JP2004332692A - Intake air quantity calculating device of internal combustion engine - Google Patents

Intake air quantity calculating device of internal combustion engine Download PDF

Info

Publication number
JP2004332692A
JP2004332692A JP2003133147A JP2003133147A JP2004332692A JP 2004332692 A JP2004332692 A JP 2004332692A JP 2003133147 A JP2003133147 A JP 2003133147A JP 2003133147 A JP2003133147 A JP 2003133147A JP 2004332692 A JP2004332692 A JP 2004332692A
Authority
JP
Japan
Prior art keywords
cylinder
intake air
air amount
cylinders
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003133147A
Other languages
Japanese (ja)
Inventor
Eijiro Yamada
英治郎 山田
Hidehiko Asakuma
英彦 朝熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003133147A priority Critical patent/JP2004332692A/en
Publication of JP2004332692A publication Critical patent/JP2004332692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately calculate an intake air quantity for each cylinder without providing a new sensor such as a combustion pressure sensor. <P>SOLUTION: A #X cylinder inner temperature of each cylinder of the internal combustion engine is estimated (step S107), and #X cylinder filling efficiency is calculated based on the #X cylinder inner temperature (step S103). A #X cylinder intake air quantity is calculated based on the ratio of the #X cylinder filling efficiency and the sum of the latest filling efficiency of all the cylinders, and a sensor detecting intake air quantity detected by an intake air quantity sensor (step S104). As such, since the accurately calculated #X cylinder intake air quantity, i.e., the intake air quantity of each cylinder can be used, a combustion state of each cylinder of the internal combustion engine is optimized to improve fuel efficiency and emission. Also, since the intake air quantity of each cylinder is used, a certain cylinder can be operated in a desired condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数気筒からなる内燃機関における各気筒毎の吸入空気量を算出する内燃機関の吸入空気量算出装置に関し、この得られた各気筒毎の吸入空気量によって内燃機関の運転状態を最適制御することができる。
【0002】
【従来の技術】
従来、内燃機関の吸入空気量算出装置に関連する先行技術文献としては、特開平2−259256号公報にて開示されたものが知られている。このものでは、内燃機関の各気筒毎の吸入空気量(吸入空気流量)を計測し、気筒間の吸入空気量の変動に応じて補正し燃料噴射時間を決定すると共に、図示仕事の変動状態から燃料噴射ノズル等の燃料噴射量にかかわる部位のばらつきを検出することにより燃料噴射時間を増減し燃料噴射量制御を行う技術が示されている。
【特許文献】特開平2−259256号公報(第1頁〜第2頁)
【0003】
【発明が解決しようとする課題】
ところで、前述のものでは、内燃機関の各気筒毎の吸入空気量を求めるため、燃焼室内の圧力を検出する燃焼圧センサを各気筒毎に配設する必要があり、構成が複雑化すると共に、コストアップの要因となっていた。また、吸気温(吸入空気の温度)を各気筒の手前の吸気通路(吸気管)の集合部にて検出し圧力を補正するとしているが、各気筒毎の筒内温度を検出していないため結果として、各気筒毎の吸入空気量を正確に補正することは難しいという不具合があった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、燃焼圧センサ等の新たなセンサ類を配設することなく、各気筒毎の吸入空気量を正確に算出可能な内燃機関の吸入空気量算出装置の提供を課題としている。
【0005】
【課題を解決するための手段】
請求項1の内燃機関の吸入空気量算出装置によれば、筒内温度算出手段で各気筒毎の筒内温度が推定算出され、この各気筒毎の筒内温度が用いられることで内燃機関の気筒数より少ない吸入空気量センサを用い全体吸入空気量算出手段で算出される全体の吸入空気量から各気筒毎の吸入空気量が気筒別吸入空気量算出手段により算出される。このように、気筒別の正確な吸入空気量が得られることで、内燃機関の各気筒毎の燃焼状態が最適化され、燃費やエミッションが改善される。また、気筒別の正確な吸入空気量が得られることで、特定の気筒が所望の運転状態に制御される。
【0006】
請求項2の内燃機関の吸入空気量算出装置における筒内温度算出手段では、各気筒毎の筒内温度の推定算出に際して、各気筒毎の空気過剰率の変化と各気筒毎の点火時期の変化とが考慮されることで、気筒別の筒内温度が極めて正確に推定算出されるという効果が得られる。
【0007】
請求項3の内燃機関の吸入空気量算出装置における筒内温度算出手段では、各気筒毎の筒内温度の推定算出に際して、各気筒毎の空気過剰率の変化に伴って得られる筒内温度への影響係数と、各気筒毎の点火時期の変化に伴って得られる筒内温度への影響係数とを用いることで、マップ・テーブル数の低減が可能となり、少ないマップ・テーブル数においても、気筒別の筒内温度が極めて正確に推定算出されるという効果が得られる。
【0008】
請求項4の内燃機関の吸入空気量算出装置における気筒別吸入空気量算出手段では、各気筒毎の吸入空気量が各気筒毎の筒内温度による各気筒毎の充填効率に基づき算出されることで、気筒別の吸入空気量が極めて正確に算出されるという効果が得られる。
