JP2004309287A - Defect detection device and defect detection method - Google Patents

Defect detection device and defect detection method Download PDF

Info

Publication number
JP2004309287A
JP2004309287A JP2003102604A JP2003102604A JP2004309287A JP 2004309287 A JP2004309287 A JP 2004309287A JP 2003102604 A JP2003102604 A JP 2003102604A JP 2003102604 A JP2003102604 A JP 2003102604A JP 2004309287 A JP2004309287 A JP 2004309287A
Authority
JP
Japan
Prior art keywords
defect
plate
line sensor
linear
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102604A
Other languages
Japanese (ja)
Inventor
Yuuki Yoshimura
勇気 吉村
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003102604A priority Critical patent/JP2004309287A/en
Publication of JP2004309287A publication Critical patent/JP2004309287A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide s defect detection device and its method capable of detecting a defect without being influenced dependent on the angle of scattered light from the defect, when a line sensor is used as a light receiving means of the scattered light from the defect and an inspection object is a plate body conveyed in one direction. <P>SOLUTION: In this dark field type defect detection device equipped with a conveyance mechanism for conveying the plate inspection body in one direction, a linear illuminator and the line sensor, light irradiated from the linear illuminator is scattered by a defect existing on the plate body, and the scattered light is detected by the line sensor, to thereby detect the defect. The device is characterized by being equipped with at least two pairs of detection units arranged so that scanning directions of the linear illuminator and the line sensor are mutually parallel, and by arranging the detection units at different angles respectively with respect to the conveyance direction of the plate body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス、金属、フィルムなど、ある一方向に搬送される板状体に存在する線状傷などの欠陥検出装置、および検出方法に関するものである。特に、ガラス板の製造工程における外観検査を行う欠陥検出装置、および検出方法に関する。
【0002】
【従来の技術】
従来から、例えばガラス板の製造工程において、ある一方向に搬送される板状体に存在する欠陥を検出するために、以下のような技術が適用されていた。まず、検査対象となるガラス板に光を照射する。そして、欠陥部位から生じる散乱光を検出する技術である。この散乱光を検出することによる欠陥検出技術では、微細な欠陥において、散乱する光が微弱である。そのため、微細な欠陥の確実な検出が困難となる。
【0003】
この対策として、例えば特開2002−148206号公報では、以下のような検査装置が開示されている。すなわち、この装置では散乱光を透明板状体に照射し、該透明板状体をCCDカメラで撮影する。そして、CCDカメラと透明板状体との間に、スリット状の遮光板を設けると共に、スリットを通して、光源の光が直接CCDカメラに入射しないように、透明板状体を多方向から照明するように光源を配置している。
【0004】
また、特開平7−234187号公報および特開平8−193955号公報では、以下のような検出装置が開示されている。すなわち、前者の装置では直線帯状の照明光の少なくとも3方向から互いに重なり合うように照射し、その中の少なくとも1つが、帯状に配列された光ファイバ列により導かれたものであって、ガラス基板の表面欠点からの散乱光を一次元カメラにて検出する。後者の装置は、平面内に光軸を有するレーザー光源により板ガラスの表面を照射し、レーザー光源に対する光電検出器で、板ガラスの欠点による散乱光を検出する。
【0005】
さらに、特開平1−169343号公報において、ガラス板の切口欠点の検出技術が開示されている。この技術では、一次元CCDカメラとライン状光源を設け、ガラス板の切口四辺を検査するため、カメラおよび光源をガラス板の搬送方向に対して45°傾け、透過明視野にて撮像する。
【0006】
また、特開平8−304295号公報において、線または網入りガラスの表面欠陥の検出技術が開示されている。この技術では、板状透明物体の一方の面側に、該板状透明物体の搬送方向と直交する方向に対して、角度θをなすようにラインセンサと照明装置を設け、照明装置によって板状透明物体の一方の面側を照射し、ラインセンサにより反射明視野にて撮像する。加えて、この公報では筋状の傷とラインセンサおよび照明装置のなす角度による輝度レベルの出現状態の検証について述べており、傷に角度依存性があることを示唆している。
【特許文献1】
特開2002−148206号公報
【特許文献2】
特開平7−234187号公報
【特許文献3】
特開平8−193955号公報
【特許文献4】
特開平1−169343号公報
【特許文献5】
特開平8−304295号公報
【0007】
【発明が解決しようとする課題】
つまり、ラインセンサを用いた場合において、ある一方向に搬送される板状体に存在する欠陥(線状の傷や泡など)からの散乱光を検出する技術は、特に線状欠陥の散乱光は、その大きさや形状はもちろんのこと、照射するライン状照明器およびラインセンサの走査方向と欠陥のなす角度とに依存してしまう。
【0008】
このため、ラインセンサで得られる欠陥の散乱光が微弱で、欠陥を検出することが困難な場合がある。特に、線状欠陥の散乱光は、角度依存による影響を受けるため、もれなく欠陥を検出することが困難となる。
【0009】
また、被検査対象物が連続したリボン状ガラス板などの場合には、被検査対象物を回転させることが難しく、角度依存の影響を受けやすい。そのため、微細な線状欠陥の検出は非常に困難となる。
【0010】
なお、上述の特開2002−148206号公報における多方向から光を照射する手法は、一方向から光を照射する場合に比べ、欠陥により散乱する光成分が増えるため、欠陥からの散乱光を十分に検出できる。
【0011】
