JP2004313780A - Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash - Google Patents

Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash Download PDF

Info

Publication number
JP2004313780A
JP2004313780A JP2004099091A JP2004099091A JP2004313780A JP 2004313780 A JP2004313780 A JP 2004313780A JP 2004099091 A JP2004099091 A JP 2004099091A JP 2004099091 A JP2004099091 A JP 2004099091A JP 2004313780 A JP2004313780 A JP 2004313780A
Authority
JP
Japan
Prior art keywords
peracetic acid
peroxide
acid
sterilizing
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099091A
Other languages
Japanese (ja)
Inventor
Takeo Osaka
武男 大坂
Sudan Shaha Madou
スーダン シャハ マドゥー
Masaharu Uno
雅晴 宇野
Yoshinori Nishiki
善則 錦
Tsuneto Furuta
常人 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Rikogaku Shinkokai
Original Assignee
Permelec Electrode Ltd
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Rikogaku Shinkokai filed Critical Permelec Electrode Ltd
Priority to JP2004099091A priority Critical patent/JP2004313780A/en
Publication of JP2004313780A publication Critical patent/JP2004313780A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/186Peroxide solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/17Combination with washing or cleaning means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Abstract

<P>PROBLEM TO BE SOLVED: To electrically synthesize peracetic acid easily and economically, and to sterilize and wash containers of cold drinks and the like by using the obtained aqueous peracetic acid. <P>SOLUTION: The method for sterilization wash of a washed material 26 is done with acetic acid and/or acetates and oxygen-containing gas as raw materials by using solid acid catalysts and aqueous percarbonate which is obtained by electrolytic synthesis of peracetic acid with electrolysis cell 21. Herewith, peracetic acid is easily obtained at a low cost, and sterilization wash of the washed material is done effectively by using this peracetic acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、過酢酸の電解合成方法、及びこの過酢酸を使用して被洗浄物を殺菌処理する方法及び装置に関する。   The present invention relates to a method for electrolytically synthesizing peracetic acid, and a method and an apparatus for sterilizing an object to be cleaned using the peracetic acid.

過酸化水素や過酢酸などの過酸化物含有水による清涼飲料水やビールなどの容器の殺菌洗浄、内視鏡などの医療器具の消毒は、有効塩素による殺菌洗浄と比較してトリハロメタンなどの発生がなく、万一残留した場合も毒性が低いため、安全性及び環境適合性に優れた方法として汎用されている。通常は濃厚な過酢酸溶液を工場に搬送し、これを希釈して殺菌洗浄用として使用される。
過酢酸は芽胞を含むすべての微生物に有効な消毒液である。0.2%過酢酸水溶液はグルタラールより短時間で芽胞を死滅させることができる。有機物の存在下でも失活が少なく、低温でも芽胞に対して効果があり、pHが低いほど殺菌力が向上する。2000ppm以上の溶液では、常温5分間の接触で滅菌できる能力を有する。
Sterilization and cleaning of containers such as soft drinks and beer with peroxide-containing water such as hydrogen peroxide and peracetic acid, and disinfection of medical instruments such as endoscopes generate more trihalomethane than sterilization and cleaning with available chlorine. It is widely used as a method excellent in safety and environmental compatibility because it has no toxicity and has low toxicity even if it remains. Usually, a concentrated peracetic acid solution is transported to a factory, which is diluted and used for sterilization and cleaning.
Peracetic acid is an effective disinfectant for all microorganisms, including spores. A 0.2% aqueous solution of peracetic acid can kill spores in a shorter time than glutaral. There is little deactivation even in the presence of organic matter, and it is effective for spores even at low temperatures, and the lower the pH, the better the bactericidal activity. A solution of 2000 ppm or more has the ability to sterilize by contact at room temperature for 5 minutes.

過酸化水素もグルタラールにほぼ匹敵する殺菌効果と抗微生物性を持ち、欧米においては6%以上の安定化過酸化水素が内視鏡など医療用器具の消毒に利用されている。
殺菌使用後の過酸化水素含有水を排水として放流するためには、生物処理槽でTOC値を下げる必要がある。つまり過酸化水素が残留すると、その酸化力により活性汚泥を死滅させる危険があり、これを回避するために過酸化水素の分解が必要なのである。この分解のためには、各種還元剤の使用が不可欠でコスト上昇に繋がっている。
Hydrogen peroxide also has a bactericidal effect and antimicrobial properties almost comparable to glutaral, and in Europe and the United States, 6% or more of stabilized hydrogen peroxide is used for disinfecting medical instruments such as endoscopes.
In order to discharge the water containing hydrogen peroxide after sterilization as wastewater, it is necessary to lower the TOC value in the biological treatment tank. In other words, if hydrogen peroxide remains, there is a risk that the activated sludge will be killed by its oxidizing power, and it is necessary to decompose the hydrogen peroxide to avoid this. For this decomposition, the use of various reducing agents is indispensable, leading to an increase in cost.

従来の過酸化物を使用する被洗浄物の殺菌洗浄方法の一例を図3に基づいて説明する。
この従来例では、薬液貯蔵タンク1に過酢酸や過酸化水素等の過酸化物を供給して水溶液として貯蔵しておく。ついで第1循環ポンプ2を使用して薬液貯蔵タンク1内の水溶液を加熱装置3を通して加熱した後、殺菌洗浄対象の被洗浄物4を収容した殺菌洗浄チャンバー5内に供給しかつ前記被洗浄物4にノズル6を使用して噴霧する。
殺菌洗浄後の過酸化物水溶液は、その一部を前記薬液貯蔵タンク1に循環して再利用を行う。
又前記殺菌洗浄チャンバー5は、還元剤タンク7に供給ポンプ8を介して接続された還元処理タンク9にも接続され、薬液貯蔵タンク1に循環しない過酸化物水溶液が導出される。この還元処理タンク9では前記過酸化物水溶液中の過酢酸や過酸化水素が還元剤で分解される。分解処理された水溶液は第2循環ポンプ10で生物処理タンク11に循環され、TOCを低減させた清澄な水溶液となった後に、放流用ポンプ12により河川等に放流される。
An example of a conventional method of sterilizing and cleaning an object to be cleaned using a peroxide will be described with reference to FIG.
In this conventional example, a peroxide such as peracetic acid or hydrogen peroxide is supplied to the chemical storage tank 1 and stored as an aqueous solution. Then, after the aqueous solution in the chemical liquid storage tank 1 is heated through the heating device 3 using the first circulation pump 2, the aqueous solution is supplied into the sterilization / cleaning chamber 5 containing the object 4 to be sterilized and cleaned, and 4 is sprayed using the nozzle 6.
A part of the peroxide aqueous solution after the sterilization and cleaning is circulated to the chemical solution storage tank 1 for reuse.
The sterilizing and cleaning chamber 5 is also connected to a reducing treatment tank 9 connected to a reducing agent tank 7 via a supply pump 8, and a peroxide aqueous solution that is not circulated to the chemical storage tank 1 is drawn out. In the reduction treatment tank 9, peracetic acid and hydrogen peroxide in the aqueous peroxide solution are decomposed by a reducing agent. The decomposed aqueous solution is circulated to the biological treatment tank 11 by the second circulation pump 10 to become a clear aqueous solution having a reduced TOC, and then discharged to a river or the like by the discharge pump 12.

