JP2004325398A - Needle for continuous suction, and continuous suction device - Google Patents

Needle for continuous suction, and continuous suction device Download PDF

Info

Publication number
JP2004325398A
JP2004325398A JP2003123972A JP2003123972A JP2004325398A JP 2004325398 A JP2004325398 A JP 2004325398A JP 2003123972 A JP2003123972 A JP 2003123972A JP 2003123972 A JP2003123972 A JP 2003123972A JP 2004325398 A JP2004325398 A JP 2004325398A
Authority
JP
Japan
Prior art keywords
needle
continuous
inhalation
continuous inhalation
microplate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123972A
Other languages
Japanese (ja)
Inventor
Seiichiro Ito
誠一郎 伊藤
Shigeru Oda
滋 小田
Takao Kunioka
崇生 国岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Software Engineering Co Ltd
Original Assignee
Hitachi Software Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Software Engineering Co Ltd filed Critical Hitachi Software Engineering Co Ltd
Priority to JP2003123972A priority Critical patent/JP2004325398A/en
Publication of JP2004325398A publication Critical patent/JP2004325398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously and stably suck in a plurality of sample solutions. <P>SOLUTION: In this needle for continuous suction, the needle is constituted of a uniform material in a rod-like needle with a hole in the center, and a tip of the needle formed into a shape having a face nonperpendicular to the center axis. In this continuous suction device, a vertically movable suction part is provided with an elastic body in a continuous suction device wherein the suction part having the continuous suction needle is movable vertically, and wherein a micro plate filled with the sucked sample solutions is movable longitudinally and laterally, and a cushioning property is imparted for the vertical motion of the needle for the continuous suction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フローサイトメーターやその原理を応用した装置に溶液サンプルを吸入する過程において、安定に連続供給するのに用いられる連続吸入用ニードル、及びこの連続吸入用ニードルを備えた連続吸入装置に関する。
【0002】
【従来の技術】
従来からレーザーと蛍光物質を利用し、細胞1個1個の相対的大きさや形状、内部構造の違い、さらには蛍光強度や蛍光の種類を測定することで、細胞の同定や細胞群を構成する種々の細胞の存在比を短時間で解析していた。これらの装置は一般にフローサイトメーターと呼ばれており、細胞の入った液状溶液サンプルを吸入し流路中の細胞にレーザーを当て、その透過光、散乱光、蛍光物質の発光等を測定することで解析を可能にしている。
【0003】
この原理を応用し、複数の染料の配合比率を変え発光の異なる細胞大のマイクロビーズを用い、これら複数マイクロビーズを同じ溶液サンプル中で反応させた後、各マイクロビーズ表面の蛍光量を測定することにより、複数項目の同時測定を可能にしている。この技術は一般にSAT(Suspension Array Technology)と呼ぶ。SATを応用することで、複数の抗体を用いて少量溶液サンプル中の複数の抗原濃度を定量することや、一人のゲノム中に存在する複数箇所のSNPsを高速でタイピングすることが可能になった。近年、さらにマイクロプレート等から複数の溶液サンプルを自動で吸入し、複数項目を多検体同時に測定する事が可能となってきた。
【0004】
上記フローサイトメーターやSAT技術を応用した測定には、連続吸入用ニードルを有する連続吸入装置が用いられる。XY可動台上には、測定される細胞やマイクロビーズを含む溶液サンプルが入った多数のウエルを有するマイクロプレートが載置され、連続吸入用ニードルを用いて各ウエルに入った溶液サンプルが吸入される。ところで、マイクロプレートに設けられるウエルは、多数検体処理のニーズが高まるに従ってその個数が増える傾向にある。又、使用される試薬の量を減少させるために各ウエルの容量を小さくする必要があった。本発明に関連する公知文献としては下記特許文献1があげられる。
【0005】
【特許文献1】
特開11−326152号公報
【0006】
【発明が解決しようとする課題】
一般に、連続吸入用ニードルは直径1mm〜数mmの棒状体であり、ニードル本体の中心部に直径0.1mm程度以上の細孔が通っている。図3は、従来の連続吸入用ニードルの先端部を示す。図3(a)は先端部正面図、図3(b)は先端部底面図、図3(c)は先端部側面図である。図3に示されるようにニードルの先端部は中心軸に垂直な平面でカットされている。
【0007】
この先端がフラットな従来の連続吸入用ニードルを用いて底面がフラットなマイクロプレートから吸入する場合、図5(b)のように、連続吸入用ニードルがマイクロプレートの底面に接すると、液体が通過する細孔が閉じられてしまい、それ以上の吸入がおこなえなくなるという問題があった。
【0008】
又、図6(b)のように、この先端がフラットな従来の連続吸入用ニードルを用いてPCR専用のマイクロプレートから吸入する場合、連続吸入用ニードルがマイクロプレート中の各ウエルの中心からずれると、連続吸入用ニードルの先端部の角がウエルの側面に接触し、連続吸入用ニードルやマイクロプレートの破損や消耗が起きるという問題もあった。
【0009】
又、各ウエルの底面の高さが異なるマイクロプレート等を用いた場合には、連続吸入用ニードルが降下する距離が一定であるため、底面の低いウエルでは、連続吸入用ニードルがマイクロプレート中の溶液サンプルまで届かず、吸入できないといった問題もあった。他方、底面の低いウエルでは、連続吸入用ニードルがウエルの底面と衝突してしまい、連続吸入用ニードルやマイクロプレートの破損や消耗が起きるといった問題もあった。
【0010】
連続吸入用ニードルやマイクロプレートの破損や消耗が起きると、溶液サンプルが他の溶液サンプルと混入して測定精度が極端に低下する恐れがあった。
【0011】
上記の問題は、マイクロプレート中のウエル数の増大及びウエル容量の減少が進むにつれ、より顕著なものとなっている。
【0012】
そこで、本発明の目的は、連続して吸入する際に溶液サンプル間の混入を防ぎ、空気等を吸入することなく安定に複数の溶液サンプルを連続して吸入する連続吸入用ニードルを提供することにある。同時に、測定中の連続吸入用ニードルとウエルの破損を防ぎ、測定効率の向上した連続吸入装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは、連続吸入用ニードルの先端部を改良することで、前記課題が解決されることを見出し、本発明の連続吸入用ニードルに到達した。同時に、該連続吸入用ニードルの上下動に緩衝性を付与することで、前記課題が解決されることを見出し、本発明の連続吸入用ニードルを含む連続吸入装置に到達した。
【0014】
即ち、第1に、本発明は連続吸入用ニードルの発明であり、中心に穴の開いた棒状のニードルにおいて、前記ニードルは均一の材料で構成され、且つ前記ニードルの先端が中心軸に非垂直な面を有する形状であることを特徴とする。
【0015】
本発明の連続吸入用ニードルを用いると、たとえマイクロプレートの底面に連続吸入用ニードルが接してしまったとしても吸入することが出来る。また柔らかい材質で製造されたチューブ型のウエル側面に連続吸入用ニードルが触れたとしても、マイクロプレートを破損しにくくさせる形状でもある。
【0016】
本発明の連続吸入用ニードルは、化学反応に広く用いることができるが、特に、溶液サンプル量が少なく且つ高精度の測定が求められる生化学的反応や免疫学的反応を用いた測定に好適に用いられる。
【0017】
本発明の連続吸入用ニードルとして、前記ニードルの先端が円錐形を中心軸に垂直な面でカットされてなる円錐台形形状であることが好ましい。ニードルの先端を円錐台形形状とすることで、連続吸入用ニードルの中心軸がウエルの中心軸を離れた場合でも損傷され難く、又ウエルの底面近くの溶液サンプルを吸入することができる。又、該連続吸入用ニードルの先端面において、前記ニードルの中心に向かって1本以上の溝があることが、ウエルの底面近くの溶液サンプルを吸入する上で好ましい。溝の具体例としては、1本の直線、十字型、互いに120度に開いた3本等が例示される。更に、上記の連続吸入用ニードルにおいて、前記ニードルの先端部の円錐側面は前記本体の中心軸と直交する平面と45゜〜80゜の範囲の角度で交わることが、所期の目的を達成する上で好ましい。
【0018】
本発明の連続吸入用ニードルの他の形状として、前記中心軸に非垂直な面が2個以上の平面からなる形状であるものも好ましい。上記先端部が円錐台形状のものと同様に、連続吸入用ニードルの中心軸がウエルの中心軸を離れた場合でも損傷され難く、又ウエルの底面近くの溶液サンプルを吸入することができる。
【0019】
本発明の連続吸入用ニードルにおいては、ニードルを構成する均一の材料は金属であることが好ましい。金属製ニードルは耐久性があり、洗浄をすることによって繰返し使用ができる。又、連続吸入用ニードルが均一の材料で構成されているため、例えば先端部のみ可撓性材料で構成する場合に生じる材料が異なる部分が前の溶液サンプルで汚染される恐れが少なくなる。具体的には、連続吸入用ニードルの金属材料としてオーステナイト系ステンレスが好ましく例示される。
【0020】
第2に、本発明は連続吸入用ニードルを備えた連続吸入装置の発明であり、上記の連続吸入用ニードルを有する吸入部が上下動可能であり、吸入する溶液サンプルの入ったマイクロプレートが前後左右に動かすことが可能である連続吸入装置において、前記上下動可能な吸入部が弾性体を備え、前記連続吸入用ニードルの上下動に緩衝性が付与されたことを特徴とする。
【0021】
連続吸入用ニードルの上下動に緩衝性が付与されたことで、連続吸入用ニードルやマイクロプレートの破損や消耗を防ぎ、底面の高さが異なるマイクロプレートにおいても連続吸入用ニードルの高さ調整を必要としない。又、マイクロプレートの高さを微調整する必要がない。
【0022】
本発明の弾性体としては、連続吸入用ニードルの上下動に緩衝性が付与する機能を有するもの、例えば、各種スプリング、ゴム状物、発泡体等が例示される。この中で、スプリングが実用的である。
【0023】
第3に、本発明は連続吸入用ニードルを備えた連続吸入装置の別の発明であり、上記の連続吸入用ニードルを有する吸入部が上下動可能であり、吸入する溶液サンプルの入ったマイクロプレートが前後左右に動かすことが可能である連続吸入装置において、吸入する溶液サンプルの入ったマイクロプレートを載置する基盤上に廃液槽と洗浄槽を備え、洗浄槽には超音波洗浄機能を持たせることで、前記連続吸入用ニードルを洗浄可能としたことを特徴とする。
【0024】
従来は、測定に使用した後の溶液サンプルや余剰の溶液サンプルは元のウエルに戻していたために、1個のウエルを吸入と廃液の2つの操作で用いていたため、溶液サンプル間の混入(コンタミ)が生じる恐れが高かったが、本発明のように基盤上に廃液槽と洗浄槽を備えることで、溶液サンプル間の混入(コンタミ)が生じる恐れを大幅に防ぐことが可能となった。又、洗浄槽には超音波洗浄機能を持たせることで溶液サンプル間の混入(コンタミ)が生じる恐れを更に防ぐことができる。
【0025】
