JP2004316048A - Formed article by using chaff as raw material - Google Patents

Formed article by using chaff as raw material Download PDF

Info

Publication number
JP2004316048A
JP2004316048A JP2003145528A JP2003145528A JP2004316048A JP 2004316048 A JP2004316048 A JP 2004316048A JP 2003145528 A JP2003145528 A JP 2003145528A JP 2003145528 A JP2003145528 A JP 2003145528A JP 2004316048 A JP2004316048 A JP 2004316048A
Authority
JP
Japan
Prior art keywords
fiber
mold
slurry
molded product
chaff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003145528A
Other languages
Japanese (ja)
Inventor
Hiroshi Miura
廣 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003145528A priority Critical patent/JP2004316048A/en
Publication of JP2004316048A publication Critical patent/JP2004316048A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a formed article having an excellent characteristic as a buffering material by using chaff as a raw material. <P>SOLUTION: This formed article obtained by removing water which is a dispersing medium of slurry, from small holes of a forming mold having many small holes for piling small hole-non-passing components in the slurry to form a formed material inside the mold, and then drying the wet state formed material in the mold or at the outside of the mold, is provided by using the slurry containing the chaff and fibers in the forming. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、籾殻を原料とする、緩衝材として優れた性能を有する成形体に関する。
【0002】
【従来の技術】
従来、緩衝材として利用される発泡スチロ−ルは、衝撃緩衝材性に優れ、任意の形状に加工することが容易で、価格が安く、軽量で、しかも外観体裁も良好である等の特徴を有している。しかし、近年、環境問題への関心が高まるにつれて、他の所謂プラスチツク製品と同様に、使用後の処理性を問題視する声が高まっている。すなわち、使用した後、焼却した場合には、高温の発生による炉の損傷、有毒ガスの発生が指摘されている。また、埋め立て処理を行った場合は、分解性がなく、さらに嵩張るため、処理場の不足を招く一因とも考えられている。
【0003】
この発泡スチロ−ルの処理上の問題点を解決するものとして、最近では、パルプを原料として製造されるパルプモ−ルドが注目され、スチロ−ルの代替として用いられることが多くなってきている。中でも、近年大量に排出されるが需要が伸びず在庫過剰の状態にある新聞、雑誌等の古紙を原料として利用したパルプモ−ルドは環境問題から見た場合に理想的なものである。
【0004】
【発明が解決しようとする課題】
しかし、このパルプモ−ルドは、多数の小孔を有する金型の小孔からパルプスラリ−を吸引・脱水して、金型表面にパルプを堆積させ、その後乾燥して得られる成形物で、新聞古紙等の汎用の古紙繊維を原料として成形した場合、金型へのパルプの堆積が進むにつれて水抜けが悪くなり、ある厚みに達すると脱水出来なくなって堆積しなくなるので、堆積層の厚い成形物を得ることが出来なかった。
その為、得られたものは被緩衝物(包まれる商品)が比較的軽量である場合には優れた緩衝特性を発揮するが、被緩衝物が重量物の場合には緩衝特性が不十分であるという問題を有していた。また、古紙繊維を原料とした場合、得られたものは表面が硬くて、被緩衝物によっては運搬時の振動で緩衝材と被緩衝物が擦れ合うだけで、その表面に傷が付くという問題を有していた。また、従来のパルプモ−ルド法の場合、原料として使えるものが限られており、大量に発生する廃棄物として処分に困っている籾殻を原料にすることは技術的に不可能であった。
本発明の目的は、大量に発生する廃棄物で処分に困っている籾殻を原料に用い重量物に対しても十分な緩衝特性を発揮し、また被緩衝物の表面を傷つけることのない緩衝材として優れた特性を有する成形体を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、かかる現状に鑑み、籾殻を原料に、緩衝材として優れた特性を有する成形体について鋭意検討した結果、籾殻と繊維を組み合わせることによつて、それを成し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は、多数の小孔を有する成形型の小孔から、スラリ−の分散媒体である水を除去することによって該成形型にスラリ−中の小孔不通過成分を堆積させて成形物とし、その後湿潤状態の該成形物を型内或いは型外乾燥して得られる成形体において、前記小孔不通過成分として籾殻と繊維を含有させることを特徴とする成形体である。
また、スラリ−組成物の籾殻と繊維の比率が乾燥重量で5:95〜75:25の範囲であることが好ましい。
また、籾殻が籾殻粉砕物であることが好ましい。
また、スラリ−組成物のカナダ標準フリ−ネス(CSF)が550ml以上であることが好ましい。
また、該繊維がセルロ−ス系繊維であることが好ましい。
中でも、該セルロ−ス系繊維が麻粉砕繊維であることが好ましい。
また、該繊維が熱融着性繊維及び/又はセルロ−ス系フィブリル化微細繊維であることが好ましい。
また、該繊維が、熱融着性繊維及び/又はセルロ−ス系フィブリル化微細繊維、及びフィブリル化微細繊維以外のセルロ−ス系繊維の組み合わせであることが好ましい。
【0006】
本発明の成功の第一の原因は、籾殻と繊維を組み合わせて原料にすることによつて、吸引・脱水の際の繊維間の密着が抑制されて、金型への繊維の堆積が進んでも従来のパルプモ−ルドほど脱水性が低下しないために、肉厚の成形体を得ることが出来、被緩衝物が重量物の場合でも優れた緩衝特性を発揮できることを見出した点にある。また、得られた成形体は表面が柔らかいため、従来のパルプモ−ルドでは問題となった緩衝材と被緩衝物が擦れ合うことによって起こる傷の問題が解決できることを見出した点にある。中でも、該スラリ−組成物のカナダ標準フリ−ネス(CSF)を550ml以上に調整することによって、上記問題解決に取り分け効果があることを見出した点にある。また、第二の原因は、バインダ−機能が殆どない籾殻或いはその粉砕物を原料として用いた場合、得られた成形体の層間強度が劣るために、成形体の破壊或いは籾殻の脱落によって緩衝材として使用する際に、緩衝性の低下、被緩衝物の汚染を生じたり、成形物を製造する際にも該現象で成形型が汚染されて連続生産をスム−ズに行うことが出来ない、等の問題を有していたが、籾殻と繊維をある割合で配合することによって良好な層間強度を得ることができ、上記問題が解消できることを見出した点にある。
【0007】
【発明の実施の形態】
本発明で籾殻と組み合わせて用いられる繊維としては、天然高分子繊維、合成高分子繊維、半合成高分子繊維が挙げられる。
天然高分子繊維としては、例えば、(1)針葉樹、広葉樹をクラフトパルプ化、サルファイトパルプ化、アルカリパルプ化等して得られる未晒又は晒化学パルプ、或いはGP、TMP(サ−モメカニカルパルプ)等の機械パルプ、或いはコットンパルプ、リンターパルプ、撥水化、耐水化、硬化の何れかの処理の少なくとも一つを施したパルプ、同処理を施した古紙パルプ(特願平10−032920号明細書)、液体アンモニア処理パルプ、マ−セル化パルプ、カ−ルドファイバ−(米国ウェアハウザ−社製、商品名:HBA−FF:NHB405、NHB416)、麻粉砕繊維、等のセルロ−ス系繊維、(2)ウ−ルや絹系やコラ−ゲン繊維等の蛋白系繊維、(3)キチン・キトサン繊維やアルギン酸繊維等の複合糖鎖系繊維、等が挙げられる。合成高分子繊維としては、例えば、芳香族ポリエステル繊維(PET繊維)、脂肪族ポリエステル繊維、共重合ポリエステル−ポリエチレンテレフタレ−ト鞘芯繊維、ポリアクリロニトリル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレン−ポリプロピレン鞘芯繊維等が挙げられる。また、半合成高分子繊維としては、例えば、アセチルセルロ−ス繊維等が挙げられる。上記繊維系素材としては、新品よりもリサイクル品が好ましい。
【0008】
上記繊維系素材の繊維長としては、スラリ−調製時の攪拌機への絡みつきが少なく、成形時に安定した堆積が期待出来る、数平均繊維長が30mm以下のものが好ましい。また、繊維系素材の中でも、天然高分子繊維は環境面で優れた素材であり好ましい。中でも、セルロ−ス系繊維は調達が極めて容易であり特に好ましい。中でも麻粉砕繊維は、本発明の効果が特に顕著であり好ましい。また、繊維の中でも、熱融着性繊維或いはセルロ−ス系フィブリル化微細繊維は成形体の層間強度を高める効果が特に顕著であり好ましい。また、熱融着性繊維及び/又はセルロ−ス系フィブリル化微細繊維、及びセルロ−ス系フィブリル化微細繊維以外のセルロ−ス系繊維の組合せは、成形体の層間強度及び緩衝特性及び環境の面で最もバランスが良く特に好ましい。
【0009】
熱融着性繊維としては、例えば、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレン−ポリプロピレン鞘芯繊維、脂肪族ポリエステル繊維、共重合ポリエステル−ポリエチレンテレフタレ−ト鞘芯繊維等が挙げられる。セルロ−ス系フィブリル化微細繊維としては、針葉樹、広葉樹をクラフトパルプ化、サルファイトパルプ化、アルカリパルプ化等して得られる未晒又は晒科学パルプ、或いはGP、TMP等の機械パルプ、或いはコットンパルプ、リンタ−パルプ、古紙パルプ等のセルロ−ス系繊維を、媒体攪拌ミル(特開平4−18186号公報)、振動ミル(特開平6−10286号公報)、高圧均質化装置、コロイドミル、叩解機等で湿式機械的処理して得られる数平均繊維長が0.01〜0.80mmの範囲で、繊維幅が0.1〜30μmの範囲のものが挙げられる。
【0010】
本発明に用いられる籾殻としては、籾殻及び籾殻粉砕物が挙げられる。中でも、籾殻粉砕物は成形物からの脱落が少なく好ましい。しかし、細かすぎる粉砕物は成形時の乾燥性を大幅に低下させるので好ましくなく、本発明に於いては、未粉砕籾殻の平均粒子径の15〜70%の範囲のものが、成形物からの脱落が少なく、成形時の乾燥性が良好であり特に好ましい。
粉砕に用いられる機械としては、例えば、ポケットグラインダ−、チェ−ングラインダ−、リンググラインダ−等のグラインダ−類、シングルディスクリファイナ−、ダブルディスクリファイナ−、コニカル型リファイナ−等のリファイナ−類、ビ−タ−等のその他の叩解機類、ブレンダ−、デフレ−カ−等の攪拌機類、デファイブレ−タ−、ヂファイブライザ−等の木材チップ解繊機、ハンマ−ミル、ピンミル、ハスクミル等が挙げられる。中でも、乾式・半乾式処理に用いられるハンマ−ミル、ピンミル、ハスクミルが好ましい。具体的には、住倉工業・西日本技術開発製のファイバライザ、ダルトン製のインパクトミル、奈良機械製作所の自由粉砕機、ハンマ−ミル、ケ−ジミル、増幸産業製のMKハンマ−ミル、北川鉄工所のハスクミル等が挙げられる。
【0011】
本発明では籾殻と繊維を原料の必須成分として配合するが、本発明の効果が最も期待できるのは、籾殻と繊維の比率が乾燥重量で5:95〜75:25の範囲の場合であり、中でも、10:90〜50:50の範囲のものが特に好ましい。因みに、籾殻が5重量%未満の場合には、本発明の効果、特に成形体の表面の軟らかさの面で劣ったものとなる。一方、75重量%を越えると成形体からの籾殻の脱落現象が強くなる。
【0012】
スラリ−組成物には、他に籾殻以外の天然高分子粗粉・微粒子、或いは合成高分子、半合成高分子の粗粉・微粒子を配合する事が出来る。具体的には、バガス粉砕物、稲藁粉砕物、鋸屑、カンナ屑、発泡ポリスチレン粉砕物、特願2000−105555号に記載の短冊状古紙等が挙げられる。これらは、通常組成物に対して乾燥重量で1〜30%の範囲で配合される。
【0013】
