JP2004332174A - Acrylic synthetic fiber and method for producing the same - Google Patents

Acrylic synthetic fiber and method for producing the same Download PDF

Info

Publication number
JP2004332174A
JP2004332174A JP2003132612A JP2003132612A JP2004332174A JP 2004332174 A JP2004332174 A JP 2004332174A JP 2003132612 A JP2003132612 A JP 2003132612A JP 2003132612 A JP2003132612 A JP 2003132612A JP 2004332174 A JP2004332174 A JP 2004332174A
Authority
JP
Japan
Prior art keywords
weight
pigment
fiber
synthetic fiber
acrylic synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132612A
Other languages
Japanese (ja)
Inventor
Toshiyuki Iwabuchi
俊行 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2003132612A priority Critical patent/JP2004332174A/en
Publication of JP2004332174A publication Critical patent/JP2004332174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylic synthetic fiber having sufficient flame-retardance, light resistance and bright color as a cloth for outdoor tent and provide a method for the production of the fiber. <P>SOLUTION: The highly flame-retardant acrylic synthetic fiber having good colorability contains a pigment and antimony oxide fine particles kneaded in the fiber and has a flame retardance of LOI (limiting oxygen index) 31 or higher and a maximum heat-generation rate of ≤30 kW/m<SP>2</SP>. The pigment dispersion dope is prepared by dispersing/dissolving 5-30 wt.% pigment and 0.1-10 wt.% dispersing agent in a solvent of the fiber and dissolving 0.1-5 wt.% acrylic polymer in the produced solution. The acrylic synthetic fiber is produced by adding the pigment dispersion dope and the antimony oxide dispersion liquid separately to the same spinning dope and carrying out the wet-spinning of the dope. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は屋外テント向けの難燃性・発色性・耐光性に優れたアクリル系合成繊維およびその製造方法に関するものである。
【0002】
【従来の技術】
アクリル系合成繊維は太陽光に対する堅牢度が高い繊維としても知られている。そのため、欧米では屋外テント用途に広く使用されている。屋外テント用途に使用する場合には顧客の求めに応じた色にするが、染料による染色では多種多様な顧客の要求に応じることが容易であるものの、染料は一般に太陽光に対する堅牢度が弱く、常に太陽光にさらされる屋外テント用途には不向きである。繊維に練り込みもしくは後加工による塗布で耐光剤(紫外線吸収剤)を付与しても、繊維自身の耐光性は上がるものの、染料の耐光性不足を補うには不充分である。
【0003】
また、通常はより耐光性が高いレギュラーアクリルを使用するが(特許文献1、特許文献2など)、近年の安全意識の高まり、難燃規制の強化(非特許文献1〜3など)には後加工による難燃化では対応できない。
【0004】
染料の耐光性不足は染料に替えて、顔料を使用することで解決できる。顔料は一般的に染料より耐光性が高い。
【0005】
一般に顔料は繊維が可溶な溶媒に分散して顔料分散原液として、ポリマー溶液に練り込むが、その分散方法には特許文献3、特許文献4などの方法があるが、これらの方法は顔料分散液中のポリマー濃度が高く、粘度が高くなるため、ボールミルで10時間以上もの処理を余儀なくされており、非常に効率が悪い。特許文献5にも分散剤を使用して溶媒に顔料を分散させる方法があるが、顔料濃度が1重量%程度と低く、繊維中の顔料含有量を多くしたい場合には対応できない(紡糸原液のポリマー濃度が著しく低下し、操業性が悪化もしくは操業できない)。特許文献6の方法は顔料がフタロシアニン、溶媒が塩化亜鉛水溶液に限定されている。
【0006】
一方、難燃性は顔料を練り込むベース繊維を難燃繊維とすることで解決できるが、通常の難燃繊維(アクリロニトリルと塩化ビニリデンもしくは塩化ビニルを主成分とするポリマーからなり、難燃助剤を含まないもの)では先に挙げた基準に合格することは難しい。
【0007】
そこで難燃助剤として、一般的には酸化アンチモンを練り込むが、粒径が大きいものでは、光の遮蔽度が大きく、繊維が白化(ダル化)してしまう。そのため、顔料を併用した場合には発色の鮮やかさが低下してしまう。
【0008】
【特許文献1】
特開平4−18110号公報
【特許文献2】
特開昭61−167014号公報
【特許文献3】
特開平3−104916号公報
【特許文献4】
特開平3−104917号公報
【特許文献5】
特開昭50−131879号公報
【特許文献6】
特開2000−119913号公報
【非特許文献1】
米国カリフォルニア州Mashall’s Test Procedure #801. Title 19. Registration #F368.01.