本発明の連続吸入用ニードル及びその装置を用いることで連続吸入する装置は、SATの技術を利用した装置に限られない。本発明のスポットピンは、フローサイトメーターや臨床検査機器等、マイクロプレートから溶液サンプルを吸入する必要のある装置全般にわたって用いることができる。
【0026】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の連続吸入用ニードル及び連続吸入用ニードルを備えた連続吸入装置の全体構造を示す概略図である。この連続吸入装置は、下部に連続吸入用ニードル11を装着したニードル固定部材12、吸入した溶液サンプルを測定装置に送るための溶液サンプル供給用チューブ17、ニードル固定部材12をZ軸方向に駆動するZモータ13Z、XY可動台14、XY可動台14をX軸方向に駆動するXモータ13X、Y方向に駆動するYモータ13Yを備える。
【0027】
XY可動台14上には、フローサイトメーターやSAT技術を応用した装置で測定するための細胞やマイクロビーズを含む溶液サンプルが入った多数のウエルを有するマイクロプレート15、また測定後に出る廃液を入れる廃液槽16a、次の溶液サンプルを吸入する前に連続吸入用ニードルを洗浄するための超音波洗浄装置16bが載置されている。連続吸入用ニードル11としては、本発明の連続吸入用ニードルが用いられ、ニードル固定部材12としては、本発明のスプリングを備えたニードル固定部材が用いられる。
【0028】
XY可動台14のX方向位置及びY方向位置をXモータ13X及びYモータ13Yにより正確に制御し、ニードル固定部材12のZ方向位置をZモータ13Zにより制御することで、マイクロプレート15に入っている溶液サンプルを連続して吸入することを可能にする。連続して吸入する場合、連続吸入用ニードル11の内部や先端の外壁に直前に測定を行った溶液サンプルが付着しているため、まず溶液サンプル供給用チューブ17から洗浄液を連続吸入用ニードル11に通して廃液槽16aに廃液を出した後、連続吸入用ニードル11の先端を超音波洗浄装置16bに浸して洗浄を行うことで、溶液サンプルの混入を防ぐ。
【0029】
図2は、本発明による連続吸入用ニードルの先端形状を示す側面図及び底面図である。連続吸入用ニードル11の先端は、円錐形から中心軸に垂直な面でカットされており、さらに先端面において中心に向かって溝がある形状である。前記溝は、基本的に中心に空けられた穴まであれば良く、その一例としてそれぞれが直角に交わるように削り出した2本のV字溝21が示めされる。図2に示される連続吸入用ニードルを用いることにより、連続吸入用ニードルの中心軸がウエルの中心軸を離れた場合でも損傷され難く、又ウエルの底面近くの溶液サンプルを吸入することができる。
【0030】
本実施例では、先端の円錐形側面と中心軸に垂直な面との角度を約60゜とし、円錐形から中心軸に垂直な面でカットされた面の直径を連続吸入用ニードルの直径の約半分とした。先端部の円錐側面は中心軸と直交する平面と45゜〜80゜の範囲の角度で交わることが好ましい。また連続吸入用ニードルの直径は、1.0〜2.0mmの範囲、中心軸に垂直な面でカットされた面の直径は、0.4〜1.6mmの範囲であることが好ましい。
【0031】
図4は、本発明の連続吸入用ニードル11を備えた連続吸入装置のニードル固定部分を示す。図4(a)はニードル固定部分の側面図であり、図4(b)はニードル固定部分の断面図である。図4を用いて、弾性体としてスプリング41を備えたニードル固定部材12の形状について説明する。連続吸入用ニードル11、ニードル固定部材12、溶液サンプル供給用チューブ17は、Z方向位置をZモータ13Zにより制御され連動している。たとえ連続吸入用ニードル11がマイクロプレート15等に接地してしまったとしても、ニードル固定部材12にスプリングが備えてあることで、連続吸入用ニードル11の先端にかかる圧力を軽減させることができる。
【0032】
図5、図6を用いて、複数種類のマイクロプレートから溶液サンプルを吸入する方法の一例を説明する。マイクロプレートには、V字型マイクロプレートやU字型マイクロプレート等様々なマイクロプレートが販売されているが、本実施例では連続吸入によく用いられる平底型マイクロプレート51とPCR専用マイクロプレート61について説明する。
【0033】
図5は、連続吸入用ニードルで平底マイクロプレート内の溶液サンプルを吸入する際の模式図である。図5(a)は連続吸入用ニードルがマイクロプレート底面まで達していない図であるが、溶液サンプルを最後まで吸入することが出来ない問題がある。図5(b)は先端がフラットな従来の連続吸入用ニードルがマイクロプレート底面まで達している図であるが、溶液サンプルを全く吸入することが出来ない問題がある。図5(c)は本発明による連続吸入用ニードルがマイクロプレート底面まで達している図であり、図5(d)のように中心へ向かって溝があるあるため、最後まで溶液サンプルを吸入することが出来る。
【0034】
図6は、連続吸入用ニードルでPCR専用マイクロプレート内の溶液サンプルを吸入する際の模式図である。図6(a)は本発明による連続吸入用ニードルがマイクロプレート底面まで達している図であり、連続吸入用ニードル先端面には溝があるあるため、最後まで溶液サンプルを吸入することが出来る。図5(b)は先端がフラットな従来の連続吸入用ニードルが中心から少し外れてしまいマイクロプレート底面まで達していない図であり、マイクロプレート側面を破壊してしまう恐れがあり、また溶液サンプルをほとんど吸入することが出来ないという問題がある。図5(c)は本発明による連続吸入用ニードルが中心から少し外れてしまいマイクロプレート底面まで達していない図であり、マイクロプレート側面を破壊してしまう恐れを軽減し、先端がフラットな従来の連続吸入用ニードルと比べると溶液サンプルをより多く吸入することが出来る。
【0035】
図7に、本発明の連続吸入用ニードル先端部の他の形状を示す。図7(a)は本発明の他の連続吸入用ニードルの正面図、側面図、及び底面図である。この連続吸入用ニードルは先端部が中心軸に傾斜する4個の平面で構成されている。図7(b)は本発明の他の連続吸入用ニードルの正面図、側面図、及び底面図である。この連続吸入用ニードルは先端部が中心軸に傾斜する2個の平面で構成されている。図7(a)及び図7(b)に示される連続吸入用ニードルを用いることにより、連続吸入用ニードルの中心軸がウエルの中心軸を離れた場合でも損傷され難く、又ウエルの底面近くの溶液サンプルを吸入することができる。
【0036】
【発明の効果】
本発明によると、連続して吸入する際に溶液サンプル間の混入を防ぎ、空気等を吸入することなく安定に複数の溶液サンプルを連続して吸入する連続吸入用ニードル及びその装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の連続吸入用ニードル及びその装置の全体構造を示す概略図。
【図2】本発明の連続吸入用ニードルの先端形状を示す側面図及び底面図。
【図3】従来の連続吸入用ニードルの先端形状の一例を示す側面図及び底面図。
【図4】本発明連続吸入装置のニードル固定部材の側面図及び断面図。
【図5】連続吸入用ニードルで平底マイクロプレート内溶液サンプルを吸入する際の模式図。
【図6】連続吸入用ニードルでPCR専用マイクロプレート内溶液サンプルを吸入する際の模式図。
【図7】本発明の連続吸入用ニードルの他の先端形状を示す。
【符号の説明】
11:連続吸入用ニードル、12:ニードル固定部材、13X:Xモータ、13Y:Yモータ、13Z:Zモータ、14:XY可動台、15:マイクロプレート、16a:廃液槽、16b:超音波洗浄装置、17:溶液サンプル供給用チューブ、21:V字溝、41:スプリング、51:平底型マイクロプレート、52:平底型マイクロプレートの底面、61:PCR専用マイクロプレート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous suction needle used to stably and continuously supply a solution sample to a flow cytometer or a device applying the principle thereof, and a continuous suction device provided with the continuous suction needle. .
[0002]
[Prior art]
Conventionally, by using lasers and fluorescent materials, cells are identified and cell groups are constructed by measuring the relative size, shape, and internal structure of each cell, as well as measuring the intensity and type of fluorescence. The abundance ratio of various cells was analyzed in a short time. These devices are generally called flow cytometers. They measure a liquid solution sample containing cells, irradiate the cells in the flow path with a laser, and measure the transmitted light, scattered light, and the emission of fluorescent material. Enables analysis.
[0003]
Applying this principle, by changing the mixing ratio of multiple dyes and using microbeads with cell sizes different in luminescence, reacting these multiple microbeads in the same solution sample, measure the amount of fluorescence on the surface of each microbead This enables simultaneous measurement of a plurality of items. This technique is generally called SAT (Suspension Array Technology). By applying SAT, it became possible to quantify multiple antigen concentrations in a small-volume solution sample using multiple antibodies and to rapidly type multiple SNPs present in a single genome. . In recent years, it has become possible to automatically inhale a plurality of solution samples from a microplate or the like, and to measure a plurality of items at the same time.
[0004]
A continuous inhaler having a continuous inhalation needle is used for the measurement using the flow cytometer or the SAT technique. A microplate having a number of wells containing a solution sample containing cells or microbeads to be measured is placed on the XY movable table, and the solution sample contained in each well is inhaled using a continuous inhalation needle. You. By the way, the number of wells provided on a microplate tends to increase as needs for processing a large number of samples increase. Also, it was necessary to reduce the volume of each well in order to reduce the amount of reagent used. As a known document related to the present invention, the following Patent Document 1 is cited.
[0005]
[Patent Document 1]
JP-A-11-326152
[Problems to be solved by the invention]
