JP2004317237A - Surveying apparatus - Google Patents

Surveying apparatus Download PDF

Info

Publication number
JP2004317237A
JP2004317237A JP2003110262A JP2003110262A JP2004317237A JP 2004317237 A JP2004317237 A JP 2004317237A JP 2003110262 A JP2003110262 A JP 2003110262A JP 2003110262 A JP2003110262 A JP 2003110262A JP 2004317237 A JP2004317237 A JP 2004317237A
Authority
JP
Japan
Prior art keywords
point
surveying
collimation
main body
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110262A
Other languages
Japanese (ja)
Inventor
Fumio Otomo
文夫 大友
Ritsuo Senmura
律雄 先村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2003110262A priority Critical patent/JP2004317237A/en
Publication of JP2004317237A publication Critical patent/JP2004317237A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surveying apparatus capable of continuously conduct surveying operation of topography and ground structures without using a preset reference point. <P>SOLUTION: The surveying apparatus of this invention is equipped with a surveying apparatus main body 12 having a range finding function to measure distance to a collimation point and an angle measuring function to measure angle from a reference direction for the collimation point, a GPS device 13 for calculating a coordinate position of an installation point A of the surveying apparatus main body 12, a picturing means 28 for picturing a subject to be pictured existing in a direction of a collimation direction including the collimation point a3, and an image processing means 17 for processing image so that a matching mark S is displayed in the case that a collimation point a3 included in an image pictured by the surveying apparatus main body 12 installed at the installation point and a collimation point a3 included in an image pictured by the surveying apparatus main body 12 installed at an other installation point B and are the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、あらかじめ設置されている基準点を用いなくとも連続して地形、地物の測量作業を行うことができる測量装置に関する。
【0002】
【従来の技術】
従来から、電子式の測角機能と光波による測距機能とを有する測量装置(トータルステーションという)を使用して、測量作業を行うものが知られている。
【0003】
このものでは、例えば、図6に示すように、崖の地形の測定を行う場合、測量装置1の据え付け点Aから予め設置されている三角点等の既知の二つの基準点O1、O2を視準し、二つの基準点O1、O2に対する方向と据え付け点Aに対する二つの基準点O1、O2までの距離とを求め、これによりその据え付け点Aの座標位置(X1、Y1)を求め、また、既知の水準点から測量装置1の据え付け点Aの標高Z1を求める。
【0004】
そして、視準点(測量したい地点)a1〜a3に測距・測角対象としてのコーナーキューブを設置するか又は作業員がポールを立てて、各測定地点a1〜a3を視準し、各測定地点a1〜a3の基準方向からの角度と測量装置1から各測定地点a1〜a3までの距離とを測定し、各視準点a1〜a3までの座標位置を求める。
【0005】
ついで、測量装置1を据え付け点Bに据え付け、例えば、据え付け点Aを視準し、その据え付け点Aに対する角度と距離とを求めると共に、基準点O1を視準し、その基準点O1に対する角度と距離とを求めて、据え付け点Bの座標位置(X2、Y2)を求める。また、水準点又は既知点Aから測量装置1の据え付け点Bの標高Z2を求める。
【0006】
そして、同様の作業手順で、視準点b1〜b3の座標位置を求め、据え付け点C(X3、Y3、Z3)についても、同様の作業手順で視準点c1〜c3の座標位置を求める。これを繰り返すことにより、連続して地形の測量作業が行われる。
【0007】
建物の場合等の地物の測量作業の場合には、外観等の角部を視準することにより、地物の測量作業が行われる。
【0008】
なお、測量装置1にはその測量装置本体にGPS装置を取り付けたものも知られている(例えば、特許文献1、特許文献2参照。)。
【0009】
また、コーナーキューブを用いなくとも測距を行うことができるいわゆるノンプリズムタイプの測量装置も開発されつつある。
【0010】
【特許文献1】
特表平03−500334号公報
【特許文献2】
特開2000−97703号公報
【0011】
【発明が解決しようとする課題】
しかしながら、この従来の測量装置では、既知点の基準点O1、O2を測量して測量装置の据え付け点A、B、C、…の座標位置を求めなければならず、街中等では基準点を見つけ出すのが比較的容易であるが、郊外等では三角点標石が埋まっていたりして基準点を見つけ出すのが容易でなく、工事現場が山中の場合、基準点から据え付け点の座標を求めるための作業に時間がかかるという問題点がある。
【0012】
本発明は、上記の事情に鑑みて為されたもので、その目的とするところは、あらかじめ設置されている基準点を用いなくとも連続して地形、地物の測量作業を行うことができる測量装置を提供することにある。
【0013】
【課題を解決するための手段】
請求項1に記載の測量装置は、視準点までの距離を測定する測距機能と視準点に対する基準とする方向からの角度を測定する測角機能とを有する測量装置本体と、
測量装置本体の据え付け点の座標位置を求めるためのGPS装置と、
前記視準点を含めて視準方向に存在する撮像対象物を撮像する撮像手段と、
前記視準点を含めて視準方向に存在する撮像対象物を撮像する撮像手段と、
前記測量装置本体を一の据え付け点に据え付けて撮像された画像に含まれかつ測定対象となる視準点と前記測量装置本体を他の据え付け点に据え付けて撮像された画像に含まれかつ前記測定対象となる視準点とが同一のものに合致マークを表示するように画像処理する画像処理手段と、
を備えていることを特徴とする。
【0014】
請求項2に記載の測量装置は、前記GPS装置で測定された測量装置本体の据え付け点の座標位置を記憶する記憶部を備えていることを特徴とする。
【0015】
請求項3に記載の測量装置は、前記撮像手段はズーム機能を有することを特徴とする。
【0016】
請求項4に記載の測量装置は、前記測量装置本体は、共通する視準点を測量地点とみなして、該測量地点における距離と角度とGPSにより求められた据え付け点の座標位置とに基づき測量地点の座標位置を求める演算手段を有することを特徴とする。
【0017】
【発明の実施の形態】
図1において、10は測量装置である。この測量装置10は三脚11と測量装置本体12からなる。測量装置本体12にはここではGPS装置13が一体に設けられているが、GPS装置13は測量装置本体12と別体であっても良い。
【0018】
その測量装置本体12はベース部14と托架部15とを有する。托架部15はベース部14に対して水平方向に回動可能である。その托架部15には望遠鏡部16が垂直方向に回動可能に設けられている。
【0019】
測量装置本体12には、図2に示すように、制御演算部17、測距部18、水平駆動部19、高低駆動部20、水平角測角部21、垂直角測角部(鉛直角測角部)22、記憶部23、操作・入力部24、表示部25が設けられている。測距部18は制御演算部17の制御指令に基づいて発光部26を駆動させ、測距対象(ここでは、視準点)から反射された測距光を受光部27により受光して測量装置10から測距対象までの距離を取得する。ここでは、その測距部18にはレーザ式の光波距離計が用いられ、測距対象位置にコーナキューブ等の設置を必要としなくとも測距を行うことができるいわゆるノンプリズムタイプのものが用いられる。
【0020】
すなわち、発光部26から測距光をパルス発光させ、このパルス発光が受光部27に受光されるまでの時間差により距離が求められるもので、この距離の演算は制御演算部17により行われる。
【0021】
水平駆動部19は演算制御部17の制御指令に基づいて托架部15を水平方向に回転駆動する。高低駆動部20は望遠鏡部16を垂直方向に回転駆動する。その駆動機構は公知であるので説明を省略する。なお、水平駆動部19、高低駆動部20は自動で測量を行う場合に有効であり、手動で行う場合には必要がない機構である。
【0022】
水平角測角部21、垂直角測角部22は公知のロータとステータとからなるエンコーダにより構成されている。その水平角測角部21により水平方向の角度が測定され、垂直角測角部22により高低方向の角度が求められる。
【0023】
制御演算部17はCPUを含み、操作入力部24の制御指令その他に基づいて各種の制御を行う他、上述した演算の他に各種の演算を実行するものであり、所定事項が表示部25に表示される。
【0024】
記憶部23にはデータ、後述する解析プログラムの他各種プログラムが記憶されている。
【0025】
GPS装置13は制御演算部17に接続され、制御演算部17は人工衛星からの信号に基づいて解析プログラムにより据え付け点の座標位置を解析する。ここでは、GPS装置13には例えばRTK測位を行うものが用いられ、演算制御部17はその解析プログラムによって、GPS装置13により得られたデータに基づいて据え付け点Aの座標位置A(X1、Y1、Z1)を演算する。この座標位置A(X1、Y1、Z1)はデータとして記憶部23に記憶される。測量装置10を据え付け点Bに移動させて据え付けたときも同様にして据え付け点Bの座標位置B(X2、Y2、Z2)が求められる。