この従来法による被洗浄物の殺菌洗浄法では、例えば濃厚な過酢酸溶液(約6%)を工場に搬送し、この濃厚溶液を希釈(20〜3500ppmまで)して循環使用し(図3の薬液貯蔵タンク1→加熱装置3→殺菌洗浄チャンバー5→薬液貯蔵タンク1)、一定期間使用後に廃棄する。
この廃棄の際には、殺菌洗浄チャンバー5内の過酸化物水溶液を還元処理タンク9に導き、残留している過酸化物を還元剤と反応させて中和分解する。その後生物処理タンクに送り、TOC値を低減後、放流する。
特開2001−70412号公報 特開2002−307081号公報 特表2003−506120号公報
In this conventional method of sterilizing and cleaning an object to be cleaned, for example, a concentrated peracetic acid solution (about 6%) is transported to a factory, and the concentrated solution is diluted (to 20 to 3500 ppm) and circulated for use (see FIG. 3). Chemical storage tank 1 → Heating device 3 → Sterilization / cleaning chamber 5 → Chemical storage tank 1).
At the time of this disposal, the aqueous peroxide solution in the sterilizing / cleaning chamber 5 is guided to the reduction treatment tank 9, and the remaining peroxide is reacted with a reducing agent to be neutralized and decomposed. After that, it is sent to the biological treatment tank, where the TOC value is reduced and discharged.
JP 2001-70412 A JP 2002-307081 A JP 2003-506120 A

この方法の実施には広大な敷地を必要とし、又莫大な処理費用が掛かる。更に原料となる濃厚な過酢酸溶液を外部から搬送するため、濃厚な過酢酸溶液の保管あるいは貯蔵の手間が必要で、安全な方法ではない。又過酢酸の自然分解を防止するために安定化剤の添加が必要になるといった欠点もあった。
過酢酸及び過酸化水素から成る組成物の水溶液を用いる医療用滅菌方法が特許文献1に開示されているが、オンサイトでの殺菌剤の合成方法は開示していない。更に特許文献2は、過酸化物分解に活性炭を用いること、イオン交換樹脂で有機物を回収できること、死骸の分離にNF(ナノフィルター)、RO(逆浸透膜)及びMF(メンブレンフィルター)などを用いることで、いままで廃水となっていた処理後の殺菌水を回収して利用できることを開示しているが、酢酸は回収しても廃棄するしかなく、根本的な課題が残されている。
The implementation of this method requires a large site and requires enormous processing costs. Further, since the concentrated peracetic acid solution as a raw material is transported from the outside, it is necessary to store or store the concentrated peracetic acid solution, which is not a safe method. There is also a drawback that a stabilizer must be added to prevent spontaneous decomposition of peracetic acid.
Patent document 1 discloses a medical sterilization method using an aqueous solution of a composition comprising peracetic acid and hydrogen peroxide, but does not disclose a method for synthesizing a bactericide on site. Further, Patent Document 2 discloses that activated carbon is used for peroxide decomposition, that organic substances can be recovered with an ion exchange resin, and that NF (nano filter), RO (reverse osmosis membrane), MF (membrane filter), and the like are used for separating dead bodies. This discloses that the sterilized water after treatment, which has been wastewater, can be recovered and used. However, even if acetic acid is recovered, it has to be discarded, leaving a fundamental problem.

オンサイトによる殺菌水製造装置として、電解酸性水が最近話題になっている。この電解酸性水は、殺菌能を有する消毒水として厚生労働省より認可され(厚生労働省告示第二百十二号、平成14年6月10日)、病院、食品工場の衛生管理水として汎用されつつあり、レジオネラ菌に対しても殺菌効果があることが報告されている。しかしながらこれらの電解酸性水は主に次亜塩素酸系の殺菌剤であり、常用には問題があり、安全性に疑問が残されている。
殺菌剤として優れた特性を有する過酢酸は、工業的には約100〜200℃で活性化させた酸素によりアセトアルデヒドを酸化させて合成される。しかし高温操作が必要で、オンサイト化が困難である。
As an on-site sterilizing water producing apparatus, electrolytic acidic water has recently been a hot topic. This electrolytic acid water has been approved by the Ministry of Health, Labor and Welfare as a disinfecting water with bactericidal activity (Notification No. 212 of the Ministry of Health, Labor and Welfare, June 10, 2002), and is being widely used as sanitary control water for hospitals and food factories. It has been reported that it also has a bactericidal effect against Legionella bacteria. However, these electrolyzed acidic waters are mainly hypochlorous acid-based germicides, have problems in ordinary use, and their safety remains questionable.
Peracetic acid having excellent properties as a fungicide is industrially synthesized by oxidizing acetaldehyde with oxygen activated at about 100 to 200 ° C. However, high-temperature operation is required, and on-site operation is difficult.

この他に、過酸化水素と酢酸又は無水酢酸を酸触媒の存在下で反応させると過酢酸が合成できることも知られている。しかしこの方法は酸触媒として硫酸を使用し、この硫酸が生成物と分離しにくいため、オンサイト化した際の安全性が懸念される。
この方法を改善し、分離特性、安定性及び反応効率等の観点から適切な固体触媒が見出されており、これにより生成物との分離が容易になり、安全性も向上している。しかしこの方法ではオンサイトで過酢酸を合成できるものの、過酸化水素を貯蔵しておく必要があり、簡便な殺菌処理システムにはなり得ない。
It is also known that peracetic acid can be synthesized by reacting hydrogen peroxide with acetic acid or acetic anhydride in the presence of an acid catalyst. However, this method uses sulfuric acid as an acid catalyst, and since the sulfuric acid is difficult to separate from the product, there is a concern about the safety when on-site.
By improving this method, an appropriate solid catalyst has been found from the viewpoints of separation characteristics, stability, reaction efficiency, and the like, whereby the separation from the product is facilitated and the safety is improved. However, in this method, although peracetic acid can be synthesized on site, it is necessary to store hydrogen peroxide, and it cannot be a simple sterilization treatment system.

これらの欠点を解消する目的で、過酢酸を電解合成する方法が特許文献3に記載されている。この方法は酸素ガスを電解して過酸化物種(例えば、過酸化物イオン、過酸化物ラジカル、もしくは過酸化水素)を得て、この過酸化物種と過酢酸前駆体であるアセチルサリチル酸等を反応させて過酢酸を得るものである。しかしながらこの方法では、過酢酸前駆体として高価なアセチルサリチル酸等を使用し、かつ一旦過酸化物種を電解合成してこれを前記過酢酸前駆体と反応させ、これにより過酢酸を合成しているため、工程が長く、経済的な電解合成とは言い難い。
従って本発明は、より簡便な手法で高い殺菌洗浄能力を有する過酢酸を含有する水溶液を電解合成する方法、特にオンサイト電解合成する方法を提供し、更に電解合成された過酢酸を利用して効率的な殺菌洗浄を行うための方法及び装置を提供することを目的とする。
Patent Document 3 describes a method for electrolytically synthesizing peracetic acid for the purpose of solving these disadvantages. In this method, oxygen gas is electrolyzed to obtain a peroxide species (for example, peroxide ion, peroxide radical, or hydrogen peroxide), and the peroxide species reacts with acetylsalicylic acid, which is a precursor of peracetic acid. To obtain peracetic acid. However, in this method, an expensive acetylsalicylic acid or the like is used as a peracetic acid precursor, and a peroxide species is once electrolytically synthesized and reacted with the peracetic acid precursor to synthesize peracetic acid. The process is long and is not economical.
Accordingly, the present invention provides a method for electrolytically synthesizing an aqueous solution containing peracetic acid having a high sterilizing and cleaning ability with a simpler method, particularly a method for on-site electrolytic synthesis, and further utilizing the electrolytically synthesized peracetic acid. It is an object of the present invention to provide a method and an apparatus for performing efficient sterilization cleaning.