In general, a continuous inhalation needle is a rod-shaped body having a diameter of 1 mm to several mm, and a fine hole having a diameter of about 0.1 mm or more passes through the center of the needle body. FIG. 3 shows a tip portion of a conventional continuous inhalation needle. 3A is a front view of the distal end, FIG. 3B is a bottom view of the distal end, and FIG. 3C is a side view of the distal end. As shown in FIG. 3, the tip of the needle is cut in a plane perpendicular to the central axis.
[0007]
When a conventional continuous suction needle with a flat tip is used to inhale from a microplate with a flat bottom, as shown in FIG. 5B, when the continuous suction needle contacts the bottom of the microplate, the liquid passes through. However, there is a problem that the pores are closed, and further inhalation cannot be performed.
[0008]
In addition, as shown in FIG. 6B, when a conventional continuous inhalation needle having a flat tip is used to inhale from a PCR-dedicated microplate, the continuous inhalation needle is shifted from the center of each well in the microplate. Then, the corner of the tip of the continuous suction needle comes into contact with the side surface of the well, and there is a problem that the continuous suction needle and the microplate are damaged or consumed.
[0009]
In addition, when a microplate or the like having a different bottom height of each well is used, the distance at which the continuous suction needle descends is constant. There was also a problem that the solution sample did not reach and could not be inhaled. On the other hand, in a well having a low bottom surface, the continuous suction needle collides with the bottom surface of the well, causing a problem that the continuous suction needle and the microplate are damaged or consumed.
[0010]
If the continuous inhalation needle or the microplate is damaged or worn, the solution sample may be mixed with another solution sample, and the measurement accuracy may be extremely reduced.
[0011]
The above problems become more pronounced as the number of wells in the microplate increases and the well capacity decreases.
[0012]
Accordingly, an object of the present invention is to provide a continuous inhalation needle that prevents a mixture of solution samples during continuous inhalation and stably inhales a plurality of solution samples continuously without inhaling air or the like. It is in. At the same time, it is an object of the present invention to provide a continuous inhalation device that prevents breakage of the continuous inhalation needle and well during measurement and improves measurement efficiency.
[0013]
[Means for Solving the Problems]
The present inventors have found that the problem is solved by improving the tip of the continuous inhalation needle, and have reached the continuous inhalation needle of the present invention. At the same time, they have found that the above-mentioned problem can be solved by imparting a buffering property to the up-and-down movement of the continuous inhalation needle, and arrived at a continuous inhalation device including the continuous inhalation needle of the present invention.
[0014]
That is, first, the present invention is an invention of a needle for continuous inhalation. In a rod-shaped needle having a hole at the center, the needle is made of a uniform material, and the tip of the needle is non-perpendicular to the central axis. It is characterized by having a shape having various surfaces.
[0015]
When the continuous inhalation needle of the present invention is used, it is possible to inhale even if the continuous inhalation needle contacts the bottom surface of the microplate. In addition, even if the needle for continuous inhalation touches the side surface of a tube-shaped well made of a soft material, the microplate may be hardly damaged.
[0016]
The needle for continuous inhalation of the present invention can be widely used for a chemical reaction, but is particularly suitable for measurement using a biochemical reaction or an immunological reaction in which a small amount of a solution sample is required and high-precision measurement is required. Used.
[0017]
As the continuous inhalation needle of the present invention, it is preferable that the tip of the needle has a truncated conical shape formed by cutting a conical shape in a plane perpendicular to a central axis. By forming the tip of the needle into a truncated cone shape, even if the central axis of the continuous inhalation needle is separated from the central axis of the well, it is hardly damaged, and a solution sample near the bottom of the well can be inhaled. In addition, it is preferable that at least one groove is provided on the distal end surface of the continuous inhalation needle toward the center of the needle in order to inhale the solution sample near the bottom of the well. Specific examples of the groove include a single straight line, a cross shape, and three grooves opened at 120 degrees from each other. Furthermore, in the above-mentioned needle for continuous inhalation, the conical side surface of the tip of the needle intersects a plane perpendicular to the central axis of the main body at an angle in a range of 45 ° to 80 ° to achieve an intended purpose. Preferred above.
[0018]
As another shape of the continuous inhalation needle of the present invention, a shape in which a surface non-perpendicular to the central axis is formed of two or more planes is also preferable. Similar to the truncated cone, the tip of the needle for continuous suction is hardly damaged even when the center axis of the needle is apart from the center axis of the well, and a solution sample near the bottom of the well can be sucked.
[0019]
In the continuous inhalation needle of the present invention, the uniform material constituting the needle is preferably a metal. The metal needle is durable and can be used repeatedly by washing. In addition, since the continuous inhalation needle is made of a uniform material, for example, when the tip portion is made of a flexible material, there is less possibility that a portion of a different material that is generated will be contaminated with the previous solution sample. Specifically, austenitic stainless steel is preferably exemplified as the metal material of the continuous inhalation needle.
