス変成部15に導入し、水素と空気中の酸素とを燃焼反応させてもよい。そして、改質部13への都市ガス13Aの導入前または導入と同時に、水素および/または都市ガス13Aを改質炉14に導入し、水素および/または都市ガス13Aと空気中の酸素とを燃焼反応させてもよい。
【0036】
【発明の効果】
本発明にあっては、起動時に、まず空気と原料炭化水素とを改質部に導入して酸化反応を行い、その後、徐々に空気を水蒸気に変換してオートサーマル改質に移行する。そして、最終的には空気の導入量をゼロとし、完全に水蒸気改質に移行させるようにしたので、起動の迅速化が図れ、しかも高い改質効率が図れるとともに、装置のコンパクト化も図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る水素製造装置の起動方法を示す系統図である。
【符号の説明】
10 水素製造装置
12 脱硫部
13 改質部
13A 都市ガス(原料炭化水素)
14 改質炉
15 ガス変成部
17 PSA部
18 蓄圧器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for starting a hydrogen production apparatus, specifically, a temperature rise (partial oxidation reforming) by introducing and burning a raw material hydrocarbon and air in a reforming section, and then sequentially converting air to steam. The present invention relates to a method for starting a hydrogen production apparatus capable of achieving quick start-up and high reforming efficiency by shifting to autothermal reforming and finally to steam reforming with the amount of introduced air being zero.
[0002]
[Prior art]
For example, as a method for supplying hydrogen to a fuel cell, a fuel reformer that generates a hydrogen-containing gas by a reforming reaction using a catalyst of a hydrocarbon-based fuel gas such as methanol or natural gas has been developed.
When starting the hydrogen production apparatus, it is necessary to raise the inlet temperature of the reforming section to 400 ° C. or higher. Therefore, according to the conventional steam reforming, for example, when methane is used as an example, the reaction is performed at a high temperature of 750 to 800 ° C. At the time of startup, an inert gas such as nitrogen filled in each cylinder was used. That is, at the time of this startup, the temperature is raised by a burner or the like while flowing nitrogen from the nitrogen cylinder into the system. Therefore, there is a problem that a nitrogen cylinder is required, resulting in an increase in cost and an increase in installation space. Further, when the inert gas was exhausted, the starting operation could not be performed, and replacement of the cylinder was troublesome. In addition, it may be impossible to install a nitrogen cylinder due to small devices (for example, hydrogen production devices used for fuel cells for homes and automobiles) and various other circumstances. There were also problems. Furthermore, steam reforming is a relatively large endothermic reaction. Therefore, it is necessary to install a heater and a burner in parallel with the reforming section, and it takes a long time to start. Also, the energy efficiency of the entire system has been reduced.
[0003]
Therefore, as a conventional technique for solving this, partial oxidation reforming accompanied by an exothermic reaction is known. This is because air (N 2 / O 2 ) as an oxidant is supplied to the reforming section by an air compressor, where the raw material hydrocarbon and air are mixed, and the raw material hydrocarbon is partially converted using a partial oxidation catalyst. It oxidizes and reforms raw material hydrocarbons.
However, partial oxidation reforming is an exothermic reaction, and although there is little external heating by a burner and the start-up time is very short, control is difficult due to the large amount of heat generated by oxidation, and soot generation is suppressed. Has issues. Further, oxygen is supplied as air by an air compressor, but nitrogen unnecessary for the reaction is also supplied. This leads to an increase in the size of the reforming section and an increase in the power of the compressor. In addition, the energy efficiency was poor from the amount of hydrogen generated with respect to the amount of fuel input.
[0004]
Autothermal reforming is known as a conventional technique for solving such problems of steam reforming and partial oxidation reforming. Autothermal reforming balances the heat balance of the heat of reaction between steam reforming and partial oxidation reforming, and uses the amount of heat released in the partial oxidation reaction to perform the reforming reaction of endothermic steam reforming. It is a method that is performed simultaneously. Auto thermal reforming has a shorter start-up time than steam reforming, and if the temperature of the reforming section is initially raised to the set temperature, heating of the reforming section by a burner is not required, and rapid reforming reaction There is no need to follow external heat supply or cooling in accordance with the increase or decrease of the temperature. For this reason, control is facilitated, and thus, it has been attracting attention in recent years.
[0005]
However, according to the autothermal reforming, although the startup time is shorter than that of the steam reforming involving an endothermic reaction, the startup is not as quick as that of the partial oxidation reforming involving an exothermic reaction.
In the autothermal reforming, as in the case of the partial oxidation reforming, air is introduced into the reforming section together with steam as an oxidizing agent. As a result, a large amount of nitrogen gas unnecessary for the reaction is supplied to the reforming section, and the off-gas obtained from the subsequent purification step cannot be effectively used, thereby lowering the reforming efficiency. In addition, there is a problem that the reforming section and the compressor become large.
