JP2004320297A - Piezoelectric vibration device - Google Patents

Piezoelectric vibration device Download PDF

Info

Publication number
JP2004320297A
JP2004320297A JP2003110029A JP2003110029A JP2004320297A JP 2004320297 A JP2004320297 A JP 2004320297A JP 2003110029 A JP2003110029 A JP 2003110029A JP 2003110029 A JP2003110029 A JP 2003110029A JP 2004320297 A JP2004320297 A JP 2004320297A
Authority
JP
Japan
Prior art keywords
piezoelectric
conductive
electrode
region
piezoelectric vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003110029A
Other languages
Japanese (ja)
Other versions
JP4122512B2 (en
Inventor
Shunsuke Sato
俊介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2003110029A priority Critical patent/JP4122512B2/en
Publication of JP2004320297A publication Critical patent/JP2004320297A/en
Application granted granted Critical
Publication of JP4122512B2 publication Critical patent/JP4122512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric vibration device with more excellent anti-fall-down shock characteristic and higher reliability that can enhance a support strength of a piezoelectric diaphragm. <P>SOLUTION: In the piezoelectric vibration device including a package 1 formed with conductive pads 12, 13, the piezoelectric diaphragm 2 formed with an exciting electrode and leadout electrodes 21, 22, and supported at an end of the piezoelectric diaphragm formed with the leadout electrodes by a conductive resin adhesive member, the leadout electrodes are formed with a conductive region, a non-electrode region, and a recessed part not being a through-hole, and the conductive region, the non-electrode region of the leadout electrodes of the piezoelectric diaphragm and conductive pads of the package are joined with each other by the conductive resin adhesive member while part of the conductive resin adhesive member is intruded to the inside of the recessed part of the piezoelectric diaphragm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はセラミックパッケージを用い、導電性樹脂接着材によって圧電振動板を保持した圧電振動デバイスに関するものであり、特に圧電振動板の導出電極の構造に関するものである。
【0002】
【従来の技術】
気密封止を必要とする圧電振動デバイスの例として、水晶振動子、水晶フィルタ、水晶発振器等があげられる。これらはいずれも水晶振動板(圧電振動板)の表面に金属薄膜電極を形成し、この金属薄膜電極を外気から保護するため、気密封止されている。これら水晶応用製品は部品の表面実装化の要求から、セラミックパッケージに気密的に収納する構成が増加しており、適切な気密封止方法を選択することにより、良好な気密性を確保することができる。
【0003】
例えば特許文献1に開示されているように、セラミックパッケージは全体として、中央部分に収納部の形成された直方体形状であり、収納部内の底部には、導電パッドが形成されている。この導電パッドは、ビアもしくはキャスタレーションにより外部端子へと導かれている。水晶振動板は、励振電極と当該励振電極を外部へ接続する導出電極が形成されており、当該圧電振動板の導出電極において前記パッケージの導電パッド上面に搭載し、導電性樹脂接着材により電気的機械的に接続されている。そして、フタを被せて、気密封止される。
【0004】
【特許文献1】
特開平9−199972号公報
【0005】
【発明が解決しようとする課題】
最近においては電子機器のさらなる小型化、軽量化により、圧電振動デバイスも超小型化が求められており、これに伴いパッケージ内部に収納される圧電振動板のサイズも小型化されている。しかしながらパッケージが小さくなると保持領域も小さくなり、パッケージと圧電振動板との十分な接合強度が確保できず、耐衝撃性が著しく低下する。これに対する従来の手法として、導電性樹脂接着材の塗布量を増やして接合強度を向上させることが考えられるが、近年の小型化パッケージではその保持領域も小さく、端子(電極)間の短絡の危険性が極めて高くなるといった問題があった。
【0006】
そこで、上述の特許文献1では、導出電極の一部に無電極領域を形成することで接合強度を向上させることが提案されている。しかしながら、パッケージが小さくなると導電性樹脂接着材を圧電振動板の上部から上塗りする領域が確保できず、圧電振動板とパッケージの導電パッドの間に介在する下塗の導電性樹脂接着材のみによって保持する場合に十分な接合強度が得られないと言った問題点があった。
【0007】
本発明は上記問題点を解決するためになされたもので、パッケージの小型化に伴って導電性樹脂接着材の塗布領域が制限されても、圧電振動板の保持強度を向上させることができ、より耐落下衝撃特性のすぐれたより信頼性の高い圧電振動デバイスを提供することを目的としている。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は請求項1に示すように、導電パッドが形成されたパッケージと、励振電極と当該励振電極を外部へ接続する導出電極が形成された圧電振動板とを有し、前記導出電極の形成された圧電振動板の端部分にて、前記圧電振動板が、前記導電パッド上面に搭載され、圧電振動板と導電パッドの間に介在する導電性樹脂接着材により保持されてなる圧電振動デバイスであって、前記導出電極には、前記導電パッドとの導通を得る導電領域と、圧電振動板の表面の素地が露出された無電極領域、および圧電振動板の内部の素地を露出させた未貫通の凹部が形成されており、前記圧電振動板の凹部の内部に導電性樹脂接着材の一部が入り込んだ状態で、当該導電性樹脂接着材により、前記圧電振動板の導出電極の導通領域と無電極領域、前記パッケージの導電パッドがお互いに接合されてなることを特徴とする。