[0020]
Secondly, the present invention is an invention of a continuous inhalation device provided with a continuous inhalation needle, wherein the inhalation section having the continuous inhalation needle is movable up and down, and a microplate containing a solution sample to be inhaled is moved back and forth. In the continuous inhaler which can be moved to the left and right, the vertically movable suction unit is provided with an elastic body, and the up and down movement of the continuous inhalation needle is provided with cushioning.
[0021]
Buffering the vertical movement of the continuous suction needle prevents damage and wear of the continuous suction needle and microplate, and adjusts the height of the continuous suction needle even for microplates with different bottom heights. do not need. Also, there is no need to finely adjust the height of the microplate.
[0022]
Examples of the elastic body of the present invention include those having a function of imparting a buffering property to the vertical movement of the continuous inhalation needle, for example, various springs, rubber materials, foams, and the like. Among them, the spring is practical.
[0023]
Third, the present invention is another invention of a continuous inhalation device having a continuous inhalation needle, wherein the inhalation section having the above-mentioned continuous inhalation needle is movable up and down, and a microplate containing a solution sample to be inhaled is provided. In a continuous inhaler that can be moved back and forth and left and right, a waste tank and a washing tank are provided on a base on which a microplate containing a solution sample to be inhaled is placed, and the washing tank has an ultrasonic cleaning function. Thereby, the continuous suction needle can be washed.
[0024]
Conventionally, a solution sample after use for measurement or an excess solution sample was returned to the original well, and one well was used for two operations of inhalation and waste liquid. However, by providing the waste liquid tank and the washing tank on the substrate as in the present invention, it was possible to largely prevent the risk of contamination between the solution samples (contamination). Further, by providing the cleaning tank with an ultrasonic cleaning function, it is possible to further prevent the possibility of contamination (contamination) between solution samples.
[0025]
The device for continuous inhalation by using the continuous inhalation needle and the device according to the present invention is not limited to the device using the SAT technology. The spot pin of the present invention can be used in all devices that need to inhale a solution sample from a microplate, such as a flow cytometer and a clinical test device.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the entire structure of a continuous inhalation needle and a continuous inhalation apparatus provided with the continuous inhalation needle of the present invention. In this continuous inhaler, a needle fixing member 12 having a continuous inhaling needle 11 mounted thereon, a solution sample supply tube 17 for sending a sucked solution sample to a measuring device, and the needle fixing member 12 are driven in the Z-axis direction. A Z motor 13Z, an XY movable base 14, and an X motor 13X that drives the XY movable base 14 in the X-axis direction and a Y motor 13Y that drives the XY movable base 14 in the Y direction are provided.
[0027]
On the XY movable base 14, a microplate 15 having a number of wells containing a solution sample containing cells and microbeads for measurement by a device using a flow cytometer or SAT technology, and a waste liquid discharged after the measurement are placed. A waste liquid tank 16a and an ultrasonic cleaning device 16b for cleaning the continuous suction needle before sucking the next solution sample are mounted. The needle for continuous inhalation of the present invention is used as the needle 11 for continuous inhalation, and the needle fixing member having the spring of the present invention is used as the needle fixing member 12.
[0028]
The X and Y directions of the XY movable table 14 are accurately controlled by the X motor 13X and the Y motor 13Y, and the Z direction of the needle fixing member 12 is controlled by the Z motor 13Z. Allows continuous inhalation of a solution sample that is present. In the case of continuous inhalation, since the solution sample measured immediately before is attached to the inside or the outer wall of the tip of the continuous inhalation needle 11, first, the washing liquid is supplied from the solution sample supply tube 17 to the continuous inhalation needle 11. After passing the waste liquid through the waste liquid tank 16a through the waste liquid tank 16a, the tip of the continuous suction needle 11 is immersed in the ultrasonic cleaning device 16b for cleaning, thereby preventing the solution sample from being mixed.
[0029]
FIG. 2 is a side view and a bottom view showing the tip shape of the continuous inhalation needle according to the present invention. The distal end of the continuous inhalation needle 11 is cut from a conical shape in a plane perpendicular to the central axis, and has a shape with a groove toward the center on the distal end surface. The groove basically has only to be a hole formed in the center, and as an example, two V-shaped grooves 21 cut out so as to intersect at right angles are shown. By using the continuous suction needle shown in FIG. 2, even if the central axis of the continuous suction needle is separated from the center axis of the well, it is hardly damaged, and a solution sample near the bottom of the well can be sucked.