本発明は、第1に、過酸化物水溶液を使用して被洗浄物を殺菌洗浄する方法において、酢酸及び/又は酢酸塩と酸素含有ガスを原料として電解合成した過酢酸を含有する過酸化物水溶液を使用して前記被洗浄物を殺菌洗浄することを特徴とする方法であり、第2に、酢酸及び/又は酢酸塩と酸素含有ガスを供給しながら電解を行って、陰極で過酢酸と過酸化水素を含有する水溶液を合成する電解セル、該電解セルで製造された水溶液を被洗浄物に接触させるための殺菌洗浄チャンバー、該チャンバーの下流側に存在し、前記殺菌洗浄チャンバーからの過酢酸−過酸化水素を有する過酸化物水溶液を濾過して該水溶液中の生物死骸を除去するためのフィルター、及び該フィルターで濾過された過酸化物水溶液を前記電解セルへ循環させる手段を含んで成ることを特徴とする過酸化物による殺菌洗浄装置であり、第3に酢酸及び/又は酢酸塩と酸素含有ガスを原料として過酢酸を固体酸触媒を使用して電解合成することを特徴とする過酢酸の電解合成方法である。   The present invention firstly provides a method for sterilizing and cleaning an object to be cleaned using an aqueous peroxide solution, comprising a peroxide containing electrolytically synthesized acetic acid and / or acetate and an oxygen-containing gas as raw materials. A method characterized in that the object to be cleaned is sterilized and washed using an aqueous solution. Second, electrolysis is performed while supplying acetic acid and / or an acetate and an oxygen-containing gas, and peracetic acid is removed at the cathode. An electrolytic cell for synthesizing an aqueous solution containing hydrogen peroxide, a sterilization cleaning chamber for bringing the aqueous solution produced by the electrolytic cell into contact with an object to be cleaned, A filter for filtering an aqueous solution of peroxide containing acetic acid-hydrogen peroxide to remove dead organisms in the aqueous solution, and means for circulating the aqueous solution of peroxide filtered by the filter to the electrolytic cell. And thirdly, electrolytically synthesizing peracetic acid using acetic acid and / or acetate and an oxygen-containing gas as raw materials using a solid acid catalyst. Is a method for electrolytic synthesis of peracetic acid.

以下、本発明を詳細に説明する。
本発明者らは、前述した従来技術の高価な原料を使用し、かつ2段階の電解合成による方法とは異なり、安価な原料と1段階で過酢酸を電解合成できることを確認した。更に得られた過酢酸を必要に応じて過酸化水素とともに、被洗浄物を殺菌洗浄することにより高効率で前記被洗浄物の殺菌洗浄が行えること見出した。
つまり過酸化水素は酸素の電解還元で効率良く電解合成できることは知られていたが、酢酸を原料として電解したところ、この場合にも過酸化水素が合成できることを見出した。そして酢酸と電解合成された過酸化水素の混合溶液を、従来の固体酸触媒と接触させたところ、過酢酸が合成できることを確認した。
Hereinafter, the present invention will be described in detail.
The present inventors have confirmed that peracetic acid can be electrosynthesized in one step with an inexpensive raw material, which is different from the method using the above-mentioned prior art expensive raw material and a two-stage electrolytic synthesis method. Furthermore, it has been found that the object to be washed can be sterilized and washed with high efficiency by sterilizing and washing the object to be washed with hydrogen peroxide, if necessary, together with hydrogen peroxide.
In other words, it was known that hydrogen peroxide can be efficiently synthesized by electrolytic reduction of oxygen. However, when electrolysis was performed using acetic acid as a raw material, it was found that hydrogen peroxide could be synthesized in this case as well. When a mixed solution of acetic acid and electrolytically synthesized hydrogen peroxide was brought into contact with a conventional solid acid catalyst, it was confirmed that peracetic acid could be synthesized.

次いでこれらの知見を基にして、これまで報告されていなかった過酢酸自体の電解合成が可能であるかを検討した。この電解合成が可能であれば、効率良くかつ濃度制御を行いながら過酢酸が合成できることになる。
電解セル内に固体酸を充填し、酢酸を原料としかつ酸素含有ガスを供給しながら電解を行ったところ、過酢酸と過酸化水素を同時に合成できることが確認できた。
Next, based on these findings, it was examined whether or not peracetic acid itself, which had not been reported before, could be synthesized. If this electrolytic synthesis is possible, peracetic acid can be synthesized efficiently and while controlling the concentration.
When the electrolytic cell was filled with a solid acid and electrolysis was performed using acetic acid as a raw material and supplying an oxygen-containing gas, it was confirmed that peracetic acid and hydrogen peroxide could be simultaneously synthesized.

本発明で使用可能な電解セルでの酸素還元反応では、活性な電極表面、或いは近傍にしか存在しない活性種による反応、直接的な電解反応、及び過酸化水素などの比較的安定な化学種との間接的反応により過酢酸を合成させる。
陽極及び陰極での主反応は式(1)及び(2)の通りである。陰極は酸素の還元を容易に進行させられるガス拡散電極を使用することが好ましく、電解還元により生じるO2 -或いは表面に生成した活性な酸素吸着種O*と反応して式(3)のように電極上での直接的酸化反応が進行すると推定される。又式(4)に示す通り、溶液中で過酸化水素と反応し合成される分もあると考えられる。
In the oxygen reduction reaction in the electrolytic cell usable in the present invention, a reaction with an active species existing only on or near the active electrode surface, a direct electrolytic reaction, and a relatively stable chemical species such as hydrogen peroxide are used. Peracetic acid is synthesized by the indirect reaction of
The main reactions at the anode and cathode are as shown in formulas (1) and (2). Cathode is preferable to use a gas diffusion electrode is caused to proceed the reduction of oxygen easily occurs by electrolytic reduction O 2 - or formula (3) reacts with generated active oxygen adsorbed species O * to the surface of such It is presumed that the direct oxidation reaction on the electrode proceeds. Further, as shown in the formula (4), it is considered that there is a part that is synthesized by reacting with hydrogen peroxide in a solution.

固体酸触媒の存在下では、式(4)の反応は平衡的に進行し、プロトン供与により過酸化水素の酸素原子同士の結合が切断され、一方のOHラジカルがプロトンと反応して水になり、他方は酢酸と反応して過酢酸となる。
更に陰極液と陽極液を分離していない場合、陰極で発生した過酸化水素は活性を有するため、式(5)に示すように陽極で容易に分解される。その結果、生成する電解液には原料である酢酸或いは酢酸塩と過酢酸を含み、過酸化水素を僅かしか含まない水溶液を得ることができる。
In the presence of the solid acid catalyst, the reaction of the formula (4) proceeds equilibrium, the bond between the oxygen atoms of hydrogen peroxide is broken by proton donation, and one OH radical reacts with the proton to form water. And the other reacts with acetic acid to form peracetic acid.
Further, when the catholyte and the anolyte are not separated, the hydrogen peroxide generated at the cathode has activity and is easily decomposed at the anode as shown in the formula (5). As a result, an aqueous solution containing the raw materials acetic acid or acetate and peracetic acid and containing only a small amount of hydrogen peroxide can be obtained.

陽極:2H2O = O2+ 4H++ 4e (1.23V) (1)
陰極: O2 + 2H++ 2e = H22(0.683V) (2)
陰極: CH3COOH + O* = CH3COOOH (3)
22+CH3COOH+(H+)=CH3COOH(OH・)+H2O=H2O+CH3COOOH+(H+) (4)
22 = O2 + 2H+ + e (0.68V) (5)
Anode: 2H 2 O = O 2 + 4H + + 4e (1.23V) (1)
Cathode: O 2 + 2H + + 2e = H 2 O 2 (0.683 V) (2)
Cathode: CH 3 COOH + O * = CH 3 COOOH (3)
H 2 O 2 + CH 3 COOH + (H + ) = CH 3 COOH (OH.) + H 2 O = H 2 O + CH 3 COOOH + (H + ) (4)
H 2 O 2 = O 2 + 2H + + e (0.68V) (5)

本発明で使用可能な触媒は酸触媒であり、固体のプロトン酸は分離のしやすさの観点から実用性に優れているといえる。プロトン酸の例として、スルホン樹脂が挙げられ、種々の商品名で市販されているスルホン樹脂、例えばAMBERLYST(商品名)、DOWEX(商品名)のような樹脂ポリマーのビーズや顆粒を利用できる。前記樹脂は例えば官能基としてスルホン基を有するポリスチレン−ジビニルベンゼン骨格から構成される。しかしスチレン骨格は生成する過酢酸や過酸化水素により分解しやすいため、安価ではあるが長期の使用には耐え得ない欠点がある。   The catalyst usable in the present invention is an acid catalyst, and it can be said that solid protonic acid is excellent in practicality from the viewpoint of easy separation. Examples of the protonic acid include a sulfone resin, and beads and granules of a resin polymer such as a sulfone resin commercially available under various trade names such as AMBERLYST (trade name) and DOWEX (trade name) can be used. The resin is composed of, for example, a polystyrene-divinylbenzene skeleton having a sulfone group as a functional group. However, since the styrene skeleton is easily decomposed by peracetic acid or hydrogen peroxide generated, it is inexpensive but has a disadvantage that it cannot withstand long-term use.