スラリー組成物には、性能向上や機能付与等のために必要に応じて他に適宜、接着剤、耐水化剤、撥水剤、無機繊維、金属繊維、染料、顔料、濾水性向上剤、PH調整剤、スライムコントロール剤、増粘剤、防腐剤、防黴剤、抗菌剤、難燃剤、殺鼠剤、防虫剤、保湿剤、鮮度保持剤、脱酸素剤、発泡剤、界面活性剤、電磁シールド材、帯電防止剤、防錆剤、芳香剤、消臭剤、発泡性や芳香性等の各種マイクロカプセル等を選択し配合することができる。これらは複数種併用することも出来る。
【0014】
スラリーの組成物としては、低密度の成形体が効率良く成形出来るカナダ標準フリーネス(CSF)が550ml以上のものが特に好ましい。
因みに、本発明ではスラリー組成物のカナダ標準フリーネスはJIS−P−8121に基づく方法で測定している。
【0015】
本発明のスラリーは、通常攪拌機を有する装置でバッチ式或いは連続的に調製される。スラリー調製に用いられる媒体としては通常水が使用されるが、他に水とアルコール(メタノール或いはエタノール等)の混和液等を使用することができる。スラリーの濃度は、通常乾燥固形分量が0.05〜5重量%の範囲に調製されるが、分散状態の点で0.05〜3重量%の範囲のものが好ましい。
【0016】
本発明に用いられる成形型としては、パルプモールドの金型の様に小孔を有する金型の表面に15〜200メッシュの金網を張りつけた型が通常用いられる。スラリ−の媒体を小孔から除去する方法としては、吸引脱水法、ガス加圧脱水法、機械加圧脱水法、電気浸透脱水法等があり、これらを組合せることもできる。また、脱水条件を脱水の途中で変更することもできる。
用いられるスラリ−の種類は、通常は一種類であるが、吸引・脱水を二段階以上に分け、その際に用いるスラリ−の組成物を変えることによって、異なる組成の堆積層が順次積層した状態の成形物を得ることもできる。
【0017】
脱水して成形型内に形成された湿潤状態の成形物は、その後型内で或いは型外に取り出して乾燥処理が施されるが、寸法精度の良い成形物が得られる型内乾燥がより好ましい。また、型内乾燥中、或いは乾燥処理の前に成形物に圧縮処理を施すと密度が上昇して荷重による変形の少ないものが得られる。
乾燥方式としては、例えば熱風乾燥、赤外線乾燥、マイクロウェ−ブ乾燥等、公知の方法を単独で或いは組み合わせてとることが出来る。中でも熱風乾燥法は、装置が安価で、成形体に焦げが発生し難い等の理由で好ましい。中でも、加熱エア−(ガス)を湿潤状態の成形物に注入する、或いは成形物の反対側から加熱エア−を入れながら吸引する等の方法で、繊維間空隙のエア−の流れを良くした通気乾燥は、乾燥が速くて成形体の生産効率が極めて良く特に好ましい。熱風乾燥では通常80〜400°Cの温度範囲の熱風が使われる。
通気乾燥の通気量としては、乾燥初期で1リッタ−/cm2・分以上が乾燥効率の点で好ましく、3リッタ−/cm2・分以上が特に好ましい。この通気乾燥は厚さ10mm以上、取り分け40mm以上の成形体を乾燥する場合に特に有効である。
【0018】
以上、成形方法をより具体的に示すために図でもって詳細に説明する。しかし、本発明はこれに限定されるものではない。
図1は本発明に用いられる凹型成形型10を示す斜視図であり、このA−A面での断面図が図2である。図2〜図8は、該凹型成形型10を用いての成形過程を断面図で示したものである。
図2に示すように、凹型成形型10は内壁11と外壁12からなる二重壁を有する上部開放系の凹形状のもので、内壁11は多数の脱水用小孔13を有し、内壁底面14には緩衝材で保護する商品の形状に合わせた凹凸15が設けられ、内外二重の壁で吸引室16が形成され、外壁底部には吸引口17が取付けられている。
【0019】
成形は、図3に示すように該成形型10の上に、スラリ−溜め用の囲い枠(ホッパ−)18を取り付けることから始まり、かかる状態で上部のガイド19よりスラリ−20が供給されてホッパ−上部まで満たされる。
次に、図4に示すように成形型10の下部にある吸引口17から吸引脱水することにより、該成形型内に堆積物21が形成される。その際、堆積は成形型の開放面上に盛り上がる状態に行われる。
【0020】
続いて、図5に示すようにホッパ−18が取り除かれ、次に図6に示すように堆積物21の成形型開放面からはみ出した不要部分が、チップソー23で切除される。
次に、図7に示すように、底面に多数の小孔26を有するプレス機上型24で軽く圧縮して成形物の表面を平滑に整えた後に、吸引口17から吸引を行いながら上型24の熱風注入口25から熱風を送り込んで小孔26から放出させて堆積層を通過させ乾燥させる。
図8は、成形型10から取り出して得られた乾燥成形物27を示している。
【0021】
本発明の成形体に、紙力増強剤、耐水化剤、撥水剤、染料、顔料、防腐剤、防黴剤、抗菌剤、難燃剤、殺鼠剤、防虫剤、鮮度保持剤、脱酸素剤、電磁シールド材、帯電防止剤、防錆剤、芳香剤、消臭剤等を含有せしめる方法としては、前記の如くスラリー中にこれらを添加混合する内添法以外に、成形体を製造した後に表面塗布する方法、即ち外添法をとることもできる。この表面には、含浸、刷毛塗り、スプレー等の手段が使える。勿論内添・外添を併用しても構わない。外添の場合には、上記微細繊維を用いることもできる。外添法は内添法に比べて添加成分を表面に多く分布できる特徴がある。他に、成形体の表面に、上質紙、セロファン紙、耐水紙、耐油紙、蒸着紙、塗工紙、合成紙、不織布、布、合成フィルム、金属箔、木板、合成樹脂板、ガラス板、金属板等の他の素材を全面或いは部分的に貼って使うこともできる。また、段ボ−ル、板紙、板、合成樹脂板、金属板或いは箱等その加工品に挟む、貼り付ける、はめ込む等して使うこともできる。また、得られた成形体同士を貼り合わせることも出来る。成形体表面にフイルム層を設ける手段としてスキンパック包装技術を使うこともできる。組み合わせて使う素材としては生分解性を有する素材等、環境に優しいものが好ましい。他に、成形体には、切削、印刷等の加工を施すことも出来る。
【0022】
かくして得られた成形体は、低密度性、緩衝性、断熱性、防音性、吸湿性、生分解性等の特徴を生かして、包装材、建材、フィルタ−、植物培地等は幅広い分野に適用できる。
以下に実施例を挙げてより具体的に説明するが、勿論本発明はこれらに限定されるものではない。尚、実施例及び比較例において「部」及び「%」とあるのは特に断らない限り「重量部」及び「重量%」を示す。
【0023】
〈実施例1〉
サイザル麻袋を断裁機で20cm角に切断した後に、粉砕機(ホ−ライ製、V−360)で粉砕して数平均繊維長6mmの麻繊維を得た。この繊維のカナダ標準フリ−ネスを測定したところ741mlであった。
また、北川鉄工所のハスクミルで処理して、籾殻の50%の平均粒子径を有する粉砕物を得た。
また、固形分濃度1%の新聞古紙パルプの水スラリ−を、平均粒径2mmΦのガラスビ−ズを80%充填した1.5リットル用のサンドグラインダ−(シンマル・エンタ−プライゼス製、ダイノミルKDL−PILOT)に360ml/分で導入、通過させることにより数平均繊維長0.28mmのパルプ系微細繊維を得た。
以上のようにして得られた麻繊維50部(乾燥重量)と籾殻粉砕物30部(乾燥重量)とパルプ系微細繊維5部(乾燥重量)に、更に共重合ポリエステル−ポリエチレンテレフタレ−ト鞘芯繊維(帝人製、TSF.TJ04CN2.2×5)15部(乾燥重量)を混合したものに水を加えて固形分濃度を1.5%に調整し、十分攪拌してスラリ−を得た。尚、このスラリ−組成物のカナダ標準フリ−ネスを測定したところ711mlであった。
次に、上記スラリ−を用い、汎用の金型を用いてモ−ルド成形し、堆積層の平均の厚みが15mmの成形物を得た。
かくして得られた成形体の緩衝材としての性能を評価したところ、重量物に対して優れた緩衝特性を有し、また被緩衝物に対して傷を付け難いことが分かった。また、籾殻が脱落し難いことが分かった。
【0024】
<比較例1>
新聞古紙を水に入れて十分攪拌し、固形分濃度を1.5%に調整してスラリーを得た。次に、このスラリ−を用いた以外、実施例1と同様の方法でモ−ルド成形した。堆積層の平均の厚みは3mmであった。尚、堆積層の厚さは3mmが限界であった。
かくして得られた成形体の緩衝材としての性能を評価したところ、軽量物に対しては良好な緩衝特性を示したが、重量物に対しては緩衝特性の面で劣っていた。また被緩衝物に対して傷が付き易いことが分かった。
【0025】
【発明の効果】
上記のように本発明は、多数の小孔を有する成形型の小孔から、スラリ−の分散媒体である水を除去することによって該成形型にスラリ−中の小孔不通過成分を堆積させて成形物とし、その後湿潤状態の該成形物を型内或いは型外乾燥して得られる成形体において、籾殻と繊維を含有するスラリ−を用いるので、重量物に対して良好な緩衝特性を有する肉厚の成形物が得られ、かつ被緩衝物の表面を傷つけ難い成形物が得られるというメリット以外に、廃棄物として処分に困っている籾殻の有効利用に繋がるというメリットがある。
【図面の簡単な説明】
【図1】湿式成形に用いられる凹型成形型の斜視図である。
【図2】図1の成形型のA−A面での断面図である。
【図3】図2の成形型の上にスラリ−溜め用囲い枠(ホッパ−)をセットした後、ガイドよりスラリ−供給して上部まで満たした状態を示す断面図である。
【図4】図3の状態からスラリ−を吸引脱水して、成形型に小孔不通過成分を堆積させた状態を示す断面図である。
【図5】図4の状態からホッパ−が取り除かれた状態を示す断面図である。
【図6】成形型の解放面上に堆積した不要部分を、チップソ−で切除している状態を示す断面図である。
【図7】成形型内にある湿潤状態の成形物に、熱風を注入して乾燥している状態を示す断面図である。
【図8】乾燥終了後に成形型から取り出して得られた成形体を示す断面図である。
【符号の説明】
10 凹型成形型
11 内壁
12 外壁
13 小孔
14 内壁底面
15 保護する商品の形状に合わせた凹凸
16 吸引室
17 吸引口
18 スラリ−溜め用囲い枠
19 ガイド
20 スラリ−
21 湿潤状態の堆積物
22 水滴
23 チップソ−
24 プレス機上型
25 熱風注入口
26 小孔
27 乾燥成形物
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a molded product using rice husks as a raw material and having excellent performance as a buffer material.
[0002]
[Prior art]
Conventionally, foamed styrol used as a cushioning material has features such as being excellent in shock absorbing material, easy to be processed into any shape, inexpensive, lightweight, and good appearance. Have. However, in recent years, as interest in environmental issues has increased, like other so-called plastic products, there has been an increase in voices regarding the processability after use. In other words, it has been pointed out that in the case of incineration after use, damage to the furnace and generation of toxic gas due to generation of high temperature. In addition, when the landfill treatment is performed, it is considered to be one of the causes of shortage of the treatment plant because it is not decomposable and is bulky.
[0003]
Recently, pulp molds manufactured using pulp as a raw material have attracted attention as a solution to the problem of the processing of foamed styrol, and are increasingly used as substitutes for styrol. Above all, pulp molds that use waste paper such as newspapers and magazines, which have been discharged in large quantities in recent years but whose demand has not increased and are in excess of stock, are ideal in terms of environmental problems.
[0004]
[Problems to be solved by the invention]