[0006]
[Problems to be solved by the invention]
As a result of intensive research, the present inventors have found that at the time of start-up, first, air and a raw material hydrocarbon are introduced into a reforming section to perform an oxidation reaction, and thereafter, the air is gradually converted to steam to shift to auto thermal reforming. I do. Finally, it was found that if the amount of air introduced is finally reduced to zero and the process is completely shifted to steam reforming, startup can be speeded up, high reforming efficiency can be achieved, and the equipment can be made more compact. Thus, the present invention has been completed.
In other words, the present invention is based on such a conventional technique, and a start-up method of a hydrogen production apparatus capable of achieving quick start-up, high reforming efficiency, and downsizing of the apparatus. It is intended to provide.
[0007]
[Means for Solving the Problems]
The first aspect of the present invention provides a desulfurization unit for removing the sulfur content of a raw hydrocarbon, and a reforming unit for generating a hydrogen-containing gas by adding steam to the raw hydrocarbon desulfurized in the desulfurization unit to reform the raw hydrocarbon. And a gas conversion unit for converting carbon monoxide in the hydrogen-containing gas into carbon dioxide and hydrogen, and a PSA unit for purifying the hydrogen-containing gas gas-converted in the gas conversion unit to high-purity hydrogen. In the start-up method of the manufacturing apparatus, the raw material hydrocarbons and air are supplied to the reforming section to generate an oxidation reaction, thereby raising the temperature of the reforming section, and then reducing the amount of air supplied to the reforming section. This is a method for activating a hydrogen production apparatus in which steam is gradually supplied while gradually decreasing the supply of air, and finally the supply of air is stopped, while only the steam is supplied to the reforming section to shift to a steam reforming reaction.
[0008]
According to the second aspect of the present invention, hydrogen is introduced into the reforming section before or at the same time as the introduction of the raw material hydrocarbon into the reforming section, and a combustion reaction occurs between the hydrogen and oxygen in the air. The method for starting the hydrogen production apparatus described in the above.
[0009]
The invention according to claim 3 is a method in which air and hydrogen are introduced into the desulfurization section before or simultaneously with introduction of the raw material hydrocarbon into the reforming section, and a combustion reaction between the hydrogen and oxygen in the air is performed. 2. A method for starting a hydrogen production apparatus according to item 1.
[0010]
The invention according to claim 4 is to introduce air and hydrogen into the gas shift section before or simultaneously with the introduction of the raw material hydrocarbon into the reforming section, and to cause a combustion reaction between the hydrogen and oxygen in the air. A method for starting the hydrogen production apparatus according to claim 1.
[0011]
According to a fifth aspect of the present invention, there is provided a reforming furnace for causing a combustion reaction between a hydrogen-containing flammable gas and oxygen in the air to heat the reforming section from the outside. 2. The hydrogen according to claim 1, wherein hydrogen and / or raw material hydrocarbon is introduced into the reforming furnace before or at the same time as the introduction of hydrogen, and the hydrogen and / or raw material hydrocarbon and oxygen in the air undergo a combustion reaction. 3. This is a method for starting the manufacturing apparatus.
[0012]
The invention according to claim 6 is the method according to any one of claims 1 to 5, wherein the hydrogen is obtained from an accumulator or a hydrogen buffer tank that stores high-purity hydrogen purified by the PSA unit. This is a method for starting the hydrogen production apparatus.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing a method for starting a hydrogen production apparatus according to one embodiment of the present invention.
In FIG. 1, reference numeral 10 denotes a hydrogen production apparatus using city gas, LPG, kerosene, methanol, or the like as a raw material. Here, the city gas 13A is adopted.
Hereinafter, each component of the hydrogen production apparatus 10 will be described. Reference numeral 11 denotes a compressor that supplies the city gas 13A to the desulfurization unit 12. The desulfurization unit 12 is divided into a hydrogenation catalyst layer on the upstream side and a desulfurization agent layer on the downstream side. In the desulfurization unit 12, a part of the high-purity hydrogen (purified hydrogen) that is pressure-adsorbed and separated from the city gas 13 </ b> A supplied by the compressor 11 in the PSA unit 17 described below and stored in the accumulator 18 is used for hydrodesulfurization. By adding as hydrogen, the sulfur content in the city gas 13A is desulfurized.
[0014]
Examples of the hydrogenation catalyst include a NiMox catalyst or a CoMox catalyst in which an oxide such as nickel-molybdenum or cobalt-molybdenum, or a sulfide is supported on a carrier such as silica or alumina. In addition, as the desulfurizing agent, zinc oxide, nickel-based sorbent, or the like is used alone or appropriately supported on a carrier. In the hydrogenation catalyst layer, the sulfur content in the raw hydrocarbon is hydrogenated to generate hydrogen sulfide. The reaction temperature is 300 to 400 ° C., and by performing desulfurization using high-purity hydrogen, the desulfurization effect is increased and the life of the reforming catalyst is extended. In the desulfurizing agent layer, for example, a reaction of H 2 S + ZnO = ZnS + H 2 O occurs. In addition, the raw material hydrocarbon after desulfurization is supplied to the reforming unit 13. Here, a method of hydrodesulfurizing a sulfur compound in a raw material hydrocarbon is employed, but a method of directly adsorbing a sulfur compound to a catalyst may be used. Examples of the catalyst in this case include metals such as nickel, zinc, and copper, and oxides and sulfides thereof, as well as zeolite and activated carbon. As the activated carbon, those to which an alkali metal such as sodium is impregnated can be used.