前記樹脂ポリマーに代わり得る化学的耐性に優れた樹脂として、イオン交換基としてスルホン基を有するフッ素樹脂[例えば市販品である商品名ナフィオン(Nafion)]を挙げることができる。ナフィオンはテトラフルロエチレンとペルフルオロ[2−(フルオロスルホニルエトキシ)―プロピル]ビニルエーテルのコポリマーとして製造される。
この樹脂は0.01〜3mmの直径を有する粉末や粒子の形態を採ることが好ましい。固体酸としての活性と化学的安定性の点で、ナフィオンは特に有望である。おそらくナフィオンの骨格であるフッ素化カーボン樹脂は活性酸素や生成した過酢酸に対して化学的に不活性であり、分解が殆ど進行しないためと推測できる。
一方有機−無機複合体触媒も利用可能であり、例えばナフィオン−シリカ複合体を調製出来る。
As a resin having excellent chemical resistance which can be substituted for the resin polymer, a fluororesin having a sulfone group as an ion exchange group (for example, Nafion (trade name) which is a commercially available product) can be given. Nafion is produced as a copolymer of tetrafluoroethylene and perfluoro [2- (fluorosulfonylethoxy) -propyl] vinyl ether.
This resin preferably takes the form of powder or particles having a diameter of 0.01 to 3 mm. Nafion is particularly promising in terms of activity as a solid acid and chemical stability. It is presumed that the fluorinated carbon resin, which is the skeleton of Nafion, is chemically inert to active oxygen and peracetic acid generated, and decomposition hardly proceeds.
On the other hand, an organic-inorganic composite catalyst can also be used, and for example, a Nafion-silica composite can be prepared.

固体酸として使用可能なイオン交換能を有する触媒材料として、前記のような市販のイオン交換樹脂粒子の他に、炭化水素系樹脂として、スチレン系、アクリル酸系及び芳香族重合系などがある。耐食性の面からはフッ素化樹脂系が望ましい。又適当な多孔性支持部材にイオン交換能を有する成分を形成することも可能である。
材料の空隙率は、液の均一な分散と抵抗率への考慮から20〜90%が好ましく、材料粒子のサイズは0.1〜10mmが好ましい。添加する固体酸は多量であるほど高濃度の生成物を短時間で得ることができるが、実際には装置コストの制約上限界があり、実用的には触媒体積は原料溶液体積の2分の1〜10分の1が好ましい。
As a catalyst material having an ion exchange ability that can be used as a solid acid, in addition to the commercially available ion exchange resin particles as described above, there are styrene-based, acrylic acid-based, and aromatic polymer-based hydrocarbon-based resins. A fluorinated resin is preferred from the viewpoint of corrosion resistance. It is also possible to form a component having ion exchange ability on a suitable porous support member.
The porosity of the material is preferably 20 to 90% from the viewpoint of uniform dispersion of the liquid and the resistivity, and the size of the material particles is preferably 0.1 to 10 mm. The higher the amount of solid acid to be added, the higher the concentration of the product that can be obtained in a short time. However, in practice, there is a limit due to the limitation of the equipment cost. One to one tenth is preferred.

活性酸素と酢酸の反応を促進し、又過酸化水素生成に適する酸素ガス陰極用の触媒としては白金族金属或いはそれらの酸化物又は黒鉛や導電性ダイヤモンド等のカーボン、又はポリアニリンやチオール(SH基含有有機物)を使用できる。これらの触媒はそのまま板状として用いるか、ステンレス、ジルコニウム、銀、カーボン等の耐食性を有する板、金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂による固着法、複合めっきなどにより1〜1000g/m2となるように形成させる。
陰極給電体としては、カーボン、ニッケル、チタンなどの金属、これらの合金や酸化物が使用できる。反応生成ガスや液の供給及び除去を速やかに行うために疎水性や親水性の材料を分散担持することが好ましい。疎水性シートを陽極と反対側の陰極裏面に形成すると、反応面へのガス供給が制御でき効果的である。
Catalysts for the oxygen gas cathode that promote the reaction between active oxygen and acetic acid and are suitable for generating hydrogen peroxide include platinum group metals or their oxides, carbon such as graphite or conductive diamond, or polyaniline or thiol (SH group). Organic matter). These catalysts may be used as they are in the form of a plate, or may be applied to a corrosion-resistant plate such as stainless steel, zirconium, silver, or carbon, a wire mesh, a powdered sintered body, a metal fiber sintered body, by a pyrolysis method, a resin fixing method, or a composite method. It is formed to have a thickness of 1 to 1000 g / m 2 by plating or the like.
Metals such as carbon, nickel, and titanium, and alloys and oxides thereof can be used as the cathode power supply. In order to promptly supply and remove the reaction product gas and liquid, it is preferable to disperse and carry a hydrophobic or hydrophilic material. When a hydrophobic sheet is formed on the cathode back surface opposite to the anode, gas supply to the reaction surface can be controlled, which is effective.

陰極への酸素の供給量は、理論値の1.1〜10倍程度が良く、原料の酸素含有ガスとして空気、空気を分離濃縮した酸素富化空気、市販のボンベに詰めた酸素ガス等が使用できる。酸素含有ガスは電極裏面にガス室が存在する場合にはそのガス室に供給するが、供給前の電解液に吹き込み吸収させておいても良い。
陽極触媒としては、酸化鉛、酸化スズ、白金、DSA、鉄、黒鉛、導電性ダイヤモンドなどがあり、これらの触媒はそのまま板状として用いるか、チタン、ニオブ或いはタンタル等の耐食性を有する板、金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂による固着法、複合めっき、CVDなどにより1〜500g/m2となるように形成させる。
電極基体として使用し得る材料は、長寿命の観点と処理表面への汚染が起きないように耐食性を有することが必要であり、陽極給電体としてはチタン等の弁金属やその合金の使用が望ましい。
The supply amount of oxygen to the cathode is preferably about 1.1 to 10 times the theoretical value. As the oxygen-containing gas of the raw material, air, oxygen-enriched air obtained by separating and concentrating air, and oxygen gas packed in a commercially available cylinder can be used. . The oxygen-containing gas is supplied to the gas chamber when the gas chamber exists on the back surface of the electrode, but may be absorbed by blowing into the electrolyte solution before the supply.
Examples of the anode catalyst include lead oxide, tin oxide, platinum, DSA, iron, graphite, conductive diamond, and the like. These catalysts may be used as they are, or may be used as a plate having corrosion resistance such as titanium, niobium, or tantalum, or a wire mesh. The powder is formed on a powder sintered body or a metal fiber sintered body by a thermal decomposition method, a fixing method using a resin, composite plating, CVD, or the like so as to have a weight of 1 to 500 g / m 2 .
The material that can be used as the electrode substrate needs to have corrosion resistance so as not to cause contamination of the treated surface from the viewpoint of long life, and it is preferable to use a valve metal such as titanium or its alloy as the anode power supply. .