【0009】
また、特許請求項2に示すように、前記無電極領域の中に1つまたは複数の凹部が形成されてなることを特徴とする。
【0010】
また、特許請求項3に示すように、前記凹部は、圧電振動板の表裏両面に対称に形成されていることを特徴とする。
【0011】
また、特許請求項4に示すように、前記圧電振動板として、音叉型振動片からなることを特徴とする。
【0012】
【発明の効果】
本発明によれば、導電性樹脂接着材により、前記圧電振動板の導出電極の導通領域と無電極領域、前記パッケージの導電パッドがお互いに接合されているので、導電領域によって電気的な接続を確保するとともに、圧電振動板の素地露出部分によって導電性接合材との界面張力(界面の結合力)が高められ、接合強度を向上させる。しかも、圧電振動板の凹部の内部に導電性樹脂接着材の一部が入り込んでいるので、アンカー効果が生じ、圧電振動板の機械的な保持強度がより一層に向上する。
【0013】
従って、パッケージの小型化に伴って導電性樹脂接着材の塗布領域が制限されても、圧電振動板の保持強度を向上させることができ、より耐落下衝撃特性のすぐれたより信頼性の高い圧電振動デバイスを提供することができる。
【0014】
また請求項2によれば、上記効果に加えて、圧電振動板の平面の素地を露出した無電極領域と、圧電振動板の内部の素地を露出した凹部とを同じ領域内に形成することで、導通領域より機械的接合強度の強い無電極領域とその中に機械的接合強度の最も強い凹部が段階的に形成され、圧電振動板の素地露出部分の界面張力(界面の結合力)とアンカー効果による相乗効果が生じて、圧電振動板の機械的な保持強度が飛躍的に向上する。特に、1つの無電極領域の中に複数の凹部が形成することでその効果も向上する。また、面積の限られた導出電極での導通領域の設計や形成が容易にできるとともに、当該導通領域の確保も行えるので、接触抵抗の増大による圧電振動デバイスの電気的特性の劣化を抑制できる。
【0015】
また請求項3によれば、上記効果に加えて、前記凹部は、圧電振動板の表裏両面に対称に形成されているので、圧電振動板をパッケージへ搭載際の表裏方向性をなくし、生産性を高めることができる。
【0016】
また請求項4によれば、音叉型振動片を用いた圧電振動デバイスにも適用できる。
【0017】
【発明の実施の形態】
本発明による第1の実施形態を表面実装型の水晶振動子を例にとり図1、図2とともに説明する。図1は本実施の形態を示す斜視図であり、収納部に水晶振動板(圧電振動板)を搭載する状態を示している。図2は図1の水晶振動板を搭載した状態でA−A線に沿った断面図である。図3は第1の実施形態を示す水晶振動板の底面図である。図4は第1の実施形態の変形例を示す水晶振動板の一部を示す底面図である。
【0018】
表面実装型水晶振動子は、全体として直方体形状で、上部が開口した凹形の収納部1aを有するセラミックパッケージ1と、当該パッケージの中に収納される圧電振動素子である水晶振動板2と、図示していないが、パッケージの開口部に接合される金属フタとからなる。
【0019】
断面でみてセラミックパッケージ1は凹形であり、有底の収納部1aと、収納部周囲の堤部(側壁)10を有している。当該堤部10上面には周状の金属シール部11が形成されている。金属シール部11は、タングステン等からなるメタライズ層と、メタライズ層上に形成される金属膜層とからなる。金属膜層は例えばメタライズ層に接してニッケルメッキ層と、当該ニッケルメッキ層の上部に形成される極薄の金メッキ層とからなる。
【0020】
収納部1aの底部には段部1b,1cを有しており、当該段部上面に導電パッド12,13が形成されている。当該導電パッドはセラミック積層技術を用いたメタライズ層にニッケル等のメッキが施された構成となっており、図示しないビアもしくはキャスタレーションにより外部端子へと導かれている。
【0021】
セラミックパッケージ1に収納される水晶振動板2は、音叉形状をなしており、脚部に形成される励振電極(図示せず)と、基部の一端に形成される各励振電極からの導出電極21,22が形成されている。これらの電極は例えばクロムの下地電極の上部に金電極が形成されている。前記導出電極21,22は、電極が形成された導電領域211,221と、その中に矩形状からなる水晶振動板の表面の素地が露出された複数の無電極領域212,222とからなり、さらに、当該無電極領域の中には水晶振動板の内部の素地を露出させた複数の未貫通のピンホール(凹部)213,223が形成されている。これらは、水晶振動板の表裏両面に対称に形成されている。
【0022】
前記ピンホールの形成については、音叉型の水晶振動板の振動節部(脚部の又近傍)に向かってピンホールの数を減らして形成している(図2では、水晶振動板の又近傍では2カ所、中央に3カ所、短辺方向両端部近傍では3カ所)ので、水晶振動板からのセラミックパッケージへの振動漏れの悪影響を軽減し、より電気的特性の向上に寄与する構成となっている。
【0023】
前記ピンホールの形成方法としては、例えば、エッチング加工等により水晶振動板を音叉型の外形を形成すると同時に、ピンホール213,223の形成動作も行われる。つまり、水晶振動板に対して音叉型のメタルパターンを形成する際、このピンホールを形成すべき位置にメタルレジストを設けないことにより、水晶振動板のエッチング加工時に、音叉型の外形を形成されると同時にこの水晶振動板の導出電極の領域にピンホールが形成されることになる。このピンホールのエッチング処理については、メタルレジストを塗布しない領域の面積(ピンホールの径として例えばφ30)を適宜設定することにより、ある程度エッチングが進んだ時点でエッチング面に結晶面が現れ、これにより、継続して水晶エッチング液に浸漬しておいてもエッチングが進むことはないエッチングストップ作用(水晶振動板の厚み例えば120μmに対してピンホールの深さとして例えば40μm)を利用することができるので、音叉型の外形を形成するためのエッチング処理時間に依存することなくピンホールの形成ができるため、製造の簡素化が行える。
【0024】
その後、音叉型の外形を形成するためのメタルレジストを全て除去し、前記音叉型の外形とピンホールとが形成された水晶振動板に対して全面に電極を形成し、所定の形状にレジストを設け、メタルエッチング加工することで、励振電極や導出電極(導通領域と無電極領域)を形成することができる。
【0025】
このとき、本発明の第1の実施形態では、圧電振動板の平面の素地を露出した無電極領域の中央付近に、圧電振動板の内部の素地を露出したピンホールを形成しているので、ピンホールの開口端部に電極膜(導通領域)が接しておらず、メタルエッチング加工する際に、このピンホールの開口端部付近において電極剥がれ等の問題がない。
【0026】
このように形成された水晶振動板の導出電極21,22は、図2に示すように、前記ピンホール213,223(図2では223のみ図示)の内部に導電性樹脂接着材Dの一部が入り込んだ状態で、当該導電性樹脂接着材Dにより、前記圧電振動板の導出電極の導通領域211,221(図2では221のみ図示)と無電極領域212,222(図2では222のみ図示)、前記パッケージの導電パッド12,13(図2では13のみ図示)がお互いに接合されてなる。これにより、水晶振動板が当該水晶振動板とパッケージの導電パッドの間に介在する下塗の導電性樹脂接着材のみによってより強固に片側保持される。
【0027】
前記導電性樹脂接着材として、例えばシリコン系やウレタン系のものを用いており、導出電極の材質によって界面張力(界面の結合力)に影響する。本発明のように最上面に金電極を採用した場合、これらの導電性樹脂接着剤との界面張力(界面の結合力)は低下し、水晶振動板の保持強度が低下するが、本発明の構成を採用することで、水晶振動板の飛躍的に向上した。