[0015]
The reforming unit 13 produces a high-concentration hydrogen-containing gas by adding water or steam to the desulfurized city gas 13A, and further contacting the filled reforming catalyst to perform steam reforming. A reforming furnace 14 is provided around the reformer 13. A burner 14a for heating the reforming section 13 from the outside is provided below the reforming furnace 14. Examples of the reforming catalyst include one in which an element such as ruthenium or nickel is supported on a carrier such as alumina or silica. Among these, a ruthenium-based catalyst is preferable when a raw material such as kerosene having a high carbon number is used, because carbon deposition can be suppressed. In the reforming section 13, steam reforming of the desulfurized hydrocarbon is performed. The reaction here is shown below.
C m H n + mH 2 O → mCO + (m + n / 2) H 2 (1)
CO + 3H 2 ← → CH 4 + H 2 O (2)
CO + H 2 O ← → CO 2 + H 2 (3)
[0016]
Air is supplied to the reforming unit 13 at the time of startup as an oxidizing agent via an air compressor (not shown). In this way, the air is supplied to the reforming unit 13, the city gas 13A desulfurized and the air are mixed, and the city gas 13A is oxidized using a catalyst. The reforming catalyst also serves as an oxidation catalyst.
When the city gas 13A passes through the reforming section 13 maintained at a high operating temperature of 400 ° C. or higher, a combustion reaction shown in the following (4) is caused.
CH 4 + 2O 2 → CO 2 + 2H 2 O (4)
During startup, the reformer 13 is heated and heated by the burner 14a. However, the operating temperature (500 to 700 ° C.) can be maintained by the heat generated by the catalytic oxidation.
[0017]
Autothermal reforming balances the heat of reaction between steam reforming and partial oxidation reforming, and converts city gas 13A into oxygen, steam in air, and carbon monoxide and hydrogen in the presence of a catalyst for autothermal reforming. Refers to a reaction for converting into a reformed gas containing.
This reaction includes a partial oxidation reaction for oxidizing a part of the city gas 13A and a steam reforming reaction. The reforming catalyst also serves as an autothermal reforming catalyst. The temperature at which the oxidation reaction state shifts to autothermal reforming is preferably from 400 to 700C, particularly preferably from 500 to 600C. If the temperature is lower than 400 ° C., there is a disadvantage that the reaction does not proceed sufficiently. On the other hand, when the temperature exceeds 700 ° C., there is a disadvantage that deterioration due to sintering of the catalyst becomes large. The transition time from the oxidation reaction state to the autothermal reforming is usually 5 to 30 minutes, preferably 10 to 20 minutes, though it depends on the temperature rise in the system. If the time is less than 5 minutes, there is a disadvantage that the temperature in the system is not uniform. On the other hand, if the time exceeds 30 minutes, there is a disadvantage that useless waiting time increases.
[0018]
Specific examples of the raw material hydrocarbon include saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, cyclopentane, cyclohexane and dodecane, and unsaturated aliphatic hydrocarbons such as ethylene, propylene and butene. be able to. Also, a mixture of these can be suitably used, and examples thereof include materials which are industrially available at low cost, such as natural gas, LPG, naphtha, gasoline, kerosene, and light oil. Specific examples of the hydrocarbon compounds having a substituent containing a hetero atom include methanol, ethanol, propanol, butanol, dimethyl ether, phenol, anisole, acetaldehyde, acetic acid, acetamide, triethylamine and the like.
[0019]
Since the sulfur concentration in the city gas 13A has an effect of inactivating the reforming catalyst, it is desirable that the sulfur concentration be as low as possible by desulfurization by the desulfurization unit 12. Preferably it is 1 mass ppm or less, more preferably 0.05 mass ppm or less.
The amount of air supplied at the time of the autothermal reforming is usually an amount capable of generating an amount of heat capable of balancing the endothermic reaction of the steam reforming. However, the amount of addition is determined appropriately in relation to heat loss and external heating provided as needed. The amount thereof is preferably 0.05 to 1, more preferably 0.1 to 0.75, more preferably 0.1 to 0.75, as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the city gas 13A. 0.2 to 0.6. When the oxygen / carbon ratio is less than 0.05, heat generation is small, and a large amount of heat needs to be supplied from the outside using the burner 14a. On the other hand, when the oxygen / carbon ratio exceeds 1, heat generation becomes too large, and it becomes difficult to maintain a heat balance.
[0020]
Oxygen may be pure oxygen, but those diluted with other gases can also be suitably used, and may include water vapor, carbon dioxide, carbon monoxide, argon, nitrogen, etc. Air is preferably used as a gas containing oxygen.
The method for adding oxygen to the city gas 13A is not limited. For example, the city gas 13A may be introduced into the reaction region at the same time. Further, the oxygen-containing gas and the city gas 13A may be supplied from different positions in the reaction region. Further, it may be introduced in several parts.