通常の陽極反応は酸素発生であるが、本発明では陽極の種類や電解条件を調節して過酢酸の生成量を増大させるようにする。又陽極触媒を適宜選択することにより、回収した酢酸水溶液中の有機物を無機化(二酸化炭素、炭酸イオン)に分解する酸化反応も進行し、循環水の水質維持に寄与できる。
隔膜により電解セルを陽極室と陰極室に区画すると、陽極及び陰極で生成した各イオンが対極で消費されるのを防止して電解反応で生成した活性な物質を安定に維持するとともに、液の電導度が低い場合でも電解を速やかに進行させる機能を有する。使用可能な隔膜の例として中性隔膜やイオン交換膜がある。イオン交換膜はフッ素樹脂系、炭化水素樹脂系のいずれでも良いが、耐食性の面から前者が好ましい。
一方隔膜を装着せずに電解を行い、陽極で生成した過酸化水素を選択的に酸化分解して過酢酸と過酸化水素の濃度比を調節することも可能である。
The usual anodic reaction is oxygen generation, but in the present invention, the amount of peracetic acid generated is increased by adjusting the type of anode and electrolysis conditions. In addition, by appropriately selecting the anode catalyst, an oxidation reaction for decomposing organic substances in the collected acetic acid aqueous solution into inorganic substances (carbon dioxide, carbonate ions) also progresses, which can contribute to maintaining the quality of circulating water.
When the electrolytic cell is partitioned into an anode chamber and a cathode chamber by the diaphragm, each ion generated at the anode and the cathode is prevented from being consumed at the counter electrode, and the active substance generated by the electrolytic reaction is stably maintained. It has the function of promptly proceeding electrolysis even when the conductivity is low. Examples of usable membranes include neutral membranes and ion exchange membranes. The ion exchange membrane may be either a fluororesin type or a hydrocarbon resin type, but the former is preferred from the viewpoint of corrosion resistance.
On the other hand, it is also possible to perform electrolysis without attaching a diaphragm and selectively oxidize and decompose hydrogen peroxide generated at the anode to adjust the concentration ratio of peracetic acid to hydrogen peroxide.

電解条件のうち、温度は高い方が反応速度は増加し短時間で平衡に達するが、分解速度も増大するため、適正な温度範囲として、室温より高く60℃より低く制御することが望ましい。又電流密度は0.1〜100A/dm2であることが好ましい。電極間距離は抵抗損失を低下させるためになるべく小さくすることが好ましいが、水供給の際のポンプの圧力損失を小さくし、圧力分布を均一に保つため、1〜50mmとすることが望ましい。
生成する過酸化水素と過酢酸の濃度は、水量と電流密度を調節することにより、50000ppm(5重量%)まで制御可能である。この濃度調節は触媒の異なる陽陰極を組合わせることで行っても良い。
反応効率を向上させるためには、電解液を酸性に、つまりpH2〜6に適切に制御維持することが好ましい。酸性であれば、原水として水道水を使用する場合でも、水道水中に含まれるCaイオンやMgイオンがそれらの水酸化物や炭酸化物が陰極上に析出しないため、好都合である。
Among the electrolysis conditions, the higher the temperature, the higher the reaction rate increases and reaches equilibrium in a short time, but the decomposition rate also increases. Therefore, it is desirable to control the temperature to be higher than room temperature and lower than 60 ° C. as an appropriate temperature range. The current density is preferably 0.1 to 100 A / dm 2 . The distance between the electrodes is preferably as small as possible to reduce the resistance loss, but is preferably 1 to 50 mm in order to reduce the pressure loss of the pump during water supply and keep the pressure distribution uniform.
The concentrations of the generated hydrogen peroxide and peracetic acid can be controlled to 50,000 ppm (5% by weight) by adjusting the amount of water and the current density. This concentration adjustment may be performed by combining positive and negative electrodes having different catalysts.
In order to improve the reaction efficiency, it is preferable to appropriately control and maintain the electrolytic solution to be acidic, that is, pH 2 to 6. If it is acidic, even if tap water is used as raw water, Ca ions and Mg ions contained in the tap water are advantageous because their hydroxides and carbonates do not precipitate on the cathode.

原料水の供給速度を遅くし、接触時間を掛ければ理論的には平衡値になるまで過酢酸の合成反応を進行させることが可能であるが、実用的な時間範囲での連続的に合成を行うことが望ましく、生成物には原料が多く残留することになる。本発明では原料として酢酸や酢酸塩を使用するが、これらの濃度を高くするほど過酢酸の生成速度は増大する。しかし生成する過酢酸や過酸化水素の取扱いの安全性を考慮して、原料水溶液中の過酢酸及び過酸化水素の濃度はいずれも5%以下であることが好ましい。循環使用する殺菌洗浄水中の濃度範囲は、原料酢酸:100〜10000ppm、過酢酸:10〜4000ppm、過酸化水素10〜20000ppmが好ましい。   If the feed rate of the raw water is slowed down and the contact time is multiplied, the synthesis reaction of peracetic acid can theoretically proceed until the equilibrium value is reached, but the synthesis can be continuously performed within a practical time range. It is desirable to carry out the process, and a large amount of the raw material remains in the product. In the present invention, acetic acid or acetate is used as a raw material, and the production rate of peracetic acid increases as the concentration thereof increases. However, in consideration of the safety of handling the generated peracetic acid and hydrogen peroxide, the concentration of peracetic acid and hydrogen peroxide in the raw material aqueous solution is preferably 5% or less. The concentration range of the germicidal washing water used for circulation is preferably 100 to 10,000 ppm for raw material acetic acid, 10 to 4000 ppm for peracetic acid, and 10 to 20,000 ppm for hydrogen peroxide.

電解セル材料としては、耐久性及び過酸化水素の安定性確保の観点から、ガラスライニング材料、カーボン、耐食性の優れたチタンやステンレス、PTFE樹脂などが好ましく使用できる。
本発明で使用する原料は、遊離の酢酸の他に、酢酸ナトリウムや酢酸カリウム等の酢酸塩も含む。又本発明の殺菌洗浄方法による洗浄対象は特に限定されないが、清涼飲料水やビールなどの容器、内視鏡などの医療器具などが含まれる。
As the electrolytic cell material, a glass lining material, carbon, titanium, stainless steel, PTFE resin, or the like having excellent corrosion resistance can be preferably used from the viewpoint of ensuring durability and stability of hydrogen peroxide.
The raw materials used in the present invention include, in addition to free acetic acid, acetates such as sodium acetate and potassium acetate. The object to be cleaned by the sterilization cleaning method of the present invention is not particularly limited, but includes containers for soft drinks and beer, and medical instruments such as endoscopes.

本発明は、過酸化物水溶液を使用して被洗浄物を殺菌洗浄する方法において、酢酸及び/又は酢酸塩と酸素含有ガスを原料として電解合成した過酢酸を含有する過酸化物水溶液を使用して前記被洗浄物を殺菌洗浄することを特徴とする方法である。
本発明方法では、安価な酢酸や酢酸塩から過酢酸を合成でき、この過酢酸を含有する殺菌洗浄水で飲料容器等を効率良く殺菌洗浄できる。
The present invention provides a method for sterilizing and cleaning an object to be cleaned using an aqueous peroxide solution, wherein a peroxide aqueous solution containing peracetic acid electrolytically synthesized using acetic acid and / or acetate and an oxygen-containing gas as raw materials is used. And sterilizing and cleaning the object to be cleaned.
According to the method of the present invention, peracetic acid can be synthesized from inexpensive acetic acid or acetate, and beverage containers and the like can be efficiently sterilized and washed with sterilized washing water containing peracetic acid.

又殺菌洗浄後の殺菌洗浄水を電解セルに循環させると、従来は放流していた過酢酸を含有する殺菌洗浄水を電解セルに循環して再利用しているため、放流による生活環境の悪化が防止できるとともに、TOC値の低減等が不要になるため、経済的な殺菌洗浄が可能になる。
更に生物の死骸等の不純物を濾過するフィルターを設置した本発明装置では、電解セルへ循環する過酸化物水溶液の純度が更に向上し、電解効率が上昇しかつ不純物に起因する電解セルのトラブルを防止できる。
In addition, if the sterilized washing water after the sterilizing washing is circulated to the electrolytic cell, the sterilized washing water containing peracetic acid, which had been conventionally discharged, is circulated and reused in the electrolytic cell, so that the discharged water deteriorates the living environment. Can be prevented, and the TOC value does not need to be reduced.
Further, in the apparatus of the present invention in which a filter for filtering impurities such as dead bodies of living organisms is installed, the purity of the aqueous peroxide solution circulated to the electrolytic cell is further improved, the electrolytic efficiency is increased, and troubles of the electrolytic cell due to the impurities are reduced. Can be prevented.