【非特許文献2】
NFPA701
【非特許文献3】
欧州UFAC:Upholstered funiture.5867
【0009】
【発明が解決しようとする課題】
本発明の目的は屋外テント用生地向けとして、充分な難燃性、耐光性かつ鮮やかな発色性を有するアクリル系合成繊維およびその製造方法を提供することにある。なお、以下では「繊維」とは特に断りがない限り、アクリル系合成繊維を指す。
【0010】
【課題を解決するための手段】
上記目的は顔料を0.1重量%以上、平均粒径50nm以下の酸化アンチモンを0.5〜5重量%を含み、繊維を構成するポリマーがアクリロニトリル30〜70重量%、ハロゲン化ビニル30〜70重量%共重合されていることを特徴とするアクリル系合成繊維により達成される。なお、本発明では例えば「30〜70重量%」とは30重量%以上70重量%以下を指す。重量%以外のその他(粒径など)でも同様である。
【0011】
【発明の実施の形態】
以下に本発明についてさらに詳細に述べる。本発明の繊維を形成するポリマーはアクリロニトリル30〜70重量%とハロゲン化ビニル30〜70重量%を共重合するものである。好ましくはハロゲン化ビニル40〜60重量%である。アクリロニトリル共重合量が増し、ハロゲン化ビニル共重合量が減ると難燃性および初期の強度が低下し、逆にアクリロニトリル共重合量が減り、ハロゲン化ビニル共重合量が増すと太陽光に対する堅牢度(耐光性、強度保持率)が悪化する。
【0012】
ハロゲン化ビニルには塩化ビニリデン、塩化ビニル、臭化ビニルなどが挙げられるが、これらに限定されるものではない。しかし、コスト、扱いやすさから塩化ビニリデン、塩化ビニルのいずれかが使用される。
【0013】
アクリロニトリル、ハロゲン化ビニル以外にもこれらと共重合可能なビニルモノマーを請求項の範囲を満たす範囲でかつ繊維形成能・耐光性・操業性を悪化させない範囲であれば、共重合しても良い。たとえば、アクリル酸、メタクリル酸、あるいはこれらのエステル類、加えてアリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸およびその塩、さらに酢酸ビニルなどが挙げられるがこれらに限定されるものではない。
【0014】
これらのモノマーよりアクリル系ポリマーを重合し、未反応モノマーを除き、適当な溶媒に操業性が確保できる濃度(通常は20〜30%程度)に溶解したものを紡糸原液とする。溶媒にはジメチルホルムアミド(DMF)、ロダン塩水溶液、ジメチルスルホキシド、アセトンなどが挙げられるが、これらに限られるものではない。本発明ではアクリロニトリルを含むポリマーをアクリル系ポリマーと称する。
【0015】
この紡糸原液中のポリマーに対して求められる色調にもよるが、顔料を0.1重量%以上練り込む。好ましくは0.5〜10重量%である。難燃アクリル系合成繊維の太陽光照射時の強伸度保持率はレギュラーアクリルと大きく変わりないが、繊維自身の変色が大きい。顔料量が0.5重量%未満であるとそれを打ち消す(ごまかす)効果が低い。10重量%を超えると繊維の強度が低下傾向になり、加えてろ過圧上昇が大きくなる。使用する顔料にはフタロシアニン、キナクリドン、カーボンブラック、ナフトール、アゾ系、金属酸化物などが挙げられるがこれらに限定されない。
【0016】
顔料は紡糸原液に直接加えるのではなく、繊維が可溶な溶媒に分散し、顔料分散原液として加える。顔料分散原液は繊維が可溶な溶媒に分散剤を溶解した後、顔料を分散、さらにアクリル系ポリマーを加えて、調製する。それぞれの混合割合は顔料5〜30重量%、分散剤0.1〜10重量%、アクリル系ポリマー0.1〜5重量%である。
【0017】
顔料分散原液中の顔料量は高いほど調製頻度が少なくなり効率的であるが、高くなると分散性が低下し、分散原液の粘度が増し、扱い・練り込みが困難になり、加えて、顔料の凝集が強くなり、平均粒径が大きくなる。
【0018】
顔料の平均粒径が0.5μmを超えるようになると最大粒径も数μmを超えるようになり、10μm程度である繊維に対して、大きく、繊維強度も低下する。また、紡糸時のろ過性が悪化し、操業性が悪くなる。なお、顔料分散原液に用いる溶媒およびポリマーは紡糸原液と同じものを使うことが好ましい。
【0019】
さらに高難燃化のため、酸化アンチモンを0.5〜5重量%練り込む。一般的に用いられる酸化アンチモンには三酸化アンチモン(Sb)、五酸化アンチモン(Sb)がある。高難燃化のためにはどちらを使用しても構わないが、五酸化アンチモンの方が粒子径の小さいものが作りやすい。粒子径が大きいと光を吸収・拡散しやすくなり、繊維が白化(ダル化)する。そのため、平均粒径は50nm以下である必要がある。50nm以下とすることで白濁しにくく、色鮮やかな繊維が得られる。また、添加量は0.5〜5重量%である必要がある。0.5重量%未満では充分な難燃効果が得られない。5重量%を超えると、粒子径が小さいものでも白濁しやすい。好ましくは1〜4重量%、さらに好ましくは1.5〜3重量%である。1.5重量%以上であれば、難燃性も充分となり、3重量%以下であれば白濁化も未添加の場合とほとんど変わらない程度になる。
【0020】
また、製品のLOI値は31以上、最大発熱速度が30kW/m以下であることが好ましい。LOI値は繊維の着火性の高低、発熱速度は着火してからの燃え広がりやすさを表す数値である。発熱速度のうち、最大の値を最大発熱速度という。LOI値が31以上では難燃性が優れる。発熱速度は材料の火災危険度を表す数値で、数値が大きいほど勢いよく燃えることを表す。最大発熱速度が30kW/m以下だと、延焼抑制効果に優れるので好ましい。測定はISO5660パート1に準拠した装置で行う。
【0021】
顔料および酸化アンチモン以外の各種添加剤を耐光性、繊維形成能、可紡性、操業性を悪化させないものであれば、同時に練り込むことができる。例えば、ゼオライト、抗菌剤、消臭剤、鉱石粉末などの粉体、また、繊維を形成するアクリル系ポリマー以外の各種ポリマーなどがあるが、これらに限定されるものではない。