【0009】
請求項5の内燃機関の吸入空気量算出装置における気筒別吸入空気量算出手段では、各気筒毎の吸入空気量に応じて設定された各気筒毎の空気過剰率により気筒別の燃料噴射量が正確に設定可能であるため、内燃機関の各気筒毎の燃焼状態が最適化され、燃費やエミッションが改善される。
【0010】
請求項6の内燃機関の吸入空気量算出装置における気筒別吸入空気量算出手段では、各気筒毎の吸入空気量に応じて設定された各気筒毎の点火時期、即ち、気筒別の点火時期が正確に設定可能であるため、内燃機関の各気筒毎の燃焼状態が最適化され、燃費やエミッションが改善される。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0012】
図1は本発明の実施の形態の一実施例にかかる内燃機関の吸入空気量算出装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【0013】
図1において、内燃機関10は直列4気筒(#1気筒〜#4気筒)4サイクルの火花点火式として構成されている。内燃機関10の上流側には、図示しないエアクリーナから吸入され吸気通路11を通過する吸入空気量GA〔g/sec〕を検出する吸入空気量センサとしてのエアフローメータ12が配設されている。この吸入された空気は、スロットルバルブ13、吸気マニホルド14を通過し、吸気マニホルド14内で#1気筒〜#4気筒に対応する各インジェクタ(燃料噴射弁)15a〜15dから噴射された燃料と混合され、所定の空燃比(A/F)の混合気として各気筒(#1気筒〜#4気筒)に分配供給される。
【0014】
また、内燃機関10の#1気筒〜#4気筒に配設された各点火プラグ16a〜16dには図示しない点火回路から高電圧が逐次供給され、#1気筒〜#4気筒の混合気が所定タイミングで点火燃焼される。更に、内燃機関10には図示しないクランクシャフト回転に伴うクランク角〔°CA(Crank Angle)〕から機関回転速度NE〔rpm〕を検出するクランク角センサ17が配設され、内燃機関10のシリンダブロックには冷却水温THW〔℃〕を検出する水温センサ18が配設されている。
【0015】
そして、燃焼後の排気ガスは内燃機関10の排気マニホルド21に接続された排気通路22から図示しない触媒コンバータを通過したのち大気中に排出される。この排気通路22には排気ガス中の空燃比を検出するA/Fセンサ23が配設されている。
【0016】
ECU(Electronic Control Unit:電子制御ユニット)30は、周知の各種演算処理を実行する中央処理装置としてのCPU31、制御プログラムや制御マップ等を格納したROM32、各種データ等を格納するRAM33、B/U(バックアップ)RAM34、入出力回路35及びそれらを接続するバスライン36等からなる論理演算回路として構成されている。
【0017】
次に、本発明の実施の形態の一実施例にかかる内燃機関の吸入空気量算出装置で使用されているECU30内のCPU31における各気筒毎の吸入空気量算出の処理手順を示す図2のフローチャートに基づいて説明する。なお、この各気筒毎の吸入空気量算出ルーチンは、図示しないイグニッションスイッチの「ON(オン)」ののち、各気筒(#1気筒〜#4気筒)の燃焼サイクル毎の燃料噴射量算出タイミング直前にCPU31にて繰返し実行される。
【0018】
図2において、まず、ステップS101で、#1気筒〜#4気筒のうちの#X気筒筒内温度が初期化済みであるかが判定される。ステップS101の判定条件が成立せず、即ち、#X気筒筒内温度が初期化済みでないときにはステップS102に移行し、図示しないマップにより、機関回転速度NE、負荷としての吸入空気量GA、更に、補正のための冷却水温THWをパラメータとして#X気筒筒内温度の初期値が算出される。一方、ステップS101の判定条件が成立、即ち、#X気筒筒内温度が初期化済みであるときにはステップS102がスキップされる。
【0019】
次にステップS103に移行して、#X気筒筒内温度に基づき#X気筒の充填効率が算出される。ここで、一般的に、充填効率η は、大気状態(P:圧力,T:温度)のもとでシリンダに吸入した新気の質量Gs と、標準状態(P :標準圧力,T :標準温度)のもとで総行程容積を占める新気の質量Gh との比であり、次式(1)にて表わされる。
【0020】
【数1】
η =(Gs /Gh )×100〔%〕 ・・・(1)
【0021】
次にステップS104に移行して、エアフローメータ12により検出されるセンサ検出吸入空気量(=吸入空気量GA)と#X気筒充填効率と全気筒の最新充填効率の和とから次式(2)にて、#X気筒吸入空気量が算出される。
【0022】
【数2】
#X気筒吸入空気量=(センサ検出吸入空気量)・(#X気筒充填効率)/(全気筒の最新充填効率の和) ・・・(2)
【0023】
次にステップS105に移行して、ステップS104で算出された#X気筒吸入空気量により#X気筒の空気過剰率目標値が算出される。次にステップS106に移行して、ステップS104で算出された#X気筒吸入空気量により#X気筒の点火時期目標値が算出される。次にステップS107に移行して、後述のように、#X気筒筒内温度が算出されたのち、ステップS101に戻り、同様の処理が繰返し実行される。
【0024】
次に、図2のステップS107における#X気筒筒内温度算出の処理手順を示す図3のフローチャートに基づき、図4、図5及び図6を参照して説明する。ここで、図4は図3で機関回転速度NE、負荷としての吸入空気量GAをパラメータとして基本筒内温度〔℃〕を算出するマップであり、図5は図3で空気過剰率λをパラメータとして筒内温度影響係数を算出するテーブルであり、図6は図3でMBTからの点火遅角量〔°CA〕をパラメータとして筒内温度影響係数を算出するテーブルである。
【0025】
図3において、ステップS201では、図4に示すマップにより、機関回転速度NE、負荷としての吸入空気量GAをパラメータとして空気過剰率λ=1.0、かつMBT時における基本筒内温度が得られ、更に、この基本筒内温度が冷却水温THWにて補正され、最終的な基本筒内温度が算出される。次にステップS202に移行して、図5に示すテーブルにより、空気過剰率λをパラメータとして筒内温度影響係数が得られ、更に、この筒内温度影響係数が冷却水温THWにて補正され、最終的な#X気筒の筒内温度影響係数が算出される。次にステップS203に移行して、図6に示すテーブルにより、#X気筒点火時期としてMBTからの点火遅角量をパラメータとして筒内温度影響係数が得られ、更に、この筒内温度影響係数が冷却水温THWにて補正され、最終的な#X気筒の筒内温度影響係数が算出される。
【0026】
次にステップS204に移行して、ステップS201で算出された基本筒内温度にステップS202で算出された空気過剰率による筒内温度影響係数及びステップS203で算出された点火時期による筒内温度影響係数が乗算され、現#X気筒筒内温度が算出される。次にステップS205に移行して、ステップS204で算出された現#X気筒筒内温度に対して例えば、移動平均を用いたなまし(平滑化)処理が行われ、#X気筒筒内温度が算出され、本ルーチンを終了する。
【0027】
このように、本実施例の内燃機関の吸入空気量算出装置は、複数気筒(#1気筒〜#4気筒)からなる内燃機関10の気筒数4より少ない1つの吸入空気量センサであるエアフローメータ12を用い、内燃機関10に供給される全体の吸入空気量であるセンサ検出吸入空気量GAを算出するECU30にて達成される全体吸入空気量算出手段と、各気筒(#1気筒〜#4気筒)毎の筒内温度である#X気筒筒内温度を推定算出するECU30にて達成される筒内温度算出手段と、センサ検出吸入空気量GAと#X気筒筒内温度とに基づき各気筒(#1気筒〜#4気筒)毎の吸入空気量である#X気筒吸入空気量を算出する気筒別吸入空気量算出手段とを具備するものである。