又循環ラインに濃度センサーを設置しておくと、過酢酸濃度を継続的に測定し、測定値の大小に応じて電解セルへの給電量を調節して過酢酸濃度を一定範囲に維持して所望の殺菌洗浄効果を得ることができる。
更に本発明方法では、過酢酸を安価な酢酸や酢酸塩を原料にして簡単に電解合成でき、過酢酸の製造方法として画期的なものである。
If a concentration sensor is installed in the circulation line, the concentration of peracetic acid is continuously measured, and the amount of power supplied to the electrolytic cell is adjusted according to the magnitude of the measured value to maintain the concentration of peracetic acid within a certain range. A desired sterilizing and cleaning effect can be obtained.
Furthermore, in the method of the present invention, peracetic acid can be easily electrolytically synthesized using inexpensive acetic acid or acetate as a raw material, and is a revolutionary method for producing peracetic acid.

次に添付図面に基づいて本発明方法による過酸化物による殺菌洗浄の一実施形態を説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of sterilization cleaning by peroxide according to the method of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited thereto.

図1は、本発明方法の過酸化物による殺菌洗浄方法の一実施形態を示す概略図、図2は図1で使用している電解セルの概略縦断面図である。
この 実施形態では、過酢酸を電解セルで合成するとともに、被洗浄物を殺菌洗浄した後の過酸化物水溶液を前記電解セルに循環して再利用を行うようにしている。
FIG. 1 is a schematic view showing an embodiment of a sterilization and cleaning method using a peroxide of the method of the present invention, and FIG. 2 is a schematic longitudinal sectional view of an electrolytic cell used in FIG.
In this embodiment, peracetic acid is synthesized in the electrolytic cell, and the peroxide aqueous solution after the object to be cleaned is sterilized and washed is circulated to the electrolytic cell for reuse.

図1の電解セル21は、図2に示すように、エキスパンドメッシュ等から成る陽極41、シート状の酸素ガス陰極42及び陽極室と陰極室を区画する隔膜43を有し、酸素ガス陰極42と隔膜41間の陰極溶液室にはナフィオン樹脂等の固体酸触媒粒子44又は繊維状の触媒材料が充填され、極間距離は1〜50mm程度に維持されている。図2中、45は陽極ガス出口、46は陰極液入口、47は陰極液出口である。
この電解セル21には、PSA方式で高純度酸素を調製する酸素供給装置22から酸素ガスが、また貯留タンク23から酢酸が補充された過酢酸溶液又は過酸化水素の混合溶液が供給され、電解セル21内で前記酢酸から過酢酸と過酸化水素が生成する。この過酢酸−過酸化水素を含む殺菌洗浄水(過酸化物水溶液)は、濃度センサー24で過酢酸及び過酸化水素の濃度が検出された後、加熱装置25で加熱される。
As shown in FIG. 2, the electrolytic cell 21 of FIG. 1 has an anode 41 made of an expanded mesh or the like, a sheet-shaped oxygen gas cathode 42, and a diaphragm 43 that separates the anode chamber and the cathode chamber. The cathode solution chamber between the diaphragms 41 is filled with solid acid catalyst particles 44 such as Nafion resin or a fibrous catalyst material, and the distance between the electrodes is maintained at about 1 to 50 mm. In FIG. 2, 45 is an anode gas outlet, 46 is a catholyte inlet, and 47 is a catholyte outlet.
The electrolytic cell 21 is supplied with oxygen gas from an oxygen supply device 22 for preparing high-purity oxygen by the PSA method, and is supplied with a peracetic acid solution or a mixed solution of hydrogen peroxide supplemented with acetic acid from a storage tank 23. In the cell 21, peracetic acid and hydrogen peroxide are generated from the acetic acid. The germicidal washing water (aqueous peroxide solution) containing peracetic acid-hydrogen peroxide is heated by the heating device 25 after the concentration sensor 24 detects the concentrations of peracetic acid and hydrogen peroxide.

濃度検出後に、前記殺菌洗浄水は殺菌洗浄対象の被洗浄物26を収容した殺菌洗浄チャンバー27内に供給されかつ前記被洗浄物26にノズル28を使用して噴霧される。殺菌洗浄後の殺菌洗浄水は、第1循環ポンプ29により殺菌洗浄チャンバー27から分解物除去フィルター30に導かれ、このフィルターにより生物の死骸や他の不純物が除去される。その後殺菌洗浄水は前記貯留タンク23に貯留され、必要に応じて消費された酢酸を補充した後、第2循環ポンプ31により前記電解セル21へ循環させ、再利用を行う。
本実施形態では、従来は放流していた過酢酸を含有する殺菌洗浄水を電解セルに循環して再利用しているため、放流による生活環境の悪化が防止できるとともに、安価な酢酸や酢酸塩から過酢酸を合成でき、更にTOC値の低減等が不要になるため、経済的な殺菌洗浄が可能になる。
After the concentration is detected, the germicidal washing water is supplied into a germicidal washing chamber 27 containing an object 26 to be sterilized and washed, and sprayed onto the object 26 using a nozzle 28. The germicidal washing water after the germicidal washing is guided by the first circulation pump 29 from the germicidal washing chamber 27 to the decomposition product removal filter 30, which removes dead bodies of organisms and other impurities. Thereafter, the sterilizing and washing water is stored in the storage tank 23, and after replenishing the consumed acetic acid as needed, is circulated to the electrolytic cell 21 by the second circulating pump 31 for reuse.
In the present embodiment, the sterilizing washing water containing peracetic acid, which has been conventionally discharged, is circulated and reused in the electrolytic cell, so that it is possible to prevent the deterioration of the living environment due to the discharge, and to use inexpensive acetic acid or acetate. Can be synthesized from acetic acid, and it is not necessary to further reduce the TOC value.

次に本発明に係る過酸化物による殺菌洗浄方法に関する実施例を記載するが、これらは本発明を限定するものではない。   Next, examples relating to the sterilization and cleaning method using a peroxide according to the present invention will be described, but these do not limit the present invention.

[実施例1]
酸化イリジウムを熱分解法により、チタン多孔板上に10g/m2となるように被覆し陽極とした。触媒として黒鉛粉末(東海カーボン株式会社製、TGP‐2)をPTFE樹脂と混練し、芯材であるカーボンクロス(ゾルテック社製、PWB−3)上に塗布し、330℃で焼成して0.5mm厚のシートを作製し、酸素ガス陰極とした。隔膜にはイオン交換膜ナフィオン(商品名)117(デュポン社製)を使用し、この隔膜と酸素ガス陰極間の距離は5mmとし、この間(ガス室)にナフィオン樹脂(デュポン社製NR−50)を充填した。イオン交換膜−陽極間は0mmとし、電解有効面積が100cm2である電解セルを構成した。
温度を25℃とし、空気をガス室に毎分200ml、セルの陽極室及び陰極室にそれぞれ酢酸水溶液(5M CH3COOH、pH3)を毎分10mlで供給しながら、10Aの電流を流したところ、セル電圧は8Vであった。陰極出口液の過酸化水素濃度をKMnO4滴定により、過酢酸の濃度をHPLC液体クロマトグラフ装置によりそれぞれ測定したところ、240ppmの過酢酸と1200ppmの過酸化水素が得られたことが分かった。
[Example 1]
Iridium oxide was coated on a titanium porous plate at a concentration of 10 g / m 2 by a thermal decomposition method to form an anode. A graphite powder (TGP-2, manufactured by Tokai Carbon Co., Ltd.) is kneaded with a PTFE resin as a catalyst, applied on a carbon cloth (PWB-3, manufactured by Zoltec) as a core material, and baked at 330 ° C. to 0.5 mm. A thick sheet was prepared and used as an oxygen gas cathode. The ion exchange membrane Nafion (trade name) 117 (manufactured by DuPont) was used for the membrane, and the distance between the membrane and the oxygen gas cathode was 5 mm. Nafion resin (manufactured by DuPont NR-50) was used between the membranes (gas chamber). Was charged. The distance between the ion exchange membrane and the anode was set to 0 mm, and an electrolysis cell having an electrolysis effective area of 100 cm 2 was formed.
When the temperature was set to 25 ° C., a current of 10 A was passed while supplying 200 ml of air to the gas chamber per minute and an aqueous solution of acetic acid (5 M CH 3 COOH, pH 3) to the anode and cathode chambers of the cell at 10 ml per minute. And the cell voltage was 8V. The concentration of hydrogen peroxide in the cathode outlet solution was measured by KMnO 4 titration, and the concentration of peracetic acid was measured by an HPLC liquid chromatograph. As a result, it was found that 240 ppm of peracetic acid and 1200 ppm of hydrogen peroxide were obtained.