【0022】
顔料分散原液、酸化アンチモン分散液などを練り込んだ紡糸原液を溶媒を含む水中、いわゆる凝固浴に口金より紡出する。紡出されゲル状態にある繊維束(トウ)を順次溶媒濃度が低下する数段の延伸浴にて3〜7倍に延伸し、水洗・オイル付与を行い、乾燥緻密化する。
【0023】
乾燥緻密化後、必要に応じて、延伸・収縮・オイル付与・クリンプ付与・セット・カットを行い、梱包し、製品を得る。
【0024】
【実施例】
以下に本発明を実施例により具体的に説明する。
(顔料の平均粒径測定方法)遠心沈降法
(酸化アンチモンの粒径測定方法)
注意:この測定方法は、その径が20〜40nmの範囲にあるものについて適用される。
▲1▼酸化アンチモン分散液を蒸留水にて希釈する。
▲2▼上記希釈液を光路長90mmのガラスセルに入れ、500nmの吸光度を測定する。ただし、吸光度が1を超えた場合には▲1▼での希釈倍率を変更する。
▲3▼以下の(式1)に測定値を入れ、計算する。
【0025】
【数1】

Figure 2004332174
Figure 2004332174
【0026】
(LOI)良く開繊した綿0.35gを長さ10cmの捻ったこより状にしてJIS K7201に準拠した装置・方法にて測定する。
【0027】
(耐光性)紡績・丸編みしたものの強エネルギー型キセノンフェードメーター100H処理前後での変色度△Eを測定(150W/m、ブラックパネル63℃、湿度50%)。同規格・同色のレギュラー顔料原着繊維と比較して、△Eが2.5倍以内に収まっていれば、○(合格)、超えるものを×(不合格)とする。
【0028】
(強度保持率)処理後に丸編みをほどき、紡績糸の強度を測定。処理前と比較した。70%以上を合格とする。
【0029】
(色の鮮やかさ)同規格のブライト繊維(酸化チタン含有量0重量%)に顔料を練り込んだ場合と同程度を○、同じくセミダル繊維(同0.4重量%)を×、その中間を△とし、判定者3名で目視により判定した。
【0030】
(最大発熱速度)
目付170g/mの不織布を作製。東洋精機製作所製コーンカロリーメーターIIIで測定。
【0031】
(表1、実施例1〜4、比較例1、2)
DMFを溶媒とした溶液重合により、アクリロニトリル(AN)/塩化ビニリデン(VCl)/2−アクリルアミド−2−メチルプロパンスルホン酸ソーダ(SAM)=56/43.3/0.7(重量%)であるアクリル系ポリマーを得た。このポリマーをDMFに濃度29重量%になるように溶解し、紡糸原液を得た。
【0032】
DMFにエチレンオキサイド/プロピレンオキサイド共重合ポリマー(EO/PO)を分散剤として、フタロシアニンブルーを分散した。分散後、さらに上記アクリル系ポリマーを加え、フタロシアニンブルー10重量%、EO/PO0.5重量%、アクリル系ポリマー2重量%、DMF87.5重量%である顔料分散原液を調製した。平均粒径は0.2μmであった。
【0033】
30nmの五酸化アンチモン(Sb)DMF25重量%分散液を調製した。
【0034】
このように調製した顔料分散原液、五酸化アンチモン分散液を紡糸原液に表1にある含有量になるように練り込み、0.04mm×孔数4000個の口金よりDMF58%水溶液に紡出した。この凝固し、ゲル状態にあるトウを順次DMF濃度が低下する3段の浴にて6倍に延伸した。その後、水洗・油剤付与・乾燥緻密化・クリンプ付与・セット・カットを行い2.2dtex×51mmの繊維を得た。なお、以下、表中の「%」は重量%、「発熱速度」は最大発熱速度を指す。
【0035】
五酸化アンチモン量が0.5〜5重量%の範囲である実施例1〜4はLOI値も高く、最大発熱速度も低い。これは着火しにくく、着火した場合でも燃え広がりにくいことを示している。また、色の鮮やかさも五酸化アンチモン量が請求項の上限である実施例4は若干その他よりは劣っているが、ほぼ問題ない。一方、五酸化アンチモン量が少ない比較例1はLOI値が未添加の通常難燃アクリル系合成繊維と変わらない。五酸化アンチモン量が多い比較例2はLOI値、発熱速度は良好であるが、色の鮮やかさが不充分である。また、ろ過性、紡糸操業性、繊維強度、耐光性はいずれも良好であった。
【0036】
【表1】
Figure 2004332174
【0037】
(表2、実施例2、比較例3)
実施例2と同じ製法、同じ顔料・五酸化アンチモン量で、五酸化アンチモンの粒径のみを60nm(先に挙げた方法は20〜40nmの場合のみに適用できるため、参考値)としたものを比較例3とした。
【0038】
実施例2、比較例3ともにLOI値、発熱速度はほぼ同じだったが、五酸化アンチモンの粒径が過大な比較例3は色の鮮やかさが不足していた。
【0039】
【表2】
Figure 2004332174
【0040】
(表3、実施例2、5、比較例4、5)
表3の割合にポリマー中のAN、VCl共重合割合を変え(SAM共重合量はいずれも0.7重量%)、実施例1〜4,比較例1〜3と同様の製法で繊維化した。いずれも顔料量は2.0重量%、五酸化アンチモン(30nm)量は2.0重量%。
【0041】
塩化ビニリデン共重合量が30〜70重量%の範囲である実施例2および5は強度保持率・LOI値も充分であるが、少ない比較例4はLOI値が不足している。一方、過剰な比較例5はLOI値は高いが、初期強度が低く、強度保持率・耐光性とも不足している。
【0042】
【表3】
Figure 2004332174
【0043】
【発明の効果】
本発明のアクリル系合成繊維およびその製造方法を用いることにより、屋外テントなどのように高度な耐光性、鮮やかな色彩および高い難燃性が要求される分野に最適なアクリル系合成繊維を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an acrylic synthetic fiber having excellent flame retardancy, coloring properties, and light resistance for outdoor tents and a method for producing the same.