However, this pulp mold is a molded product obtained by sucking and dewatering pulp slurry from small holes of a mold having a large number of small holes, depositing pulp on the surface of the mold, and then drying it. When molded from general-purpose waste paper fiber as a raw material, drainage worsens as pulp accumulates in the mold, and when it reaches a certain thickness, it cannot be dewatered and does not accumulate. I couldn't get it.
Therefore, the obtained product exhibits excellent buffering properties when the material to be buffered (wrapped product) is relatively light, but has insufficient buffering properties when the material to be buffered is heavy. There was a problem that there is. In addition, when waste paper fiber is used as a raw material, the obtained material has a hard surface, and depending on the material to be buffered, the cushioning material and the material to be buffered simply rub against each other due to vibration during transportation, and the surface is scratched. Had. Further, in the case of the conventional pulp mold method, the usable materials are limited, and it is technically impossible to use rice husks which are difficult to dispose as waste generated in large quantities.
An object of the present invention is to use a rice husk, which is difficult to dispose of in a large amount of waste, as a raw material, to exhibit sufficient buffer characteristics even for heavy objects, and to provide a cushioning material that does not damage the surface of the material to be buffered. An object of the present invention is to provide a molded article having excellent characteristics.
[0005]
[Means for Solving the Problems]
In view of such a current situation, the present inventors have intensively studied a molded product having excellent properties as a cushioning material using rice husk as a raw material, and as a result, have found that it can be achieved by combining rice husk and fiber. Thus, the present invention has been completed.
That is, the present invention removes water as a dispersion medium of a slurry from small holes of a mold having a large number of small holes, thereby depositing a small hole impervious component in the slurry on the mold to form the mold. A molded product obtained by drying the molded product in a mold or outside the mold in a wet state, and further comprising rice hulls and fibers as the small pore impervious component.
Further, it is preferable that the ratio of the rice husk to the fiber of the slurry composition is in the range of 5:95 to 75:25 by dry weight.
Further, it is preferable that the chaff is a milled chaff.
Further, the slurry composition preferably has a Canadian Standard Freeness (CSF) of 550 ml or more.
Preferably, the fiber is a cellulose fiber.
Especially, it is preferable that the cellulose fiber is a hemp ground fiber.
Further, it is preferable that the fiber is a heat-fusible fiber and / or a cellulose-based fibrillated fine fiber.
Further, it is preferable that the fiber is a combination of a heat-fusible fiber and / or a cellulose-based fibrillated fine fiber and a cellulose-based fiber other than the fibrillated fine fiber.
[0006]
The first cause of the success of the present invention is that, by combining rice husk and fiber as a raw material, adhesion between fibers during suction and dehydration is suppressed, and even if fiber accumulation in a mold progresses. Since the dewatering property does not decrease as much as the conventional pulp mold, it is possible to obtain a molded article having a large thickness, and it has been found that excellent cushioning properties can be exhibited even when the material to be buffered is heavy. Further, the obtained molded article has a soft surface, so that it has been found that the problem of scratches caused by the rubbing of the buffer material and the material to be buffered, which has been a problem in conventional pulp molding, can be solved. Above all, it has been found that adjusting the Canadian standard freeness (CSF) of the slurry composition to 550 ml or more is particularly effective in solving the above problems. The second cause is that when a rice husk having almost no binder function or a crushed material thereof is used as a raw material, the interlayer strength of the obtained molded body is inferior. When used as a buffer, the buffering property is reduced, the buffer is contaminated, or even when a molded product is produced, the mold is contaminated by the phenomenon, so that continuous production cannot be performed smoothly. However, it has been found that a good interlayer strength can be obtained by mixing rice husk and fiber in a certain ratio, and the above problem can be solved.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Fibers used in combination with rice hulls in the present invention include natural polymer fibers, synthetic polymer fibers, and semi-synthetic polymer fibers.
Examples of the natural polymer fiber include (1) unbleached or bleached chemical pulp obtained by kraft pulping, sulfite pulping, alkali pulping, etc. of softwood or hardwood, or GP, TMP (thermomechanical pulp) ), Cotton pulp, linter pulp, pulp that has been subjected to at least one of water repellency, water resistance, and hardening treatment, and waste paper pulp that has been subjected to the treatment (Japanese Patent Application No. 10-0329220). Cellulose fiber such as liquid ammonia-treated pulp, mercerized pulp, carded fiber (manufactured by Warehauser, USA, trade name: HBA-FF: NHB405, NHB416), hemp ground fiber, etc. (2) protein fibers such as wool, silk and collagen fibers; and (3) complex sugar chain fibers such as chitin / chitosan fibers and alginic acid fibers. It is. Examples of the synthetic polymer fiber include aromatic polyester fiber (PET fiber), aliphatic polyester fiber, copolymerized polyester-polyethylene terephthalate sheath core fiber, polyacrylonitrile fiber, acrylic fiber, nylon fiber, polyethylene fiber, and polypropylene. Fiber, polyethylene-polypropylene sheath core fiber and the like. Further, examples of the semi-synthetic polymer fiber include acetyl cellulose fiber and the like. As the fiber material, a recycled product is preferable to a new product.