【0026】
測量装置本体12には撮像手段28が設けられている。その撮像手段28の光学系は望遠鏡部16に一体に組み込まれている。その撮像手段28の光学系はズーム機能を有するのが望ましい。というのは、測量装置10の据え付け点を順次移動させたときに、据え付け点から視準点までの距離が異なることに起因して表示部25の画面に表示される景観画像の大きさが異なるのを修正する必要があるからである。
【0027】
その画像データは画像処理手段としても機能する制御演算部17により記憶部23に測量データ(据え付け点Aから視準点までの距離、基準方向に対する視準点の角度)と共に記憶される。
【0028】
次に、図3を参照しつつ本発明の実施の形態に係わる測量装置を用いた測量方法を説明する。
【0029】
まず、測量装置10を据え付け点Aに据え付けて、GPS装置13により得られた情報に基づいて、据え付け点Aの座標位置(X1、Y1、Z1)を求め、記憶部23に記憶させる。
【0030】
ついで、望遠鏡部16を例えば磁北方向を基準とする方向D1として設定する。次に、任意の又は測量する測量地点a1を視準し、基準とする方向D1からの水平角、高度角及び距離を測定する。同様に測定地点a1から測定地点a3までを測定する。このとき、撮像素子28で視準方向の映像を取得する。なお、測量装置10の望遠鏡部16の倍率は30倍前後であり、狭い範囲しか見ることができない。広い範囲を撮像するには、ズーム機構か別の広角の撮像装置を必要とする。
【0031】
次に、測量装置1を据え付け点Aから据え付け点Bに移し、同様に測量作業を行う。GPS装置13で据え付け点Bの座標位置B(X2、Y2、Z2)を求める。望遠鏡部16を据え付け点Aと同様に磁北方向を基準とする方向D1として、測定地点b1から測定地点b3までを測定する。磁北方向を基準とするので、据え付け点Aにおける基準とする方向D1と据え付け点Bにおける基準とする方向D1とは必ずしも一致しない。
【0032】
このとき、図4に示すように、視準点b1方向の映像の中に測定地点a3があるように視準地点b1を設定する。視準地点b1の映像において、記憶部23に記憶されている測定地点a3の映像データとのマッチングが行われる。倍率、輝度等が調整されてマッチングが完了すると、視準点b1の映像の中での視準地点a3の位置が十字マークやポイントSで示される。
【0033】
通常、視準地点b1は光学的な光軸中心である画面の中心に存在する。望遠鏡部16の画角に応じた映像が撮像部(例えば、CCD)28に受光されるので、画面上の座標に基づき水平角、高度角の算出が可能である。ちなみに、測定地点b1の座標は(0、0)である。
【0034】
図1に示すように、測定地点a3に概略一致する位置、測定地点b1を視準して角度と距離を測定することにより、測定地点b1の画面上での測定地点a3の座標(Xa、Ya)と焦点距離とに基づいて、望遠鏡部16の光軸中心からの水平角αa3、高度角βa3が得られる。
【0035】
すなわち、Xaは高度角βa3に相当し、Yaは水平角αa3に相当する。
【0036】
据え付け点Bから見た測定地点b1の水平角及び高度角をα、βとすれば、据え付け点Bから見た測定地点(視準点)a3の地点の水平角及び高度角はα+αa3、β+βa3となる。据え付け点Bから測定地点b1までの距離に基づいて、据え付け点Bから測定点a1までの距離の算出が可能となる。
【0037】
据え付け点A、据え付け点Bと測定地点a3の座標の確定から座標系(日本平面直角座標系)の基準とする方向が逆算され、座標系の基準方向が確定する。同様に、据え付け点C、Dと順次測量作業を行うことにより測量地点の画像付きの座標が確定する。
【0038】
すなわち、据え付け点Aの位置A(X1、Y1、Z1)、据え付け点Bの位置B(X2、Y2、Z2)はGPS装置13により求まり、これは従来の基準点O1、O2等を用いて求められた据え付け点の座標位置に相当するものであり、据え付け点Aから据え付け点Bまでの距離K3、据え付け点Aから視準点a3までの距離K1、据え付け点Bから視準点a3までの距離K2が求まっているので、視準点a3の座標位置(X、Y)は以下の公式によって求められる。なお、高さ方向については、式が複雑化するので、説明は省略する。
【0039】
例えば、距離K、K1、K2が水平方向の距離を表すものとすると、図5に示すように、
(K1)=(X1−X)+(Y−Y1)
(K2)=(X2−X)+(Y−Y2)
ここで、距離K1、K2は測距により既知であり、座標位置(X1、Y1)、(X2、Y2)もGPS装置13により求められて既知であるので、上記二個の連立方程式を用いて視準点a3の未知の座標位置(X、Y)を求めることができる。
【0040】
視準点b3の座標位置についても、据え付け点Cに測量装置10を据え付けてその座標位置C(X3、Y3、Z3)をGPS装置13により求め、以下、この測量作業を繰り返すことによって、地形測量、地物測量を行うことができる。
【0041】
なお、光軸O1に対して視準点a3、b3、…の位置がずれていたとしても、光軸O1に対する視準点a3、b3、…の位置を表示部25の画面上で特定できるので、視準点a3、b3、…の位置は必ずしも光軸O1上に存在する必要はない。
【0042】
【発明の効果】
本発明に係わる測量装置及び測量方法は、以上説明したように構成したので、あらかじめ設置されている基準点を用いなくとも連続して地形、地物の測量作業を行うことができる。
【図面の簡単な説明】
【図1】本発明に係わる測量装置の一例を示す説明図である。
【図2】図1に示す測量装置本体の概要を示すブロック図である。
【図3】本発明に係わる測量装置による測量手順の一例を示す図である。
【図4】測定地点b1の映像中に含まれている測定地点a3の一例を示す説明図である。
【図5】図3に示す視準点の座標位置を求める演算の一例を説明するための図である。
【図6】従来の測量装置による測量手順の一例を示す図である。
【符号の説明】
12…測量装置本体
13…GPS装置
17…制御演算部(画像処理手段)
A、B…据え付け点
a3…視準点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surveying device that can continuously perform surveying work on terrain and features without using a preset reference point.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a method of performing a surveying operation using a surveying device (referred to as a total station) having an electronic angle measuring function and a light wave distance measuring function.
[0003]
In this apparatus, for example, as shown in FIG. 6, when measuring the topography of a cliff, two known reference points O1 and O2 such as a triangular point set in advance from an installation point A of the surveying device 1 are viewed. Then, the directions with respect to the two reference points O1 and O2 and the distances to the two reference points O1 and O2 with respect to the installation point A are obtained, whereby the coordinate position (X1, Y1) of the installation point A is obtained. An elevation Z1 of the installation point A of the surveying device 1 is obtained from the known level point.
[0004]
Then, a corner cube as a distance measurement / angle measurement object is installed at collimation points (points to be measured) a1 to a3, or a worker stands up a pole, collimates the measurement points a1 to a3, and performs each measurement. The angles of the points a1 to a3 from the reference direction and the distances from the surveying device 1 to the respective measurement points a1 to a3 are measured, and the coordinate positions to the respective collimation points a1 to a3 are obtained.
[0005]
Next, the surveying apparatus 1 is installed at the installation point B, for example, collimating the installation point A, obtaining the angle and the distance to the installation point A, collimating the reference point O1, and setting the angle to the reference point O1. By obtaining the distance, the coordinate position (X2, Y2) of the installation point B is obtained. Further, the elevation Z2 of the installation point B of the surveying apparatus 1 is obtained from the standard point or the known point A.
[0006]
Then, the coordinate positions of the collimation points b1 to b3 are determined by the same operation procedure, and the coordinate positions of the collimation points c1 to c3 are also determined for the installation point C (X3, Y3, Z3) by the same operation procedure. By repeating this, the terrain surveying work is continuously performed.
[0007]