[0002]
[Prior art]
Acrylic synthetic fiber is also known as a fiber having high fastness to sunlight. Therefore, it is widely used for outdoor tents in Europe and the United States. When used for outdoor tent applications, the color is tailored to the customer's requirements, but dyeing with dyes can easily respond to a wide variety of customer requirements, but dyes generally have poor fastness to sunlight, It is not suitable for outdoor tent applications that are constantly exposed to sunlight. Even if a light-resistant agent (ultraviolet absorber) is applied to the fiber by kneading or post-processing, the light resistance of the fiber itself is increased, but is insufficient to compensate for the insufficient light resistance of the dye.
[0003]
In addition, regular acrylics having higher light resistance are usually used (Patent Documents 1 and 2). However, in recent years, safety consciousness has increased, and flame retardant regulations have been strengthened (Non-Patent Documents 1 to 3 and the like). It is not possible to respond to flame retardancy by processing.
[0004]
Insufficient lightfastness of dyes can be solved by using pigments instead of dyes. Pigments are generally more lightfast than dyes.
[0005]
Generally, a pigment is dispersed in a solvent in which a fiber is soluble and kneaded into a polymer solution as a pigment dispersion stock solution. There are methods for dispersing the pigment in Patent Literature 3 and Patent Literature 4. Since the polymer concentration in the liquid is high and the viscosity is high, the treatment has to be performed for 10 hours or more in a ball mill, which is very inefficient. Patent Document 5 also discloses a method of dispersing a pigment in a solvent using a dispersing agent. However, it is not possible to cope with a case where the pigment concentration is as low as about 1% by weight and the pigment content in the fiber is desired to be large (the spinning stock solution). (Polymer concentration is remarkably reduced, and operability is deteriorated or operation is not possible.) In the method of Patent Document 6, the pigment is limited to phthalocyanine, and the solvent is limited to an aqueous zinc chloride solution.
[0006]
On the other hand, flame retardancy can be solved by using a base fiber into which the pigment is kneaded as a flame retardant fiber. However, ordinary flame retardant fibers (acrylonitrile and polymer containing vinylidene chloride or vinyl chloride as main components, ), It is difficult to pass the criteria listed above.