[0008]
The fiber length of the fiber material is preferably a fiber having a number-average fiber length of 30 mm or less, which is less likely to be entangled with a stirrer at the time of slurry preparation and can be expected to stably deposit during molding. Further, among the fibrous materials, natural polymer fibers are environmentally excellent materials and are preferable. Among them, cellulosic fibers are particularly preferable because they can be easily procured. Among them, ground hemp fibers are preferable because the effects of the present invention are particularly remarkable. Further, among the fibers, the heat fusible fiber or the cellulose-based fibrillated fine fiber is particularly preferable because the effect of increasing the interlayer strength of the molded product is remarkable. In addition, the combination of the heat-fusible fiber and / or the cellulose-based fibrillated fine fiber and the cellulose-based fiber other than the cellulose-based fibrillated fine fiber is effective for improving the interlayer strength and cushioning property of the molded article and the environment. It is the best in terms of balance and particularly preferable.
[0009]
Examples of the heat-fusible fiber include polyethylene fiber, polypropylene fiber, polyethylene-polypropylene sheath core fiber, aliphatic polyester fiber, copolymerized polyester-polyethylene terephthalate sheath core fiber, and the like. Cellulose-based fibrillated fine fibers include unbleached or bleached scientific pulp obtained by kraft pulping, sulfite pulping, alkali pulping of softwood or hardwood, or mechanical pulp such as GP or TMP, or cotton. Cellulose-based fibers such as pulp, linter pulp, waste paper pulp and the like are mixed with a medium stirring mill (JP-A-4-18186), a vibration mill (JP-A-6-10286), a high-pressure homogenizer, a colloid mill, The number average fiber length obtained by wet mechanical treatment with a beater or the like is in the range of 0.01 to 0.80 mm, and the fiber width is in the range of 0.1 to 30 μm.
[0010]
Examples of the rice husk used in the present invention include rice husk and crushed rice husk. Above all, crushed rice hulls are preferable because they hardly fall off from the molded product. However, too fine pulverized material is not preferable because it greatly reduces the drying property at the time of molding. In the present invention, the unhulled rice hulls having an average particle size of 15 to 70% are formed from the molded product. It is particularly preferable because it is less likely to fall off and has good drying properties during molding.
Examples of machines used for grinding include, for example, grinders such as a pocket grinder, a chain grinder, and a ring grinder; refiners such as a single disc refiner, a double disc refiner, and a conical refiner; Other beating machines such as beaters, stirrers such as blenders and deflakers, wood chip defibrating machines such as defibrators and ヂ fiberizers, hammer mills, pin mills and husk mills. Can be Among them, a hammer mill, a pin mill, and a husk mill used for dry / semi-dry processing are preferable. Specifically, fiber risers manufactured by Sumikura Kogyo / West Japan Technology Development Co., Ltd., impact mills manufactured by Dalton, free crushers manufactured by Nara Machinery Co., Ltd., hammer mills, cage mills, MK hammer mills manufactured by Masuyuki Sangyo, and Kitagawa Iron Works Husk Mill and the like.
[0011]
In the present invention, rice husk and fiber are blended as essential components, but the effect of the present invention is most expected when the ratio of rice husk and fiber is in the range of 5:95 to 75:25 by dry weight, Especially, the thing of the range of 10: 90-50: 50 is especially preferable. By the way, when the chaff is less than 5% by weight, the effect of the present invention, particularly, the softness of the surface of the molded body is inferior. On the other hand, if it exceeds 75% by weight, the phenomenon of rice husk falling off from the compact becomes strong.
[0012]
The slurry composition may further contain coarse particles and fine particles of natural polymer other than rice hulls, or coarse particles and fine particles of synthetic polymer and semi-synthetic polymer. Specific examples include pulverized bagasse, pulverized rice straw, sawdust, canna, pulverized polystyrene foam, and strip-shaped waste paper described in Japanese Patent Application No. 2000-105555. These are usually blended in a range of 1 to 30% by dry weight with respect to the composition.
[0013]
The slurry composition may further include an adhesive, a water-proofing agent, a water-repellent, an inorganic fiber, a metal fiber, a dye, a pigment, a drainage improver, a pH improver, and the like, as necessary for improving performance and imparting a function. Conditioning agents, slime control agents, thickeners, preservatives, antifungal agents, antibacterial agents, flame retardants, rodenticides, insect repellents, moisturizers, freshness preserving agents, oxygen absorbers, foaming agents, surfactants, electromagnetic shielding materials An antistatic agent, a rust preventive, an aromatic agent, a deodorant, various microcapsules having foaming properties, aromatic properties, and the like can be selected and blended. These can be used in combination of two or more.
[0014]
As the composition of the slurry, those having a Canadian standard freeness (CSF) of 550 ml or more, which can efficiently form a low-density compact, are particularly preferable.
In the present invention, the Canadian standard freeness of the slurry composition is measured by a method based on JIS-P-8121.
[0015]