In the case of a surveying operation of a feature such as a building, the surveying operation of the feature is performed by collimating a corner such as an external appearance.
[0008]
Note that a surveying device 1 in which a GPS device is attached to the surveying device main body is also known (for example, see Patent Literature 1 and Patent Literature 2).
[0009]
Also, a so-called non-prism type surveying device capable of performing distance measurement without using a corner cube is being developed.
[0010]
[Patent Document 1]
Japanese Patent Publication No. 03-500334 [Patent Document 2]
JP 2000-97703 A
[Problems to be solved by the invention]
However, in this conventional surveying apparatus, it is necessary to measure the reference points O1 and O2 of the known points to obtain the coordinate positions of the installation points A, B, C,... Of the surveying apparatus. This is relatively easy, but it is not easy to find the reference point because the triangular slabs are buried in the suburbs, etc.If the construction site is in the mountains, it is necessary to find the coordinates of the installation point from the reference point. There is a problem that work takes time.
[0012]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surveying method that can continuously perform topographical and terrestrial surveying work without using a reference point that is set in advance. It is to provide a device.
[0013]
[Means for Solving the Problems]
The surveying device according to claim 1, a surveying device main body having a distance measuring function of measuring a distance to a collimation point and an angle measuring function of measuring an angle from a reference direction with respect to the collimation point,
A GPS device for determining a coordinate position of an installation point of the surveying device main body,
Imaging means for imaging an imaging object existing in the collimation direction including the collimation point,
Imaging means for imaging an imaging object existing in the collimation direction including the collimation point,
The collimation point to be measured and included in an image captured by mounting the surveying device main body at one installation point and the image included in the image captured by mounting the surveying device main body to another mounting point and the measurement are performed. Image processing means for performing image processing so as to display a matching mark on the same target collimation point;
It is characterized by having.
[0014]
According to a second aspect of the present invention, there is provided a surveying apparatus including a storage unit for storing a coordinate position of an installation point of the surveying apparatus main body measured by the GPS apparatus.
[0015]
The surveying device according to claim 3 is characterized in that the imaging means has a zoom function.
[0016]
The surveying apparatus according to claim 4, wherein the surveying apparatus main body considers a common collimation point as a surveying point, and performs surveying based on a distance and an angle at the surveying point and a coordinate position of an installation point obtained by GPS. It is characterized by having arithmetic means for calculating the coordinate position of a point.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In FIG. 1, reference numeral 10 denotes a surveying device. The surveying device 10 includes a tripod 11 and a surveying device main body 12. Although the GPS device 13 is provided integrally with the surveying device main body 12 here, the GPS device 13 may be separate from the surveying device main body 12.
[0018]
The surveying device main body 12 has a base portion 14 and a support portion 15. The support portion 15 is rotatable in the horizontal direction with respect to the base portion 14. A telescope unit 16 is provided on the support unit 15 so as to be rotatable in the vertical direction.
[0019]
As shown in FIG. 2, the surveying device main body 12 includes a control calculation unit 17, a distance measurement unit 18, a horizontal drive unit 19, a height drive unit 20, a horizontal angle measurement unit 21, and a vertical angle measurement unit (vertical angle measurement unit). Corner 22), a storage unit 23, an operation / input unit 24, and a display unit 25. The distance measuring unit 18 drives the light emitting unit 26 based on a control command from the control calculation unit 17, receives the distance measuring light reflected from the distance measuring target (here, the collimation point) by the light receiving unit 27, and The distance from 10 to the object to be measured is obtained. Here, a laser-type light-wave distance meter is used for the distance measuring unit 18, and a so-called non-prism type that can perform distance measurement without requiring installation of a corner cube or the like at the position to be measured is used. Can be
[0020]
That is, the distance measurement light is pulse-emitted from the light-emitting unit 26, and the distance is obtained from the time difference until the pulse emission is received by the light-receiving unit 27. The calculation of this distance is performed by the control calculation unit 17.