[0030]
In this embodiment, the angle between the conical side surface of the tip and the surface perpendicular to the central axis is about 60 °, and the diameter of the surface cut from the conical shape by the surface perpendicular to the central axis is the diameter of the diameter of the continuous inhalation needle. About half. It is preferable that the conical side surface of the tip portion intersects a plane perpendicular to the central axis at an angle in the range of 45 ° to 80 °. Further, the diameter of the continuous inhalation needle is preferably in the range of 1.0 to 2.0 mm, and the diameter of the surface cut by a plane perpendicular to the central axis is preferably in the range of 0.4 to 1.6 mm.
[0031]
FIG. 4 shows a needle fixing portion of the continuous inhaler provided with the continuous inhaler needle 11 of the present invention. FIG. 4A is a side view of the needle fixing part, and FIG. 4B is a cross-sectional view of the needle fixing part. The shape of the needle fixing member 12 provided with the spring 41 as an elastic body will be described with reference to FIG. The position of the continuous suction needle 11, the needle fixing member 12, and the solution sample supply tube 17 in the Z direction are controlled by a Z motor 13Z and are linked. Even if the continuous suction needle 11 is grounded to the microplate 15 or the like, the spring applied to the needle fixing member 12 can reduce the pressure applied to the tip of the continuous suction needle 11.
[0032]
An example of a method of sucking a solution sample from a plurality of types of microplates will be described with reference to FIGS. As the microplate, various microplates such as a V-shaped microplate and a U-shaped microplate are sold. In this embodiment, a flat-bottomed microplate 51 and a PCR-dedicated microplate 61 which are often used for continuous inhalation are used. explain.
[0033]
FIG. 5 is a schematic diagram when a solution sample in a flat bottom microplate is sucked by a continuous suction needle. FIG. 5A is a view in which the continuous inhalation needle does not reach the bottom of the microplate, but there is a problem that the solution sample cannot be inhaled to the end. FIG. 5B is a view in which a conventional continuous inhalation needle having a flat tip reaches the bottom of the microplate, but there is a problem that a solution sample cannot be inhaled at all. FIG. 5 (c) is a view in which the continuous inhalation needle according to the present invention reaches the bottom of the microplate. Since there is a groove toward the center as in FIG. 5 (d), the solution sample is inhaled to the end. I can do it.
[0034]
FIG. 6 is a schematic diagram when a solution sample in a PCR-dedicated microplate is inhaled by a continuous inhalation needle. FIG. 6A is a diagram in which the continuous inhalation needle according to the present invention reaches the bottom of the microplate. Since the continuous inhalation needle has a groove at the tip end surface, the solution sample can be inhaled to the end. FIG. 5 (b) is a view in which a conventional continuous inhalation needle having a flat tip is slightly deviated from the center and does not reach the bottom of the microplate. There is a problem that it can hardly be inhaled. FIG. 5 (c) is a view showing that the continuous inhalation needle according to the present invention is slightly deviated from the center and does not reach the bottom of the microplate. The solution sample can be inhaled more than the needle for continuous inhalation.
[0035]
FIG. 7 shows another shape of the distal end portion of the continuous inhalation needle of the present invention. FIG. 7A is a front view, a side view, and a bottom view of another continuous inhalation needle of the present invention. This continuous inhalation needle is constituted by four planes whose tip is inclined to the central axis. FIG. 7B is a front view, a side view, and a bottom view of another continuous inhalation needle of the present invention. This continuous inhalation needle is constituted by two flat surfaces whose tip is inclined to the central axis. By using the continuous suction needle shown in FIGS. 7A and 7B, the continuous suction needle is hardly damaged even when the central axis of the needle is separated from the center axis of the well. Solution samples can be inhaled.
[0036]
【The invention's effect】
According to the present invention, it is possible to provide a continuous inhalation needle and a device for continuously inhaling a plurality of solution samples stably without inhaling air or the like, while preventing intrusion between solution samples during continuous inhalation. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the entire structure of a continuous inhalation needle and a device thereof according to the present invention.
FIG. 2 is a side view and a bottom view showing a tip shape of the continuous inhalation needle of the present invention.
FIG. 3 is a side view and a bottom view showing an example of a tip shape of a conventional continuous suction needle.
FIG. 4 is a side view and a sectional view of a needle fixing member of the continuous inhaler of the present invention.
FIG. 5 is a schematic diagram when a solution sample in a flat bottom microplate is inhaled by a continuous inhalation needle.
FIG. 6 is a schematic diagram when a solution sample in a PCR-dedicated microplate is inhaled by a continuous inhalation needle.
FIG. 7 shows another tip shape of the continuous inhalation needle of the present invention.
[Explanation of symbols]
11: Needle for continuous inhalation, 12: Needle fixing member, 13X: X motor, 13Y: Y motor, 13Z: Z motor, 14: XY movable base, 15: microplate, 16a: waste liquid tank, 16b: ultrasonic cleaning device , 17: solution sample supply tube, 21: V-shaped groove, 41: spring, 51: flat-bottomed microplate, 52: bottom surface of flat-bottomed microplate, 61: PCR-dedicated microplate