[実施例2]
隔膜であるイオン交換膜を除去した無隔膜型の電解セルとしたこと以外は実施例1と同様にして電解を行ったところ、セル電圧は8Vであった。陰極室出口で、220ppmの過酢酸と100ppmの過酸化水素が得られた。
[Example 2]
Electrolysis was carried out in the same manner as in Example 1 except that a non-separated membrane type electrolytic cell from which the ion exchange membrane as a diaphragm was removed, was found to have a cell voltage of 8V. At the cathode compartment outlet, 220 ppm of peracetic acid and 100 ppm of hydrogen peroxide were obtained.

[実施例3]
酸素ガス陰極の触媒として、白金0.5mg/cm2を有する黒鉛粉末を用いたこと以外は、実施例1と同様にして電解を行ったところ、セル電圧は7.5Vであった。陰極出口液の過酸化水素濃度をKMnO4滴定により、過酢酸の濃度をHPLC液体クロマトグラフ装置によりそれぞれ測定したところ、600ppmの過酸化水素と800ppmの過酢酸が得られた。
[Example 3]
Electrolysis was carried out in the same manner as in Example 1, except that graphite powder containing 0.5 mg / cm 2 of platinum was used as a catalyst for the oxygen gas cathode. As a result, the cell voltage was 7.5 V. The concentration of hydrogen peroxide in the cathode outlet solution was measured by KMnO 4 titration, and the concentration of peracetic acid was measured by an HPLC liquid chromatograph. As a result, 600 ppm of hydrogen peroxide and 800 ppm of peracetic acid were obtained.

[実施例4]
電流値を20Aとし、空気をガス室に毎分500ml供給したこと以外は、実施例1と同様にして電解を行ったところ、セル電圧は7.5Vであった。陰極室出口で、300ppmの過酸化水素と800ppmの過酢酸が得られた。実施例1と実施例4の比較
から電流密度により過酸化水素と過酢酸の濃度比を調節できることを示している。
[Example 4]
Electrolysis was performed in the same manner as in Example 1 except that the current value was set to 20 A and air was supplied to the gas chamber at 500 ml / min. As a result, the cell voltage was 7.5 V. At the cathode compartment outlet, 300 ppm of hydrogen peroxide and 800 ppm of peracetic acid were obtained. Comparison between Example 1 and Example 4 shows that the concentration ratio of hydrogen peroxide and peracetic acid can be adjusted by the current density.

[実施例5]
実施例1の電解セルを用いて図1に示した循環ラインを組み立てた(濃度センサーは設置しなかった)。実施例1で得られた濃度の過酸化水素と過酢酸を有する過酸化物水溶液を、殺菌洗浄チャンバー内の被洗浄物に1分間接触させた後、回収した。回収した過酸化物水溶液は約1000個/mlの死滅した菌を含んでいたが、その後UFフィルターを通過させたところ、菌数はゼロになった。
[Example 5]
The circulation line shown in FIG. 1 was assembled using the electrolytic cell of Example 1 (the concentration sensor was not installed). The aqueous peroxide solution having the concentrations of hydrogen peroxide and peracetic acid obtained in Example 1 was brought into contact with the object to be cleaned in the sterilization cleaning chamber for 1 minute, and then collected. The recovered aqueous peroxide solution contained about 1000 cells / ml of dead bacteria, but after passing through a UF filter, the number of bacteria became zero.

[実施例6]
実施例1で得られた陰極出口液を2倍に希釈して過酢酸及び過酸化水素の濃度を半減させた(120ppmの過酢酸と600ppmの過酸化水素)。この希釈水を実施例1の電解セルに供給して電解したところ、陰極出口液の過酢酸と過酸化水素の濃度は過酢酸が約240ppm、過酸化水素が約1200ppmで循環前の値と等しかった。このことは過酸化物水溶液が循環可能であることを示している。
[Example 6]
The concentration of the peracetic acid and hydrogen peroxide was reduced by half by diluting the cathode outlet liquid obtained in Example 1 twice (120 ppm of peracetic acid and 600 ppm of hydrogen peroxide). When this diluted water was supplied to the electrolytic cell of Example 1 for electrolysis, the concentration of peracetic acid and hydrogen peroxide in the cathode outlet solution was about 240 ppm for peracetic acid and about 1200 ppm for hydrogen peroxide, which were equal to the values before circulation. Was. This indicates that the peroxide aqueous solution can be circulated.

[実施例7]
実施例1の電解セルを用いて図1に示した濃度センサーを含む循環ラインを組み立て、濃度センサーで過酢酸の濃度を検出しながら電解セルの電流値を変動させ、濃度センサーにおける過酢酸濃度をほぼ一定に維持しながら1000時間連続稼動させたところ、殺菌洗浄チャンバーに送られる殺菌洗浄水中の過酢酸濃度を250〜300ppmに保つことができた。
[Example 7]
Using the electrolytic cell of Example 1, a circulation line including the concentration sensor shown in FIG. 1 was assembled, and the current value of the electrolytic cell was varied while detecting the concentration of peracetic acid with the concentration sensor. When the system was operated continuously for approximately 1000 hours while maintaining the temperature almost constant, the concentration of peracetic acid in the sterilizing washing water sent to the sterilizing washing chamber could be maintained at 250 to 300 ppm.

本発明方法の過酸化物による殺菌洗浄方法の一実施形態を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows one Embodiment of the sterilization washing | cleaning method by the peroxide of the method of this invention. 図1の電解セルの概略縦断面図。FIG. 2 is a schematic longitudinal sectional view of the electrolytic cell of FIG. 1. 従来の過酸化物による殺菌洗浄方法の一実施形態を示す概略図。The schematic diagram which shows one Embodiment of the sterilization cleaning method by the conventional peroxide.

符号の説明Explanation of reference numerals

21 電解セル
22 酸素供給装置
23 貯留タンク
25 濃度センサー
26 被洗浄物
27 洗浄チャンバー
28 ノズル
30 分解物除去フィルター
41 陽極
42 酸素ガス陰極
43 隔膜
44 固体酸触媒粒子
21 Electrolysis cell
22 Oxygen supply device
23 Storage tank
25 Concentration sensor
26 Items to be cleaned
27 Cleaning chamber
28 nozzles
30 Decomposition removal filter
41 anode
42 Oxygen gas cathode
43 diaphragm
44 Solid acid catalyst particles

Claims (5)