また、特開平7−234187号公報および特開平8−193955号公報におけるライン状照明に高輝度照明を用いる手法も、欠陥からの散乱光を十分に検出できる。ただし、多方向から光を照射する、または高輝度の光を照射しても、ラインセンサの受光部分に入射する線状欠陥の散乱光は、照射する照明およびラインセンサと線状欠陥のなす角度の影響を受けてしまう。
【0012】
ここで、図1を用いて、線状欠陥の散乱光の角度依存性について説明する。
図1において、1はライン状照明器、3は板状体、4はラインセンサの走査領域、5は線状欠陥であり、図中の矢印は板状体の搬送方向を示している。図1(a)に示すように、ラインセンサの走査方向と線状欠陥の方向が平行である場合、線状欠陥からの散乱光を最も強く検出することができる。これに対し図1(b)に示すように、ラインセンサの走査方向と線状欠陥の方向が直交する場合、線状欠陥からの散乱光は微弱となってしまう。
【0013】
またこの場合、ラインセンサの走査方向と直交する線状欠陥の散乱光を検出するには、ライン状照明器とラインセンサからなる検出ユニットと、線状欠陥とのなす角度が様々であっても、散乱光を十分に得られるような高輝度の光を照射する必要となる。しかし、このような照明を行うには、大がかりな装置が必要になってしまう。
【0014】
なお、図1(c)に示すように、ラインセンサの走査方向に直行する方向から光を照射する場合、光源はラインセンサの走査範囲内にあり、光源からの直接光をラインセンサは受光してしまう。このため、ラインセンサの走査範囲と光源が交わる部分では、線状欠陥からの散乱光を検出することができない。
【0015】
そこで本発明では、欠陥からの散乱光の受光手段としてラインセンサを用い、被検査対象物がある一方向に搬送される板状体である場合に、欠陥の散乱光の角度依存による影響をあまり受けずに、欠陥の検出を可能とする欠陥検出装置、およびその方法を提供する。さらに、蛍光灯のような一般的な照明でも、線状の欠陥を検出可能な検出装置、およびその方法を提供する。
【0016】
なお、被検査対象物回転可能な場合の検査方法を以下に例挙する。例えば、小型電子技術の分野では、シリコンウエハなどの検査対象物を回転させ、複数回検査する方法がある(例えば、特開2002−257745号公報)。
【0017】
【課題を解決するための手段】
上述した課題を解決するために、本発明の第1形態として、請求項1に記載の欠陥検出装置は、
板状体の被検査体をある一方向に搬送する搬送機構と、ライン状照明器と、ラインセンサとを備え、前記ライン状照明器によって照射された光が、前記板状体に存在する欠陥で散乱され、その散乱光を前記ラインセンサにより検出することによって、前記欠陥を検出する暗視野型の欠陥検出装置であって、
前記ライン状照明器と前記ラインセンサとの走査方向が、互いに平行になるように配置された検出ユニットを少なくとも2組備え、前記検出ユニットがそれぞれ前記板状体の搬送方向に対して、異なる角度に配置されていることを特徴とする。
【0018】
請求項2に記載の欠陥検出装置は、
前記検出ユニットのうち、2組のユニットにおける前記板状体の搬送方向とのなす角度が、それぞれ30°〜60°、120°〜150°となるように配置されていることを特徴とする。
【0019】
請求項3に記載の欠陥検出装置は、
前記検出ユニットを2組備え、この2組のユニットにおける前記板状体の搬送方向とのなす角度が、それぞれ45°と135°となるように配置されていることを特徴とする。
【0020】
請求項4に記載の欠陥検出装置は、
前記ライン状照明器は、少なくとも2本のライン状照明光源を含むことを特徴とする。
【0021】
請求項5に記載の欠陥検出装置は、
前記ライン状照明器は、該照明器からの直接光が、前記ラインセンサに入射しないような位置に配置している、または、前記ライン状照明と前記ラインセンサの間に、遮光板が配置していることを特徴とする。
【0022】
請求項6に記載の欠陥検出装置は、
前記板状体上にある線状欠陥と前記検出ユニットのなす角度に応じて、前記ラインセンサの受光量に補正を行う受光量補正手段を備えることを特徴とする。
【0023】
さらに本発明の第2形態として、請求項7に記載の欠陥検出方法は、
搬送機構によりある一方向に被検査体である板状体を搬送し、
ライン状照明器から前記板状体に光を照射し、該照明光が前記板状体に存在する欠陥にて散乱し、その散乱光を前記ラインセンサにより検出することによって、前記欠陥を検出する暗視野型の欠陥検出方法であって、
前記ライン状照明器と前記ラインセンサとの走査方向が、互いに平行になるように配置した検出ユニットを少なくとも2組備え、前記検出ユニットをそれぞれ前記板状体の搬送方向に対して、異なる角度に配置したことを特徴とする。
【0024】
請求項8に記載の欠陥検出方法は、
前記検出ユニットのうち、2組のユニットにおける前記板状体の搬送方向とのなす角度を、それぞれ30°〜60°、120°〜150°となるように配置したことを特徴とする。
【0025】
請求項9に記載の欠陥検出方法は、
前記検出ユニットを2組備え、この2組のユニットにおける前記板状体の搬送方向とのなす角度を、それぞれ45°と135°となるように配置したことを特徴とする。
【0026】
請求項10に記載の欠陥検出方法は、
前記ライン状照明器を、少なくとも2本のライン状照明光源を含むようにしたことを特徴とする。
【0027】
請求項11に記載の欠陥検出方法は、
前記ライン状照明器を、該照明器からの直接光が前記ラインセンサに入射しないような位置に配置した、または前記ライン状照明と前記ラインセンサの間に遮光板を配置したことを特徴とする。
【0028】
請求項12に記載の欠陥検出方法は、
前記板状体上にある線状欠陥と前記検出ユニットのなす角度に応じて、前記ラインセンサの受光量を補正することを特徴とする。
【0029】
【発明の実施の形態】
以下、本発明の欠陥検出装置について、図面を用いて詳細に説明する。
【0030】
(予備検討)
まず、図8に示した欠陥検出装置を用いて、線状欠陥を有する被検査体(ガラス基板3)と、ライン状照明器およびラインセンサを含んでなる検出ユニットとの角度を変化させた場合における散乱光強度への影響を調べた。図8において、1はライン状照明器、4はラインセンサの走査領域、5は線状欠陥である。具体的には、ライン状照明器1およびラインセンサの走査領域4と、線状欠陥5のなす角度θを、0°から90°の範囲で10°毎に変化させて、散乱光強度を測定した。なお、線状欠陥5は、その長さの異なる5種類の線状欠陥を有するガラス基板を用意した。その線状欠陥の幅を、それぞれW,W,W,W,Wとしたとき、それらの大小関係は以下のようであった。
<W<W<W<W
【0031】
その結果を図9に示す。図9では、5種類の欠陥からの散乱光強度を256階調で表している。なお縦軸は任意単位であり、各プロットは以下の線状欠陥を表している。
◇:W,□:W,△:W,×:W,○:W
【0032】
図9に示された結果より、同一の線状欠陥でも角度θの違いによって散乱光強度に変化のあることがわかった。このことから、線状欠陥の方向と、ラインセンサの走査方向とがなす角度θによって、散乱光の強度に影響を与えることを確認した。
【0033】
また、変化させた角度毎に散乱光の強度をみていくと、線状欠陥の幅の狭いW,W,Wでは、60°辺りで0°のときに比べると、半分程度になっている。さらに、60°〜90°になるにつれ、散乱光の強度がいっそう減少していく傾向にある。そのため、ラインセンサの走査方向と線状欠陥のなす角度θが0°〜60°程度の範囲が、散乱光強度の強い角度範囲である。
【0034】
ここで図10において、ライン状照明器1およびラインセンサを含んでなる検出ユニットの走査方向41と、板状体3の搬送方向とのなす角度をθとする。また、そのときの検査幅をWとする。そして、θを変化させたときの検査幅Wの変化を確認した。検査幅Wは、照明器の長さを1としたとき、W=COSθで求めることができる。図11は、θを変化させたときの検査幅Wの変化を表すグラフである。
【0035】
この図11に示したグラフより、検査幅Wが少なくとも照明の長さの半分以上となるように、角度θが45°〜135°の範囲内となるように設置するのが望ましい。
【0036】
(実施例1)
図2は、本発明による一実施例である検出装置の概略平面図である。この検出装置では、ライン状照明器1およびラインセンサを含んでなる検出ユニットを2つ有しており、それぞれが相互に補完できるように、ガラス板状体3の搬送方向に対して、θ1が45°、θ2が135°となるように配置している。また、図3は、図2中のA−B部分を側面から見た概略断面図である。この欠陥検出装置は、暗視野型の欠陥検出を行っている。