[0021]
The horizontal drive unit 19 drives the support unit 15 to rotate in the horizontal direction based on a control command from the arithmetic control unit 17. The height drive unit 20 drives the telescope unit 16 to rotate in the vertical direction. Since the driving mechanism is publicly known, the description is omitted. Note that the horizontal drive unit 19 and the height drive unit 20 are effective when performing surveying automatically, and are mechanisms that are not necessary when performing manual surveying.
[0022]
The horizontal angle measuring unit 21 and the vertical angle measuring unit 22 are configured by known encoders including a rotor and a stator. The horizontal angle measuring unit 21 measures the angle in the horizontal direction, and the vertical angle measuring unit 22 determines the angle in the vertical direction.
[0023]
The control calculation unit 17 includes a CPU and performs various controls based on a control command of the operation input unit 24 and the like, and also performs various calculations in addition to the above-described calculations. Is displayed.
[0024]
The storage unit 23 stores data, an analysis program described later, and various other programs.
[0025]
The GPS device 13 is connected to the control operation unit 17, and the control operation unit 17 analyzes the coordinate position of the installation point by an analysis program based on a signal from an artificial satellite. Here, for example, a device that performs RTK positioning is used as the GPS device 13, and the arithmetic control unit 17 uses the analysis program to execute the coordinate position A (X1, Y1) of the installation point A based on the data obtained by the GPS device 13. , Z1). The coordinate position A (X1, Y1, Z1) is stored in the storage unit 23 as data. When the surveying apparatus 10 is moved to the installation point B and installed, the coordinate position B (X2, Y2, Z2) of the installation point B is similarly obtained.
[0026]
The surveying device main body 12 is provided with an imaging unit 28. The optical system of the imaging means 28 is integrated into the telescope unit 16. It is desirable that the optical system of the imaging means 28 has a zoom function. That is, when the installation points of the surveying device 10 are sequentially moved, the size of the landscape image displayed on the screen of the display unit 25 differs due to the difference in the distance from the installation point to the collimation point. Must be corrected.
[0027]
The image data is stored in the storage unit 23 together with the survey data (distance from the installation point A to the collimation point, angle of the collimation point with respect to the reference direction) in the storage unit 23 by the control calculation unit 17 which also functions as an image processing unit.
[0028]
Next, a surveying method using the surveying device according to the embodiment of the present invention will be described with reference to FIG.
[0029]
First, the surveying apparatus 10 is installed at the installation point A, and based on the information obtained by the GPS apparatus 13, the coordinate position (X1, Y1, Z1) of the installation point A is obtained and stored in the storage unit 23.
[0030]
Next, the telescope unit 16 is set, for example, as a direction D1 based on the magnetic north direction. Next, an arbitrary or surveying point a1 to be measured is collimated, and a horizontal angle, an altitude angle, and a distance from the reference direction D1 are measured. Similarly, measurement is performed from the measurement point a1 to the measurement point a3. At this time, an image in the collimating direction is acquired by the image sensor 28. The magnification of the telescope unit 16 of the surveying device 10 is about 30 times, and only a narrow range can be seen. To image a wide range, a zoom mechanism or another wide-angle imaging device is required.
[0031]
Next, the surveying device 1 is moved from the installation point A to the installation point B, and the surveying operation is performed in the same manner. The GPS device 13 calculates a coordinate position B (X2, Y2, Z2) of the installation point B. The telescope unit 16 is measured from the measurement point b1 to the measurement point b3 as the direction D1 with respect to the magnetic north direction in the same manner as the installation point A. Since the magnetic north direction is used as a reference, the reference direction D1 at the installation point A does not always coincide with the reference direction D1 at the installation point B.
[0032]
At this time, as shown in FIG. 4, the collimation point b1 is set so that the measurement point a3 exists in the video in the collimation point b1 direction. In the image of the collimation point b1, matching with the image data of the measurement point a3 stored in the storage unit 23 is performed. When the magnification and the brightness are adjusted and the matching is completed, the position of the collimation point a3 in the image of the collimation point b1 is indicated by a cross mark or a point S.