【0028】
つまり、#X気筒筒内温度を推定算出し、この#X気筒筒内温度を用いることでセンサ検出吸入空気量GAから#X気筒吸入空気量が算出される。これにより、正確に算出された#X気筒吸入空気量、即ち、気筒別の吸入空気量を用いることができるため、内燃機関10の各気筒毎の燃焼状態を最適化して、燃費やエミッションを改善することができる。また、気筒別の吸入空気量を用いることにより特定の気筒を所望の運転状態に制御することができる。
【0029】
また、本実施例の内燃機関の吸入空気量算出装置のECU30にて達成される筒内温度算出手段は、各気筒(#1気筒〜#4気筒)毎の筒内温度である#X気筒筒内温度を、各気筒(#1気筒〜#4気筒)毎の空気過剰率λである#X気筒空気過剰率の変化と、各気筒(#1気筒〜#4気筒)毎の点火時期である#X気筒点火時期の変化とに基づき推定算出するものである。このように、#X気筒筒内温度の推定算出に際して、#X気筒空気過剰率の変化と#X気筒点火時期の変化とが考慮されることで、#X気筒筒内温度、即ち、気筒別の筒内温度を極めて正確に推定算出することができる。
【0030】
そして、本実施例の内燃機関の吸入空気量算出装置のECU30にて達成される筒内温度算出手段は、各気筒(#1気筒〜#4気筒)毎の筒内温度である#X気筒筒内温度を、空気過剰率λが1.0、かつ点火時期がMBTであるときの基本筒内温度と、各気筒(#1気筒〜#4気筒)毎の空気過剰率λである#X気筒空気過剰率の変化に伴って算出される筒内温度影響係数と、各気筒(#1気筒〜#4気筒)毎の点火時期である#X気筒点火時期のMBTからの点火遅角量の変化に伴って算出される筒内温度影響係数とに基づき推定算出するものである。このように、#X気筒筒内温度の推定算出に際して、#X気筒空気過剰率の変化に伴って算出される筒内温度影響係数と、#X気筒点火時期のMBTからの点火遅角量の変化に伴って算出される筒内温度影響係数とを用いることで、マップ・テーブル数の低減が可能となり、少ないマップ・テーブル数においても、#X気筒筒内温度、即ち、気筒別の筒内温度を極めて正確に推定算出することができる。
【0031】
更に、本実施例の内燃機関の吸入空気量算出装置のECU30にて達成される気筒別吸入空気量算出手段は、各気筒(#1気筒〜#4気筒)毎の筒内温度である#X気筒筒内温度から各気筒(#1気筒〜#4気筒)毎の充填効率である#X気筒充填効率を算出し、この#X気筒充填効率に基づき各気筒(#1気筒〜#4気筒)毎の吸入空気量である#X気筒吸入空気量を算出するものである。このように、#X気筒吸入空気量が、#X気筒筒内温度による#X気筒充填効率に基づき算出されることで、#X気筒吸入空気量、即ち、気筒別の吸入空気量を極めて正確に算出することができる。
【0032】
更にまた、本実施例の内燃機関の吸入空気量算出装置のECU30にて達成される気筒別吸入空気量算出手段は、各気筒(#1気筒〜#4気筒)毎の吸入空気量である#X気筒吸入空気量に応じて各気筒(#1気筒〜#4気筒)毎に空気過剰率λとして#X気筒空気過剰率を設定するものである。このように、#X気筒吸入空気量に応じて設定された#X気筒空気過剰率によれば、気筒別の燃料噴射量を正確に設定することができるため、内燃機関10の各気筒毎の燃焼状態を最適化して、燃費やエミッションを改善することができる。
【0033】
加えて、本実施例の内燃機関の吸入空気量算出装置のECU30にて達成される気筒別吸入空気量算出手段は、各気筒(#1気筒〜#4気筒)毎の吸入空気量である#X気筒吸入空気量に応じて各気筒(#1気筒〜#4気筒)毎に点火時期として#X気筒点火時期を設定するものである。このように、#X気筒吸入空気量に応じて設定された#X気筒点火時期によれば、気筒別の点火時期を正確に設定することができるため、内燃機関10の各気筒毎の燃焼状態を最適化して、燃費やエミッションを改善することができる。
【0034】
なお、本実施例の内燃機関の吸入空気量算出装置における各手段を手順に読変えることにより、内燃機関の吸入空気量算出方法の実施例とすることができる。
【0035】
ところで、上記実施例では、各気筒毎の吸入空気量算出ルーチンにおいて、負荷としてエアフローメータで検出される吸入空気量を用いているが、本発明を実施する場合には、これに限定されるものではなく、吸気圧センサにて検出される吸気圧を用いることもできる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の一実施例にかかる内燃機関の吸入空気量算出装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図2】図2は本発明の実施の形態の一実施例にかかる内燃機関の吸入空気量算出装置で使用されているECU内のCPUにおける各気筒毎の吸入空気量算出の処理手順を示すフローチャートである。
【図3】図3は図2における各気筒毎の筒内温度算出の処理手順を示すフローチャートである。
【図4】図4は図3で機関回転速度、吸気圧をパラメータとして基本筒内温度を算出するマップである。
【図5】図5は図3で空気過剰率をパラメータとして筒内温度影響係数を算出するテーブルである。
【図6】図6は図3でMBTからの点火遅角量をパラメータとして筒内温度影響係数を算出するテーブルである。
【符号の説明】
10 内燃機関
12 エアフローメータ(吸入空気量センサ)
30 ECU(電子制御ユニット)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intake air amount calculation device for an internal combustion engine that calculates an intake air amount for each cylinder in an internal combustion engine having a plurality of cylinders, and optimizes an operation state of the internal combustion engine based on the obtained intake air amount for each cylinder. Can be controlled.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a prior art document related to an intake air amount calculation device for an internal combustion engine, one disclosed in Japanese Patent Application Laid-Open No. 2-259256 is known. In this apparatus, an intake air amount (intake air flow rate) for each cylinder of an internal combustion engine is measured, corrected in accordance with a variation in intake air amount between cylinders, and a fuel injection time is determined. There is disclosed a technique for controlling a fuel injection amount by detecting a variation in a portion related to a fuel injection amount such as a fuel injection nozzle to increase or decrease a fuel injection time.