【0037】
このような欠陥検出装置において、例えば被検査体として、厚さ5mmのフロートガラス板3を、その上部にあるライン状照明器1,1からの光によって照射し、ラインセンサ2でガラス板3を撮影した。ライン状照明器には、ライン状光源である直管蛍光灯2本を10mmの隙間を設けて、ガラス板3の表面からの距離を10mmとして配置し、反射型照明としている。さらに、ライン状照明器1の上方には、照明器からの直接光がラインセンサ2に入らないように、遮光板6,6をその間隔が5mmになるように配置している。
【0038】
ラインセンサ2の絞りは、可能な限り欠陥からの散乱光を受光できるように、開放に近い状態が好ましく、このようにすると、微小欠陥からの散乱光を受光することができる。
【0039】
ラインセンサ2で撮影した画像は、図4に示した画像処理装置7で画像処理した。画像処理装置7で処理されたライン状の画像を、パーソナルコンピュータ8に取り込み、ガラス板状体の全体としてつなぎ合わせ、図5に示すようなガラス板状体全体の合成画像を作成した。
【0040】
この検出は暗視野型であるので、線状欠陥5は合成画像において、ガラス板状体の全体像の中に明るく光る輝線として現れる。したがって、この輝線を欠陥として認識すればよい。
【0041】
本実施例1において、図5に示す合成画像の線状欠陥5は、その幅が30μm程度のものまで検出可能であった。
【0042】
(実施例2)
実施例1の条件を、ライン状照明器における直管蛍光灯2本の間隔を80mm、ガラス板3の表面からの距離を15mmとして配置し、その他は実施例1の条件にて、欠陥の検出を行った。
【0043】
本実施例2において、合成画像の線状欠陥は、その幅が60μm程度のものまで検出可能であった。
【0044】
なお上述した実施例1および2では、板状体として透明体であるガラス板を例に説明した。しかし、反射型照明では被検査体は透明体に限られることはなく、金属板などを検査対象とすることもできる。
【0045】
また上述した実施例1および2では、いずれも遮光板を設けた例であった。しかし、これに限られることなく、図6に示したように、照明器1,1からの直接光が直接ラインセンサ2に入射しないような配置であれば、特に遮光板を設けなくてもよい。
【0046】
(実施例3)
本発明による別実施例である検出装置の概略断面図を図7に示す。この別実施例では、透明体であるガラス板3の下方から光を照射している。この図7は、図2中のA−B部分を側面から見た概略断面図である。
【0047】
さらに、ライン状照明器1の上方には、照明器からの直接光がラインセンサ2に入らないように、遮光板6をスリットの間隔が5mm程度になるように配置して透過型照明としている。このように被検査体が透明体であり、欠陥が照明光を反射すれば、透過型照明であっても欠陥の検出が可能である。
【0048】
本実施例3において、線状欠陥5は、その幅が40μm程度のものまで検出可能であった。
【0049】
(受光量の補正)
線状欠陥と検出ユニットのなす角度によっては、検出される線状欠陥からの光量が異なってしまう。そこで予め、線状欠陥と検出ユニットのなす角度毎に、光量の補正値を求めておき、その補正値によって光量の補正を行うとよい。
【0050】
例えば上述の実施例1から3において、ラインセンサ2により撮像された線状欠陥5と前記検出ユニットとのなす角度を、まず画像処理装置7によって求めた。そして、この角度に対応する補正値を、線状欠陥5からの光量に加えるとよい。この補正により、線状欠陥5と前記検出ユニットとのなす角度によるラインセンサ2の受光量の変化を最小限にすることができ、線状欠陥5を感度よく検出することができる。
【0051】
このよう補正手段は、画像処理装置7に上述の角度に対応する補正テーブルをまず設けておく。つぎに、線状欠陥が検出されれば、画像処理装置7にて上述の角度を求めて、予め求めておいたテーブルから補正値を呼び出して、受光量の補正を行うとよい。
【0052】
【発明の効果】
以上説明してきたように、本発明では、ライン状照明器およびラインセンサを含む検出ユニットを少なくとも2組、板状体の搬送方向に対してそれぞれ異なる角度になるように配置している。
【0053】
このような配置とすることにより、線状欠陥と検出ユニットとのなす角度が様々であっても、板状体に存在する線状傷や泡や異物などの欠陥により生じる散乱光を、検出ユニットが互いに補完することができる。その結果、板状体の搬送方向に対して様々な角度で存在する線状欠陥を、もれなく検出することができる。
【0054】
また、板状体に存在する線状欠陥と検出ユニットとのなす角度に対し、ラインセンサの受光量を補正することにより、欠陥の大きさや深さによる影響により生じる散乱光の輝度の変化を検出することができる。そのため、散乱光強度の閾値を変えることによって、検出する欠陥の大きさや深さを制限することができる。
【0055】
なお、本発明の欠陥検出技術は、例えばガラス板では板状体に存在する線状欠陥だけでなく、散乱光を発する欠陥であればよく、泡や異物などの点状欠陥の検出に対しても有効である。
【図面の簡単な説明】
【図1】線状欠陥と、ライン状照明器およびラインセンサのなす角度を示す概略平面図。
【図2】本発明の実施例1を示す欠陥検出装置の概略平面図。
【図3】本発明の実施例1を示す欠陥検出装置の概略断面図。
【図4】ラインセンサで撮影した画像を画像処理する装置の構成図。
【図5】実施例1における画像処理後の線状欠陥の合成画像を概念的に示す図。
【図6】遮光板を設けない欠陥検出装置の概略断面図。
【図7】本発明の実施例3を示す欠陥検出装置の概略断面図。
【図8】予備検討を示す欠陥検出装置の概略平面図。
【図9】予備検討で行った線状欠陥の角度依存性を示すグラフ。
【図10】板状体の搬送方向とラインセンサの走査方向のなす角度を説明する図。
【図11】板状体の搬送方向とラインセンサの走査方向とのなす角度による検査幅の変化を示すグラフ。
【符号の説明】
1:ライン状照明器
2:ラインセンサ
3:板状体(ガラス板)
4:ラインセンサの走査領域
41:ラインセンサの走査方向
5:線状欠陥
6:遮光板
7:画像処理装置
8:パーソナルコンピュータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for detecting a defect such as a linear scratch present on a plate-like body conveyed in a certain direction, such as glass, metal, and film. In particular, the present invention relates to a defect detection device and a detection method for performing an appearance inspection in a glass plate manufacturing process.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, in a manufacturing process of a glass plate, the following technology has been applied to detect a defect existing in a plate-like body conveyed in a certain direction. First, light is irradiated on a glass plate to be inspected. Then, this is a technique for detecting scattered light generated from a defective portion. In the defect detection technique by detecting the scattered light, the scattered light is weak in a minute defect. Therefore, it is difficult to reliably detect a minute defect.
[0003]
As a countermeasure, for example, JP-A-2002-148206 discloses the following inspection apparatus. That is, in this apparatus, the transparent plate is irradiated with scattered light, and the transparent plate is photographed by a CCD camera. A slit-shaped light-shielding plate is provided between the CCD camera and the transparent plate, and the transparent plate is illuminated from multiple directions so that the light of the light source does not directly enter the CCD camera through the slit. The light source is located at
[0004]
Further, JP-A-7-234187 and JP-A-8-193555 disclose the following detection devices. That is, in the former device, the linear band-shaped illumination light is irradiated so as to overlap each other from at least three directions, and at least one of them is guided by an optical fiber array arranged in a band shape, and Scattered light from surface defects is detected by a one-dimensional camera. The latter device irradiates the surface of the glass sheet with a laser light source having an optical axis in a plane, and detects scattered light due to a defect of the glass sheet with a photoelectric detector for the laser light source.
[0005]
Further, Japanese Patent Application Laid-Open No. 1-169343 discloses a technique for detecting a cut defect of a glass plate. In this technique, a one-dimensional CCD camera and a line-shaped light source are provided, and the camera and the light source are inclined at 45 ° with respect to the transport direction of the glass plate, and images are taken in a transmitted bright field in order to inspect four sides of the glass plate.
[0006]
Also, Japanese Patent Application Laid-Open No. 8-304295 discloses a technique for detecting a surface defect of a lined or meshed glass. In this technology, a line sensor and a lighting device are provided on one surface side of a plate-shaped transparent object so as to form an angle θ with respect to a direction orthogonal to a transport direction of the plate-shaped transparent object, and the plate-shaped transparent object is provided by the lighting device. One surface of the transparent object is illuminated, and an image is taken in a reflected bright field by a line sensor. In addition, this publication describes verification of the appearance state of the luminance level based on the angle formed between the line-shaped scratch and the line sensor and the lighting device, and suggests that the scratch has an angle dependency.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-148206 [Patent Document 2]
JP-A-7-234187 [Patent Document 3]
Japanese Patent Application Laid-Open No. 8-193955 [Patent Document 4]
JP-A-1-169343 [Patent Document 5]
JP-A-8-304295
[Problems to be solved by the invention]
In other words, when a line sensor is used, a technique for detecting scattered light from a defect (such as a linear scratch or bubble) existing in a plate-like body conveyed in a certain direction is particularly useful for detecting scattered light from a linear defect. Is dependent not only on its size and shape but also on the scanning direction of the illuminating linear illuminator and line sensor and the angle formed by the defect.
[0008]
For this reason, the scattered light of the defect obtained by the line sensor is weak, and it may be difficult to detect the defect. In particular, since the scattered light of the linear defect is affected by the angle dependence, it is difficult to detect the defect without fail.
[0009]
Further, when the object to be inspected is a continuous ribbon-shaped glass plate or the like, it is difficult to rotate the object to be inspected, and the object to be inspected is easily affected by the angle dependence. Therefore, it is very difficult to detect a fine linear defect.
[0010]
Note that the method of irradiating light from multiple directions in the above-described Japanese Patent Application Laid-Open No. 2002-148206 increases light components scattered by defects as compared with the case of irradiating light from one direction. Can be detected.
[0011]
In addition, the method of using high-intensity illumination for line illumination in JP-A-7-234187 and JP-A-8-193555 can sufficiently detect scattered light from a defect. However, even when irradiating light from multiple directions or irradiating high-intensity light, the scattered light of the linear defect incident on the light-receiving portion of the line sensor depends on the illuminating light and the angle formed by the linear sensor and the linear defect. Will be affected.
[0012]
Here, the angle dependence of the scattered light of the linear defect will be described with reference to FIG.
In FIG. 1, reference numeral 1 denotes a linear illuminator, 3 denotes a plate, 4 denotes a scanning area of a line sensor, 5 denotes a linear defect, and the arrows in the figure indicate the transport direction of the plate. As shown in FIG. 1A, when the scanning direction of the line sensor and the direction of the linear defect are parallel, the scattered light from the linear defect can be detected most strongly. On the other hand, as shown in FIG. 1B, when the scanning direction of the line sensor is orthogonal to the direction of the linear defect, the scattered light from the linear defect is weak.
[0013]
Further, in this case, in order to detect scattered light of a linear defect orthogonal to the scanning direction of the line sensor, even if the angle between the detection unit including the linear illuminator and the line sensor and the linear defect is various. In addition, it is necessary to irradiate high-brightness light so that sufficient scattered light can be obtained. However, such illumination requires a large-scale device.
[0014]
As shown in FIG. 1C, when light is emitted from a direction perpendicular to the scanning direction of the line sensor, the light source is within the scanning range of the line sensor, and the line sensor receives the direct light from the light source. Would. For this reason, scattered light from a linear defect cannot be detected in a portion where the scanning range of the line sensor and the light source intersect.
[0015]
Therefore, in the present invention, a line sensor is used as a means for receiving scattered light from a defect, and when an object to be inspected is a plate-like body conveyed in one direction, the influence of the angle dependence of the scattered light of the defect is reduced. Provided are a defect detection device and a method thereof that can detect a defect without receiving the defect. Furthermore, a detection device capable of detecting a linear defect even with general illumination such as a fluorescent lamp, and a method therefor are provided.
[0016]
In addition, the inspection method in the case where the inspection object can be rotated will be exemplified below. For example, in the field of small electronic technology, there is a method of rotating a test object such as a silicon wafer and performing a test a plurality of times (for example, JP-A-2002-257745).
[0017]
[Means for Solving the Problems]
In order to solve the above-described problem, as a first embodiment of the present invention, a defect detection device according to claim 1 is provided.
A transport mechanism for transporting the plate-like inspection object in a certain direction, a linear illuminator, and a line sensor, wherein light radiated by the linear illuminator is present in the plate-like body. A dark-field type defect detection device that detects the defect by being scattered by detecting the scattered light with the line sensor,
The scanning direction of the line illuminator and the line sensor is provided with at least two sets of detection units arranged so as to be parallel to each other, and each of the detection units has a different angle with respect to the transport direction of the plate-like body. Characterized by being arranged in
[0018]
The defect detection device according to claim 2,
The detection unit is characterized in that two sets of units are arranged so that angles formed by the plate-like body with the transport direction are 30 ° to 60 ° and 120 ° to 150 °, respectively.
[0019]
The defect detection device according to claim 3 is
It is characterized in that two sets of the detecting units are provided, and the two sets of units are arranged so that the angles formed by the plate-like body and the conveying direction are 45 ° and 135 °, respectively.
[0020]
The defect detection device according to claim 4 is
The linear illuminator includes at least two linear illumination light sources.
[0021]
The defect detection device according to claim 5,
The linear illuminator is disposed at a position where direct light from the illuminator does not enter the line sensor, or a light-shielding plate is disposed between the linear illumination and the line sensor. It is characterized by having.
[0022]
The defect detection device according to claim 6,
A light-receiving amount correcting unit that corrects a light-receiving amount of the line sensor in accordance with an angle formed between the linear defect on the plate-like body and the detection unit.
[0023]
Further, as a second aspect of the present invention, a defect detection method according to claim 7 is provided.
The plate-shaped body, which is the object to be inspected, is transported in one direction by the transport mechanism,
The plate-like body is irradiated with light from a line-shaped illuminator, the illumination light is scattered by a defect present in the plate-like body, and the scattered light is detected by the line sensor to detect the defect. A dark field type defect detection method,
The scanning direction of the line illuminator and the line sensor is provided with at least two sets of detection units arranged so as to be parallel to each other, and the detection units are respectively arranged at different angles with respect to the transport direction of the plate-like body. It is characterized by being arranged.
[0024]
The defect detection method according to claim 8,
The detection unit is characterized in that two sets of units are arranged so that angles formed by the plate-like body with the transport direction are 30 ° to 60 ° and 120 ° to 150 °, respectively.
[0025]
The defect detection method according to claim 9 is:
Two sets of the detection units are provided, and the two sets of units are arranged so that the angles formed by the plate-like body and the transport direction are 45 ° and 135 °, respectively.
[0026]
The defect detection method according to claim 10,
The linear illuminator includes at least two linear illumination light sources.
[0027]
The defect detection method according to claim 11 is
The linear illuminator is disposed at a position where direct light from the illuminator does not enter the line sensor, or a light-shielding plate is disposed between the linear illuminator and the line sensor. .
[0028]
The defect detection method according to claim 12 is
The amount of light received by the line sensor is corrected according to an angle between a linear defect on the plate and the detection unit.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a defect detection device of the present invention will be described in detail with reference to the drawings.
[0030]
(Preliminary study)
First, when the angle between the object to be inspected having a linear defect (glass substrate 3) and the detection unit including the linear illuminator and the line sensor is changed using the defect detection apparatus shown in FIG. The effect on the scattered light intensity was investigated. 8, reference numeral 1 denotes a linear illuminator, 4 denotes a scanning area of a line sensor, and 5 denotes a linear defect. Specifically, the angle θ formed by the linear illuminator 1 and the scanning area 4 of the line sensor and the linear defect 5 is changed every 10 ° from 0 ° to 90 ° to measure the scattered light intensity. did. As the linear defects 5, glass substrates having five types of linear defects having different lengths were prepared. The width of the line defect, respectively W A, W B, when formed into a W C, W D, W E , was their magnitude relation as follows.
W A <W B <W C <W D <W E
[0031]
The result is shown in FIG. In FIG. 9, the scattered light intensity from the five types of defects is represented by 256 gradations. The vertical axis is an arbitrary unit, and each plot represents the following linear defect.
◇: W A, □: W B, △: W C, ×: W D, ○: W E
[0032]
From the results shown in FIG. 9, it was found that even for the same linear defect, the scattered light intensity changed depending on the difference in the angle θ. From this, it was confirmed that the angle θ between the direction of the linear defect and the scanning direction of the line sensor affects the intensity of the scattered light.
[0033]
In addition, looking at the intensity of the scattered light at each changed angle, the width of the linear defects W A , W B , and W C is about half when compared to 0 ° around 60 °. ing. Further, as the angle becomes 60 ° to 90 °, the intensity of the scattered light tends to further decrease. Therefore, a range where the angle θ between the scanning direction of the line sensor and the linear defect is about 0 ° to 60 ° is an angle range where the scattered light intensity is strong.
[0034]
Here, in FIG. 10, an angle between the scanning direction 41 of the detection unit including the linear illuminator 1 and the line sensor and the transport direction of the plate 3 is defined as θ. The inspection width at that time is W. Then, a change in the inspection width W when θ was changed was confirmed. The inspection width W can be obtained by W = COSθ, where the length of the illuminator is 1. FIG. 11 is a graph showing a change in the inspection width W when θ is changed.
[0035]
According to the graph shown in FIG. 11, it is desirable to set the angle θ in the range of 45 ° to 135 ° so that the inspection width W is at least half the length of the illumination.
[0036]
(Example 1)
FIG. 2 is a schematic plan view of a detection device according to one embodiment of the present invention. This detection device has two detection units each including a line-shaped illuminator 1 and a line sensor, and θ1 is set with respect to the transport direction of the glass plate 3 so that they can complement each other. They are arranged so that 45 ° and θ2 become 135 °. FIG. 3 is a schematic cross-sectional view of the portion AB in FIG. 2 as viewed from the side. This defect detection apparatus performs dark field type defect detection.
[0037]
In such a defect detection apparatus, for example, a float glass plate 3 having a thickness of 5 mm is irradiated with light from the linear illuminators 1 and 1 above the float glass plate 3 as an object to be inspected. Taken. In the linear illuminator, two straight tube fluorescent lamps, which are linear light sources, are provided with a gap of 10 mm, and the distance from the surface of the glass plate 3 is set to 10 mm, so that reflection illumination is performed. Further, light shielding plates 6 and 6 are arranged above the linear illuminator 1 so that the interval between them is 5 mm so that direct light from the illuminator does not enter the line sensor 2.
[0038]
The aperture of the line sensor 2 is preferably close to open so as to receive scattered light from the defect as much as possible. In this case, scattered light from the minute defect can be received.
[0039]
The image captured by the line sensor 2 was subjected to image processing by the image processing device 7 shown in FIG. The linear image processed by the image processing device 7 was taken into the personal computer 8 and connected as a whole glass plate to form a composite image of the entire glass plate as shown in FIG.
[0040]
Since this detection is of the dark field type, the linear defect 5 appears as a bright line that shines brightly in the entire image of the glass plate in the composite image. Therefore, the bright line may be recognized as a defect.
[0041]
In Example 1, the linear defect 5 in the composite image shown in FIG. 5 was detectable up to a width of about 30 μm.
[0042]
(Example 2)
The conditions of Example 1 were set such that the distance between two straight tube fluorescent lamps in the linear illuminator was 80 mm, and the distance from the surface of the glass plate 3 was 15 mm. Was done.
[0043]
In Example 2, the linear defect in the composite image was detectable up to a width of about 60 μm.
[0044]
In the above-described first and second embodiments, the description has been given by taking as an example a glass plate which is a transparent body as the plate-like body. However, in the reflective illumination, the object to be inspected is not limited to a transparent body, and a metal plate or the like can be inspected.
[0045]
In each of the first and second embodiments, the light-shielding plate is provided. However, the present invention is not limited to this, and as shown in FIG. 6, if the arrangement is such that direct light from the illuminators 1 and 1 does not directly enter the line sensor 2, it is not particularly necessary to provide a light shielding plate. .
[0046]
(Example 3)
FIG. 7 is a schematic cross-sectional view of a detection apparatus according to another embodiment of the present invention. In this alternative embodiment, light is irradiated from below the transparent glass plate 3. FIG. 7 is a schematic cross-sectional view of the portion AB in FIG. 2 as viewed from the side.
[0047]
Further, a light-shielding plate 6 is disposed above the line-shaped illuminator 1 so that the light from the illuminator does not enter the line sensor 2 so that the interval between the slits is about 5 mm, thereby providing transmissive illumination. . As described above, if the inspection object is a transparent body and the defect reflects the illumination light, the defect can be detected even in the case of the transmissive illumination.
[0048]
In Example 3, the linear defect 5 was detectable up to a width of about 40 μm.
[0049]
(Correction of received light amount)
Depending on the angle between the linear defect and the detection unit, the amount of light from the detected linear defect varies. Therefore, it is preferable to previously obtain a light amount correction value for each angle between the linear defect and the detection unit, and correct the light amount based on the correction value.
[0050]
For example, in Examples 1 to 3 described above, the angle formed between the linear defect 5 captured by the line sensor 2 and the detection unit was first determined by the image processing device 7. Then, a correction value corresponding to this angle may be added to the light amount from the linear defect 5. With this correction, the change in the amount of light received by the line sensor 2 due to the angle between the linear defect 5 and the detection unit can be minimized, and the linear defect 5 can be detected with high sensitivity.
[0051]
As described above, the correction unit first provides the image processing apparatus 7 with a correction table corresponding to the above-described angle. Next, when a linear defect is detected, the above-described angle is obtained by the image processing device 7, and a correction value is called from a previously obtained table to correct the amount of received light.
[0052]
【The invention's effect】
As described above, in the present invention, at least two sets of the detection unit including the line illuminator and the line sensor are arranged at different angles with respect to the transport direction of the plate.
[0053]
With such an arrangement, even if the angle between the linear defect and the detection unit is various, scattered light generated by a defect such as a linear scratch, a bubble, or a foreign substance present on the plate-like body is detected by the detection unit. Can complement each other. As a result, linear defects existing at various angles with respect to the transport direction of the plate-like body can be completely detected.
[0054]
Also, by correcting the amount of light received by the line sensor for the angle between the linear defect existing on the plate-shaped body and the detection unit, the change in the brightness of the scattered light caused by the size and depth of the defect is detected. can do. Therefore, by changing the threshold of the scattered light intensity, the size and depth of the defect to be detected can be limited.
[0055]
Note that the defect detection technique of the present invention is not limited to, for example, a glass plate that is not only a linear defect existing in a plate-like body but also a defect that emits scattered light. Is also effective.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a linear defect and angles formed by a linear illuminator and a line sensor.
FIG. 2 is a schematic plan view of the defect detection apparatus according to the first embodiment of the present invention.
FIG. 3 is a schematic sectional view of a defect detection apparatus according to the first embodiment of the present invention.
FIG. 4 is a configuration diagram of an apparatus that performs image processing on an image captured by a line sensor.
FIG. 5 is a diagram conceptually showing a composite image of a linear defect after image processing in the first embodiment.
FIG. 6 is a schematic cross-sectional view of a defect detection device without a light shielding plate.
FIG. 7 is a schematic sectional view of a defect detection apparatus according to a third embodiment of the present invention.
FIG. 8 is a schematic plan view of a defect detection device showing a preliminary study.
FIG. 9 is a graph showing the angle dependence of a linear defect performed in a preliminary study.
FIG. 10 is a view for explaining an angle between a transport direction of a plate-like body and a scanning direction of a line sensor.
FIG. 11 is a graph showing a change in an inspection width depending on an angle between a transport direction of a plate-like body and a scanning direction of a line sensor.
[Explanation of symbols]
1: line illuminator 2: line sensor 3: plate (glass plate)
4: Scanning area 41 of the line sensor 41: Scanning direction of the line sensor 5: Linear defect 6: Light shielding plate 7: Image processing device 8: Personal computer

Claims (12)

板状体の被検査体をある一方向に搬送する搬送機構と、ライン状照明器と、ラインセンサとを備え、前記ライン状照明器によって照射された光が、前記板状体に存在する欠陥で散乱され、その散乱光を前記ラインセンサにより検出することによって、前記欠陥を検出する暗視野型の欠陥検出装置であって、
前記ライン状照明器と前記ラインセンサとの走査方向が、互いに平行になるように配置された検出ユニットを少なくとも2組備え、前記検出ユニットがそれぞれ前記板状体の搬送方向に対して、異なる角度に配置されていることを特徴とする欠陥検出装置。
A transport mechanism for transporting the plate-like inspection object in a certain direction, a linear illuminator, and a line sensor, wherein light radiated by the linear illuminator is present in the plate-like body. A dark-field type defect detection device that detects the defect by being scattered by detecting the scattered light with the line sensor,
The scanning direction of the line illuminator and the line sensor is provided with at least two sets of detection units arranged so as to be parallel to each other, and each of the detection units has a different angle with respect to the transport direction of the plate-like body. A defect detection device, wherein
前記検出ユニットのうち、2組のユニットにおける前記板状体の搬送方向とのなす角度が、それぞれ30°〜60°、120°〜150°となるように配置されていることを特徴とする請求項1に記載の欠陥検出装置。The detection unit is characterized in that two sets of units are arranged so that angles formed with the conveyance direction of the plate-like body are 30 ° to 60 ° and 120 ° to 150 °, respectively. Item 2. The defect detection device according to Item 1. 前記検出ユニットを2組備え、この2組のユニットにおける前記板状体の搬送方向とのなす角度が、それぞれ45°と135°となるように配置されていることを特徴とする請求項2に記載の欠陥検出装置。The apparatus according to claim 2, wherein two sets of the detection units are provided, and the two sets of units are arranged so that angles formed by the plate-shaped body and a conveyance direction thereof are 45 ° and 135 °, respectively. The defect detection device according to the above. 前記ライン状照明器は、少なくとも2本のライン状照明光源を含むことを特徴とする請求項1〜3いずれか1項に記載の欠陥検出装置。The said linear illuminator contains at least 2 linear illumination light sources, The defect detection apparatus of any one of Claims 1-3 characterized by the above-mentioned. 前記ライン状照明器は、該照明器からの直接光が、前記ラインセンサに入射しないような位置に配置されている、または、前記ライン状照明と前記ラインセンサの間に、遮光板が配置されていることを特徴とする請求項1〜4いずれか1項に記載の欠陥検出装置。The linear illuminator is disposed at a position where direct light from the illuminator does not enter the line sensor, or a light-shielding plate is disposed between the linear illumination and the line sensor. The defect detection device according to any one of claims 1 to 4, wherein: 前記板状体上にある線状欠陥と前記検出ユニットのなす角度に応じて、前記ラインセンサの受光量に補正を行う受光量補正手段を備えることを特徴とする請求項1〜5いずれか1項に記載の欠陥検出装置。6. A light receiving amount correcting means for correcting a light receiving amount of the line sensor in accordance with an angle formed by a linear defect on the plate and the detection unit. Item 13. The defect detection device according to Item 1. 搬送機構によりある一方向に被検査体である板状体を搬送し、
ライン状照明器から前記板状体に光を照射し、該照明光が前記板状体に存在する欠陥にて散乱し、その散乱光を前記ラインセンサにより検出することによって、前記欠陥を検出する暗視野型の欠陥検出方法であって、
前記ライン状照明器と前記ラインセンサとの走査方向が、互いに平行になるように配置した検出ユニットを少なくとも2組備え、前記検出ユニットをそれぞれ前記板状体の搬送方向に対して、異なる角度に配置したことを特徴とする欠陥検出方法。
The plate-shaped body, which is the object to be inspected, is transported in one direction by the transport mechanism,
The plate-like body is irradiated with light from a line-shaped illuminator, the illumination light is scattered by a defect present in the plate-like body, and the scattered light is detected by the line sensor to detect the defect. A dark field type defect detection method,
The scanning direction of the line illuminator and the line sensor is provided with at least two sets of detection units arranged so as to be parallel to each other, and the detection units are respectively arranged at different angles with respect to the transport direction of the plate-like body. A defect detection method characterized by being arranged.
前記検出ユニットのうち、2組のユニットにおける前記板状体の搬送方向とのなす角度を、それぞれ30°〜60°、120°〜150°となるように配置したことを特徴とする請求項7に記載の欠陥検出方法。8. The detection unit according to claim 7, wherein two of the detection units are arranged so that angles formed by the plate-shaped body with respect to the conveyance direction are 30 ° to 60 ° and 120 ° to 150 °, respectively. 3. The defect detection method according to 1. 前記検出ユニットを2組備え、この2組のユニットにおける前記板状体の搬送方向とのなす角度を、それぞれ45°と135°となるように配置したことを特徴とする請求項8に記載の欠陥検出方法。9. The apparatus according to claim 8, wherein two sets of the detection units are provided, and an angle between the two sets of units and a transport direction of the plate-like body is set to 45 ° and 135 °, respectively. 10. Defect detection method. 前記ライン状照明器を、少なくとも2本のライン状照明光源を含むようにしたことを特徴とする請求項7〜9いずれか1項に記載の欠陥検出方法。The defect detection method according to any one of claims 7 to 9, wherein the linear illuminator includes at least two linear illumination light sources. 前記ライン状照明器を、該照明器からの直接光が前記ラインセンサに入射しないような位置に配置した、または前記ライン状照明と前記ラインセンサの間に遮光板を配置したことを特徴とする請求項7〜10いずれか1項に記載の欠陥検出方法。The linear illuminator is disposed at a position where direct light from the illuminator does not enter the line sensor, or a light-shielding plate is disposed between the linear illuminator and the line sensor. The defect detection method according to claim 7. 前記板状体上にある線状欠陥と前記検出ユニットのなす角度に応じて、前記ラインセンサの受光量を補正することを特徴とする請求項7〜11いずれか1項に記載の欠陥検出方法。The defect detection method according to claim 7, wherein an amount of light received by the line sensor is corrected according to an angle between a linear defect on the plate and the detection unit. .
JP2003102604A 2003-04-07 2003-04-07 Defect detection device and defect detection method Pending JP2004309287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102604A JP2004309287A (en) 2003-04-07 2003-04-07 Defect detection device and defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102604A JP2004309287A (en) 2003-04-07 2003-04-07 Defect detection device and defect detection method

Publications (1)

Publication Number Publication Date
JP2004309287A true JP2004309287A (en) 2004-11-04

Family

ID=33465980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102604A Pending JP2004309287A (en) 2003-04-07 2003-04-07 Defect detection device and defect detection method

Country Status (1)

Country Link
JP (1) JP2004309287A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250715A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Device and method for inspecting defect of film
JP2008039730A (en) * 2006-08-10 2008-02-21 Olympus Corp Substrate inspection device
JP2008170429A (en) * 2006-12-14 2008-07-24 Nippon Electric Glass Co Ltd Plate glass defect detector, plate glass manufacturing method, plate glass article, plate glass quality determination device, and plate glass inspection method
JP2008216148A (en) * 2007-03-06 2008-09-18 Mec:Kk Defect inspection apparatus and illumination device
JP2009092472A (en) * 2007-10-05 2009-04-30 Panasonic Electric Works Co Ltd Visual inspection device
JP2013053860A (en) * 2011-09-01 2013-03-21 Toray Ind Inc Flaw defect inspection device and method
JP2014190797A (en) * 2013-03-27 2014-10-06 Tokushima Densei Kk Defect inspection device for silicon wafer
JP2014222155A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Unevenness inspection device
JP2016148520A (en) * 2015-02-10 2016-08-18 東レ株式会社 Faulty scratch checkup device, and faulty scratch checkup method
JP2017125805A (en) * 2016-01-15 2017-07-20 東レ株式会社 Flaw defect checking device for sheet
CN110596130A (en) * 2018-05-25 2019-12-20 上海翌视信息技术有限公司 Industrial detection device with auxiliary lighting
JP2020159879A (en) * 2019-03-27 2020-10-01 日立グローバルライフソリューションズ株式会社 Inspection method and inspection system
WO2020208981A1 (en) * 2019-04-11 2020-10-15 住友化学株式会社 Testing device, testing method, and manufacturing method for film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124243A (en) * 1981-01-26 1982-08-03 Nippon Kokan Kk <Nkk> Detection for surface flaw of steel material
JPH08201222A (en) * 1995-01-23 1996-08-09 Dainippon Printing Co Ltd Method for inspecting defect of lenticular lens sheet
JPH08304295A (en) * 1995-05-01 1996-11-22 Nippon Sheet Glass Co Ltd Method and apparatus for detecting surface defect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124243A (en) * 1981-01-26 1982-08-03 Nippon Kokan Kk <Nkk> Detection for surface flaw of steel material
JPH08201222A (en) * 1995-01-23 1996-08-09 Dainippon Printing Co Ltd Method for inspecting defect of lenticular lens sheet
JPH08304295A (en) * 1995-05-01 1996-11-22 Nippon Sheet Glass Co Ltd Method and apparatus for detecting surface defect

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250715A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Device and method for inspecting defect of film
JP4628824B2 (en) * 2005-03-10 2011-02-09 富士フイルム株式会社 Film defect inspection apparatus and film manufacturing method
JP2008039730A (en) * 2006-08-10 2008-02-21 Olympus Corp Substrate inspection device
JP2008170429A (en) * 2006-12-14 2008-07-24 Nippon Electric Glass Co Ltd Plate glass defect detector, plate glass manufacturing method, plate glass article, plate glass quality determination device, and plate glass inspection method
JP2008216148A (en) * 2007-03-06 2008-09-18 Mec:Kk Defect inspection apparatus and illumination device
JP4615532B2 (en) * 2007-03-06 2011-01-19 株式会社メック Defect inspection equipment, lighting equipment
JP2009092472A (en) * 2007-10-05 2009-04-30 Panasonic Electric Works Co Ltd Visual inspection device
JP2013053860A (en) * 2011-09-01 2013-03-21 Toray Ind Inc Flaw defect inspection device and method
JP2014190797A (en) * 2013-03-27 2014-10-06 Tokushima Densei Kk Defect inspection device for silicon wafer
JP2014222155A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Unevenness inspection device
JP2016148520A (en) * 2015-02-10 2016-08-18 東レ株式会社 Faulty scratch checkup device, and faulty scratch checkup method
JP2017125805A (en) * 2016-01-15 2017-07-20 東レ株式会社 Flaw defect checking device for sheet
CN110596130A (en) * 2018-05-25 2019-12-20 上海翌视信息技术有限公司 Industrial detection device with auxiliary lighting
JP2020159879A (en) * 2019-03-27 2020-10-01 日立グローバルライフソリューションズ株式会社 Inspection method and inspection system
JP7063839B2 (en) 2019-03-27 2022-05-09 日立グローバルライフソリューションズ株式会社 Inspection method and inspection system
WO2020208981A1 (en) * 2019-04-11 2020-10-15 住友化学株式会社 Testing device, testing method, and manufacturing method for film

Similar Documents

Publication Publication Date Title
KR101300132B1 (en) Apparatus for detecting particle in flat glass and detecting method using same
TWI266861B (en) Apparatus and method of inspecting mura-defect and method of fabricating photomask
JP5594254B2 (en) Silicon substrate inspection apparatus and inspection method
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
JP2006250715A (en) Device and method for inspecting defect of film
JP2011053213A (en) Method and device for detecting defect of object
JP2008014697A (en) Surface inspection device
JP2004309287A (en) Defect detection device and defect detection method
JP4747602B2 (en) Glass substrate inspection apparatus and inspection method
JP2008026212A (en) Pattern inspection device
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP2011117928A (en) Apparatus and method for inspecting internal defect of substrate
JP2005181070A (en) Flaw detecting method of transparent plate-shaped body and flaw detector therefor
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
JP2001201429A (en) Method and device for inspecting defect in inspected base body
KR20180136421A (en) System and method for defect detection
TW202102839A (en) Appearance inspection device capable of suppressing the occurrence of halation and being excellent in inspection processing speed
JP2000171401A (en) Light source for flaw inspection and light source unit for flaw inspection
JP2003263627A (en) Image taking-in device
JPH11316195A (en) Surface defect detecting device of transparent plate
JP2013246059A (en) Defect inspection apparatus and defect inspection method
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP2011203201A (en) Metal defect detection method
JP2001124538A (en) Method and device for detecting defect in surface of object
JP7448808B2 (en) Surface inspection device and surface inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081029