Claims (9)

中心に穴の開いた棒状のニードルにおいて、前記ニードルは均一の材料で構成され、且つ前記ニードルの先端が中心軸に非垂直な面を有する形状であることを特徴とする連続吸入用ニードル。In a rod-shaped needle having a hole at the center, the needle is made of a uniform material, and the tip of the needle has a shape having a surface that is not perpendicular to a central axis. 請求項1記載の連続吸入用ニードルにおいて、前記ニードルの先端が中心軸に垂直な面でカットされてなる円錐台形形状であることを特徴とする連続吸入用ニードル。2. The continuous inhalation needle according to claim 1, wherein the tip of the needle has a truncated conical shape cut at a plane perpendicular to a central axis. 請求項2記載の連続吸入用ニードルの先端面において、前記ニードルの中心軸に向かって1本以上の溝があることを特徴とする連続吸入用ニードル。3. The continuous inhalation needle according to claim 2, wherein the end surface of the continuous inhalation needle has one or more grooves toward a central axis of the needle. 請求項2又は3に記載の連続吸入用ニードルにおいて、前記ニードルの先端部の円錐側面は前記本体の中心軸と直交する平面と45゜〜80゜の範囲の角度で交わることを特徴とする連続吸入用ニードル。4. The continuous inhalation needle according to claim 2, wherein the conical side surface of the distal end of the needle intersects a plane perpendicular to the central axis of the main body at an angle in a range of 45 ° to 80 °. Needle for inhalation. 請求項1記載の連続吸入用ニードルにおいて、前記中心軸に非垂直な面が2個以上の平面からなる形状であることを特徴とする連続吸入用ニードル。2. The continuous inhalation needle according to claim 1, wherein the surface non-perpendicular to the central axis is formed of two or more planes. 請求項1乃至5に記載の連続吸入用ニードルにおいて、前記ニードルを構成する均一の材料は金属であることを特徴とするニードル。The needle for continuous inhalation according to claim 1, wherein the uniform material forming the needle is a metal. 請求項6に記載の連続吸入用ニードルにおいて、前記金属材料はオーステナイト系ステンレスであることを特徴とするニードル。The needle according to claim 6, wherein the metal material is austenitic stainless steel. 請求項1乃至7に記載の連続吸入用ニードルを有する吸入部が上下動可能であり、吸入する溶液サンプルの入ったマイクロプレートが前後左右に動かすことが可能である連続吸入装置において、前記上下動可能な吸入部が弾性体を備え、前記連続吸入用ニードルの上下動に緩衝性が付与されたことを特徴とする連続吸入装置。8. The continuous inhaler according to claim 1, wherein the inhaler having the needle for continuous inhalation according to any one of claims 1 to 7 is movable up and down, and the microplate containing the solution sample to be inhaled is movable back and forth and left and right. A continuous inhalation device, wherein a possible inhalation portion includes an elastic body, and a shock absorbing property is provided to the up and down movement of the continuous inhalation needle. 請求項1乃至7に記載の連続吸入用ニードルを有する吸入部が上下動可能であり、吸入する溶液サンプルの入ったマイクロプレートが前後左右に動かすことが可能である連続吸入装置において、吸入する溶液サンプルの入ったマイクロプレートを載置する基盤上に廃液槽と洗浄槽を備え、洗浄槽には超音波洗浄機能を持たせることで、前記連続吸入用ニードルを洗浄可能としたことを特徴とする連続吸入装置。8. A continuous inhaler, wherein the inhaler having the continuous inhaler needle according to claim 1 is movable up and down, and a microplate containing a solution sample to be inhaled can be moved back and forth and left and right. A waste liquid tank and a washing tank are provided on a substrate on which a microplate containing a sample is placed, and the washing tank has an ultrasonic washing function, so that the continuous suction needle can be washed. Continuous inhaler.
JP2003123972A 2003-04-28 2003-04-28 Needle for continuous suction, and continuous suction device Pending JP2004325398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123972A JP2004325398A (en) 2003-04-28 2003-04-28 Needle for continuous suction, and continuous suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123972A JP2004325398A (en) 2003-04-28 2003-04-28 Needle for continuous suction, and continuous suction device