【0028】
そして図示しないが、前記金属シール部11上に前記金属フタ(図示せず)を搭載し、この状態でビーム溶接あるいはシーム溶接により金属フタと金属シール部を溶融させ、気密封止する。
【0029】
なお、上記第1の実施形態の導出電極では、矩形状からなる水晶振動板の表面の素地が露出された複数の無電極領域の内部に、水晶振動板の内部の素地を露出させた複数の未貫通のピンホールを形成しているが、図4に示すようなものでもよい。すなわち、図4(a)、図4(b)は、1つの無電極領域の内部に、1つのピンホールを対応させて形成している。図4(c)〜図4(g)は、導通領域と無電極領域が並列に形成され、当該無電極領域にピンホールを対応させて形成している。図4(h)、図4(i)は、導通領域の外周に無電極領域が形成され、無電極領域にピンホールを対応させて形成している。そして、これらの構成は適宜組み合わせ形成してもよい。
【0030】
次に、本発明による第2の実施形態を表面実装型の水晶振動子を例にとり図5とともに説明する。図5は第2の実施形態を示す水晶振動板の底面図である。なお、基本構成は上記実施の形態と同じであるので、同じ構成部分については同番号を用いて説明するとともに、一部説明を割愛する。
【0031】
本実施の形態においては、上記第1の実施形態に対して、導出電極における無電極領域とピンホールの形成位置を別々にした点で異なっている。すなわち、前記導出電極23,24は、電極が形成された導電領域231,241と、その中に矩形状からなる水晶振動板の表面の素地が露出された無電極領域232,242とからなり、さらに、当該無電極領域を囲む位置に水晶振動板の内部の素地を露出させた複数の未貫通のピンホール233,243が形成されている。これらは、水晶振動板の表裏両面に対称に形成されている。なお、上記第2の実施形態に限らず、ピンホールを囲む位置に無電極領域を形成したり、これらの導電領域と無電極領域とピンホールとを交互に配置してもよい。
【0032】
次に、本発明による第3の実施形態を表面実装型の水晶振動子を例にとり図6、図7とともに説明する。図6は第3の実施形態を示す水晶振動板の底面図であり、図7は図6のB−B線に沿った断面図である。なお、基本構成は上記実施の形態と同じであるので、同様の構成部分について同番号を付して、一部説明を割愛する。
【0033】
本実施の形態においては、上記第1の実施形態に対して、水晶振動板の形状が異なっている。すなわち、水晶振動板3は、音叉形状をなしており、基部に幅広部31,32と切欠部33,34とを形成し、各脚部の表裏主面には溝部41,42が形成されている。これらの構成を具備することで次のような利点を有する。音叉基部に幅広部31,32を形成することで、前記導出電極23,24の領域がより一層大きくとれ、より強固にパッケージへの保持が実施できる。また、音叉基部と音叉脚部の境界部分に切欠部33,34を形成することで、前記幅広部によって、強固に保持された水晶振動板のパッケージへの振動漏れの悪影響を軽減できる。さらに、音叉の各脚部の表裏主面には溝部41,42を形成することで、CI値特性が向上し、より電気的特性のすぐれた水晶振動子を提供できる。これらの各構成(幅広部、切欠部、溝)は水晶振動子の所望とする特性に応じて、単独で形成してもよい。
【0034】
上記第1〜第3の実施形態では、導出電極の凹部として、小型化に伴って水晶振動板の機械的強度が低下しにくい未貫通のピンホールを例にしているが、溝を形成しても同様の効果を奏することができる。また、大型の水晶振動板であれば、貫通穴、切欠き等を採用することも可能である。上記説明において圧電振動デバイスの例として、音叉型の水晶振動子を例示したが、ATカットなどの厚みすべり振動からなる矩形状振動片であってもよい。また、例えば上記実施の形態において、水晶振動板の下部空間に発振回路を構成するICを取り付け、必要な配線を行い、水晶発振器を構成してもよいし、また1素子または多素子からなる水晶フィルタ等の他の圧電振動デバイスにも適用できる。また、セラミックパッケージとして凹形状のものに限らず、板形状のものに逆凹形のフタをする構成であっても適用できる。
【図面の簡単な説明】
【図1】第1の実施形態による斜視図。
【図2】図1の水晶振動板を搭載した状態でA−A線に沿った断面図。
【図3】第1の実施形態による水晶振動板の底面図。
【図4】第1の実施形態の変形例を示す水晶振動板の一部を示す底面図。
【図5】第2の実施形態による水晶振動板の底面図。
【図6】第3の実施形態による水晶振動板の底面図。
【図7】図6のB−B線に沿った断面図。
【符号の説明】
1 セラミックパッケージ
2、3 水晶振動板(圧電振動板)
12,13 導電パッド
21,22,23,24 導出電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric vibrating device using a ceramic package and holding a piezoelectric vibrating plate with a conductive resin adhesive, and more particularly to a structure of a lead electrode of the piezoelectric vibrating plate.
[0002]
[Prior art]
Examples of piezoelectric vibrating devices that require hermetic sealing include quartz oscillators, quartz filters, quartz oscillators, and the like. In each of these cases, a metal thin film electrode is formed on the surface of a quartz vibrating plate (piezoelectric vibrating plate), and hermetically sealed to protect the metal thin film electrode from the outside air. Due to the demand for surface mounting of components, these quartz-applied products are increasingly being housed in a ceramic package in an airtight manner.By selecting an appropriate airtight sealing method, it is possible to ensure good airtightness. it can.
[0003]
For example, as disclosed in Patent Literature 1, the ceramic package as a whole has a rectangular parallelepiped shape in which a storage portion is formed in a central portion, and a conductive pad is formed in a bottom portion in the storage portion. This conductive pad is guided to an external terminal by via or castellation. The quartz vibrating plate has an excitation electrode and a lead-out electrode for connecting the excitation electrode to the outside. The lead-out electrode of the piezoelectric vibrating plate is mounted on the upper surface of the conductive pad of the package, and is electrically connected with a conductive resin adhesive. Mechanically connected. Then, the lid is put on and hermetically sealed.