[0021]
The amount of water vapor introduced into the reaction system is defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the city gas 13A (steam / carbon ratio), and this value is preferably 0.3 to 10, more preferably Is 0.5 to 5, more preferably 1 to 3. If it is less than 0.3, coke tends to precipitate on the catalyst, and the obtained hydrogen fraction tends to decrease. On the other hand, if it exceeds 10, the reforming reaction proceeds, but the steam generating equipment and the steam recovery equipment may be enlarged. The method for adding steam to the city gas 13A is not limited. For example, the city gas 13A may be introduced into the reaction region at the same time, or may be introduced from a different position in the reaction region or by dividing it into several portions.
[0022]
Reference numeral 15 denotes a gas shift unit filled with a shift catalyst for converting carbon monoxide in the high-concentration hydrogen-containing gas produced in the reforming unit 13 into carbon dioxide and hydrogen. The shift catalyst, iron - chromium (e.g., Fe 2 O 3 -Cr 2 O 3 catalyst) and, copper - copper-based catalyst is an oxide such as zinc is used. The reaction temperature in the case of Fe 2 O 3 -Cr 2 O 3 catalyst, 300 to 450 ° C., for a copper-based catalyst preferably up to 200 to 250 ° C.. The reaction here is CO + H 2 O = CO 2 + H 2 .
[0023]
Reference numeral 16 denotes a KO (knock-out) drum that cools the high-concentration hydrogen-containing gas that has been gas-converted in the gas conversion unit 15 and condenses and removes moisture contained in the gas. Reference numeral 17 denotes a PSA (Pressure Swing Absorption) section for pressure-adsorbing and separating high-purity hydrogen from a gas-converted high-concentration hydrogen-containing gas from which water vapor has been removed. The pressure adsorption separation mentioned here is a method in which an impurity gas other than hydrogen is adsorbed and removed from a high-concentration hydrogen-containing gas by an adsorbent and purified by passing high-purity hydrogen. Reference numeral 18 denotes an accumulator that stores the high-purity hydrogen purified by the PSA unit 17. The accumulator 18 is capable of storing the required amount of hydrogen for catalytic combustion and hydrogenation gas at the time of start-up. In order to achieve compactness, a tank filled with a hydrogen storage alloy may be used.
[0024]
Reference numeral 19 denotes a dispenser for supplying high-purity hydrogen temporarily stored in the accumulator 18 as hydrogen for a fuel cell of an automobile. The high-purity hydrogen from which impurities have been removed by the PSA unit 17 is supplied to a fuel cell vehicle via a dispenser 19, where electric energy is obtained while generating water. The impurities in the high-purity hydrogen purified and separated in the PSA section 17 are 10 ppm or less. This eliminates the risk that the electrodes of the polymer electrolyte fuel cell mounted on the vehicle will be poisoned by carbon monoxide and the cell performance will decrease. Then, part of the high-purity hydrogen obtained in the PSA unit 17 can be reused as hydrogen for hydrodesulfurization in the hydrodesulfurization unit 12.
[0025]
A polymer electrolyte fuel cell has an electrolyte material. This electrolyte material generally has a polymer ion exchange membrane having a sulfonic acid group as an ion exchange group. When hydrogen (fuel) and oxygen (oxidant) are supplied to the cell, electric energy can be extracted to the outside by the following reaction.
H 2 → 2H ++ 2e (5)
1 / 2O 2 + 2H + + 2e → H 2 O (6)
(Total reaction) H 2 + 1 / 2O 2 → H 2 O (7)
The hydrogen ions generated by the formula (5) move together with water (xH 2 O) via the ion exchange group in the polymer ion exchange membrane, and react with oxygen as shown in the formula (6) to form water (H). 2 O).
[0026]
Reference numeral 20 denotes an off-gas holder (off-gas storage unit) in which the off-gas adsorbed and removed by the PSA unit 17 is temporarily stored, and is supplied to the reforming furnace 14 as fuel for heating the reforming unit 13. In addition, the high-concentration hydrogen-containing gas after gas conversion from which moisture has been removed by the KO drum 16 at startup is supplied to the off-gas holder 20, bypassing the PSA unit 17.
[0027]
The symbol E1 heat-exchanges the city gas 13A supplied from the compressor 11 to the desulfurization unit 12 and the combustion gas from the reforming furnace 14 to raise the city gas 13A to a hydrodesulfurization temperature of 300 to 400 ° C. It is a heat exchanger. Symbol E2 is a heat exchanger that exchanges heat between water supplied to the reforming section 13 by the supply pump P and combustion gas from the reforming furnace 14 to generate steam for steam reforming. Symbol E3 is a cooler for cooling.
