JP2004333043A - Ultradeep freezer - Google Patents

Ultradeep freezer Download PDF

Info

Publication number
JP2004333043A
JP2004333043A JP2003130970A JP2003130970A JP2004333043A JP 2004333043 A JP2004333043 A JP 2004333043A JP 2003130970 A JP2003130970 A JP 2003130970A JP 2003130970 A JP2003130970 A JP 2003130970A JP 2004333043 A JP2004333043 A JP 2004333043A
Authority
JP
Japan
Prior art keywords
temperature
low
cycle
freezer
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130970A
Other languages
Japanese (ja)
Other versions
JP2004333043A5 (en
Inventor
Kazuhiro Matsushita
和弘 松下
Masanori Hiraoka
政則 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Kucho SE Ltd
Original Assignee
Hitachi Ltd
Hitachi Kucho SE Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Kucho SE Ltd filed Critical Hitachi Ltd
Priority to JP2003130970A priority Critical patent/JP2004333043A/en
Publication of JP2004333043A publication Critical patent/JP2004333043A/en
Publication of JP2004333043A5 publication Critical patent/JP2004333043A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy two kinds of temperature specifications of very low temperature and low temperature by one ultradeep freezer, to reduce an installation space of the freezer, and to reduce the cost. <P>SOLUTION: This ultradeep freezer where a heat insulating casing 1 and a heat insulating door 3 made out of a heat insulating material, and articles accommodated inside of the heat insulating casing 1 are cooled by a dual freezer where the low-temperature side and high-temperature side cycles are cascade-connected, comprises a plurality of storages 5a, 5b formed by partitioning the heat insulating casing 1 by a heat insulating wall 2, and independently mounting the heat insulating doors 3, and cooling units 7a, 7b respectively mounted in the storages. One of the cooling unit is connected with the low-temperature side cycle, and the other is connected with the high-temperature side cycle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、断熱筐体内を超低温に保持し、収納物を保存する超低温フリーザに関するものである。
【0002】
【従来の技術】
超低温フリーザは、たとえば細胞や血液等の検体を長期保存するために用いられ、収納庫内を−85℃以下の超低温に冷却・維持するため、冷凍装置として二元冷凍方式を用い、高温側冷媒回路と低温側冷媒回路とをカスケード接続することが知られ、例えば特許文献1に記載されている。
【0003】
【特許文献1】
特開平10−300330号公報
【0004】
【発明が解決しようとする課題】
超低温フリーザを使用する場所、例えばバイオ関連の研究所等では、細胞や血液の検体等は長期保存するために−85℃以下の超低温条件にて保存しているが、日常使用する試薬等の保管温度は、−20℃〜−30℃の低温条件であり、フリーザとして必要とする冷却温度が2種類となっている。
しかし、上記従来技術においては、収納室が1室であり、温度仕様が超低温条件のみであることから、超低温フリーザとは別に温度仕様の異なるフリーザを設置する必要があり、フリーザの設置スペースが大きくなり、またコストも高くなる。
【0005】
本発明の目的は、1台の超低温フリーザにて超低温と低温の2種類の温度仕様を満足すると共に、フリーザの設置スペースの削減、コストの低減を図ることにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために本発明は、断熱材により形成される断熱筐体及び断熱扉と、断熱筐体の内部に収納した物品を低温側及び高温側サイクルをカスケード接続した2元冷凍装置で冷却する超低温フリーザにおいて、断熱筐体を断熱壁により区切り、それぞれ独立した断熱扉が設けられた複数の収納庫と、それぞれの収納庫に取り付けられる冷却器と、を備え、冷却器の一方を低温側サイクルに、他方を高温側サイクルに接続したものである。
【0007】
また、上記のものにおいて、低温側サイクルと高温側サイクルはカスケードコンデンサを介して接続された二元冷凍サイクル(二段カスケード冷凍サイクル)を構成し、高温側サイクルに接続された冷却器はカスケードコンデンサと並列に接続されることが望ましい。
【0008】
さらに、上記のものにおいて、低温側サイクルと高温側サイクルはカスケードコンデンサを介して接続された二元冷凍サイクル(二段カスケード冷凍サイクル)を構成し、高温側サイクルに接続された冷却器はカスケードコンデンサと並列に接続され、冷却器及びカスケードコンデンサの上流側にそれぞれ電磁弁を設け、該電磁弁の開閉により冷却器及びカスケードコンデンサへの冷媒の流れを切換えることが望ましい。
【0009】
さらに、上記のものにおいて、高温側サイクルに用いられる圧縮機はインバータにより容量制御が可能とされたことが望ましい。
さらに、上記のものにおいて、収納庫を3室とし、2室の冷却器のを低温側サイクルに並列に接続し、それぞれの上流側に電磁弁を設け、該電磁弁の開閉により冷媒の流れを切換えることが望ましい。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、一実施の形態による超低温フリーザの側面断面図であり、1は断熱筐体であり、内部を断熱壁2により区切り、断熱扉3を各々に設けている。これにより、断熱材4により周囲からの熱移動を遮断され、収納庫5aおよび5bは各々独立した空間とされている。
収納庫5a、5bには、各々に内部温度を検出するための温度センサ6を装備し、冷却器7a、7bは、冷却管7が内槽材1aの外側に密着して取り付けられ、内槽材1aを伝熱面としたチューブオンシート型のとされる。また、収納庫5aに取り付けられた冷却器7aは二元冷凍装置の低温側サイクルに接続され、収納庫5bに取り付けられた冷却器7bは高温側サイクルに接続される。
【0011】