[0004]
[Patent Document 1]
JP-A-9-199972
[Problems to be solved by the invention]
In recent years, as electronic devices have become smaller and lighter, ultra-small piezoelectric vibrating devices have been required, and the size of piezoelectric vibrating plates housed in packages has also been reduced accordingly. However, when the size of the package is reduced, the holding area is also reduced, so that sufficient bonding strength between the package and the piezoelectric vibration plate cannot be secured, and the impact resistance is significantly reduced. As a conventional method, it is conceivable to increase the application amount of the conductive resin adhesive to improve the bonding strength. However, in a recent miniaturized package, the holding area is small, and there is a danger of a short circuit between terminals (electrodes). There is a problem that the property becomes extremely high.
[0006]
In view of the above, Patent Document 1 mentioned above proposes improving the bonding strength by forming an electrodeless region in a part of the derived electrode. However, when the size of the package is reduced, a region where the conductive resin adhesive is overcoated from the upper portion of the piezoelectric vibration plate cannot be secured, and is held only by the undercoat conductive resin adhesive interposed between the piezoelectric vibration plate and the conductive pad of the package. In such a case, there was a problem that sufficient bonding strength could not be obtained.
[0007]
The present invention has been made in order to solve the above problems, even if the application area of the conductive resin adhesive is limited with the miniaturization of the package, it is possible to improve the holding strength of the piezoelectric diaphragm, It is an object of the present invention to provide a more reliable piezoelectric vibration device having excellent drop impact resistance.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides, as set forth in claim 1, a package in which a conductive pad is formed, and a piezoelectric diaphragm in which an excitation electrode and a lead-out electrode for connecting the excitation electrode to the outside are formed. The piezoelectric vibrating plate is mounted on an upper surface of the conductive pad at an end portion of the piezoelectric vibrating plate on which the lead-out electrode is formed, and is provided by a conductive resin adhesive material interposed between the piezoelectric vibrating plate and the conductive pad. A piezoelectric vibrating device that is held, wherein the lead-out electrode has a conductive region for establishing electrical continuity with the conductive pad, an electrodeless region in which a substrate on a surface of the piezoelectric vibrating plate is exposed, and an inner portion of the piezoelectric vibrating plate. An unpenetrated concave portion exposing the base material is formed, and in a state where a part of the conductive resin adhesive material enters into the concave portion of the piezoelectric vibration plate, the piezoelectric vibration Conduction of lead electrode of plate Range and an electrodeless region, the conductive pads of the package, characterized by comprising bonded to each other.