[Patent Document] JP-A-2-259256 (pages 1 to 2)
[0003]
[Problems to be solved by the invention]
By the way, in the above, in order to obtain the intake air amount for each cylinder of the internal combustion engine, it is necessary to provide a combustion pressure sensor for detecting the pressure in the combustion chamber for each cylinder, which complicates the configuration and This was a factor of cost increase. In addition, the intake temperature (the temperature of the intake air) is detected at the gathering portion of the intake passage (intake pipe) in front of each cylinder to correct the pressure, but the in-cylinder temperature of each cylinder is not detected. As a result, there is a problem that it is difficult to accurately correct the intake air amount for each cylinder.
[0004]
Therefore, the present invention has been made in order to solve such a problem, and it is possible to accurately calculate an intake air amount for each cylinder without providing new sensors such as a combustion pressure sensor. It is an object to provide an air amount calculation device.
[0005]
[Means for Solving the Problems]
According to the intake air amount calculating device for an internal combustion engine of the first aspect, the in-cylinder temperature of each cylinder is estimated and calculated by the in-cylinder temperature calculating means, and the in-cylinder temperature of each cylinder is used. The intake air amount for each cylinder is calculated by the cylinder-by-cylinder intake air amount calculation means from the total intake air amount calculated by the total intake air amount calculation means using an intake air amount sensor smaller than the number of cylinders. As described above, by obtaining an accurate intake air amount for each cylinder, the combustion state of each cylinder of the internal combustion engine is optimized, and the fuel efficiency and emission are improved. Also, by obtaining an accurate intake air amount for each cylinder, a specific cylinder is controlled to a desired operating state.
[0006]
In the in-cylinder temperature calculating means in the intake air amount calculating device for an internal combustion engine according to claim 2, when estimating and calculating the in-cylinder temperature for each cylinder, a change in an excess air ratio for each cylinder and a change in ignition timing for each cylinder. Is taken into consideration, an effect is obtained that the in-cylinder temperature for each cylinder is estimated and calculated very accurately.
[0007]
In the in-cylinder temperature calculating means of the intake air amount calculating apparatus for an internal combustion engine according to claim 3, when estimating and calculating the in-cylinder temperature for each cylinder, the in-cylinder temperature obtained with the change in the excess air ratio for each cylinder is calculated. And the effect coefficient on the in-cylinder temperature obtained with the change of the ignition timing for each cylinder, the number of map tables can be reduced. The effect is obtained that another in-cylinder temperature is estimated and calculated very accurately.