[0028]
Here, the hydrogen production apparatus 10 includes a compressor 11, a desulfurization unit 12, a reforming unit 13, a reforming furnace 14, a gas conversion unit 15, a PSA unit 17, and an accumulator (may be a hydrogen buffer tank) 18. Have been. However, it is not always necessary to provide the gas shift section 15 downstream of the reforming section 13. However, it is preferable to provide the gas shift section 15. This is because the amount of hydrogen increases and the amount of carbon monoxide can be reduced, and the adsorption and separation of high-purity hydrogen in the PSA unit 17 is performed at a relatively low temperature of normal temperature. This is because it is preferable. In the figure, reference numeral 21 denotes a four-way valve type flow switching device (hereinafter, referred to as a four-way valve).
[0029]
A method for starting the hydrogen production apparatus 10 having the above configuration will be described in detail below.
As shown in FIG. 1, the valves V11 and V15 are opened, and air outside the system is supplied to the burner 14a via the four-way valve 21 by an air compressor (not shown) and to the reforming unit 13. As described above, air is supplied to the reforming unit 13 at the time of startup as an oxidizing agent. On the other hand, the city gas 13A is also supplied to the burner 14a via the four-way valve 21. Further, the valve V2 is opened to introduce hydrogen into the system. Therefore, in the reforming unit 13, the hydrogen and / or the city gas 13A and the air are mixed, and the hydrogen and / or the city gas 13A is oxidized by the oxidation catalyst which also serves as the reforming catalyst.
At this time, the burner is heated in the reforming furnace 14 by supplying the air and the city gas 13A to the burner 14a.
[0030]
Thereafter, when the temperature of the reforming section 13 reaches about 400 ° C., the state shifts from the oxidation reaction state to autothermal reforming. That is, while the valve V15 is gradually closed to gradually reduce the amount of air supplied to the reforming section 13, the valve V3 is gradually opened to gradually supply steam to the reforming section 13. The water vapor is obtained by being heated by the water pumped from the supply pump P passing through the heat exchanger E2. The transition time from the oxidation reaction state to the autothermal reforming is 10 to 20 minutes.
In the autothermal reforming, the city gas 13A is converted into a reformed gas containing carbon monoxide and hydrogen in the presence of oxygen, steam in the air and a catalyst for autothermal reforming, and the reaction between steam reforming and the oxidation reaction is performed. Balance the heat balance. The reforming catalyst also serves as the catalyst for autothermal reforming, similarly to the catalyst for partial oxidation reforming.
Then, when the combustion reaction in the reforming section 13 proceeds and the temperature of the reforming section 13 is finally stabilized at 400 to 700 ° C., the valve V15 is fully closed and the valve V3 is fully opened to perform auto thermal reforming. Move from quality to steam reforming.
[0031]
The combustion gas (exhaust gas) from the reforming furnace 14 is heat-exchanged by the heat exchangers E1 and E2, and then discharged out of the system through the valve V13. Thereby, after the inside of the system is stabilized, hydrogen from the valve V2 is controlled to an amount required for hydrodesulfurization, and is added to the city gas 13A supplied to the desulfurization unit 12 by the compressor 11. Thereafter, the city gas 13A and the hydrogen for hydrodesulfurization are heat-exchanged by the heat exchanger E1, and are heated and heated to 300 to 400 ° C.
[0032]
While gradually supplying the city gas 13A to the desulfurization unit 12, the reforming reaction in the reforming unit 13 is started to produce a high-concentration hydrogen-containing gas. This high-concentration hydrogen-containing gas is supplied to the gas shift section 15, and carbon monoxide in the gas is converted into carbon dioxide and hydrogen by the shift catalyst. The high-concentration hydrogen-containing gas gas-converted in the gas conversion unit 15 is cooled in the heat exchanger E3, and the water contained in the gas is condensed and removed by the KO drum 16. Until the hydrogen content of the high-concentration hydrogen-containing gas from which water has been removed is stabilized, the valve V16 is opened to bypass the PSA section 17, and a part or all of the gas is stored in the off-gas holder 20. Next, the stored hydrogen-containing gas is supplied to the reforming furnace 14 via the four-way valve 21 and burned by opening the valve V9. The reason why the PSA unit 17 is bypassed until the high-concentration hydrogen-containing gas becomes stable at the time of startup is to optimize the operation of the PSA unit 17 and stabilize the high-purity hydrogen adsorbed and separated from the PSA unit 17. It is to make it.
[0033]
After that, after the high-concentration hydrogen-containing gas after the gas conversion is stabilized, the valves V4, V5, and V6 are opened, and the operation of the PSA unit 17 is started. By opening the valves V4 and V5, the high-concentration hydrogen-containing gas after gas conversion is supplied to the PSA section 17 through the heat exchanger E3 and the KO drum 16, and the high-concentration hydrogen-containing gas is High-purity hydrogen not adsorbed by the adsorbent of the PSA unit 17 is purified and separated, and stored in the pressure accumulator 18. On the other hand, when the valve V6 is opened, the off-gas such as methane, carbon monoxide, carbon dioxide, water vapor, and hydrogen removed in the PSA unit 17 is supplied to the off-gas holder 20, the heat exchanger E3, the valve V9, and the four-way valve 21. And is supplied to the reforming furnace 14.