[0009]
Further, as set forth in claim 2, one or more concave portions are formed in the non-electrode region.
[0010]
Further, as described in claim 3, the concave portion is formed symmetrically on both front and back surfaces of the piezoelectric vibration plate.
[0011]
According to a fourth aspect of the present invention, the piezoelectric vibrating plate is made of a tuning-fork type vibrating piece.
[0012]
【The invention's effect】
According to the present invention, the conductive region and the non-electrode region of the lead-out electrode of the piezoelectric vibrating plate are joined to each other by the conductive resin adhesive, and the conductive pad of the package is connected to each other. At the same time, the interfacial tension (coupling force at the interface) with the conductive bonding material is increased by the base exposed portion of the piezoelectric vibration plate, and the bonding strength is improved. In addition, since a part of the conductive resin adhesive material enters into the concave portion of the piezoelectric diaphragm, an anchor effect is generated, and the mechanical holding strength of the piezoelectric diaphragm is further improved.
[0013]
Therefore, even if the application area of the conductive resin adhesive is limited due to the miniaturization of the package, the holding strength of the piezoelectric vibration plate can be improved, and the more reliable piezoelectric vibration with better drop impact resistance can be obtained. Device can be provided.
[0014]
According to the second aspect, in addition to the above-described effects, by forming the electrodeless region exposing the base material on the plane of the piezoelectric vibrating plate and the concave portion exposing the base material inside the piezoelectric vibrating plate in the same region. A non-electrode region having a higher mechanical bonding strength than the conductive region and a concave portion having the highest mechanical bonding strength are formed in the electrode-less region in a stepwise manner. A synergistic effect is produced by the effect, and the mechanical holding strength of the piezoelectric diaphragm is dramatically improved. In particular, the effect is improved by forming a plurality of recesses in one non-electrode region. In addition, it is possible to easily design and form the conductive region with the lead-out electrode having a limited area, and to secure the conductive region. Therefore, it is possible to suppress the deterioration of the electrical characteristics of the piezoelectric vibration device due to an increase in the contact resistance.
[0015]
According to the third aspect, in addition to the above effects, the concave portions are formed symmetrically on both the front and back surfaces of the piezoelectric vibrating plate. Can be increased.
[0016]
According to the fourth aspect, the present invention can be applied to a piezoelectric vibration device using a tuning-fork type vibrating piece.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment according to the present invention will be described with reference to FIGS. 1 and 2 by taking a surface-mounted crystal oscillator as an example. FIG. 1 is a perspective view showing the present embodiment, and shows a state in which a quartz vibrating plate (piezoelectric vibrating plate) is mounted in a storage section. FIG. 2 is a cross-sectional view along the line AA in a state where the quartz plate of FIG. 1 is mounted. FIG. 3 is a bottom view of the quartz vibrating plate showing the first embodiment. FIG. 4 is a bottom view showing a part of a quartz crystal plate according to a modification of the first embodiment.
[0018]
The surface-mount type crystal unit has a rectangular parallelepiped shape as a whole, a ceramic package 1 having a concave storage portion 1a with an open top, and a crystal vibration plate 2 which is a piezoelectric vibration element stored in the package. Although not shown, it comprises a metal lid joined to the opening of the package.
[0019]
Seen in cross section, the ceramic package 1 is concave and has a bottomed storage section 1a and a bank (side wall) 10 around the storage section. A peripheral metal seal portion 11 is formed on the upper surface of the bank portion 10. The metal seal portion 11 includes a metallized layer made of tungsten or the like, and a metal film layer formed on the metallized layer. The metal film layer includes, for example, a nickel plating layer in contact with the metallization layer, and an extremely thin gold plating layer formed on the nickel plating layer.
[0020]
The bottom of the storage section 1a has steps 1b and 1c, and conductive pads 12 and 13 are formed on the upper surface of the step. The conductive pad has a structure in which a metallized layer using a ceramic lamination technique is plated with nickel or the like, and is led to an external terminal by a via or castellation (not shown).
[0021]
The quartz vibrating plate 2 housed in the ceramic package 1 has a tuning fork shape, and has an excitation electrode (not shown) formed on a leg and an electrode 21 derived from each excitation electrode formed on one end of a base. , 22 are formed. In these electrodes, for example, a gold electrode is formed on a chromium base electrode. The lead-out electrodes 21 and 22 include conductive regions 211 and 221 on which electrodes are formed, and a plurality of electrode-free regions 212 and 222 in which the base material of the surface of the rectangular quartz crystal plate is exposed. Further, a plurality of non-penetrated pinholes (recesses) 213 and 223 exposing the substrate inside the quartz vibrating plate are formed in the electrodeless region. These are formed symmetrically on the front and back surfaces of the quartz diaphragm.
[0022]
Regarding the formation of the pinhole, the number of pinholes is reduced toward the vibrating nodes (near the legs) of the tuning-fork type quartz vibrating plate (in FIG. (3 places in the center, 3 places in the center, and 3 places near both ends in the short side direction), so that the adverse effect of vibration leakage from the quartz plate to the ceramic package is reduced, and the configuration further contributes to the improvement of electrical characteristics. ing.