The slurry of the present invention is usually prepared batchwise or continuously by an apparatus having a stirrer. Water is usually used as the medium used for preparing the slurry, but a mixed solution of water and an alcohol (methanol or ethanol, etc.) can also be used. The concentration of the slurry is usually adjusted so that the dry solid content is in the range of 0.05 to 5% by weight, but preferably in the range of 0.05 to 3% by weight in terms of the dispersed state.
[0016]
As a mold used in the present invention, a mold having a 15-200 mesh wire mesh attached to a surface of a mold having small holes like a mold of a pulp mold is usually used. Methods for removing the slurry medium from the small holes include a suction dehydration method, a gas pressure dehydration method, a mechanical pressure dehydration method, an electroosmotic dehydration method and the like, and these can be combined. The dehydration conditions can be changed during the dehydration.
The type of slurry used is usually one type, but the suction and dehydration are divided into two or more stages, and by changing the composition of the slurry used at that time, a state in which deposited layers of different compositions are sequentially laminated. Can be obtained.
[0017]
The wet molded product formed in the molding die by dehydration is then taken out of the mold or outside the mold and subjected to a drying treatment. Drying in the mold is more preferable because a molded product with good dimensional accuracy is obtained. . Further, when the molded product is subjected to a compression treatment during drying in the mold or before the drying treatment, a molded product having a high density and less deformation due to a load can be obtained.
As a drying method, for example, known methods such as hot air drying, infrared drying, and microwave drying can be used alone or in combination. Among them, the hot air drying method is preferable because the apparatus is inexpensive and the molded product is less likely to burn. Above all, the ventilation which improves the flow of air in the inter-fiber voids by a method such as injecting heated air (gas) into a wet molded product or sucking from the opposite side of the molded product while introducing heated air. Drying is particularly preferable because drying is quick and the production efficiency of the molded article is extremely high. In hot air drying, hot air in a temperature range of usually 80 to 400 ° C. is used.
The amount of ventilation in the through-air drying is preferably 1 liter / cm 2 · min or more in the early stage of drying from the viewpoint of drying efficiency, and particularly preferably 3 liter / cm 2 · min or more. This through drying is particularly effective when drying a molded product having a thickness of 10 mm or more, particularly 40 mm or more.
[0018]
The above is described in detail with reference to the drawings to more specifically show the molding method. However, the present invention is not limited to this.
FIG. 1 is a perspective view showing a concave mold 10 used in the present invention, and FIG. 2 is a cross-sectional view taken along the line AA. 2 to 8 are sectional views showing a molding process using the concave mold 10.
As shown in FIG. 2, the concave mold 10 has a concave shape of an open top having a double wall composed of an inner wall 11 and an outer wall 12. The inner wall 11 has a large number of small holes 13 for dehydration. 14 is provided with irregularities 15 corresponding to the shape of the product to be protected by the cushioning material, a suction chamber 16 is formed by an inner and outer double wall, and a suction port 17 is attached to the bottom of the outer wall.
[0019]
The molding starts with mounting a slurry storage enclosure (hopper) 18 on the molding die 10 as shown in FIG. 3, and in such a state, the slurry 20 is supplied from the upper guide 19. Hopper is filled up to the top.
Next, as shown in FIG. 4, a deposit 21 is formed in the molding die 10 by performing suction dehydration through a suction port 17 provided at a lower portion of the molding die 10. At that time, the deposition is performed in a state of rising on the open surface of the mold.
[0020]
Subsequently, as shown in FIG. 5, the hopper 18 is removed, and then, as shown in FIG. 6, an unnecessary portion of the deposit 21 protruding from the mold opening surface is cut off by the tip saw 23.
Next, as shown in FIG. 7, the surface of the molded product is lightly compressed by a press upper die 24 having a large number of small holes 26 on the bottom surface to make the surface of the molded product smooth, and then the upper die is sucked through the suction port 17. The hot air is sent from the hot air inlet 25 of 24 and discharged from the small holes 26, passes through the deposited layer, and is dried.
FIG. 8 shows a dry molded product 27 taken out of the mold 10.
[0021]
In the molded article of the present invention, a paper strength enhancer, a water resistance agent, a water repellent, a dye, a pigment, a preservative, a fungicide, an antibacterial agent, a flame retardant, a rodenticide, an insect repellent, a freshness retaining agent, a deoxidant, As a method for incorporating an electromagnetic shielding material, an antistatic agent, a rust preventive, an aromatic agent, a deodorant, etc., besides the internal addition method of adding and mixing these in a slurry as described above, the surface of the molded body is manufactured and then mixed. A coating method, that is, an external addition method can also be used. Means such as impregnation, brushing, and spraying can be used on this surface. Of course, both internal and external additions may be used. In the case of external addition, the above fine fibers can also be used. The external addition method has a feature that more components can be distributed on the surface than the internal addition method. In addition, high quality paper, cellophane paper, water resistant paper, oil resistant paper, vapor-deposited paper, coated paper, synthetic paper, nonwoven fabric, cloth, synthetic film, metal foil, wood board, synthetic resin board, glass board, Other materials, such as a metal plate, can also be used by being stuck on the entire surface or partially. Further, it can be used by sandwiching, sticking, fitting, and the like in a processed product such as a corrugated ball, paperboard, board, synthetic resin board, metal plate or box. Moreover, the obtained molded bodies can be bonded together. Skin pack packaging technology can also be used as a means for providing a film layer on the surface of the molded product. Environmentally friendly materials such as biodegradable materials are preferable as the materials used in combination. In addition, the molded body may be subjected to processing such as cutting and printing.