過酸化物水溶液を使用して被洗浄物を殺菌洗浄する方法において、酢酸及び/又は酢酸塩と酸素含有ガスを原料として電解合成した過酢酸を含有する過酸化物水溶液を使用して前記被洗浄物を殺菌洗浄することを特徴とする方法。   In the method of sterilizing and cleaning an object to be cleaned using an aqueous peroxide solution, the object to be cleaned is washed using a peroxide aqueous solution containing peracetic acid electrolytically synthesized using acetic acid and / or acetate and an oxygen-containing gas as raw materials. A method characterized by sterilizing and washing an object. 被洗浄物の殺菌洗浄後の過酸化物水溶液を、電解合成に再利用するようにした請求項1に記載の過酸化物による殺菌洗浄方法。   The method for sterilizing and cleaning with peroxide according to claim 1, wherein the aqueous solution of peroxide after sterilizing and cleaning the object to be cleaned is reused for electrolytic synthesis. 酢酸及び/又は酢酸塩と酸素含有ガスを供給しながら電解を行って、陰極で過酢酸と過酸化水素を含有する水溶液を合成する電解セル、該電解セルで製造された水溶液を被洗浄物に接触させるための殺菌洗浄チャンバー、該チャンバーの下流側に存在し、前記殺菌洗浄チャンバーからの過酢酸−過酸化水素を有する過酸化物水溶液を濾過して該水溶液中の生物死骸を除去するためのフィルター、及び該フィルターで濾過された過酸化物水溶液を前記電解セルへ循環させる手段を含んで成ることを特徴とする過酸化物による殺菌洗浄装置。   An electrolysis cell for performing electrolysis while supplying acetic acid and / or acetate and an oxygen-containing gas to synthesize an aqueous solution containing peracetic acid and hydrogen peroxide at a cathode, and applying the aqueous solution produced by the electrolysis cell to an object to be cleaned. A germicidal washing chamber for contacting, for filtering an aqueous peroxide solution having peracetic acid-hydrogen peroxide from the germicidal washing chamber, which is present downstream of the chamber, for removing biological dead bodies in the aqueous solution; A sterilizing and cleaning apparatus using peroxide, comprising: a filter; and means for circulating a peroxide aqueous solution filtered by the filter to the electrolytic cell. 循環ライン中に過酸化物水溶液中の過酢酸濃度を測定するセンサーを設置した請求項3に記載の殺菌洗浄装置。   The sterilizing and cleaning apparatus according to claim 3, wherein a sensor for measuring a concentration of peracetic acid in the aqueous peroxide solution is provided in the circulation line. 酢酸及び/又は酢酸塩と酸素含有ガスを原料として過酢酸を固体酸触媒を使用して電解合成することを特徴とする過酢酸の電解合成方法。   An electrolytic synthesis method of peracetic acid, wherein peracetic acid is electrolytically synthesized using acetic acid and / or an acetate and an oxygen-containing gas as raw materials using a solid acid catalyst.
JP2004099091A 2003-03-31 2004-03-30 Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash Pending JP2004313780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099091A JP2004313780A (en) 2003-03-31 2004-03-30 Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003095501 2003-03-31
JP2004099091A JP2004313780A (en) 2003-03-31 2004-03-30 Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash

Publications (1)

Publication Number Publication Date
JP2004313780A true JP2004313780A (en) 2004-11-11

Family

ID=33478686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099091A Pending JP2004313780A (en) 2003-03-31 2004-03-30 Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash

Country Status (1)

Country Link
JP (1) JP2004313780A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597092B1 (en) 2005-01-27 2006-07-04 이승훈 Aqueous solution of peracetic acid and method for producing the same
JP2009207742A (en) * 2008-03-05 2009-09-17 Fujifilm Corp Endoscope washing and disinfecting apparatus and method
JP2009291443A (en) * 2008-06-06 2009-12-17 Asahi Soft Drinks Co Ltd Sterilizing method and sterilizing apparatus
WO2009154302A1 (en) * 2008-06-19 2009-12-23 株式会社聖蹟ミリオラブルー Water supply unit for use in sterilizing and cleaning system using sterile water
JP2012176804A (en) * 2012-04-23 2012-09-13 Asahi Soft Drinks Co Ltd Sterilizing apparatus
JP2013503682A (en) * 2009-09-03 2013-02-04 イーコラブ ユーエスエー インコーポレイティド Electrolysis apparatus and method useful for industrial applications
JP2013527425A (en) * 2009-07-27 2013-06-27 ディバーシー・インコーポレーテッド System and method for detecting H2O2 concentration in a cryogenic aseptic filling system using a peracetic acid wash
KR20140005190A (en) * 2011-01-20 2014-01-14 에프엠씨 코포레이션 Peracetic acid vapor sterilization of food and beverage containers
JP2016063760A (en) * 2014-09-24 2016-04-28 大和ハウス工業株式会社 Food washing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349560A (en) * 1998-06-08 1999-12-21 Arakawa Chem Ind Co Ltd Production of peracid compound
JP2002502636A (en) * 1998-02-06 2002-01-29 ステリス コーポレイション Electrochemical synthesis of peracetic acid and other oxidants
JP2003506120A (en) * 1999-08-05 2003-02-18 ステリス インコーポレイテッド Synthesis of peracetic acid by electrolysis.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502636A (en) * 1998-02-06 2002-01-29 ステリス コーポレイション Electrochemical synthesis of peracetic acid and other oxidants
JPH11349560A (en) * 1998-06-08 1999-12-21 Arakawa Chem Ind Co Ltd Production of peracid compound
JP2003506120A (en) * 1999-08-05 2003-02-18 ステリス インコーポレイテッド Synthesis of peracetic acid by electrolysis.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597092B1 (en) 2005-01-27 2006-07-04 이승훈 Aqueous solution of peracetic acid and method for producing the same
JP2009207742A (en) * 2008-03-05 2009-09-17 Fujifilm Corp Endoscope washing and disinfecting apparatus and method
JP2009291443A (en) * 2008-06-06 2009-12-17 Asahi Soft Drinks Co Ltd Sterilizing method and sterilizing apparatus
WO2009154302A1 (en) * 2008-06-19 2009-12-23 株式会社聖蹟ミリオラブルー Water supply unit for use in sterilizing and cleaning system using sterile water
JP5620267B2 (en) * 2008-06-19 2014-11-05 株式会社聖蹟ミリオラブルー Water supply unit used in sterilization and cleaning systems using sterilized water
JP2013527425A (en) * 2009-07-27 2013-06-27 ディバーシー・インコーポレーテッド System and method for detecting H2O2 concentration in a cryogenic aseptic filling system using a peracetic acid wash
US9404878B2 (en) 2009-07-27 2016-08-02 Diversey, Inc. Systems and methods for detecting an H2O2 level in a cold aseptic filling system that uses a peracetic acid cleaning solution
JP2013503682A (en) * 2009-09-03 2013-02-04 イーコラブ ユーエスエー インコーポレイティド Electrolysis apparatus and method useful for industrial applications
JP2016041270A (en) * 2009-09-03 2016-03-31 エコラボ ユーエスエー インコーポレイティド Electrolytic devices and methods useful in industrial applications
KR20140005190A (en) * 2011-01-20 2014-01-14 에프엠씨 코포레이션 Peracetic acid vapor sterilization of food and beverage containers
KR101971743B1 (en) 2011-01-20 2019-04-23 에프엠씨 코포레이션 Peracetic acid vapor sterilization of food and beverage containers
JP2012176804A (en) * 2012-04-23 2012-09-13 Asahi Soft Drinks Co Ltd Sterilizing apparatus
JP2016063760A (en) * 2014-09-24 2016-04-28 大和ハウス工業株式会社 Food washing device

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP3988827B2 (en) Method and apparatus for producing negative and positive redox potential (ORP) water
JP4410155B2 (en) Electrolyzed water ejection device
US6767447B2 (en) Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide
JP5113891B2 (en) Ozone water production apparatus, ozone water production method, sterilization method, and wastewater / waste liquid treatment method
TWI449811B (en) Electrolytic device for generation of ph-controlled hypohalous acid aqueous solutions for disinfectant applications
JP4980016B2 (en) Electrolyzed water ejection device and sterilization method
JP4723627B2 (en) Membrane-electrode assembly, electrolytic cell using the same, electrolytic water spray device, and sterilization method
JP5544181B2 (en) Electrochemical synthesis of ozone fine bubbles
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
US20070144897A1 (en) Method for the electrolytic synthesis of peracetic acid and sterilizing-cleaning method and apparatus
US20090127128A1 (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
JP2010527337A (en) Disinfectant based on aqueous hypochlorous acid (HOCl) containing solution, process for making it and use thereof
JP2011246799A5 (en)
JP2009125628A (en) Membrane-electrode assembly, electrolytic cell using the same, ozone water generator, and sterilization method
CN101531411A (en) Method for electrochemically disinfecting gas diffusion electrode system
JP5098050B2 (en) Membrane-electrode assembly, electrolysis unit using the same, electrolyzed water ejection device, and sterilization method
Pillai et al. Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell
JP2004313780A (en) Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash
US6761815B2 (en) Process for the production of hydrogen peroxide solution
US20030070940A1 (en) Method and apparatus for purification treatment of water
JP3844303B2 (en) Method for electrolytic synthesis of percarbonate compound and electrolytic synthesis cell
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP2007070705A (en) Apparatus for synthesizing peroxycarboxylate compound, and synthesizing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511