[0023]
As a method of forming the pinholes, for example, the operation of forming the pinholes 213 and 223 is performed at the same time as forming the tuning-fork-shaped outer shape of the quartz plate by etching or the like. In other words, when a metal pattern of a tuning fork type is formed on a quartz vibrating plate, a metal resist is not provided at a position where the pinhole is to be formed. At the same time, a pinhole is formed in the region of the lead-out electrode of the quartz plate. Regarding this pinhole etching process, by appropriately setting the area of the region where the metal resist is not applied (for example, φ30 as the diameter of the pinhole), a crystal plane appears on the etched surface when the etching proceeds to some extent. Since an etching stop effect (for example, a pinhole depth of, for example, 120 μm and a pinhole depth of, for example, 40 μm) can be used, the etching does not proceed even if the substrate is continuously immersed in a crystal etching solution. Since the pinhole can be formed without depending on the etching time for forming the outer shape of the tuning fork, manufacturing can be simplified.
[0024]
Thereafter, all the metal resist for forming the outer shape of the tuning fork is removed, electrodes are formed on the entire surface of the quartz plate on which the outer shape of the tuning fork and the pinhole are formed, and the resist is formed into a predetermined shape. By providing and performing metal etching, an excitation electrode and a lead-out electrode (a conductive region and a non-electrode region) can be formed.
[0025]
At this time, in the first embodiment of the present invention, a pinhole that exposes the substrate inside the piezoelectric diaphragm is formed near the center of the electrodeless region that exposes the plane substrate of the piezoelectric diaphragm. The electrode film (conductive region) is not in contact with the opening end of the pinhole, and there is no problem such as peeling of the electrode near the opening end of the pinhole during metal etching.
[0026]
As shown in FIG. 2, the lead-out electrodes 21 and 22 of the quartz vibrating plate formed as described above have a part of the conductive resin adhesive D inside the pinholes 213 and 223 (only 223 is shown in FIG. 2). When the conductive resin adhesive D is applied, the conductive regions 211 and 221 (only 221 is shown in FIG. 2) of the lead electrodes of the piezoelectric vibrating plate and the non-electrode regions 212 and 222 (only 222 is shown in FIG. 2). ), The conductive pads 12 and 13 of the package (only 13 is shown in FIG. 2) are joined to each other. Thus, the quartz vibrating plate is more firmly held on one side only by the undercoat conductive resin adhesive interposed between the quartz vibrating plate and the conductive pad of the package.
[0027]
As the conductive resin adhesive, for example, a silicon-based or urethane-based adhesive is used, and the material of the lead-out electrode affects interfacial tension (coupling force at the interface). When a gold electrode is used on the uppermost surface as in the present invention, the interfacial tension with these conductive resin adhesives (coupling force at the interface) decreases, and the holding strength of the quartz diaphragm decreases. The adoption of this configuration has dramatically improved the crystal diaphragm.
[0028]
Although not shown, the metal lid (not shown) is mounted on the metal seal portion 11, and in this state, the metal lid and the metal seal portion are melted by beam welding or seam welding and hermetically sealed.
[0029]
In the lead-out electrode of the first embodiment, a plurality of non-electrode regions where the substrate on the surface of the quartz crystal plate having a rectangular shape is exposed are exposed inside the plurality of electrode-free regions. Although an unpenetrated pinhole is formed, a pinhole shown in FIG. 4 may be used. That is, in FIGS. 4A and 4B, one pinhole is formed inside one non-electrode region so as to correspond thereto. 4C to 4G, the conductive region and the non-electrode region are formed in parallel, and the non-electrode region is formed so as to correspond to the pinhole. FIGS. 4H and 4I show that an electrodeless region is formed on the outer periphery of the conduction region, and a pinhole is formed corresponding to the electrodeless region. Then, these configurations may be appropriately combined and formed.
[0030]
Next, a second embodiment of the present invention will be described with reference to FIG. 5, taking a surface-mount type crystal unit as an example. FIG. 5 is a bottom view of the crystal diaphragm according to the second embodiment. Since the basic configuration is the same as that of the above embodiment, the same components will be described using the same reference numerals, and a description thereof will be partially omitted.
[0031]
The present embodiment is different from the first embodiment in that the non-electrode region and the pinhole formation position in the lead-out electrode are different. That is, the lead-out electrodes 23 and 24 are composed of conductive regions 231 and 241 in which electrodes are formed, and electrode-free regions 232 and 242 in which the base material of the surface of the quartz crystal plate having a rectangular shape is exposed. Further, a plurality of non-penetrating pinholes 233 and 243 exposing a base inside the quartz vibrating plate are formed at positions surrounding the electrodeless region. These are formed symmetrically on the front and back surfaces of the quartz diaphragm. The present invention is not limited to the above-described second embodiment, and electrodeless regions may be formed at positions surrounding the pinholes, or these conductive regions, electrodeless regions, and pinholes may be alternately arranged.
[0032]
Next, a third embodiment of the present invention will be described with reference to FIGS. 6 and 7, taking a surface-mount type crystal unit as an example. FIG. 6 is a bottom view of the quartz vibrating plate showing the third embodiment, and FIG. 7 is a cross-sectional view taken along line BB of FIG. Since the basic configuration is the same as that of the above embodiment, the same components are denoted by the same reference numerals, and the description thereof is partially omitted.