When the reaction in the desulfurization section 12 and the reforming section 13 is stabilized and high-purity hydrogen is stably purified and separated in the PSA section 17, the valve V7 is opened and the valve V16 is closed. In this way, high-purity hydrogen is supplied from the accumulator 18 to the fuel cell of the vehicle through the dispenser 19 via the valve V7.
[0034]
As described above, at the time of starting the system, first, the air and the city gas 13A are introduced into the reforming unit 13 to perform an oxidation reaction, and thereafter, the air is gradually converted into water vapor to shift to auto thermal reforming. In this case, the amount of air introduced is reduced to zero, and the process is completely shifted to steam reforming. Therefore, the start-up can be speeded up, high reforming efficiency can be achieved, and the apparatus can be downsized.
[0035]
Further, before or simultaneously with the introduction of the city gas 13A into the reforming unit 13, hydrogen may be introduced into the reforming unit 13 to cause a combustion reaction between the hydrogen and oxygen in the air. Further, before or simultaneously with the introduction of the city gas 13A into the reforming unit 13, air and hydrogen may be introduced into the desulfurization unit 12 to cause a combustion reaction between hydrogen and oxygen in the air. Furthermore, before or at the same time as the introduction of the city gas 13A into the reforming unit 13, air and hydrogen may be introduced into the gas conversion unit 15 to cause a combustion reaction between hydrogen and oxygen in the air. Then, before or simultaneously with the introduction of the city gas 13A to the reforming unit 13, the hydrogen and / or the city gas 13A is introduced into the reforming furnace 14, and the hydrogen and / or the city gas 13A and the oxygen in the air are burned. You may make it react.
[0036]
【The invention's effect】
In the present invention, at the time of start-up, first, air and a raw material hydrocarbon are introduced into a reforming section to perform an oxidation reaction, and thereafter, the air is gradually converted into steam to shift to autothermal reforming. Finally, the amount of air introduced was reduced to zero, and the process was completely shifted to steam reforming, so that start-up could be speeded up, high reforming efficiency could be achieved, and the equipment could be made more compact. Can be.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a starting method of a hydrogen production apparatus according to one embodiment of the present invention.
[Explanation of symbols]
10 Hydrogen production device 12 Desulfurization unit 13 Reforming unit 13A City gas (raw hydrocarbon)
14 Reforming furnace 15 Gas conversion unit 17 PSA unit 18 Pressure accumulator

Claims (6)

原料炭化水素の硫黄分を除去する脱硫部と、
上記脱硫部で脱硫された原料炭化水素に水蒸気を加えて改質することで水素含有ガスを生成する改質部と、
上記水素含有ガス中の一酸化炭素を二酸化炭素および水素に転換するガス変成部と、
該ガス変成部でガス変成された水素含有ガスを高純度水素に精製するPSA部とを備えた水素製造装置の起動方法において、
上記改質部に原料炭化水素と空気とを供給して酸化反応を発生させることで改質部を昇温し、その後、該改質部への空気の供給量を徐々に低減させながら水蒸気を徐々に供給し、最終的に空気の供給を停止する一方、上記水蒸気だけを改質部に供給して水蒸気改質反応に移行させる水素製造装置の起動方法。
A desulfurization unit for removing the sulfur content of the raw hydrocarbons,
A reforming unit that generates a hydrogen-containing gas by adding steam to the raw material hydrocarbon desulfurized in the desulfurizing unit and reforming the steam;
A gas conversion unit that converts carbon monoxide in the hydrogen-containing gas into carbon dioxide and hydrogen,
A PSA unit for purifying the hydrogen-containing gas gas-converted in the gas conversion unit to high-purity hydrogen;
The raw material hydrocarbons and air are supplied to the reforming section to generate an oxidation reaction, thereby raising the temperature of the reforming section. Thereafter, while gradually reducing the amount of air supplied to the reforming section, steam is generated. A method for starting a hydrogen production apparatus in which the supply of air is stopped gradually while the supply of air is finally stopped, and only the steam is supplied to the reformer to shift to a steam reforming reaction.
上記改質部への原料炭化水素の導入前または導入と同時に、水素を上記改質部に導入し、上記水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法。2. The start-up of the hydrogen production apparatus according to claim 1, wherein hydrogen is introduced into the reforming section before or at the same time as the introduction of the raw material hydrocarbon into the reforming section, and the hydrogen and oxygen in the air undergo a combustion reaction. Method. 上記改質部への原料炭化水素の導入前または導入と同時に、空気と水素とを上記脱硫部に導入し、上記水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法。2. The hydrogen production apparatus according to claim 1, wherein air and hydrogen are introduced into the desulfurization section before or at the same time as the introduction of the raw material hydrocarbon into the reforming section, and the hydrogen and oxygen in the air undergo a combustion reaction. 3. How to start. 上記改質部への原料炭化水素の導入前または導入と同時に、空気と水素とを上記ガス変成部に導入し、上記水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法。2. The hydrogen production according to claim 1, wherein air and hydrogen are introduced into the gas shift section before or at the same time as the introduction of the raw material hydrocarbons into the reforming section, and the hydrogen and oxygen in the air undergo a combustion reaction. How to start the device. 水素含有の可燃性ガスと空気中の酸素とを燃焼反応させ、上記改質部を外方から加熱する改質炉を有し、
上記改質部への原料炭化水素の導入前または導入と同時に、水素および/または原料炭化水素を上記改質炉に導入し、上記水素および/または原料炭化水素と空気中の酸素とを燃焼反応させる請求項1に記載の水素製造装置の起動方法。
Combustion reaction between the hydrogen-containing flammable gas and oxygen in the air, having a reforming furnace for heating the reforming unit from outside,
Before or simultaneously with the introduction of the raw material hydrocarbon into the reforming section, hydrogen and / or the raw material hydrocarbon are introduced into the reforming furnace, and the hydrogen and / or the raw material hydrocarbon and oxygen in the air are subjected to a combustion reaction. The method for starting a hydrogen production apparatus according to claim 1.