[0033]
Usually, the collimation point b1 exists at the center of the screen, which is the center of the optical axis. Since an image corresponding to the angle of view of the telescope unit 16 is received by the imaging unit (for example, CCD) 28, the horizontal angle and the altitude angle can be calculated based on the coordinates on the screen. Incidentally, the coordinates of the measurement point b1 are (0, 0).
[0034]
As shown in FIG. 1, by measuring the angle and the distance while collimating the position substantially coincident with the measurement point a3 and the measurement point b1, the coordinates (Xa, Ya) of the measurement point a3 on the screen of the measurement point b1 are measured. ) And the focal length, a horizontal angle αa3 and an altitude angle βa3 from the optical axis center of the telescope unit 16 are obtained.
[0035]
That is, Xa corresponds to the altitude angle βa3, and Ya corresponds to the horizontal angle αa3.
[0036]
Assuming that the horizontal angle and the altitude angle of the measurement point b1 viewed from the installation point B are α and β, the horizontal angle and the altitude angle of the measurement point (sighting point) a3 viewed from the installation point B are α + αa3, β + βa3. Become. The distance from the installation point B to the measurement point a1 can be calculated based on the distance from the installation point B to the measurement point b1.
[0037]
From the determination of the coordinates of the installation point A, the installation point B, and the measurement point a3, the reference direction of the coordinate system (Japanese plane orthogonal coordinate system) is calculated backward, and the reference direction of the coordinate system is determined. Similarly, by performing the surveying operation sequentially with the installation points C and D, the coordinates with the image of the surveying point are determined.
[0038]
That is, the position A (X1, Y1, Z1) of the installation point A and the position B (X2, Y2, Z2) of the installation point B are obtained by the GPS device 13, which are obtained by using the conventional reference points O1, O2 and the like. It is equivalent to the coordinate position of the set installation point, the distance K3 from the installation point A to the installation point B, the distance K1 from the installation point A to the collimation point a3, and the distance from the installation point B to the collimation point a3. Since K2 has been determined, the coordinate position (X, Y) of the collimation point a3 is determined by the following formula. Note that the expression in the height direction is complicated, and the description is omitted.
[0039]
For example, if the distances K, K1, and K2 represent horizontal distances, as shown in FIG.
(K1) 2 = (X1- X) 2 + (Y-Y1) 2
(K2) 2 = (X2- X) 2 + (Y-Y2) 2
Here, the distances K1 and K2 are known by distance measurement, and the coordinate positions (X1, Y1) and (X2, Y2) are also obtained and known by the GPS device 13, so that the two simultaneous equations are used. The unknown coordinate position (X, Y) of the collimation point a3 can be obtained.
[0040]
Regarding the coordinate position of the collimation point b3, the surveying device 10 is installed at the installation point C, and the coordinate position C (X3, Y3, Z3) is obtained by the GPS device 13, and thereafter, this surveying work is repeated to obtain the topographical survey. , Feature surveying can be performed.
[0041]
Note that even if the positions of the collimation points a3, b3, ... are shifted with respect to the optical axis O1, the positions of the collimation points a3, b3, ... with respect to the optical axis O1 can be specified on the screen of the display unit 25. , The positions of the collimation points a3, b3, ... need not necessarily be on the optical axis O1.
[0042]
【The invention's effect】
Since the surveying device and the surveying method according to the present invention are configured as described above, it is possible to continuously perform the surveying work on the terrain and the feature without using the reference points that are set in advance.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a surveying device according to the present invention.
FIG. 2 is a block diagram showing an outline of the surveying device main body shown in FIG.
FIG. 3 is a diagram showing an example of a surveying procedure by the surveying device according to the present invention.
FIG. 4 is an explanatory diagram showing an example of a measurement point a3 included in an image of a measurement point b1.
FIG. 5 is a diagram for explaining an example of a calculation for obtaining a coordinate position of a collimation point shown in FIG. 3;
FIG. 6 is a diagram showing an example of a surveying procedure by a conventional surveying device.
[Explanation of symbols]
12 Surveying device body 13 GPS device 17 Control calculation unit (image processing means)
A, B: installation point a3: collimation point