[0008]
In the cylinder-by-cylinder intake air amount calculation means in the intake air amount calculation apparatus for an internal combustion engine according to claim 4, the intake air amount for each cylinder is calculated based on the charging efficiency for each cylinder based on the in-cylinder temperature for each cylinder. Thus, the effect that the intake air amount for each cylinder is calculated very accurately can be obtained.
[0009]
The cylinder-by-cylinder intake air amount calculation means in the intake air amount calculation apparatus for an internal combustion engine according to claim 5, wherein the fuel injection amount for each cylinder is determined based on the excess air ratio for each cylinder set according to the intake air amount for each cylinder. Since the setting can be made accurately, the combustion state of each cylinder of the internal combustion engine is optimized, and the fuel consumption and emission are improved.
[0010]
The cylinder-by-cylinder intake air amount calculation means in the intake air amount calculation device for an internal combustion engine according to claim 6, wherein the ignition timing for each cylinder set in accordance with the intake air amount for each cylinder, that is, the ignition timing for each cylinder, Since the setting can be made accurately, the combustion state of each cylinder of the internal combustion engine is optimized, and the fuel consumption and emission are improved.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0012]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which an intake air amount calculation device for an internal combustion engine according to one embodiment of the present invention is applied, and peripheral devices thereof.
[0013]
In FIG. 1, the internal combustion engine 10 is configured as a 4-cycle in-line four-cylinder (# 1 cylinder to # 4 cylinder) spark ignition type. An air flow meter 12 as an intake air amount sensor that detects an intake air amount GA [g / sec] that is sucked from an air cleaner (not shown) and passes through the intake passage 11 is disposed upstream of the internal combustion engine 10. The sucked air passes through the throttle valve 13 and the intake manifold 14, and mixes with fuel injected from each of the injectors (fuel injection valves) 15a to 15d corresponding to the # 1 to # 4 cylinders in the intake manifold 14. Then, the mixture is distributed and supplied to each of the cylinders (# 1 cylinder to # 4 cylinder) as an air-fuel mixture having a predetermined air-fuel ratio (A / F).
[0014]
A high voltage is sequentially supplied from a not-shown ignition circuit to each of the ignition plugs 16a to 16d arranged in the # 1 to # 4 cylinders of the internal combustion engine 10 so that the mixture of the # 1 to # 4 cylinders is predetermined. It is ignited and burned at the timing. Further, the internal combustion engine 10 is provided with a crank angle sensor 17 for detecting an engine rotation speed NE [rpm] from a crank angle [° CA (Crank Angle)] accompanying rotation of a crankshaft (not shown). Is provided with a water temperature sensor 18 for detecting a cooling water temperature THW [° C.].
[0015]
The exhaust gas after combustion passes through a catalytic converter (not shown) from an exhaust passage 22 connected to an exhaust manifold 21 of the internal combustion engine 10 and is then discharged into the atmosphere. The exhaust passage 22 is provided with an A / F sensor 23 for detecting an air-fuel ratio in the exhaust gas.
[0016]
An ECU (Electronic Control Unit) 30 includes a CPU 31 as a central processing unit for executing various known arithmetic processing, a ROM 32 for storing a control program and a control map, a RAM 33 for storing various data and the like, a B / U It is configured as a logical operation circuit including a (backup) RAM 34, an input / output circuit 35, and a bus line 36 connecting them.
[0017]
Next, a flowchart of FIG. 2 showing a processing procedure of calculating the intake air amount for each cylinder by the CPU 31 in the ECU 30 used in the intake air amount calculation device for the internal combustion engine according to one embodiment of the present invention. It will be described based on. The intake air amount calculation routine for each cylinder is performed immediately after the ignition switch (not shown) is turned “ON” and immediately before the fuel injection amount calculation timing for each combustion cycle of each cylinder (# 1 cylinder to # 4 cylinder). Is repeatedly executed by the CPU 31.
[0018]
In FIG. 2, first, in step S101, it is determined whether the in-cylinder temperature of the #X cylinder among the # 1 cylinder to the # 4 cylinder has been initialized. If the determination condition in step S101 is not satisfied, that is, if the in-cylinder temperature of the #X cylinder has not been initialized, the process proceeds to step S102, and based on a map (not shown), the engine rotational speed NE, the intake air amount GA as a load, and An initial value of the in-cylinder #X temperature is calculated using the coolant temperature THW for correction as a parameter. On the other hand, when the determination condition of step S101 is satisfied, that is, when the in-cylinder #X temperature has been initialized, step S102 is skipped.
[0019]
Next, the process proceeds to step S103, where the charging efficiency of the #X cylinder is calculated based on the in-cylinder temperature of the #X cylinder. Here, in general, the charging efficiency η c is represented by the mass Gs of fresh air sucked into the cylinder under the atmospheric state (P: pressure, T: temperature) and the standard state (P 0 : standard pressure, T 0). : Standard temperature) and the mass of fresh air occupying the total stroke volume Gh 0 and is expressed by the following equation (1).
[0020]
(Equation 1)
η c = (Gs / Gh 0 ) × 100 [%] (1)
[0021]
Next, the process proceeds to step S104, and the following equation (2) is obtained from the sensor detected intake air amount (= intake air amount GA) detected by the air flow meter 12, the sum of the #X cylinder charging efficiency, and the latest charging efficiency of all cylinders. , The #X cylinder intake air amount is calculated.