上記水素を、上記PSA部により精製された高純度水素を貯留する蓄圧器または水素バッファータンクから得る請求項1〜請求項5のうち、何れか1項に記載の水素製造装置の起動方法。The method according to any one of claims 1 to 5, wherein the hydrogen is obtained from an accumulator or a hydrogen buffer tank that stores high-purity hydrogen purified by the PSA unit.
JP2003134766A 2003-05-13 2003-05-13 Starting method of hydrogen production apparatus Pending JP2004338975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134766A JP2004338975A (en) 2003-05-13 2003-05-13 Starting method of hydrogen production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134766A JP2004338975A (en) 2003-05-13 2003-05-13 Starting method of hydrogen production apparatus

Publications (1)

Publication Number Publication Date
JP2004338975A true JP2004338975A (en) 2004-12-02

Family

ID=33525233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134766A Pending JP2004338975A (en) 2003-05-13 2003-05-13 Starting method of hydrogen production apparatus

Country Status (1)

Country Link
JP (1) JP2004338975A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028427A1 (en) * 2007-08-29 2009-03-05 Kyocera Corporation Fuel cell device
WO2010114041A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114040A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114039A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP2011253831A (en) * 2011-09-20 2011-12-15 Toto Ltd Solid electrolyte fuel cell
WO2012043648A1 (en) * 2010-09-30 2012-04-05 Toto株式会社 Solid oxide fuel cell device
WO2012043647A1 (en) * 2010-09-30 2012-04-05 Toto株式会社 Solid oxide fuel cell device
JP2012079420A (en) * 2010-09-30 2012-04-19 Toto Ltd Solid oxide fuel cell apparatus
JP2012079421A (en) * 2010-09-30 2012-04-19 Toto Ltd Solid oxide fuel cell apparatus
JP2013191585A (en) * 2013-07-01 2013-09-26 Toto Ltd Solid oxide fuel cell
JP2014040364A (en) * 2012-07-23 2014-03-06 Kobe Steel Ltd Activation method of autothermal reformer and autothermal reforming system
JP2014152087A (en) * 2013-02-12 2014-08-25 Kobe Steel Ltd Hydrogen production apparatus
JP2015074586A (en) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 Operational method of steam reformer, steam reforming reactor, and fuel cell power generator
JP2018162197A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen manufacturing device
JP2020083740A (en) * 2018-11-30 2020-06-04 東京瓦斯株式会社 Hydrogen production apparatus and hydrogen production method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106204A (en) * 1997-10-01 1999-04-20 Sanyo Electric Co Ltd Hydrogen production apparatus and hydrogen production process
JP2000178007A (en) * 1998-12-18 2000-06-27 Matsushita Electric Ind Co Ltd Hydrogen purifier
JP2001089106A (en) * 1999-09-14 2001-04-03 Fuji Electric Co Ltd Method for starting fuel reformer
JP2001106512A (en) * 1999-10-06 2001-04-17 Toyota Motor Corp Reforming device
JP2001180908A (en) * 1999-12-27 2001-07-03 Matsushita Electric Ind Co Ltd Hydrogen generator and its starting and stopping process
JP2001206701A (en) * 2000-01-26 2001-07-31 Nissan Motor Co Ltd Fuel reforming device and starting-up method
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002154805A (en) * 2000-11-14 2002-05-28 Nissan Motor Co Ltd Reforming reaction apparatus and reforming system
JP2002367654A (en) * 2001-06-05 2002-12-20 Nissan Motor Co Ltd Fuel cell system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106204A (en) * 1997-10-01 1999-04-20 Sanyo Electric Co Ltd Hydrogen production apparatus and hydrogen production process
JP2000178007A (en) * 1998-12-18 2000-06-27 Matsushita Electric Ind Co Ltd Hydrogen purifier
JP2001089106A (en) * 1999-09-14 2001-04-03 Fuji Electric Co Ltd Method for starting fuel reformer
JP2001106512A (en) * 1999-10-06 2001-04-17 Toyota Motor Corp Reforming device
JP2001180908A (en) * 1999-12-27 2001-07-03 Matsushita Electric Ind Co Ltd Hydrogen generator and its starting and stopping process
JP2001206701A (en) * 2000-01-26 2001-07-31 Nissan Motor Co Ltd Fuel reforming device and starting-up method
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002154805A (en) * 2000-11-14 2002-05-28 Nissan Motor Co Ltd Reforming reaction apparatus and reforming system
JP2002367654A (en) * 2001-06-05 2002-12-20 Nissan Motor Co Ltd Fuel cell system

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028427A1 (en) * 2007-08-29 2009-03-05 Kyocera Corporation Fuel cell device