Claims (4)

視準点までの距離を測定する測距機能と視準点に対する基準とする方向からの角度を測定する測角機能とを有する測量装置本体と、
測量装置本体の据え付け点の座標位置を求めるためのGPS装置と、
前記視準点を含めて視準方向に存在する撮像対象物を撮像する撮像手段と、
前記測量装置本体を一の据え付け点に据え付けて撮像された画像に含まれかつ測定対象となる視準点と前記測量装置本体を他の据え付け点に据え付けて撮像された画像に含まれかつ前記測定対象となる視準点と同一のものに合致マークを表示するように画像処理する画像処理手段と、
を備えていることを特徴とする測量装置。
A surveying instrument main body having a distance measuring function for measuring the distance to the collimation point and an angle measuring function for measuring an angle from a reference direction with respect to the collimation point,
A GPS device for determining the coordinate position of the installation point of the surveying device main body,
Imaging means for imaging an imaging object existing in the collimation direction including the collimation point,
The collimation point to be measured and included in the image captured by mounting the surveying apparatus main body at one installation point and the image included in the image captured by mounting the surveying apparatus main body to another mounting point and the measurement are performed. Image processing means for performing image processing so as to display a match mark on the same target collimation point;
A surveying device comprising:
前記GPS装置で測定された測量装置本体の据え付け点の座標位置を記憶する記憶部を備えていることを特徴とする請求項1に記載の測量装置。The surveying device according to claim 1, further comprising a storage unit that stores a coordinate position of an installation point of the surveying device main body measured by the GPS device. 前記撮像手段はズーム機能を有することを特徴とする請求項1に記載の測量装置。The surveying device according to claim 1, wherein the imaging unit has a zoom function. 前記測量装置本体は、共通する視準点を測量地点とみなして、該測量地点における距離と角度とGPSにより求められた据え付け点の座標位置とに基づき測量地点の座標位置を求める演算手段を有することを特徴とする請求項1に記載の測量装置。The surveying apparatus main body includes a calculating unit that regards a common collimation point as a surveying point, and calculates a coordinate position of the surveying point based on a distance and an angle at the surveying point and a coordinate position of an installation point obtained by GPS. The surveying device according to claim 1, wherein:
JP2003110262A 2003-04-15 2003-04-15 Surveying apparatus Pending JP2004317237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110262A JP2004317237A (en) 2003-04-15 2003-04-15 Surveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110262A JP2004317237A (en) 2003-04-15 2003-04-15 Surveying apparatus