Publications (1)

Publication Number Publication Date
JP2004325398A true JP2004325398A (en) 2004-11-18

Family

ID=33501709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123972A Pending JP2004325398A (en) 2003-04-28 2003-04-28 Needle for continuous suction, and continuous suction device

Country Status (1)

Country Link
JP (1) JP2004325398A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337653B2 (en) * 2003-05-15 2008-03-04 Shiseido Company, Ltd. Liquid chromatography specimen filling method
JP2012230122A (en) * 2005-12-21 2012-11-22 Meso Scale Technologies Llc Assay device, method and reagent
JP2013527460A (en) * 2010-06-02 2013-06-27 パーキンエルマー ヒェマーゲン テヒノロギー ゲーエムベーハー Apparatus and method for sucking up liquid from a container without residue
JP2017015714A (en) * 2011-03-03 2017-01-19 ライフ テクノロジーズ コーポレーション Sampling probe, system, apparatus, and method
WO2020026554A1 (en) * 2018-08-01 2020-02-06 ソニー株式会社 Sample liquid-feeding device, flow cytometer, and sample liquid-feeding method

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113794A (en) * 1976-03-19 1977-09-24 Terumo Medeikaru Kk Device for separating multiilayer fluid
JPS57183560U (en) * 1981-05-15 1982-11-20
JPS58125865U (en) * 1982-02-18 1983-08-26 東洋科学産業株式会社 Test tube cleaning device
JPS6361954A (en) * 1986-09-03 1988-03-18 Kokusai Shiyaku Kk Method and apparatus for preparing sample liquid for analysis
JPH03180764A (en) * 1989-12-08 1991-08-06 Toshiba Corp Dispensing nozzle
JPH04164256A (en) * 1990-10-29 1992-06-09 Tosoh Corp Nozzle device
JPH04191661A (en) * 1990-11-27 1992-07-09 Toshiba Corp Method and device for taking sample dividing automatic chemical analysis apparatus
JPH04204136A (en) * 1990-11-30 1992-07-24 Tosoh Corp Apparatus for taking out constant quantity of liquid
JPH04116767U (en) * 1991-03-30 1992-10-20 株式会社島津製作所 Dispensing device
JPH0854400A (en) * 1994-07-15 1996-02-27 E I Du Pont De Nemours & Co Liquid extractor and container identifying device
JPH08146010A (en) * 1994-09-21 1996-06-07 Hitachi Ltd Analyzer equipped with dispenser
JPH08297125A (en) * 1995-04-26 1996-11-12 Suzuki Motor Corp Method and device for sucking cleaning liquid
JPH0921730A (en) * 1995-07-07 1997-01-21 Olympus Optical Co Ltd Dispensation nozzle cleaner for medical analyzer
JPH1090141A (en) * 1996-09-18 1998-04-10 Hitachi Ltd Gas and dust collecting system
JPH11271322A (en) * 1998-03-24 1999-10-08 Olympus Optical Co Ltd Liquid suction method
JPH11326152A (en) * 1998-05-08 1999-11-26 Matsushita Electric Ind Co Ltd Micro-titre plate and dispensing method
JPH11337557A (en) * 1998-05-25 1999-12-10 Nippon Laser Denshi Kk Micro dispenser device
JP2000088863A (en) * 1998-09-11 2000-03-31 Nippon Laser Denshi Kk Dispensing needle body for microdispenser
JP2001017170A (en) * 1999-07-13 2001-01-23 Kaken Kogyo:Kk Member for transcripting liquid and device for transcripting liquid
JP2001056333A (en) * 1999-08-19 2001-02-27 Yoshikazu Izumi Endless sample bottle for automatic water sampler
JP2002001092A (en) * 2000-06-22 2002-01-08 Shimadzu Corp Apparatus for discharging liquid
JP2002156382A (en) * 2000-11-16 2002-05-31 Shimadzu Corp Device for dispensing trace sample
JP2002162403A (en) * 2000-11-22 2002-06-07 Hitachi Ltd Autoanalyzer
JP2002181837A (en) * 2000-12-08 2002-06-26 Hitachi Software Eng Co Ltd Spot pin and biochip production device
JP2002204945A (en) * 2000-10-16 2002-07-23 Ngk Insulators Ltd Micropipet, dispenser, and method for producing biochip
JP2003098172A (en) * 2001-09-27 2003-04-03 Matsushita Ecology Systems Co Ltd Sensor device manufacturing method and apparatus, spotting apparatus, and needle tube body for spotting apparatus
JP2003344430A (en) * 2002-05-30 2003-12-03 Hitachi Software Eng Co Ltd Spot pin
JP2004004083A (en) * 2003-05-23 2004-01-08 Hitachi Software Eng Co Ltd Spot pin