収納庫5aは超低温条件の仕様の収納庫となり、収納庫5bは低温条件の仕様の収納庫となる。冷却器の形態は、超低温フリーザではチューブオンシート型が一般的であるが、フィンチューブ型の冷却器としても良い。また、二元冷凍装置の低温側サイクルおよび高温側サイクルに接続する冷却器(収納庫)の位置関係は、上の収納庫5aを低温条件、下の収納庫5bを超低温条件の仕様としたり、超低温条件の収納庫と低温条件の収納庫を横に並べたり、しても良い。
【0012】
図2は、二元冷凍装置の冷凍サイクル系統の概略図であり、低温側サイクルと高温側サイクルがカスケードコンデンサを介して接続され、二元冷凍サイクル(二段カスケード冷凍サイクル)を構成する。二元高温側サイクルの主要部品は、圧縮機8、凝縮器9、カスケードコンデンサ10、冷却器7bおよびカスケードコンデンサ、冷却器各々の上流側に設けた電磁弁11a,11b、キャピラリチューブ12a,12bで構成され、二元低温側サイクルは、圧縮機13、カスケードコンデンサ10、キャピラリチューブ14、冷却器7aで構成されている。
高温側サイクルの冷却器7bは、カスケードコンデンサ10と並列に接続され、各々の上流側に設けた電磁弁11a,11bの開閉により冷媒の流れを、カスケードコンデンサ10側のみ、冷却器7b側のみ、カスケードコンデンサ10側と冷却器7b側の両方というように切換え可能としている。
【0013】
電磁弁11a,11bの開閉は、各々の収納庫に設けた温度センサ6の測定値と各収納庫の設定温度との比較により制御し、収納庫5a,5b共冷却が必要な場合には、電磁弁11a,11b共に開となり、高温側サイクルの冷媒はカスケードコンデンサ10側と冷却器7b側の双方に流れ、カスケードコンデンサ10側では低温側サイクルの冷媒を冷却・液化し、冷却器7b側では収納庫5b内を冷却する。そして、収納庫5aは冷却が必要で5bが冷却不要の場合には、電磁弁11aが開、11bが閉となり、冷媒はカスケードコンデンサ10側のみに流れ、逆に収納庫5aは冷却不要で5bは冷却が必要な場合には、電磁弁11aが閉、11bが開となり、冷媒は冷却器7b側のみに流れるようになる。低温側サイクルは、収納庫5aの冷却の必要有無でON―OFF制御し、冷却不要の場合にはOFFとする。つまり、1台の二元冷凍装置を備えた超低温フリーザにて、各々の収納庫の状況にあわせて高温側サイクルの冷媒の流れを切換えることで、低温条件と超低温条件の2種類の温度仕様の収納庫の温度制御が可能となる。
【0014】
また、インバータ15を搭載し、高温側サイクルの圧縮機8を各収納庫の状況にあわせて容量制御することで、二元冷凍装置の運転を安定させるとともに、運転に要する消費電力の低減が可能となる。例えば、収納庫5a、5b共に冷却を必要とする場合には高温側サイクルの必要冷却能力が大きいため100%の運転とし、収納庫5aのみ冷却が必要な場合には75%運転、収納庫5bのみ冷却が必要な場合には50%運転というように必要冷却能力にあわせて容量制御することで、二元冷凍サイクル(二段カスケード冷凍サイクル)の高温側と低温側の能力バランスを適正な状態に制御可能となり、安定した運転が可能となる。
【0015】
図3は、収納庫を3室とした場合を示し、超低温条件2室と低温条件1室の場合のサイクル系統の概略図である。低温側サイクルに接続する冷却器7aが2個並列に接続され、各々の上流側に電磁弁16、キャピラリチューブ14を設けている。2室の場合と同様に、各々の収納庫内の温度により各々の電磁弁を開閉することで、冷媒の冷却器への流れを制御し、収納庫内の温度制御を実施する。また、さらに多室の場合でも、温度仕様により高温側サイクルおよび低温側サイクルに分けて各々並列に接続し、各々の上流側に電磁弁を設けることで1台の二元冷凍装置により各収納庫の温度制御が可能となる。このように小容量の収納庫を多室にすることで、扉の開閉による庫内温度上昇の影響を細分化することが可能となる。また、インバータ17を搭載し、低温側サイクルの圧縮機13を低温側サイクルに接続した冷却器を備えた各収納庫内の温度により容量制御することで、前述の高温側サイクルの圧縮機8の容量制御と合わせて二元冷凍サイクル(二段カスケード冷凍サイクル)の運転の安定化と消費電力低減を図ることが可能となる。
【0016】
以上述べたように、1台の二元冷凍装置を備えた超低温フリーザにて、複数備えた収納庫の各々の状況にあわせて高温側サイクルの冷媒の流れを切換えることで、低温条件と超低温条件の2種類の温度仕様の収納庫の温度制御が可能となる。また、1台の二元冷凍装置として集約しているので、フリーザの設置スペースの低減を図ることが可能となり、超低温フリーザの部品点数の削減が図れ、製造原価の低減が可能となる。
【0017】
【発明の効果】
以上述べたように、本発明によれば、1台の超低温フリーザにて超低温と低温の2種類の温度仕様を満足すると共に、フリーザの設置スペースの削減、コストの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明による一実施の形態における超低温フリーザの収納室部分を示す側断面図。
【図2】一実施の形態における超低温フリーザの冷凍サイクル系統図。
【図3】超低温フリーザの収納室を3室とした他の実施の形態における冷凍サイクル系統図。
【符号の説明】
1…断熱筐体、2…断熱壁、3…断熱扉、5a…収納庫(超低温仕様)、5b…収納庫(低温仕様)、7…冷却管、7a,7b…冷却器、8…圧縮機(高温側)10…カスケードコンデンサ、11a,11b,16…電磁弁、12a,12b,14…キャピラリチューブ、13…圧縮機(低温側)、15,17…インバータ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultra-low temperature freezer that maintains the inside of an insulated housing at an ultra-low temperature and stores stored items.
[0002]
[Prior art]
The ultra-low-temperature freezer is used for long-term storage of samples such as cells and blood, and uses a binary refrigeration system as a refrigerating device to cool and maintain the inside of the storage at an ultra-low temperature of -85 ° C or lower. It is known to cascade a circuit and a low-temperature side refrigerant circuit, and is described in, for example, Patent Document 1.
[0003]
[Patent Document 1]
JP 10-300330 A
[Problems to be solved by the invention]
In places where ultra-low temperature freezers are used, for example, bio-related laboratories, cells and blood specimens are stored under ultra-low temperature conditions of -85 ° C or lower for long-term storage. The temperature is a low temperature condition of −20 ° C. to −30 ° C., and there are two types of cooling temperatures required for the freezer.
However, in the above-mentioned conventional technology, since there is only one storage room and the temperature specification is only the ultra-low temperature condition, it is necessary to install a freezer having a different temperature specification separately from the ultra-low temperature freezer, and the installation space of the freezer is large. Cost is also high.
[0005]
SUMMARY OF THE INVENTION It is an object of the present invention to satisfy two kinds of temperature specifications of ultra-low temperature and low temperature with one ultra-low temperature freezer, and to reduce the installation space and cost of the freezer.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a binary refrigeration apparatus in which a heat-insulating housing and a heat-insulating door formed of a heat-insulating material, and a low-temperature side and a high-temperature side cycle are cascaded with articles housed inside the heat-insulating housing. In the ultra-low-temperature freezer that cools down, the heat-insulating housing is divided by heat-insulating walls, and includes a plurality of storages provided with independent heat-insulating doors, and coolers attached to the respective storages, and one of the coolers is provided. The low-temperature side cycle is connected to the high-temperature side cycle.
[0007]
In the above, the low-temperature cycle and the high-temperature cycle constitute a binary refrigeration cycle (two-stage cascade refrigeration cycle) connected via a cascade condenser, and the cooler connected to the high-temperature cycle is a cascade condenser. Is desirably connected in parallel.
[0008]
Further, in the above, the low-temperature cycle and the high-temperature cycle constitute a binary refrigeration cycle (two-stage cascade refrigeration cycle) connected via a cascade condenser, and the cooler connected to the high-temperature cycle is a cascade condenser. It is desirable to provide an electromagnetic valve upstream of the cooler and the cascade condenser, respectively, and to switch the flow of the refrigerant to the cooler and the cascade condenser by opening and closing the electromagnetic valves.
[0009]
Furthermore, in the above, it is desirable that the capacity of the compressor used in the high-temperature side cycle can be controlled by an inverter.
Further, in the above-mentioned one, the storage is made into three chambers, the coolers of two chambers are connected in parallel to the low-temperature side cycle, solenoid valves are provided on the upstream side, and the flow of the refrigerant is controlled by opening and closing the solenoid valves. It is desirable to switch.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view of an ultra-low temperature freezer according to an embodiment. Reference numeral 1 denotes a heat-insulating housing, the inside of which is separated by a heat-insulating wall 2, and a heat-insulating door 3 is provided for each. Thereby, the heat transfer from the surroundings is blocked by the heat insulating material 4, and the storages 5a and 5b are respectively independent spaces.
Each of the storages 5a and 5b is provided with a temperature sensor 6 for detecting an internal temperature, and the coolers 7a and 7b are provided with a cooling pipe 7 attached in close contact with the outside of the inner tank material 1a. It is a tube-on-sheet type having the material 1a as a heat transfer surface. The cooler 7a attached to the storage 5a is connected to the low-temperature cycle of the binary refrigeration system, and the cooler 7b attached to the storage 5b is connected to the high-temperature cycle.
[0011]
The storage 5a is a storage under the specification of the ultra low temperature condition, and the storage 5b is a storage under the specification of the low temperature condition. As a form of the cooler, a tube-on-sheet type is generally used in an ultra-low-temperature freezer, but a fin tube type cooler may be used. In addition, the positional relationship of the cooler (storage) connected to the low-temperature cycle and the high-temperature cycle of the binary refrigeration system is such that the upper storage 5a has a low-temperature condition and the lower storage 5b has an ultra-low temperature specification, A storage room at an ultra-low temperature condition and a storage room at a low temperature condition may be arranged side by side.
[0012]
FIG. 2 is a schematic diagram of a refrigeration cycle system of a binary refrigeration apparatus, in which a low-temperature side cycle and a high-temperature side cycle are connected via a cascade condenser to form a binary refrigeration cycle (two-stage cascade refrigeration cycle). The main parts of the binary high-temperature side cycle are a compressor 8, a condenser 9, a cascade condenser 10, a cooler 7b and a cascade condenser, solenoid valves 11a and 11b provided upstream of each cooler, and capillary tubes 12a and 12b. The binary low-temperature side cycle includes a compressor 13, a cascade condenser 10, a capillary tube 14, and a cooler 7a.
The cooler 7b of the high-temperature side cycle is connected in parallel with the cascade condenser 10, and controls the flow of the refrigerant by opening and closing the solenoid valves 11a and 11b provided on the respective upstream sides, only the cascade condenser 10 side, only the cooler 7b side, Switching can be performed on both the cascade condenser 10 side and the cooler 7b side.
[0013]
The opening and closing of the solenoid valves 11a and 11b is controlled by comparing the measured value of the temperature sensor 6 provided in each storage with the set temperature of each storage. When both the storages 5a and 5b need to be cooled, The solenoid valves 11a and 11b are both opened, and the refrigerant in the high-temperature cycle flows to both the cascade condenser 10 and the cooler 7b, and the refrigerant in the low-temperature cycle is cooled and liquefied on the cascade condenser 10 side, and is cooled in the cooler 7b. The inside of the storage 5b is cooled. When the storage 5a needs to be cooled and 5b does not need to be cooled, the solenoid valve 11a is opened and 11b is closed, and the refrigerant flows only to the cascade condenser 10 side. When cooling is required, the solenoid valve 11a is closed and 11b is opened, so that the refrigerant flows only to the cooler 7b side. The low-temperature side cycle is ON-OFF controlled depending on whether or not the storage 5a needs to be cooled, and is turned OFF when cooling is unnecessary. In other words, by switching the flow of refrigerant in the high-temperature side cycle according to the condition of each storage in an ultra-low temperature freezer equipped with one binary refrigeration system, two types of temperature specifications, low-temperature condition and ultra-low temperature condition, are available. The temperature of the storage can be controlled.
[0014]
In addition, by mounting the inverter 15 and controlling the capacity of the compressor 8 in the high-temperature cycle according to the condition of each storage, the operation of the binary refrigeration system can be stabilized and the power consumption required for operation can be reduced. It becomes. For example, when both the storages 5a and 5b require cooling, 100% operation is performed because the required cooling capacity of the high-temperature cycle is large, and when only the storage 5a is required to be cooled, 75% operation is performed. When only cooling is required, the capacity is controlled in accordance with the required cooling capacity, such as 50% operation, so that the capacity balance between the high temperature side and the low temperature side of the binary refrigeration cycle (two-stage cascade refrigeration cycle) is in an appropriate state. And stable operation becomes possible.