Publications (1)

Publication Number Publication Date
JP2004317237A true JP2004317237A (en) 2004-11-11

Family

ID=33471170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110262A Pending JP2004317237A (en) 2003-04-15 2003-04-15 Surveying apparatus

Country Status (1)

Country Link
JP (1) JP2004317237A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672314A2 (en) * 2004-12-14 2006-06-21 Kabushiki Kaisha Topcon Method for preparing a stereo image and three-dimensional data preparation system
EP1744122A2 (en) 2005-07-11 2007-01-17 Kabushiki Kaisha Topcon Geographic data collecting system
JP2007147341A (en) * 2005-11-24 2007-06-14 Topcon Corp Method and apparatus for creating three-dimensional data
JP2007248156A (en) * 2006-03-14 2007-09-27 Topcon Corp Geographic data collecting device
JP2008076303A (en) * 2006-09-22 2008-04-03 Topcon Corp System, method and program for position measurement
JP2009210388A (en) * 2008-03-04 2009-09-17 Topcon Corp Geographic data collection device
JP2010223754A (en) * 2009-03-24 2010-10-07 Shinryo Corp Three-dimensional position measurement and positioning system
US8280677B2 (en) 2008-03-03 2012-10-02 Kabushiki Kaisha Topcon Geographical data collecting device
US8310653B2 (en) 2008-12-25 2012-11-13 Kabushiki Kaisha Topcon Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
US8638449B2 (en) 2010-07-16 2014-01-28 Kabushiki Kaisha Topcon Measuring device having multiple light emitting sources
US8643828B2 (en) 2010-10-27 2014-02-04 Kabushiki Kaisha Topcon Laser surveying instrument
US8934009B2 (en) 2010-09-02 2015-01-13 Kabushiki Kaisha Topcon Measuring method and measuring device
JP7461185B2 (en) 2020-03-18 2024-04-03 株式会社トプコン Surveying equipment and surveying equipment systems

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170688A (en) * 2004-12-14 2006-06-29 Topcon Corp Stereo image formation method and three-dimensional data preparation device
EP1672314A2 (en) * 2004-12-14 2006-06-21 Kabushiki Kaisha Topcon Method for preparing a stereo image and three-dimensional data preparation system
EP1672314A3 (en) * 2004-12-14 2009-01-21 Kabushiki Kaisha Topcon Method for preparing a stereo image and three-dimensional data preparation system
US7508980B2 (en) 2004-12-14 2009-03-24 Kabushiki Kaisha Topcon Method for preparing stereo image and three-dimensional data preparation system
JP4649192B2 (en) * 2004-12-14 2011-03-09 株式会社トプコン Stereo image creation method and three-dimensional data creation apparatus
US7933001B2 (en) 2005-07-11 2011-04-26 Kabushiki Kaisha Topcon Geographic data collecting system
EP1744122A2 (en) 2005-07-11 2007-01-17 Kabushiki Kaisha Topcon Geographic data collecting system
US8319952B2 (en) 2005-07-11 2012-11-27 Kabushiki Kaisha Topcon Geographic data collecting system
JP2007147341A (en) * 2005-11-24 2007-06-14 Topcon Corp Method and apparatus for creating three-dimensional data
US8077197B2 (en) 2005-11-24 2011-12-13 Kabushiki Kaisha Topcon Three-dimensional data preparing method and three-dimensional data preparing device
JP2007248156A (en) * 2006-03-14 2007-09-27 Topcon Corp Geographic data collecting device
JP2008076303A (en) * 2006-09-22 2008-04-03 Topcon Corp System, method and program for position measurement
US8218131B2 (en) 2006-09-22 2012-07-10 Kabushiki Kaisha Topcon Position measuring system, position measuring method and position measuring program
US8280677B2 (en) 2008-03-03 2012-10-02 Kabushiki Kaisha Topcon Geographical data collecting device
JP2009210388A (en) * 2008-03-04 2009-09-17 Topcon Corp Geographic data collection device
US8717432B2 (en) 2008-03-04 2014-05-06 Kabushiki Kaisha Topcon Geographical data collecting device
US8310653B2 (en) 2008-12-25 2012-11-13 Kabushiki Kaisha Topcon Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
US8355118B2 (en) 2008-12-25 2013-01-15 Kabushiki Kaisha Topcon Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
JP2010223754A (en) * 2009-03-24 2010-10-07 Shinryo Corp Three-dimensional position measurement and positioning system
US8638449B2 (en) 2010-07-16 2014-01-28 Kabushiki Kaisha Topcon Measuring device having multiple light emitting sources
US8934009B2 (en) 2010-09-02 2015-01-13 Kabushiki Kaisha Topcon Measuring method and measuring device
US8643828B2 (en) 2010-10-27 2014-02-04 Kabushiki Kaisha Topcon Laser surveying instrument
JP7461185B2 (en) 2020-03-18 2024-04-03 株式会社トプコン Surveying equipment and surveying equipment systems

Similar Documents

Publication Publication Date Title
US6859269B2 (en) Surveying instrument and method for acquiring image data by using the surveying instrument
US9341473B2 (en) Geodetic survey system having a camera integrated in a remote control unit
US10187567B2 (en) Method and handheld distance measurement device for indirect distance measurement by means of image-assisted angle determination function
US9958268B2 (en) Three-dimensional measuring method and surveying system
US9322652B2 (en) Stereo photogrammetry from a single station using a surveying instrument with an eccentric camera
WO2011019071A1 (en) System that generates map image integration database and program that generates map image integration database
US11796682B2 (en) Methods for geospatial positioning and portable positioning devices thereof
JP6130078B2 (en) Surveying information marking device, surveying information marking method
CN110737007A (en) Portable positioning device and method for obtaining a geospatial position
JP7313955B2 (en) Surveying instrument, surveying method and surveying program
JP2019056571A (en) Survey system
JP2004317237A (en) Surveying apparatus
JP2019132769A (en) Survey system
WO2019188961A1 (en) Target device and surveying system
JP4024719B2 (en) Electronic surveying instrument
JP6101033B2 (en) Setting support apparatus, setting support method, and program
JP2004085551A (en) Surveying system
JP6101032B2 (en) Setting support apparatus, setting support method, and program
JP2021067615A (en) Scanner system and scan method
JP6954830B2 (en) Target device, surveying method, surveying device and surveying program
JP2007199083A (en) Surveying device
JP2006003104A (en) Survey work guidance device
JP2000249549A (en) Position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070330

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508