[0022]
(Equation 2)
#X cylinder intake air amount = (sensor detected intake air amount) · (#X cylinder charging efficiency) / (sum of latest charging efficiency of all cylinders) (2)
[0023]
Next, the process proceeds to step S105, where the target value of the excess air ratio of the #X cylinder is calculated based on the #X cylinder intake air amount calculated in step S104. Next, the process proceeds to step S106, where the target ignition timing value of the #X cylinder is calculated based on the #X cylinder intake air amount calculated in step S104. Next, the process proceeds to step S107, and after the in-cylinder temperature of the #X cylinder is calculated, as described later, the process returns to step S101, and the same processing is repeatedly executed.
[0024]
Next, a description will be given with reference to FIGS. 4, 5 and 6 based on the flowchart of FIG. 3 showing the processing procedure of #X cylinder in-cylinder temperature calculation in step S107 of FIG. Here, FIG. 4 is a map for calculating the basic in-cylinder temperature [° C.] using the engine speed NE and the intake air amount GA as a load as parameters in FIG. 3, and FIG. FIG. 6 is a table for calculating the in-cylinder temperature influence coefficient using the ignition retard amount [° CA] from the MBT as a parameter in FIG.
[0025]
In FIG. 3, in step S201, an excess air ratio λ = 1.0 and the basic in-cylinder temperature at the time of MBT are obtained using the map shown in FIG. 4 by using the engine speed NE and the intake air amount GA as a load as parameters. Further, the basic in-cylinder temperature is corrected by the cooling water temperature THW, and the final basic in-cylinder temperature is calculated. Next, the process proceeds to step S202, where the in-cylinder temperature influence coefficient is obtained using the excess air ratio λ as a parameter from the table shown in FIG. 5, and the in-cylinder temperature influence coefficient is corrected by the cooling water temperature THW. Of the typical #X cylinder is calculated. Next, proceeding to step S203, the in-cylinder temperature effect coefficient is obtained from the table shown in FIG. 6 by using the ignition retard amount from the MBT as a parameter as the #X cylinder ignition timing. Corrected by the cooling water temperature THW, the final in-cylinder temperature influence coefficient of the #X cylinder is calculated.
[0026]
Next, proceeding to step S204, the in-cylinder temperature influence coefficient by the excess air ratio calculated in step S202 and the in-cylinder temperature influence coefficient by ignition timing calculated in step S203 are added to the basic in-cylinder temperature calculated in step S201. Is multiplied to calculate the current #X cylinder in-cylinder temperature. Next, the process proceeds to step S205, in which, for example, a smoothing process using a moving average is performed on the current #X cylinder temperature calculated in step S204, and the #X cylinder temperature is reduced. This is calculated, and this routine ends.
[0027]
As described above, the intake air amount calculation device for an internal combustion engine according to the present embodiment is an air flow meter that is one intake air amount sensor having a number of cylinders smaller than 4 in the internal combustion engine 10 including a plurality of cylinders (# 1 to # 4 cylinders). 12, a total intake air amount calculation means achieved by an ECU 30 that calculates a sensor detected intake air amount GA that is the total intake air amount supplied to the internal combustion engine 10, and each cylinder (# 1 cylinder to # 4) The in-cylinder temperature calculating means achieved by the ECU 30 for estimating and calculating the #X cylinder in-cylinder temperature, which is the in-cylinder temperature for each cylinder, and each cylinder based on the sensor detected intake air amount GA and the #X cylinder in-cylinder temperature. A cylinder-by-cylinder intake air amount calculating means for calculating an #X cylinder intake air amount which is an intake air amount for each of the (# 1 cylinder to # 4 cylinder).
[0028]
That is, the #X cylinder internal temperature is estimated and calculated, and the #X cylinder intake air amount is calculated from the sensor detected intake air amount GA by using the #X cylinder internal temperature. As a result, the accurately calculated #X cylinder intake air amount, that is, the intake air amount for each cylinder can be used, so that the combustion state of each cylinder of the internal combustion engine 10 is optimized to improve fuel efficiency and emission. can do. In addition, a specific cylinder can be controlled to a desired operating state by using the intake air amount for each cylinder.
[0029]
The in-cylinder temperature calculating means achieved by the ECU 30 of the intake air amount calculating device for an internal combustion engine of the present embodiment is a #X cylinder which is an in-cylinder temperature for each cylinder (# 1 cylinder to # 4 cylinder). The internal temperature is the change of the #X cylinder excess air ratio which is the excess air ratio λ for each cylinder (# 1 cylinder to # 4 cylinder), and the ignition timing for each cylinder (# 1 cylinder to # 4 cylinder). The estimated calculation is performed based on the change in the #X cylinder ignition timing. As described above, when the #X cylinder in-cylinder temperature is estimated and calculated, the change in the #X cylinder air excess ratio and the change in the #X cylinder ignition timing are taken into account, so that the #X cylinder in-cylinder temperature, that is, Can be estimated and calculated very accurately.
[0030]
The in-cylinder temperature calculating means achieved by the ECU 30 of the intake air amount calculating device for an internal combustion engine of the present embodiment is a #X cylinder which is the in-cylinder temperature of each cylinder (# 1 cylinder to # 4 cylinder). The internal temperature is the basic cylinder temperature when the excess air ratio λ is 1.0 and the ignition timing is MBT, and the #X cylinder which is the excess air ratio λ for each cylinder (# 1 cylinder to # 4 cylinder). In-cylinder temperature effect coefficient calculated according to the change in the excess air ratio, and change in ignition retard amount from MBT of #X cylinder ignition timing, which is the ignition timing of each cylinder (# 1 cylinder to # 4 cylinder) Is estimated and calculated based on the in-cylinder temperature influence coefficient calculated in accordance with the above. As described above, in estimating and calculating the #X cylinder in-cylinder temperature, the in-cylinder temperature influence coefficient calculated according to the change in the #X cylinder excess air ratio and the ignition retard amount of the #X cylinder ignition timing from the MBT. By using the in-cylinder temperature influence coefficient calculated with the change, the number of map tables can be reduced. Even with a small number of map tables, the #X cylinder in-cylinder temperature, that is, the in-cylinder The temperature can be estimated and calculated very accurately.
[0031]
Further, the cylinder-by-cylinder intake air amount calculation means achieved by the ECU 30 of the intake air amount calculation device for an internal combustion engine according to the present embodiment includes an in-cylinder temperature for each cylinder (# 1 to # 4 cylinders). The #X cylinder charging efficiency, which is the charging efficiency for each cylinder (# 1 cylinder to # 4 cylinder), is calculated from the cylinder internal temperature, and each cylinder (# 1 cylinder to # 4 cylinder) is calculated based on the #X cylinder charging efficiency. This is for calculating the #X cylinder intake air amount, which is the intake air amount for each cylinder. In this manner, the #X cylinder intake air amount is calculated based on the #X cylinder charging efficiency based on the #X cylinder in-cylinder temperature, so that the #X cylinder intake air amount, that is, the intake air amount for each cylinder is extremely accurate. Can be calculated.
[0032]
Furthermore, the cylinder-by-cylinder intake air amount calculation means achieved by the ECU 30 of the intake air amount calculation device for an internal combustion engine of the present embodiment is an intake air amount for each cylinder (# 1 to # 4 cylinders). The #X cylinder excess air ratio is set as the excess air ratio λ for each cylinder (# 1 cylinder to # 4 cylinder) according to the X cylinder intake air amount. As described above, according to the #X cylinder excess air ratio set in accordance with the #X cylinder intake air amount, the fuel injection amount for each cylinder can be accurately set. The combustion state can be optimized to improve fuel efficiency and emissions.
[0033]
In addition, the cylinder-by-cylinder intake air amount calculation means achieved by the ECU 30 of the intake air amount calculation device for an internal combustion engine of the present embodiment is an intake air amount for each cylinder (# 1 cylinder to # 4 cylinder). The #X cylinder ignition timing is set as the ignition timing for each cylinder (# 1 cylinder to # 4 cylinder) according to the X cylinder intake air amount. As described above, according to the #X cylinder ignition timing set in accordance with the #X cylinder intake air amount, the ignition timing for each cylinder can be accurately set, and therefore, the combustion state of each cylinder of the internal combustion engine 10 Can be optimized to improve fuel economy and emissions.
[0034]
It should be noted that the method of calculating the intake air amount of the internal combustion engine can be implemented by replacing each means in the internal combustion engine intake air amount calculation device of the present embodiment with a procedure.
[0035]
In the above embodiment, the intake air amount detected by the air flow meter is used as the load in the intake air amount calculation routine for each cylinder. However, the present invention is not limited to this. Instead, an intake pressure detected by an intake pressure sensor may be used.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which an intake air amount calculation device for an internal combustion engine according to an embodiment of the present invention is applied and peripheral devices thereof.
FIG. 2 shows a processing procedure for calculating an intake air amount for each cylinder by a CPU in an ECU used in an intake air amount calculation device for an internal combustion engine according to one embodiment of the present invention. It is a flowchart.
FIG. 3 is a flowchart showing a processing procedure for calculating an in-cylinder temperature for each cylinder in FIG. 2;
FIG. 4 is a map for calculating a basic in-cylinder temperature using the engine speed and the intake pressure in FIG. 3 as parameters.
FIG. 5 is a table for calculating an in-cylinder temperature influence coefficient using the excess air ratio as a parameter in FIG. 3;
FIG. 6 is a table for calculating an in-cylinder temperature influence coefficient using the ignition retard amount from MBT in FIG. 3 as a parameter;
[Explanation of symbols]
10 Internal combustion engine 12 Air flow meter (intake air amount sensor)
30 ECU (electronic control unit)

Claims (6)

複数気筒からなる内燃機関の気筒数より少ない吸入空気量センサを用い、前記内燃機関に供給される全体の吸入空気量を算出する全体吸入空気量算出手段と、
前記各気筒毎の筒内温度を推定算出する筒内温度算出手段と、
前記全体の吸入空気量と前記各気筒毎の筒内温度とに基づき前記各気筒毎の吸入空気量を算出する気筒別吸入空気量算出手段と
を具備することを特徴とする内燃機関の吸入空気量算出装置。
Using an intake air amount sensor smaller than the number of cylinders of the internal combustion engine having a plurality of cylinders, and calculating an entire intake air amount supplied to the internal combustion engine;
In-cylinder temperature calculation means for estimating and calculating the in-cylinder temperature of each cylinder,
A cylinder-by-cylinder intake air amount calculation means for calculating an intake air amount for each of the cylinders based on the total intake air amount and an in-cylinder temperature of each of the cylinders. Quantity calculation device.
前記筒内温度算出手段は、前記各気筒毎の筒内温度を、前記各気筒毎の空気過剰率の変化と、前記各気筒毎の点火時期の変化とに基づき推定算出することを特徴とする請求項1に記載の内燃機関の吸入空気量算出装置。The in-cylinder temperature calculating means estimates and calculates an in-cylinder temperature of each of the cylinders based on a change in an excess air ratio of each of the cylinders and a change in an ignition timing of each of the cylinders. The intake air amount calculation device for an internal combustion engine according to claim 1. 前記筒内温度算出手段は、前記各気筒毎の筒内温度を、空気過剰率が1.0、かつ点火時期がMBT(Minimum Spark Advance for Best Torque:最適点火時期)であるときの筒内温度と、前記各気筒毎の空気過剰率の変化に伴う筒内温度への影響係数と、前記各気筒毎の点火時期の変化に伴う筒内温度への影響係数とに基づき推定算出することを特徴とする請求項2に記載の内燃機関の吸入空気量算出装置。The in-cylinder temperature calculating means calculates the in-cylinder temperature of each cylinder when the excess air ratio is 1.0 and the ignition timing is MBT (Minimum Spark Advance for Best Torque: optimal ignition timing). And an influence coefficient on the in-cylinder temperature due to a change in the excess air ratio for each of the cylinders and an influence coefficient on the in-cylinder temperature due to a change in the ignition timing for each of the cylinders. The intake air amount calculation device for an internal combustion engine according to claim 2, wherein 前記気筒別吸入空気量算出手段は、前記各気筒毎の筒内温度から前記各気筒毎の充填効率を算出し、この充填効率に基づき前記各気筒毎の吸入空気量を算出することを特徴とする請求項1に記載の内燃機関の吸入空気量算出装置。The cylinder-by-cylinder intake air amount calculation means calculates a charging efficiency for each of the cylinders from an in-cylinder temperature of each of the cylinders, and calculates an intake air amount for each of the cylinders based on the charging efficiency. The intake air amount calculation device for an internal combustion engine according to claim 1. 前記気筒別吸入空気量算出手段は、前記各気筒毎の吸入空気量に応じて前記各気筒毎に空気過剰率を設定することを特徴とする請求項1乃至請求項4の何れか1つに記載の内燃機関の吸入空気量算出装置。The cylinder-by-cylinder intake air amount calculating means sets an excess air ratio for each of the cylinders according to an intake air amount of each of the cylinders. An intake air amount calculation device for an internal combustion engine according to the above. 前記気筒別吸入空気量算出手段は、前記各気筒毎の吸入空気量に応じて前記各気筒毎に点火時期を設定することを特徴とする請求項1乃至請求項4の何れか1つに記載の内燃機関の吸入空気量算出装置。The cylinder-specific intake air amount calculation means sets an ignition timing for each of the cylinders according to an intake air amount for each of the cylinders. For calculating the amount of intake air for an internal combustion engine.
JP2003133147A 2003-05-12 2003-05-12 Intake air quantity calculating device of internal combustion engine Pending JP2004332692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133147A JP2004332692A (en) 2003-05-12 2003-05-12 Intake air quantity calculating device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133147A JP2004332692A (en) 2003-05-12 2003-05-12 Intake air quantity calculating device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004332692A true JP2004332692A (en) 2004-11-25

Family

ID=33507784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133147A Pending JP2004332692A (en) 2003-05-12 2003-05-12 Intake air quantity calculating device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004332692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247616A (en) * 2006-03-18 2007-09-27 Toyota Motor Corp Internal combustion engine
JP2011231628A (en) * 2010-04-23 2011-11-17 Bosch Corp Method for correcting control of fuel injection and fuel injection controlling device
JP2020200788A (en) * 2019-06-10 2020-12-17 日立オートモティブシステムズ株式会社 Internal combustion engine control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247616A (en) * 2006-03-18 2007-09-27 Toyota Motor Corp Internal combustion engine
JP2011231628A (en) * 2010-04-23 2011-11-17 Bosch Corp Method for correcting control of fuel injection and fuel injection controlling device
JP2020200788A (en) * 2019-06-10 2020-12-17 日立オートモティブシステムズ株式会社 Internal combustion engine control device
JP7269104B2 (en) 2019-06-10 2023-05-08 日立Astemo株式会社 internal combustion engine controller

Similar Documents

Publication Publication Date Title
JP4240132B2 (en) Control device for internal combustion engine
JP7087609B2 (en) Engine control unit
JP2006258028A (en) Control device of internal combustion engine
US7448360B2 (en) Controller of internal combustion engine
JP4605060B2 (en) Control device for internal combustion engine
JP2004150411A (en) Gasoline alternate fuel injection control device of engine
JP2004068621A (en) Starting fuel injection device for internal combustion engine
JP2010168949A (en) Control device for internal combustion engine, and flexible fuel vehicle
JP2006312919A (en) Engine controller
JP5304581B2 (en) Internal combustion engine fuel injection control device
JPS60166734A (en) Fuel feed controlling method of multicylinder internal- combustion engine
JP2009270523A (en) Control device for internal combustion engine
JP2004332692A (en) Intake air quantity calculating device of internal combustion engine
JP2007040219A (en) Control device of internal combustion engine
JP2009156034A (en) Fuel injection control system for internal combustion engine
JP2007303354A (en) Control device for engine
JP3672210B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007092645A (en) Control device for internal combustion engine
JP2013238111A (en) Air-fuel ratio control device of internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine
JP3563435B2 (en) Cylinder-specific combustion control method
CN109899169B (en) Fuel injection control device for internal combustion engine and control method for internal combustion engine
JP2019108824A (en) Fuel injection control apparatus
JP6077371B2 (en) Control device for internal combustion engine
JP2006009632A (en) Control device for internal combustion engine