[0015]
FIG. 3 shows a case where the number of storages is three, and is a schematic diagram of a cycle system in the case of two ultra-low temperature conditions and one low temperature condition. Two coolers 7a connected to the low-temperature side cycle are connected in parallel, and an electromagnetic valve 16 and a capillary tube 14 are provided on each upstream side. As in the case of the two chambers, the flow of the refrigerant to the cooler is controlled by opening and closing each solenoid valve according to the temperature in each storage, and the temperature in the storage is controlled. In addition, even in the case of a multi-chamber, each is divided into a high-temperature side cycle and a low-temperature side cycle according to the temperature specification, and connected in parallel. Temperature control becomes possible. By making the small-capacity storage multi-unit as described above, it is possible to subdivide the effect of the internal temperature rise due to the opening and closing of the door. Further, by controlling the capacity according to the temperature in each storage provided with a cooler having an inverter 17 and a compressor connected to the low-temperature cycle of the low-temperature cycle compressor 13, the compressor 8 of the high-temperature cycle described above is controlled. Together with the capacity control, it is possible to stabilize the operation of the binary refrigeration cycle (two-stage cascade refrigeration cycle) and reduce the power consumption.
[0016]
As described above, by switching the flow of the refrigerant in the high-temperature side cycle according to the situation of each of the plurality of storages in the ultra-low temperature freezer equipped with one binary refrigeration system, the low-temperature condition and the ultra-low temperature condition are obtained. The temperature control of the storage of two kinds of temperature specifications becomes possible. In addition, since it is integrated as one binary refrigeration apparatus, it is possible to reduce the installation space of the freezer, reduce the number of parts of the ultra-low temperature freezer, and reduce the manufacturing cost.
[0017]
【The invention's effect】
As described above, according to the present invention, a single ultra-low temperature freezer can satisfy two types of temperature specifications, ultra-low temperature and low temperature, and can reduce the installation space and cost of the freezer.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a storage room portion of an ultra-low temperature freezer according to an embodiment of the present invention.
FIG. 2 is a refrigeration cycle system diagram of an ultra-low temperature freezer in one embodiment.
FIG. 3 is a refrigeration cycle system diagram in another embodiment in which three storage rooms for the ultra-low temperature freezer are provided.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulated housing, 2 ... Insulated wall, 3 ... Insulated door, 5a ... Storage (ultra low temperature specification), 5b ... Storage (low temperature specification), 7 ... Cooling pipe, 7a, 7b ... Cooler, 8 ... Compressor (High temperature side) 10: Cascade condenser, 11a, 11b, 16: Solenoid valve, 12a, 12b, 14: Capillary tube, 13: Compressor (low temperature side), 15, 17: Inverter.

Claims (5)

断熱材により形成される断熱筐体及び断熱扉と、前記断熱筐体の内部に収納した物品を低温側及び高温側サイクルをカスケード接続した2元冷凍装置で冷却する超低温フリーザにおいて、
前記断熱筐体を断熱壁により区切り、それぞれ独立した断熱扉が設けられた複数の収納庫と、それぞれの前記収納庫に取り付けられる冷却器と、を備え、
前記冷却器の一方を前記低温側サイクルに、他方を高温側サイクルに接続したことを特徴とする超低温フリーザ。
An insulated housing and an insulated door formed of an insulating material, and an ultra-low-temperature freezer that cools an article stored in the insulated housing with a binary refrigeration apparatus in which a low-temperature side and a high-temperature side cycle are cascaded.
The heat-insulating housing is separated by a heat-insulating wall, comprising a plurality of storages provided with independent heat-insulating doors, and a cooler attached to each of the storages,
An ultra low temperature freezer, wherein one of the coolers is connected to the low temperature side cycle and the other is connected to the high temperature side cycle.
請求項1に記載のものにおいて、前記低温側サイクルと前記高温側サイクルはカスケードコンデンサを介して接続された二元冷凍サイクルを構成し、前記高温側サイクルに接続された前記冷却器は前記カスケードコンデンサと並列に接続されることを特徴とする超低温フリーザ。2. The device according to claim 1, wherein the low-temperature cycle and the high-temperature cycle constitute a binary refrigeration cycle connected via a cascade condenser, and the cooler connected to the high-temperature cycle comprises the cascade condenser. An ultra-low-temperature freezer, which is connected in parallel with the above. 請求項1に記載のものにおいて、前記低温側サイクルと前記高温側サイクルはカスケードコンデンサを介して接続された二元冷凍サイクルを構成し、前記高温側サイクルに接続された前記冷却器は前記カスケードコンデンサと並列に接続され、前記冷却器及び前記カスケードコンデンサの上流側にそれぞれ電磁弁を設け、該電磁弁の開閉により前記冷却器及び前記カスケードコンデンサへの冷媒の流れを切換えることを特徴とする超低温フリーザ。2. The device according to claim 1, wherein the low-temperature cycle and the high-temperature cycle constitute a binary refrigeration cycle connected via a cascade condenser, and the cooler connected to the high-temperature cycle comprises the cascade condenser. An ultra-low-temperature freezer, which is connected in parallel with the cooling device and an electromagnetic valve is provided on the upstream side of the chiller and the cascade condenser, and the flow of the refrigerant to the chiller and the cascade condenser is switched by opening and closing the electromagnetic valve. . 請求項1に記載のものにおいて、前記高温側サイクルに用いられる圧縮機はインバータにより容量制御が可能とされたことを特徴とする超低温フリーザ。2. The ultra low temperature freezer according to claim 1, wherein a capacity of the compressor used in the high temperature side cycle can be controlled by an inverter. 請求項1に記載のものにおいて、前記収納庫を3室とし、2室の前記冷却器のを前記低温側サイクルに並列に接続し、それぞれの上流側に電磁弁を設け、該電磁弁の開閉により冷媒の流れを切換えることを特徴とする超低温フリーザ。2. The apparatus according to claim 1, wherein the storage has three chambers, two coolers are connected in parallel to the low-temperature side cycle, and solenoid valves are provided upstream of each of the coolers, and the solenoid valves are opened and closed. An ultra-low temperature freezer characterized by switching the flow of refrigerant by means of
JP2003130970A 2003-05-09 2003-05-09 Ultradeep freezer Pending JP2004333043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130970A JP2004333043A (en) 2003-05-09 2003-05-09 Ultradeep freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130970A JP2004333043A (en) 2003-05-09 2003-05-09 Ultradeep freezer

Publications (2)

Publication Number Publication Date
JP2004333043A true JP2004333043A (en) 2004-11-25
JP2004333043A5 JP2004333043A5 (en) 2006-02-23

Family

ID=33506268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130970A Pending JP2004333043A (en) 2003-05-09 2003-05-09 Ultradeep freezer

Country Status (1)

Country Link
JP (1) JP2004333043A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043750A (en) * 2008-08-08 2010-02-25 Sharp Corp Refrigerator-freezer
EP2325580A1 (en) * 2008-09-16 2011-05-25 Sanyo Electric Co., Ltd. Refrigeration device
JP2015200498A (en) * 2009-09-30 2015-11-12 サーモ・フィッシャー・サイエンティフィック・(アシュヴィル)・エルエルシー Cooling system having variable speed compressor
CN106403341A (en) * 2016-09-05 2017-02-15 珠海格力电器股份有限公司 Multi-temperature-zone cascade refrigeration system and low-temperature refrigerated storage box
CN106440446A (en) * 2016-08-31 2017-02-22 珠海格力电器股份有限公司 Multiple-temperature-zone refrigeration control method and system
CN111043786A (en) * 2019-12-23 2020-04-21 江苏苏净集团有限公司 Carbon dioxide cascade heating unit and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976144A (en) * 1972-11-24 1974-07-23
JPS56157776A (en) * 1980-05-06 1981-12-05 Hitachi Ltd Refrigerating chamber
JPS59197768A (en) * 1983-04-22 1984-11-09 三菱電機株式会社 Refrigerator
JP2002346403A (en) * 2001-05-22 2002-12-03 Hitachi Ltd Thermohygrostat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976144A (en) * 1972-11-24 1974-07-23
JPS56157776A (en) * 1980-05-06 1981-12-05 Hitachi Ltd Refrigerating chamber
JPS59197768A (en) * 1983-04-22 1984-11-09 三菱電機株式会社 Refrigerator
JP2002346403A (en) * 2001-05-22 2002-12-03 Hitachi Ltd Thermohygrostat

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043750A (en) * 2008-08-08 2010-02-25 Sharp Corp Refrigerator-freezer
EP2325580A1 (en) * 2008-09-16 2011-05-25 Sanyo Electric Co., Ltd. Refrigeration device
EP2325580A4 (en) * 2008-09-16 2017-03-29 Panasonic Healthcare Holdings Co., Ltd. Refrigeration device
EP3495751A1 (en) * 2008-09-16 2019-06-12 PHC Holdings Corporation Refrigeration device
EP3789694A1 (en) * 2008-09-16 2021-03-10 PHC Holdings Corporation Refrigeration device
US10845097B2 (en) 2009-09-30 2020-11-24 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
JP2015200498A (en) * 2009-09-30 2015-11-12 サーモ・フィッシャー・サイエンティフィック・(アシュヴィル)・エルエルシー Cooling system having variable speed compressor
US9835360B2 (en) 2009-09-30 2017-12-05 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
US10072876B2 (en) 2009-09-30 2018-09-11 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
US10816243B2 (en) 2009-09-30 2020-10-27 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
CN106440446A (en) * 2016-08-31 2017-02-22 珠海格力电器股份有限公司 Multiple-temperature-zone refrigeration control method and system
CN106403341A (en) * 2016-09-05 2017-02-15 珠海格力电器股份有限公司 Multi-temperature-zone cascade refrigeration system and low-temperature refrigerated storage box
CN111043786A (en) * 2019-12-23 2020-04-21 江苏苏净集团有限公司 Carbon dioxide cascade heating unit and control method thereof

Similar Documents

Publication Publication Date Title
CN101865587B (en) Low temperature refrigerator
KR20040020618A (en) Refrigerator
KR100377495B1 (en) Refrigerator
JP2008249292A (en) Refrigerator
CN204043281U (en) Refrigerator
JP2004333043A (en) Ultradeep freezer
KR100382503B1 (en) Methode for controlling working of refrigerator
JP2006090663A (en) Refrigerator
JP2003050073A5 (en)
JP2021181850A (en) refrigerator
JP2004092939A (en) Refrigerator-freezer
KR100377618B1 (en) Refrigerator with Phase change material
JP5501407B2 (en) refrigerator
WO2020121404A1 (en) Refrigerator
KR20030012622A (en) A refrigerating cycle of the refrigerator
KR100390437B1 (en) method for controlling driving in the refrigerator with 2 evaporators
JP2005090811A (en) Refrigerator
JP2018004121A (en) Refrigerator
JP4895707B2 (en) refrigerator
JP3710353B2 (en) refrigerator
JPS6146373Y2 (en)
JP2010038483A (en) Refrigerator
KR100404192B1 (en) Refrigerating cycle of refrigerator
KR100464970B1 (en) Refrigerator having one room and method for controlling the same
JP2002286347A (en) Cooling storage box

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930