[0022]
The molded body thus obtained is used in a wide range of fields such as packaging materials, building materials, filters, plant culture media, etc., taking advantage of the features such as low density, cushioning, heat insulation, soundproofing, hygroscopicity, and biodegradability. it can.
Hereinafter, the present invention will be described more specifically with reference to examples. However, needless to say, the present invention is not limited to these examples. In Examples and Comparative Examples, “parts” and “%” indicate “parts by weight” and “% by weight” unless otherwise specified.
[0023]
<Example 1>
The sisal bag was cut into a 20 cm square with a cutter, and then pulverized with a pulverizer (V-360, manufactured by Horai) to obtain hemp fibers having a number average fiber length of 6 mm. The Canadian standard freeness of this fiber was measured to be 741 ml.
In addition, the husk mill of Kitagawa Iron Works was used to obtain a crushed product having an average particle diameter of 50% of the rice husk.
A 1.5-liter sand grinder filled with 80% glass beads having an average particle size of 2 mmΦ (Dynomill KDL-, manufactured by Shinmaru Enterprises Co., Ltd.) was used as an aqueous slurry of used newspaper pulp having a solid content of 1%. (PILOT) at a rate of 360 ml / min, and pulp-based fine fibers having a number average fiber length of 0.28 mm were obtained.
50 parts of the hemp fiber (dry weight), 30 parts of the crushed rice hull (dry weight) and 5 parts of the pulp-based fine fiber (dry weight) obtained as described above were further mixed with a polyester-polyethylene terephthalate sheath. To a mixture of 15 parts (dry weight) of a core fiber (manufactured by Teijin, TSF.TJ04CN2.2 × 5), water was added to adjust the solid content concentration to 1.5%, and the mixture was sufficiently stirred to obtain a slurry. . The Canadian standard freeness of this slurry composition was 711 ml.
Next, the above slurry was molded using a general-purpose mold to obtain a molded product having an average thickness of the deposited layer of 15 mm.
When the performance of the thus obtained molded article as a cushioning material was evaluated, it was found that the molded article had excellent cushioning properties with respect to heavy objects and was unlikely to damage the substance to be buffered. Also, it was found that the rice hulls were hard to fall off.
[0024]
<Comparative Example 1>
Used newspaper was put into water and stirred sufficiently to adjust the solid content concentration to 1.5% to obtain a slurry. Next, except that this slurry was used, molding was performed in the same manner as in Example 1. The average thickness of the deposited layer was 3 mm. The limit of the thickness of the deposited layer was 3 mm.
When the performance of the molded article thus obtained as a cushioning material was evaluated, it showed good cushioning properties for lightweight articles, but was inferior in terms of cushioning properties for heavy articles. It was also found that the buffer was easily damaged.
[0025]
【The invention's effect】
As described above, the present invention removes water, which is a dispersion medium of the slurry, from the pores of a mold having a large number of pores, thereby depositing the pore-impermeable components in the slurry on the mold. Since the slurry containing rice hulls and fibers is used in a molded product obtained by drying the molded product in a mold or outside the mold in a wet state afterwards, the molded product has a good buffering property for heavy objects. In addition to the advantage that a thick molded product can be obtained and a molded product that does not easily damage the surface of the buffered object, there is an advantage that it leads to effective use of rice husks that are difficult to dispose as waste.
[Brief description of the drawings]
FIG. 1 is a perspective view of a concave mold used for wet molding.
FIG. 2 is a cross-sectional view of the mold of FIG. 1 taken along the line AA.
FIG. 3 is a cross-sectional view showing a state in which a slurry storage enclosure (hopper) is set on the mold of FIG. 2 and then slurry is supplied from a guide to fill the upper part.
FIG. 4 is a cross-sectional view showing a state in which the slurry is sucked and dehydrated from the state shown in FIG.
FIG. 5 is a cross-sectional view showing a state where the hopper is removed from the state of FIG. 4;
FIG. 6 is a cross-sectional view showing a state in which an unnecessary portion deposited on a release surface of a mold is cut off with a tip saw.
FIG. 7 is a cross-sectional view showing a state where hot air is injected into a wet molded product in a molding die and dried.
FIG. 8 is a cross-sectional view showing a molded body obtained by taking out from a molding die after completion of drying.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Concave mold 11 Inner wall 12 Outer wall 13 Small hole 14 Inner wall bottom surface 15 Irregularities 16 according to the shape of the product to be protected 16 Suction chamber 17 Suction port 18 Slurry storage enclosure 19 Guide 20 Slurry
21 Wet sediment 22 Water drop 23 Tip saw
24 Upper die for press machine 25 Hot air injection port 26 Small hole 27 Dry molded product