[0007]
Therefore, antimony oxide is generally kneaded as a flame retardant aid, but if the particle size is large, the degree of light shielding is large, and the fiber is whitened (dulled). Therefore, when a pigment is used in combination, the vividness of color development is reduced.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 4-18110 [Patent Document 2]
JP-A-61-167014 [Patent Document 3]
JP-A-3-104916 [Patent Document 4]
Japanese Patent Application Laid-Open No. 3-104917 [Patent Document 5]
JP-A-50-131879 [Patent Document 6]
Japanese Patent Application Laid-Open No. 2000-119913 [Non-Patent Document 1]
Maskall's Test Procedure, California, USA # 801. Title 19. Registration # F368.01.
[Non-patent document 2]
NFPA701
[Non-Patent Document 3]
European UFAC: Upholstered feature. 5867
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an acrylic synthetic fiber having sufficient flame retardancy, light resistance and vivid coloration for outdoor tent fabrics, and a method for producing the same. In the following, “fiber” refers to an acrylic synthetic fiber unless otherwise specified.
[0010]
[Means for Solving the Problems]
The object is to contain 0.5 to 5% by weight of a pigment and 0.1 to 5% by weight of antimony oxide having an average particle size of 50 nm or less, and the polymer constituting the fiber is 30 to 70% by weight of acrylonitrile and 30 to 70% by weight of vinyl halide. It is achieved by an acrylic synthetic fiber characterized by being copolymerized by weight. In the present invention, for example, “30 to 70% by weight” refers to 30% by weight or more and 70% by weight or less. The same applies to other components (such as particle size) other than the weight percent.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail. The polymer forming the fiber of the present invention is a copolymer of 30 to 70% by weight of acrylonitrile and 30 to 70% by weight of vinyl halide. Preferably, it is 40 to 60% by weight of a vinyl halide. When the amount of acrylonitrile increases and the amount of vinyl halide decreases, the flame retardancy and initial strength decrease.On the contrary, when the amount of acrylonitrile decreases and the amount of vinyl halide increases, the robustness to sunlight increases. (Light resistance, intensity retention) are deteriorated.
[0012]
Vinyl halides include, but are not limited to, vinylidene chloride, vinyl chloride, vinyl bromide, and the like. However, either vinylidene chloride or vinyl chloride is used because of its cost and ease of handling.
[0013]
In addition to acrylonitrile and vinyl halide, a vinyl monomer copolymerizable therewith may be copolymerized within a range satisfying the claims and within a range not deteriorating fiber-forming ability, light resistance and operability. For example, acrylic acid, methacrylic acid, or esters thereof, as well as allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid and salts thereof, and vinyl acetate, etc. Is not limited to these.
[0014]
An acrylic polymer is polymerized from these monomers to remove unreacted monomers, and dissolved in a suitable solvent at a concentration (usually about 20 to 30%) at which operability can be secured is used as a spinning dope. Examples of the solvent include, but are not limited to, dimethylformamide (DMF), an aqueous solution of a rhodanate, dimethyl sulfoxide, acetone, and the like. In the present invention, a polymer containing acrylonitrile is referred to as an acrylic polymer.
[0015]
The pigment is kneaded in an amount of 0.1% by weight or more, depending on the color tone required for the polymer in the spinning solution. Preferably it is 0.5 to 10% by weight. The high elongation retention of the flame-retardant acrylic synthetic fiber upon irradiation with sunlight is not much different from that of regular acrylic, but the discoloration of the fiber itself is large. If the amount of the pigment is less than 0.5% by weight, the effect of counteracting (spoofing) the pigment is low. If it exceeds 10% by weight, the fiber strength tends to decrease, and in addition, the filtration pressure increases. Pigments used include, but are not limited to, phthalocyanine, quinacridone, carbon black, naphthol, azo-based, metal oxides, and the like.
[0016]
The pigment is not added directly to the spinning dope, but is dispersed in a solvent in which the fiber is soluble and added as a pigment dispersion stock. The pigment dispersion stock solution is prepared by dissolving the dispersant in a solvent in which the fiber is soluble, dispersing the pigment, and further adding an acrylic polymer. The mixing ratio of each is 5 to 30% by weight of the pigment, 0.1 to 10% by weight of the dispersant, and 0.1 to 5% by weight of the acrylic polymer.
[0017]
The higher the amount of pigment in the pigment dispersion stock solution, the less the preparation frequency and the more efficient it is, but the higher the pigment content, the lower the dispersibility, the higher the viscosity of the dispersion stock solution, the more difficult it is to handle and knead, and in addition, Agglomeration increases and the average particle size increases.
[0018]
When the average particle size of the pigment exceeds 0.5 μm, the maximum particle size also exceeds several μm, and the fiber strength is large and the fiber strength is reduced with respect to a fiber having a size of about 10 μm. In addition, the filterability during spinning is deteriorated, and the operability is deteriorated. The solvent and polymer used for the pigment dispersion stock solution are preferably the same as those used for the spinning stock solution.