US8771887B2 (en) 2007-08-29 2014-07-08 Kyocera Corporation Method of operating a fuel cell apparatus
JP5213865B2 (en) * 2007-08-29 2013-06-19 京セラ株式会社 Fuel cell device
JP4650799B2 (en) * 2009-03-31 2011-03-16 Toto株式会社 Solid oxide fuel cell
US8795910B2 (en) 2009-03-31 2014-08-05 Toto Ltd. Solid oxide fuel cell device
JP2010238623A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
JP2010238625A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
WO2010114039A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
US8927162B2 (en) 2009-03-31 2015-01-06 Toto Ltd. Solid oxide fuel cell system performing different restart operations depending on operation temperature
EP2416418A1 (en) * 2009-03-31 2012-02-08 Toto Ltd. Solid electrolyte fuel cell
JP2010238624A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
WO2010114041A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114040A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
US8431274B2 (en) 2009-03-31 2013-04-30 Toto Ltd. Solid oxide fuel cell device
EP2416418A4 (en) * 2009-03-31 2013-01-16 Toto Ltd Solid electrolyte fuel cell
WO2012043647A1 (en) * 2010-09-30 2012-04-05 Toto株式会社 Solid oxide fuel cell device
US9209469B2 (en) 2010-09-30 2015-12-08 Toto Ltd. Solid oxide fuel cell device
CN103119770A (en) * 2010-09-30 2013-05-22 Toto株式会社 Solid oxide fuel cell device
JP2012079420A (en) * 2010-09-30 2012-04-19 Toto Ltd Solid oxide fuel cell apparatus
WO2012043648A1 (en) * 2010-09-30 2012-04-05 Toto株式会社 Solid oxide fuel cell device
JP2012079421A (en) * 2010-09-30 2012-04-19 Toto Ltd Solid oxide fuel cell apparatus
JP2012079422A (en) * 2010-09-30 2012-04-19 Toto Ltd Solid oxide fuel cell apparatus
US9214690B2 (en) 2010-09-30 2015-12-15 Toto Ltd. Solid oxide fuel cell device
JP2011253831A (en) * 2011-09-20 2011-12-15 Toto Ltd Solid electrolyte fuel cell
JP2014040364A (en) * 2012-07-23 2014-03-06 Kobe Steel Ltd Activation method of autothermal reformer and autothermal reforming system
JP2014152087A (en) * 2013-02-12 2014-08-25 Kobe Steel Ltd Hydrogen production apparatus
JP2013191585A (en) * 2013-07-01 2013-09-26 Toto Ltd Solid oxide fuel cell
JP2015074586A (en) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 Operational method of steam reformer, steam reforming reactor, and fuel cell power generator
JP2018162197A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen manufacturing device
JP2020083740A (en) * 2018-11-30 2020-06-04 東京瓦斯株式会社 Hydrogen production apparatus and hydrogen production method

Similar Documents

Publication Publication Date Title
JP2002020102A (en) Method for starting and method for stopping hydrogen producing device
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP2004338975A (en) Starting method of hydrogen production apparatus
JPH07315801A (en) System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
EP1358694A2 (en) Process for air enrichment in producing hydrogen for use with fuel cells
JP4274754B2 (en) Operation method of hydrogen-containing gas generator
US20190135629A1 (en) Operation Method for Hydrogen Production Apparatus, and Hydrogen Production Apparatus
JP2002356308A (en) Fuel reforming system
JP4292362B2 (en) Polymer electrolyte fuel cell power generation system and polymer electrolyte fuel cell power generation method
JP2009117054A (en) Power generation method and system by high temperature operating fuel cell
US7198862B2 (en) Process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP4931865B2 (en) Solid polymer fuel cell power generation system and solid polymer fuel cell power generation method
JP4357756B2 (en) High purity hydrogen production system using membrane reformer
JPH02302302A (en) Power generation system of fuel cell
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
JP5098073B2 (en) Energy station
JP2016184456A (en) Gas manufacturing apparatus
JP3050850B2 (en) Fuel cell power generation system
JP2008108621A (en) Fuel cell power generation system and its carbon dioxide recovery method
JP2010053003A (en) Method for producing high purity hydrogen
JP2009263199A (en) Carbon monoxide gas generation apparatus and method
JP2001202982A (en) Solid polymer fuel cell system
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP2002012407A (en) Hydrogen manufacturing equipment startup method and its shutdown method
JP2001068136A (en) Solid high-polymer fuel cell system and operating method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100519