Claims (8)

多数の小孔を有する成形型の小孔から、スラリ−の分散媒体である水を除去することによって該成形型にスラリ−中の小孔不通過成分を堆積させて成形物とし、その後湿潤状態の該成形物を型内或いは型外乾燥して得られる成形体において、前記小孔不通過成分として籾殻と繊維を含有させることを特徴とする成形体。By removing water, which is a slurry dispersion medium, from the pores of the mold having a large number of pores, the pore-impermeable components in the slurry are deposited on the mold to form a molded product. A molded product obtained by drying the molded product in or out of a mold, wherein the molded product contains rice hulls and fibers as the small pore impervious component. スラリ−組成物の籾殻と繊維の比率が乾燥重量で5:95〜75:25の範囲である請求項1に記載の成形体。The molded product according to claim 1, wherein the ratio of the chaff to the fiber of the slurry composition is in the range of 5:95 to 75:25 by dry weight. 籾殻が籾殻粉砕物である請求項1又は2に記載の成形体。The molded product according to claim 1 or 2, wherein the chaff is a milled chaff. スラリ−組成物のカナダ標準フリ−ネス(CSF)が550ml以上である請求項1乃至3に記載の成形体。The molded article according to any one of claims 1 to 3, wherein the slurry composition has a Canadian Standard Freeness (CSF) of 550 ml or more. 該繊維がセルロ−ス系繊維である請求項1乃至4に記載の成形体。The molded article according to any one of claims 1 to 4, wherein the fiber is a cellulose fiber. 該セルロ−ス系繊維が麻粉砕繊維である請求項5に記載の成形体。The molded article according to claim 5, wherein the cellulosic fibers are ground hemp fibers. 該繊維が、熱融着性繊維及び/又はセルロ−ス系フィブリル化微細繊維である請求項1乃至4に記載の成形体The molded article according to any one of claims 1 to 4, wherein the fiber is a heat fusible fiber and / or a cellulose-based fibrillated fine fiber. 該繊維が、熱融着性繊維及び/又はセルロ−ス系フィブリル化微細繊維、及びフィブリル化微細繊維以外のセルロ−ス系繊維の組合せである請求項1乃至4に記載の成形体。The molded article according to any one of claims 1 to 4, wherein the fiber is a combination of a heat-fusible fiber and / or a cellulose-based fibrillated fine fiber, and a cellulose-based fiber other than the fibrillated fine fiber.
JP2003145528A 2003-04-16 2003-04-16 Formed article by using chaff as raw material Pending JP2004316048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145528A JP2004316048A (en) 2003-04-16 2003-04-16 Formed article by using chaff as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145528A JP2004316048A (en) 2003-04-16 2003-04-16 Formed article by using chaff as raw material