[0019]
Further, 0.5 to 5% by weight of antimony oxide is kneaded for higher flame retardancy. Antimony oxide generally used includes antimony trioxide (Sb 2 O 3 ) and antimony pentoxide (Sb 2 O 5 ). Either of them may be used for high flame retardancy, but antimony pentoxide is easier to produce having a smaller particle diameter. When the particle size is large, light is easily absorbed and diffused, and the fiber is whitened (dulled). Therefore, the average particle size needs to be 50 nm or less. When the thickness is 50 nm or less, it is hard to be cloudy and a colorful fiber can be obtained. Further, the addition amount needs to be 0.5 to 5% by weight. If it is less than 0.5% by weight, a sufficient flame retarding effect cannot be obtained. If it exceeds 5% by weight, it becomes easy to become cloudy even if the particle size is small. Preferably it is 1 to 4% by weight, more preferably 1.5 to 3% by weight. When the content is 1.5% by weight or more, the flame retardancy is sufficient, and when the content is 3% by weight or less, the cloudiness is almost the same as that when no addition is made.
[0020]
Further, it is preferable that the LOI value of the product is 31 or more and the maximum heat generation rate is 30 kW / m 2 or less. The LOI value is a numerical value representing the degree of ignitability of the fiber, and the heat generation rate is a numerical value representing the easiness of spreading after ignition. The maximum value of the heat generation rates is called the maximum heat generation rate. When the LOI value is 31 or more, the flame retardancy is excellent. The rate of heat generation is a numerical value indicating the degree of fire danger of the material. It is preferable that the maximum heat generation rate be 30 kW / m 2 or less, because the effect of suppressing fire spread is excellent. The measurement is performed using an apparatus conforming to ISO 5660 part 1.
[0021]
Various additives other than the pigment and antimony oxide can be simultaneously kneaded as long as they do not deteriorate the light resistance, fiber forming ability, spinnability and operability. Examples include, but are not limited to, powders such as zeolites, antibacterial agents, deodorants, ore powder, and various polymers other than acrylic polymers that form fibers.
[0022]
A spinning stock solution into which a pigment dispersion stock solution, an antimony oxide dispersion solution, and the like are kneaded is spun from a die into water containing a solvent, that is, a so-called coagulation bath. The fiber bundle (tow) spun and in a gel state is stretched 3 to 7 times in several stages of stretching baths in which the solvent concentration gradually decreases, washed with water, applied with oil, and dried and densified.
[0023]
After drying and densification, if necessary, stretching, shrinkage, oil application, crimp application, set and cut are performed, and the product is packed to obtain a product.
[0024]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
(Method for measuring average particle size of pigment) Centrifugal sedimentation method (method for measuring particle size of antimony oxide)
Note: This measurement method applies to those whose diameter is in the range of 20 to 40 nm.
(1) Dilute the antimony oxide dispersion with distilled water.
{Circle around (2)} The diluent is placed in a glass cell having an optical path length of 90 mm, and the absorbance at 500 nm is measured. However, if the absorbance exceeds 1, change the dilution ratio in (1).
{Circle around (3)} The measured value is put in the following (formula 1) and calculated.
[0025]
(Equation 1)
Figure 2004332174
Figure 2004332174
[0026]
(LOI) 0.35 g of well-spread cotton is twisted into a 10 cm long twisted strand and measured by an apparatus and method according to JIS K7201.
[0027]
(Light resistance) The discoloration degree ΔE of the spun and circular knitted fabric before and after treatment with a high-energy xenon fade meter 100H was measured (150 W / m 2 , black panel 63 ° C., humidity 50%). If ΔE is within 2.5 times that of the regular pigment-dipped fiber of the same standard and same color, the result is evaluated as ○ (pass), and the value exceeding Δ is evaluated as × (fail).
[0028]
(Strength retention rate) After the treatment, the circular knitting was unwound and the strength of the spun yarn was measured. The comparison was made before the treatment. 70% or more is considered to be acceptable.
[0029]
(Color vividness) The same degree as when a pigment was kneaded into bright fiber (titanium oxide content: 0% by weight) of the same standard, ○, semi-dal fiber (0.4% by weight), × in the middle The evaluation was evaluated as “Δ”, and the determination was visually made by three judges.
[0030]
(Maximum heat generation rate)
A nonwoven fabric having a basis weight of 170 g / m 2 was produced. Measured with Toyo Seiki Co., Ltd. Corn Calorimeter III.
[0031]
(Table 1, Examples 1-4, Comparative Examples 1 and 2)
By solution polymerization using DMF as a solvent, acrylonitrile (AN) / vinylidene chloride (VCl 2 ) / 2-acrylamide-2-methylpropanesulfonic acid sodium (SAM) = 56 / 43.3 / 0.7 (% by weight). An acrylic polymer was obtained. This polymer was dissolved in DMF to a concentration of 29% by weight to obtain a spinning stock solution.
[0032]
Phthalocyanine blue was dispersed in DMF using ethylene oxide / propylene oxide copolymer (EO / PO) as a dispersant. After the dispersion, the above acrylic polymer was further added to prepare a pigment dispersion stock solution containing 10% by weight of phthalocyanine blue, 0.5% by weight of EO / PO, 2% by weight of an acrylic polymer, and 87.5% by weight of DMF. The average particle size was 0.2 μm.
[0033]
Antimony pentoxide 30nm (Sb 2 O 5) a DMF25 wt% dispersion was prepared.
[0034]
The pigment dispersion stock solution and antimony pentoxide dispersion solution thus prepared were kneaded into the spinning stock solution so as to have the contents shown in Table 1, and spun into a 58% aqueous DMF solution from a die having 0.04 mm × 4000 holes. The solidified and gelled tow was stretched 6-fold in a three-stage bath in which the DMF concentration gradually decreased. After that, washing, oiling, drying and densification, crimping, setting and cutting were performed to obtain 2.2 dtex × 51 mm fibers. Hereinafter, "%" in the table indicates% by weight, and "heat generation rate" indicates the maximum heat generation rate.
[0035]
Examples 1 to 4 in which the amount of antimony pentoxide is in the range of 0.5 to 5% by weight have a high LOI value and a low maximum heat generation rate. This indicates that it is difficult to ignite, and even if ignited, it is difficult to spread. In Example 4, where the amount of antimony pentoxide is the upper limit of the claims, the color vividness is slightly inferior to the others, but there is almost no problem. On the other hand, in Comparative Example 1 in which the amount of antimony pentoxide was small, the LOI value was not different from that of the normal flame-retardant acrylic synthetic fiber to which no LOI was added. Comparative Example 2 having a large amount of antimony pentoxide has a good LOI value and heat generation rate, but has insufficient color vividness. In addition, filterability, spinning operability, fiber strength, and light resistance were all good.
[0036]
[Table 1]
Figure 2004332174
[0037]
(Table 2, Example 2, Comparative Example 3)
With the same production method and the same pigment / antimony pentoxide amount as in Example 2, only the particle size of antimony pentoxide was set to 60 nm (the above method can be applied only to the case of 20 to 40 nm, and thus is a reference value). Comparative Example 3 was set.
[0038]
Although the LOI value and the heat generation rate were almost the same in both Example 2 and Comparative Example 3, Comparative Example 3 in which the particle size of antimony pentoxide was too large was insufficient in color vividness.
[0039]
[Table 2]
Figure 2004332174
[0040]
(Table 3, Examples 2, 5 and Comparative Examples 4, 5)
The AN and VCl 2 copolymerization ratios in the polymer were changed to the ratios shown in Table 3 (the SAM copolymerization amount was 0.7% by weight), and fiberization was performed in the same manner as in Examples 1-4 and Comparative Examples 1-3. did. In each case, the amount of pigment was 2.0% by weight, and the amount of antimony pentoxide (30 nm) was 2.0% by weight.
[0041]
Examples 2 and 5 in which the vinylidene chloride copolymerization amount is in the range of 30 to 70% by weight have sufficient strength retention and LOI value, while Comparative Example 4 with a small amount lacks LOI value. On the other hand, the excess Comparative Example 5 has a high LOI value, but has a low initial strength and lacks both the strength retention and light resistance.
[0042]
[Table 3]
Figure 2004332174
[0043]
【The invention's effect】
By using the acrylic synthetic fiber and the method for producing the same according to the present invention, it is possible to provide an acrylic synthetic fiber that is optimal for fields requiring high light resistance, vivid colors and high flame retardancy, such as outdoor tents. .

Claims (6)

顔料を0.1重量%以上、平均粒径50nm以下の酸化アンチモンを0.5〜5重量%を含み、繊維を構成するポリマーがアクリロニトリル30〜70重量%、ハロゲン化ビニル30〜70重量%共重合されていることを特徴とするアクリル系合成繊維。The pigment contains 0.5 to 5% by weight of antimony oxide having a pigment content of 0.1% by weight or more and an average particle size of 50 nm or less, and the polymer constituting the fiber is 30 to 70% by weight of acrylonitrile and 30 to 70% by weight of vinyl halide. Acrylic synthetic fiber characterized by being polymerized. LOIが31以上、最大発熱速度が30kW/m以下であることを特徴とする請求項1のアクリル系合成繊維。LOI is 31 or more, the acrylic synthetic fiber of claim 1, wherein the maximum heating rate is 30 kW / m 2 or less. ハロゲン化ビニルが塩化ビニリデンであることを特徴とする請求項1または2のアクリル系合成繊維。3. The acrylic synthetic fiber according to claim 1, wherein the vinyl halide is vinylidene chloride. 顔料の平均粒径が0.5μm以下であることを特徴とする請求項1〜3いずれかに記載のアクリル系合成繊維。The acrylic synthetic fiber according to any one of claims 1 to 3, wherein the pigment has an average particle size of 0.5 µm or less. 繊維が可溶な溶媒に顔料5〜30重量%、分散剤0.1〜10重量%を分散・溶解した後、アクリル系ポリマーを0.1〜5重量%さらに溶解し、顔料分散原液を調製。この顔料分散原液と酸化アンチモン分散液を同じ紡糸原液に個別に添加し、湿式紡糸することを特徴とするアクリル系合成繊維の製造方法。After dispersing and dissolving 5 to 30% by weight of a pigment and 0.1 to 10% by weight of a dispersant in a solvent in which fibers are soluble, 0.1 to 5% by weight of an acrylic polymer is further dissolved to prepare a pigment dispersion stock solution. . A method for producing acrylic synthetic fibers, wherein the pigment dispersion and the antimony oxide dispersion are individually added to the same spinning solution and wet-spun. 分散剤がエチレンオキサイド/プロピレンオキサイド共重合物である請求項5記載のアクリル系合成繊維の製造方法。The method for producing an acrylic synthetic fiber according to claim 5, wherein the dispersant is an ethylene oxide / propylene oxide copolymer.
JP2003132612A 2003-05-12 2003-05-12 Acrylic synthetic fiber and method for producing the same Pending JP2004332174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132612A JP2004332174A (en) 2003-05-12 2003-05-12 Acrylic synthetic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132612A JP2004332174A (en) 2003-05-12 2003-05-12 Acrylic synthetic fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004332174A true JP2004332174A (en) 2004-11-25

Family

ID=33507403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132612A Pending JP2004332174A (en) 2003-05-12 2003-05-12 Acrylic synthetic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004332174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091715A (en) * 2007-10-10 2009-04-30 Clariant Internatl Ltd Glycol based pigment preparation for mass dyeing of polyacrylonitrile fibers
JP2009526922A (en) * 2006-02-14 2009-07-23 ロディア オペレーションズ Tow for flocked article, flocked article and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526922A (en) * 2006-02-14 2009-07-23 ロディア オペレーションズ Tow for flocked article, flocked article and use thereof
JP4787883B2 (en) * 2006-02-14 2011-10-05 ロディア オペレーションズ Tow for flocked article, flocked article and use thereof
JP2009091715A (en) * 2007-10-10 2009-04-30 Clariant Internatl Ltd Glycol based pigment preparation for mass dyeing of polyacrylonitrile fibers

Similar Documents

Publication Publication Date Title
US20080118672A1 (en) Acrylic fiber having excellent appearance properties and pile fabric
CN101031676B (en) Polyvinyl chloride fiber reduced in initial coloration
EP2336401B1 (en) Composition and process for preparing nir shielding masterbatch and nir shielding masterbatch and application thereof
KR20000069327A (en) Flame-retardant polyvinyl alcohol base fiber
KR20140080552A (en) Spun-dyed meta-type fully aromatic polyamide fiber
JP2012052249A (en) Composite spun yarn
JP2004332174A (en) Acrylic synthetic fiber and method for producing the same
KR950005430B1 (en) Flame-retardant acrylic fibers and process for preparing the same
DE2851644A1 (en) ACRYLIC NITRILE POLYMER COMPOUND
JP2013133569A (en) Spun yarn of spun-dyed meta-type wholly aromatic polyamide fiber
US4604428A (en) Method of producing a flame-retardant acrylic polymer
CN111349318A (en) Flame-retardant fiber master batch, fluorescent flame-retardant fiber composition and fluorescent flame-retardant fiber
JP2004256936A (en) Method for producing highly flame-retardant acrylic fiber
KR930003221B1 (en) Producing method of high-density polyester fiber
JP2908046B2 (en) Anti-pilling acrylic fiber and method for producing the same
JP4603208B2 (en) Polyketone fiber
JP2003535920A (en) Modacrylic copolymer composition
JP2018053378A (en) Acrylic fiber excellent in ultraviolet shielding property
JP3192308B2 (en) Acrylic synthetic fiber with excellent light resistance
JPH0368134B2 (en)
JPS6257911A (en) Production of highly flame-retardant modacrylic yarn
JP3421093B2 (en) Flame retardant fiber composite
DE2454323A1 (en) MODACRYLIC FILLS WITH IMPROVED COLORISTIC PROPERTIES
JPS62162011A (en) Production of modacryl fiber of high flame retardancy
JPH03294515A (en) Production of highly flame-retardant acrylic fiber having excellent transparency

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221