[0033]
In the present embodiment, the shape of the quartz vibrating plate is different from that of the first embodiment. That is, the quartz vibrating plate 3 has a tuning fork shape, and has wide portions 31 and 32 and cutout portions 33 and 34 at its base, and grooves 41 and 42 at the front and back main surfaces of each leg. I have. The provision of these configurations has the following advantages. By forming the wide portions 31 and 32 at the base of the tuning fork, the area of the lead-out electrodes 23 and 24 can be further increased, and the package can be more firmly held. In addition, by forming the cutouts 33 and 34 at the boundary between the tuning fork base and the tuning fork leg, it is possible to reduce the adverse effect of vibration leakage to the package of the crystal vibrating plate firmly held by the wide portion. Further, by forming the grooves 41 and 42 on the front and back main surfaces of each leg of the tuning fork, the CI value characteristics are improved, and a crystal resonator having more excellent electric characteristics can be provided. Each of these components (the wide portion, the notch portion, and the groove) may be formed independently according to the desired characteristics of the crystal unit.
[0034]
In the above-described first to third embodiments, as the concave portion of the lead-out electrode, an unpenetrated pinhole in which the mechanical strength of the quartz vibrating plate is unlikely to decrease with downsizing is taken as an example. Can achieve the same effect. In the case of a large quartz plate, a through hole, a notch or the like can be employed. In the above description, a tuning-fork type quartz vibrator has been exemplified as an example of the piezoelectric vibrating device. Further, for example, in the above-described embodiment, an IC constituting an oscillation circuit may be attached to the lower space of the quartz-crystal vibrating plate, necessary wiring may be performed, and a quartz oscillator may be constituted. It can be applied to other piezoelectric vibration devices such as filters. Further, the present invention is not limited to the ceramic package having a concave shape, and may be applied to a configuration in which a plate-shaped package is provided with an inverted concave lid.
[Brief description of the drawings]
FIG. 1 is a perspective view according to a first embodiment.
FIG. 2 is a cross-sectional view taken along line AA in a state where the quartz plate of FIG. 1 is mounted.
FIG. 3 is a bottom view of the quartz vibrating plate according to the first embodiment.
FIG. 4 is a bottom view showing a part of the quartz vibrating plate showing a modification of the first embodiment.
FIG. 5 is a bottom view of a quartz vibrating plate according to a second embodiment.
FIG. 6 is a bottom view of a quartz vibrating plate according to a third embodiment.
FIG. 7 is a sectional view taken along the line BB of FIG. 6;
[Explanation of symbols]
1 Ceramic package 2, 3 Quartz diaphragm (piezoelectric diaphragm)
12, 13 conductive pads 21, 22, 23, 24 lead-out electrodes

Claims (4)

導電パッドが形成されたパッケージと、励振電極と当該励振電極を外部へ接続する導出電極が形成された圧電振動板とを有し、前記導出電極の形成された圧電振動板の端部分にて、前記圧電振動板が、前記導電パッド上面に搭載され、圧電振動板と導電パッドの間に介在する導電性樹脂接着材により保持されてなる圧電振動デバイスであって、
前記導出電極には、前記導電パッドとの導通を得る導電領域と、圧電振動板の表面の素地が露出された無電極領域、および圧電振動板の内部の素地を露出させた未貫通の凹部が形成されており、
前記圧電振動板の凹部の内部に導電性樹脂接着材の一部が入り込んだ状態で、当該導電性樹脂接着材により、前記圧電振動板の導出電極の導通領域と無電極領域、前記パッケージの導電パッドがお互いに接合されてなることを特徴とする圧電振動デバイス。
A package in which a conductive pad is formed, and a piezoelectric diaphragm in which an excitation electrode and a lead-out electrode for connecting the excitation electrode to the outside are formed, and at an end portion of the piezoelectric diaphragm in which the lead-out electrode is formed, A piezoelectric vibration device, wherein the piezoelectric vibration plate is mounted on the upper surface of the conductive pad, and is held by a conductive resin adhesive interposed between the piezoelectric vibration plate and the conductive pad,
The lead-out electrode has a conductive region for obtaining conduction with the conductive pad, an electrodeless region in which the substrate on the surface of the piezoelectric diaphragm is exposed, and a non-penetrating recess that exposes the substrate in the piezoelectric diaphragm. Is formed,
In a state where a part of the conductive resin adhesive material enters into the concave portion of the piezoelectric vibration plate, the conductive resin adhesive material allows the conductive region and the non-electrode region of the lead-out electrode of the piezoelectric vibration plate and the conductive region of the package. A piezoelectric vibration device characterized in that pads are joined to each other.
前記無電極領域の中に1つまたは複数の凹部が形成されてなることを特徴とする特許請求項1記載の圧電振動デバイス。2. The piezoelectric vibration device according to claim 1, wherein one or a plurality of recesses are formed in the electrodeless region. 前記凹部は、圧電振動板の表裏両面に対称に形成されていることを特徴とする特許請求項1、または2項記載の圧電振動デバイス。The piezoelectric vibration device according to claim 1, wherein the recess is formed symmetrically on both front and back surfaces of the piezoelectric vibration plate. 前記圧電振動板として、音叉型振動片からなることを特徴とする特許請求項1〜3いずれか1項記載の圧電振動デバイス。The piezoelectric vibrating device according to claim 1, wherein the piezoelectric vibrating plate is formed of a tuning-fork type vibrating piece.