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113794A (en) * 1976-03-19 1977-09-24 Terumo Medeikaru Kk Device for separating multiilayer fluid
JPS57183560U (en) * 1981-05-15 1982-11-20
JPS58125865U (en) * 1982-02-18 1983-08-26 東洋科学産業株式会社 Test tube cleaning device
JPS6361954A (en) * 1986-09-03 1988-03-18 Kokusai Shiyaku Kk Method and apparatus for preparing sample liquid for analysis
JPH03180764A (en) * 1989-12-08 1991-08-06 Toshiba Corp Dispensing nozzle
JPH04164256A (en) * 1990-10-29 1992-06-09 Tosoh Corp Nozzle device
JPH04191661A (en) * 1990-11-27 1992-07-09 Toshiba Corp Method and device for taking sample dividing automatic chemical analysis apparatus
JPH04204136A (en) * 1990-11-30 1992-07-24 Tosoh Corp Apparatus for taking out constant quantity of liquid
JPH04116767U (en) * 1991-03-30 1992-10-20 株式会社島津製作所 Dispensing device
JPH0854400A (en) * 1994-07-15 1996-02-27 E I Du Pont De Nemours & Co Liquid extractor and container identifying device
JPH08146010A (en) * 1994-09-21 1996-06-07 Hitachi Ltd Analyzer equipped with dispenser
JPH08297125A (en) * 1995-04-26 1996-11-12 Suzuki Motor Corp Method and device for sucking cleaning liquid
JPH0921730A (en) * 1995-07-07 1997-01-21 Olympus Optical Co Ltd Dispensation nozzle cleaner for medical analyzer
JPH1090141A (en) * 1996-09-18 1998-04-10 Hitachi Ltd Gas and dust collecting system
JPH11271322A (en) * 1998-03-24 1999-10-08 Olympus Optical Co Ltd Liquid suction method
JPH11326152A (en) * 1998-05-08 1999-11-26 Matsushita Electric Ind Co Ltd Micro-titre plate and dispensing method
JPH11337557A (en) * 1998-05-25 1999-12-10 Nippon Laser Denshi Kk Micro dispenser device
JP2000088863A (en) * 1998-09-11 2000-03-31 Nippon Laser Denshi Kk Dispensing needle body for microdispenser
JP2001017170A (en) * 1999-07-13 2001-01-23 Kaken Kogyo:Kk Member for transcripting liquid and device for transcripting liquid
JP2001056333A (en) * 1999-08-19 2001-02-27 Yoshikazu Izumi Endless sample bottle for automatic water sampler
JP2002001092A (en) * 2000-06-22 2002-01-08 Shimadzu Corp Apparatus for discharging liquid
JP2002204945A (en) * 2000-10-16 2002-07-23 Ngk Insulators Ltd Micropipet, dispenser, and method for producing biochip
JP2002156382A (en) * 2000-11-16 2002-05-31 Shimadzu Corp Device for dispensing trace sample
JP2002162403A (en) * 2000-11-22 2002-06-07 Hitachi Ltd Autoanalyzer
JP2002181837A (en) * 2000-12-08 2002-06-26 Hitachi Software Eng Co Ltd Spot pin and biochip production device
JP2003098172A (en) * 2001-09-27 2003-04-03 Matsushita Ecology Systems Co Ltd Sensor device manufacturing method and apparatus, spotting apparatus, and needle tube body for spotting apparatus
JP2003344430A (en) * 2002-05-30 2003-12-03 Hitachi Software Eng Co Ltd Spot pin
JP2004004083A (en) * 2003-05-23 2004-01-08 Hitachi Software Eng Co Ltd Spot pin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337653B2 (en) * 2003-05-15 2008-03-04 Shiseido Company, Ltd. Liquid chromatography specimen filling method
US7500386B2 (en) 2003-05-15 2009-03-10 Shiseido Company, Ltd. Sample injection apparatus and liquid chromatography apparatus having the sample injection apparatus
JP2012230122A (en) * 2005-12-21 2012-11-22 Meso Scale Technologies Llc Assay device, method and reagent
JP2017151116A (en) * 2005-12-21 2017-08-31 メソ スケール テクノロジーズ エルエルシー Assay apparatuses, methods and reagents
US11300571B2 (en) 2005-12-21 2022-04-12 Meso Scale Technologies, Llc. Assay apparatuses, methods and reagents
US11892455B2 (en) 2005-12-21 2024-02-06 Meso Scale Technologies, Llc. Assay apparatuses, methods and reagents
JP2013527460A (en) * 2010-06-02 2013-06-27 パーキンエルマー ヒェマーゲン テヒノロギー ゲーエムベーハー Apparatus and method for sucking up liquid from a container without residue
JP2017015714A (en) * 2011-03-03 2017-01-19 ライフ テクノロジーズ コーポレーション Sampling probe, system, apparatus, and method
US10082518B2 (en) 2011-03-03 2018-09-25 Life Technologies Corporation Sampling probes, systems, apparatuses, and methods
US10890596B2 (en) 2011-03-03 2021-01-12 Life Technologies Corporation Sampling probes, systems, apparatuses, and methods
WO2020026554A1 (en) * 2018-08-01 2020-02-06 ソニー株式会社 Sample liquid-feeding device, flow cytometer, and sample liquid-feeding method

Similar Documents

Publication Publication Date Title
US7488451B2 (en) Systems for particle manipulation
JP5202339B2 (en) Container repeated use magnetic particle parallel processing apparatus and container repeated use magnetic particle parallel processing method
US20090203118A1 (en) Optical system including nanostructures for biological or chemical sensing
JPH07239334A (en) Liquid mixing method
AU2008251904B2 (en) Wash ring assembly and method of use
EP2299253A1 (en) Specimen identification and dispensation device and specimen identification and dispensation method
JP2009241066A (en) Method and apparatus for mixing liquid
US20220113331A1 (en) Method of washing an aspiration probe of an in-vitro diagnostic system, in-vitro diagnostic method, and in-vitro diagnostic system
JP2004325398A (en) Needle for continuous suction, and continuous suction device
CN109415671B (en) Liquid feeding device and liquid feeding method
EP3093666A1 (en) Sample analyzing method using sample analysis cartridge, sample analysis cartridge, and sample analyzer
WO2015178124A1 (en) Particle analysis device
JP6627580B2 (en) Microchip electrophoresis device
JP2006025767A (en) Reaction-treating device
JP5736975B2 (en) Microchip liquid feeding system
JP2007205773A (en) Dispensing device
JP5137274B2 (en) Pipette tip
US11524286B2 (en) Method and metering device for the contact metering of liquids
WO2007116838A1 (en) Reaction container, analysis device, and analysis method
JP3962181B2 (en) Particle size distribution measuring device and sample supply device used for particle size distribution measurement
JP4298616B2 (en) Treatment tool
JP2015206766A (en) Examination device
JP7483892B2 (en) Flow Channel Device
JP3733456B2 (en) Disposable chip supply device
JP4302023B2 (en) Treatment tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118