Publications (1)

Publication Number Publication Date
JP2004316048A true JP2004316048A (en) 2004-11-11

Family

ID=33475269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145528A Pending JP2004316048A (en) 2003-04-16 2003-04-16 Formed article by using chaff as raw material

Country Status (1)

Country Link
JP (1) JP2004316048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049082A (en) * 2017-09-12 2019-03-28 ホシデン株式会社 Cellulose-containing solid, and speaker box
JP2023006655A (en) * 2021-06-30 2023-01-18 大建工業株式会社 Production method of antibacterial twist yarn, and antibacterial twist yarn, antibacterial fabric and antibacterial tatami mat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049082A (en) * 2017-09-12 2019-03-28 ホシデン株式会社 Cellulose-containing solid, and speaker box
JP2023006655A (en) * 2021-06-30 2023-01-18 大建工業株式会社 Production method of antibacterial twist yarn, and antibacterial twist yarn, antibacterial fabric and antibacterial tatami mat
JP7349476B2 (en) 2021-06-30 2023-09-22 大建工業株式会社 Method for producing antibacterial twisted yarn

Similar Documents

Publication Publication Date Title
JP6636032B2 (en) Thermoplastic fiber material and method for producing the same
US11077648B2 (en) Board with improved compression strength
CA2782485C (en) Cellulose nanofibers
JPH10212690A (en) Low-density body
NZ528586A (en) Process for making a flowable and meterable densified fiber particle from singulated cellulose fibers
JPH11222794A (en) Low-density formed product
JP2004316048A (en) Formed article by using chaff as raw material
JP2000178894A (en) Low-density body made form linen fiber
JPH11229289A (en) Low-density material using waste paper as raw material
JP2000120000A (en) Low density article using waste paper as raw material
JP3623098B2 (en) Manufacturing method of molded body
JPH10217415A (en) Complex structure
JP2000129600A (en) Production of molded product
JP2000119999A (en) Low density article using waste paper as raw material
JP2002105900A (en) Low-density molded article
US20230212365A1 (en) Moisture resistant cellulose foams
JP2001049597A (en) Low density molded article using synthetic fiber as raw material
US20220332486A1 (en) Cellulose fiber foam compositions
JPH11323800A (en) Production of molded article
JP2002046780A (en) Loose cushion material
JP2003175980A (en) Assembled structural body of molded body
JP2000211672A (en) Sheet for paper box
JP2003342900A (en) Method for producing ink absorber
JP2002020999A (en) Method for producing molding
JP2002069900A (en) Method for producing formed article having complicate shape

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050826

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A02