JP2003110029A 2003-04-15 2003-04-15 Piezoelectric vibration device Expired - Fee Related JP4122512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110029A JP4122512B2 (en) 2003-04-15 2003-04-15 Piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110029A JP4122512B2 (en) 2003-04-15 2003-04-15 Piezoelectric vibration device

Publications (2)

Publication Number Publication Date
JP2004320297A true JP2004320297A (en) 2004-11-11
JP4122512B2 JP4122512B2 (en) 2008-07-23

Family

ID=33470992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110029A Expired - Fee Related JP4122512B2 (en) 2003-04-15 2003-04-15 Piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP4122512B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114936A1 (en) * 2005-04-18 2006-11-02 Daishinku Corporation Piezoelectric vibration piece and piezoelectric vibration device
JP2007049434A (en) * 2005-08-10 2007-02-22 Daishinku Corp Piezoelectric vibration piece and piezoelectric vibration device
JP2007096945A (en) * 2005-09-29 2007-04-12 Daishinku Corp Crystal oscillating device and manufacturing method thereof
JP2007096901A (en) * 2005-09-29 2007-04-12 Seiko Epson Corp Crystal oscillating piece, its manufacturing method and crystal device
JP2007166435A (en) * 2005-12-15 2007-06-28 Daishinku Corp Crystal oscillation device
JPWO2007017992A1 (en) * 2005-08-10 2009-02-19 株式会社大真空 Piezoelectric vibration device and manufacturing method thereof
JP2009055354A (en) * 2007-08-27 2009-03-12 Daishinku Corp Package for piezoelectric vibration device and piezoelectric vibration device
JP2012199861A (en) * 2011-03-23 2012-10-18 Nippon Dempa Kogyo Co Ltd Crystal device and method for inspecting the same
JP2016127366A (en) * 2014-12-26 2016-07-11 京セラクリスタルデバイス株式会社 Piezoelectric device and manufacturing method of the same
CN116979924A (en) * 2023-08-04 2023-10-31 惠伦晶体(重庆)科技有限公司 Impact-resistant miniaturized tuning fork type piezoelectric vibrating piece and resonator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006114936A1 (en) * 2005-04-18 2008-12-18 株式会社大真空 Piezoelectric vibrating piece and piezoelectric vibrating device
US8004157B2 (en) 2005-04-18 2011-08-23 Daishinku Corporation Piezoelectric resonator plate and piezoelectric resonator device
WO2006114936A1 (en) * 2005-04-18 2006-11-02 Daishinku Corporation Piezoelectric vibration piece and piezoelectric vibration device
JPWO2007017992A1 (en) * 2005-08-10 2009-02-19 株式会社大真空 Piezoelectric vibration device and manufacturing method thereof
US7902731B2 (en) 2005-08-10 2011-03-08 Daishinku Corporation Piezoelectric resonator device and method for manufacturing the same
JP2007049434A (en) * 2005-08-10 2007-02-22 Daishinku Corp Piezoelectric vibration piece and piezoelectric vibration device
JP2007096901A (en) * 2005-09-29 2007-04-12 Seiko Epson Corp Crystal oscillating piece, its manufacturing method and crystal device
JP2007096945A (en) * 2005-09-29 2007-04-12 Daishinku Corp Crystal oscillating device and manufacturing method thereof
JP2007166435A (en) * 2005-12-15 2007-06-28 Daishinku Corp Crystal oscillation device
JP2009055354A (en) * 2007-08-27 2009-03-12 Daishinku Corp Package for piezoelectric vibration device and piezoelectric vibration device
JP2012199861A (en) * 2011-03-23 2012-10-18 Nippon Dempa Kogyo Co Ltd Crystal device and method for inspecting the same
JP2016127366A (en) * 2014-12-26 2016-07-11 京セラクリスタルデバイス株式会社 Piezoelectric device and manufacturing method of the same
CN116979924A (en) * 2023-08-04 2023-10-31 惠伦晶体(重庆)科技有限公司 Impact-resistant miniaturized tuning fork type piezoelectric vibrating piece and resonator

Also Published As

Publication number Publication date
JP4122512B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP2008131549A (en) Quartz oscillation device
JP5452264B2 (en) Piezoelectric vibrator and oscillator using the same
JP2009188483A (en) Piezoelectric device, and surface-mounted type piezoelectric oscillator
JP2007274339A (en) Surface mounting type piezoelectric vibration device
JP4899519B2 (en) Surface mount type piezoelectric oscillator
JP2006332727A (en) Piezoelectric device
JP2004320297A (en) Piezoelectric vibration device
JP3436249B2 (en) Package and piezoelectric oscillator for piezoelectric vibration device
JP4501875B2 (en) Piezoelectric vibration device and manufacturing method thereof
JP5098668B2 (en) Surface mount type piezoelectric oscillator
JP2009038534A (en) Piezoelectric oscillator
JP2002009576A (en) Piezoelectric device and its package structure
JP2006303761A (en) Surface mount piezoelectric oscillator
JP2006054602A (en) Package for electronic part and piezo-electric oscillation device using the same
JP4692277B2 (en) Piezoelectric vibration device
JP3303292B2 (en) Surface mount type piezoelectric vibration device
JP2009038533A (en) Piezoelectric oscillator
JP2003273690A (en) Piezoelectric vibration device
JP2001284373A (en) Electrical component
JP2020065223A (en) Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator using tuning fork type piezoelectric vibrating piece
JP2007142947A (en) Surface-mounting piezoelectric oscillator
JP2012070258A (en) Surface-mount type piezoelectric vibration device
JP7290062B2 (en) Container for piezoelectric vibration device and piezoelectric vibration device using the container
JP2008066912A (en) Piezoelectric vibration device
JP2001332932A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080420

R150 Certificate of patent or registration of utility model

Ref document number: 4122512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees