JP2004307266A - Method and apparatus for forming quartz glass - Google Patents

Method and apparatus for forming quartz glass Download PDF

Info

Publication number
JP2004307266A
JP2004307266A JP2003103365A JP2003103365A JP2004307266A JP 2004307266 A JP2004307266 A JP 2004307266A JP 2003103365 A JP2003103365 A JP 2003103365A JP 2003103365 A JP2003103365 A JP 2003103365A JP 2004307266 A JP2004307266 A JP 2004307266A
Authority
JP
Japan
Prior art keywords
quartz glass
mold
temperature
heating
glass block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103365A
Other languages
Japanese (ja)
Other versions
JP4288413B2 (en
Inventor
Yukiko Kimura
ゆき子 木村
Tetsuya Abe
哲也 阿邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003103365A priority Critical patent/JP4288413B2/en
Publication of JP2004307266A publication Critical patent/JP2004307266A/en
Application granted granted Critical
Publication of JP4288413B2 publication Critical patent/JP4288413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for forming quartz glass whose residual strain is little and which is homogeneous by controlling abnormal molding such as buckling when heating and pressure molding of a quartz glass block. <P>SOLUTION: The quartz glass block 25 is contained in a mold 15, heated and formed to be a specified shape by being pressurized between a moving pressure part 23 and an opposed part 18. The quartz glass block 25 is pressurized while the temperature of the pressure part 23 side is controlled to be higher than the opposed part 18 side in its temperature distribution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、モールド内に石英ガラスを収容して加熱しつつ、加圧して均質な石英ガラスを所定形状に成形するための成形方法及び成形装置に関する。
【0002】
【従来の技術】
IC、LSI等の集積回路パターン転写には、主に投影露光装置(または、光リソグラフィ装置)が用いられる。この装置に用いられる投影光学系には、集積回路の高集積化に伴い、広い露光領域と、その露光領域全体にわたって、より高い解像力が要求される。投影光学系の解像力の向上については、露光波長をより短くするか、あるいは、投影光学系の開口数(NA)を大きくすることが行われる。
【0003】
露光波長については、g線(436nm)からi線(365nm)、KrF(248nm)やArF(193nm)エキシマレーザーへと短波長化が進められている。また、更に高集積化を進めるに当たって、現在、F(157nm)エキシマレーザ,X線,電子線を光源に用いる方法が検討されている。この中で、これまでの設計思想を生かして作製することが可能なFエキシマレーザを用いた縮小投影露光装置がにわかに脚光を浴びてきている。
【0004】
一般に、i線より長波長の光源を用いた縮小投影露光装置の照明光学系あるいは投影光学系のレンズ部材として用いられる光学ガラスは、i線よりも短い波長領域では光透過率が急激に低下し、特に250nm以下の波長領域ではほとんどの光学ガラスでは透過しなくなる。そのため、エキシマレーザを光源とした縮小投影露光装置の光学系を構成するレンズの材料には、石英ガラスとフッ化カルシウム結晶のみが使用可能である。この2つの材料はエキシマレーザの結像光学系で色収差補正を行う上で不可欠な材料である。
【0005】
縮小投影露光装置でウェハー上に回路を焼き付けるためのもう一つの重要な要素としてレチクルが挙げられる。このレチクルに用いられる材料としては、エキシマレーザ耐久性はもとより、基板の発熱による熱膨張が大きな問題になるため、耐久性が良好でなおかつ熱膨張係数の小さい、直接法と呼ばれる方法(火炎加水分解により透明石英ガラスを製造する方法)で合成された石英ガラスが用いられている。
【0006】
直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば酸素ガス)及び可燃性ガス(水素含有ガス、例えば水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば四塩化ケイ素ガス)をキャリアガス(通常酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転および揺動および引き下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。
【0007】
この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状,大きさの光学部材を製造することができる。
【0008】
また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。
【0009】
この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧板により加圧することにより成形を行い、その後モールド内で徐冷したり、更にアニール処理を行い、1対向面の面積が拡大された所定形状の成形体を得ることができる。
【0010】
このような加熱加圧成形を行うものとして、例えば、グラファイト製のモールド内で、絶対圧が 0.1Torr以上大気圧以下へのヘリウムガス雰囲気下に、1700℃以上の温度に加熱加圧成形し、ついで1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照。)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照。)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照。)も知られている。
【0011】
【特許文献1】
特公平4−54626号公報。
【0012】
【特許文献2】
特開昭56−129621号公報。
【0013】
【特許文献3】
特開昭57−67031号公報。
【0014】
【特許文献4】
特開2002−22020号公報。
【0015】
【発明が解決しようとする課題】
しかしながら、従来の加熱加圧成形では、均一に加熱可能なヒータで所定温度に加熱されたチャンバー内に、石英ガラス塊を収容したモールドを所定時間保持して石英ガラスを成形可能温度に昇温していた。そのため、円柱状或いは角柱状の石英ガラス塊を長手方向に加圧して成形する場合、石英ガラス塊の略全体が一様に成形可能温度に昇温されて軟化されているため、加圧途中で石英ガラス塊が中間部分や下部で変形して折れる現象、所謂、座屈を生じることがあった。
【0016】
ところが、座屈を生じて、石英ガラス塊の中間部分や下部から成形されると、座屈部分は境界面となって多数の気泡が発生し、また得られる石英ガラスの残留歪が大きくなり、光学的に不均質になり易いことが明らかになった。
【0017】
特に、昨今の大面積を一括露光するために要求される大型のレンズ、ミラー、レチクル等の光学部材を形成する場合には、より大きな石英ガラス塊を用いて、大型の成形装置のチャンバー内でより長時間加熱しなければならず、更に座屈が生じ易く、光学的に不均質になり易かった。
【0018】
そこで、この発明では、石英ガラス塊を加熱加圧成形する際、座屈などの成形異常を抑制して、残留歪の少ない均質な石英ガラスを成形することができる成形方法及び成形装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の発明は、石英ガラス塊をモールド内に収容して加熱し、加圧部を移動させることにより、前記石英ガラス塊を対向部との間で加圧して所定形状に成形する方法において、前記石英ガラス塊の温度分布を、前記加圧部側が前記対向部側より高温となるように制御した状態で、前記加圧部により加圧することを特徴とする。
【0020】
また、請求項2に記載の発明は、請求項1の構成に加え、前記石英ガラス塊の温度分布の幅が、5℃以上50℃以下であることを特徴とする。
【0021】
更に、請求項3に記載の発明は、石英ガラス塊を収容可能な中空部を有するモールドと、前記中空部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラス塊を加熱する加熱手段とを備え、前記石英ガラス塊を前記加熱手段で加熱しつつ、前記加圧部を前記底部側に移動させることにより、該石英ガラス塊を加圧して所定形状に成形する装置であって、前記加熱手段が、前記石英ガラス塊の前記加圧部側を前記モールドの底部側より高温となるように加熱するものであることを特徴とする。
【0022】
また、請求項4に記載の発明は、請求項3に記載の構成に加え、前記加熱手段は、前記モールドの側面側に配置され、前記加圧部側と前記底部側とで発熱量を独立して調整可能に構成されていることを特徴とする。
【0023】
更に、請求項5に記載の発明は、請求項3又は4に記載の構成に加え、前記加熱手段は、前記モールドの底面側に配置されて、前記石英ガラス塊の底面部を加熱する底部ヒータを有することを特徴とする。
【0024】
【発明の実施の形態】
[実施の形態1]
以下、この発明の実施の形態1について説明する。
【0025】
図1はこの実施の形態の成形装置を示す。
【0026】
この成形装置10は、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料として製造される合成石英ガラスのインゴットやその一部、または、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラス塊から、例えば、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系の大型のレンズ材料などのように広い面を有する板状体やその他の大型ガラスブロックを成形するための装置である。
【0027】
この成形装置10では、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられた加熱手段としての複数のカーボンヒータ13a、13bとが設けられ、更に、真空チャンバー11内部の略中央部に中空部21を有するモールド15が収容されている。ここでは、カーボンヒータ13a、13bはそれぞれ独立して発熱量を調整可能に構成されており、モールド15の側面側の全周囲に上下に並べて配置されている。
【0028】
モールド15は、底板16及び受板17を備えた底部18と、底部18の上部に筒状に形成された側壁部20とを備え、この筒状の側壁部20と底部18とにより中空部21が形成されている。
【0029】
この中空部21には、中空部21の形状に対応する形状の加圧部としての天板23が配置され、天板23の押圧面23b(上面)を、真空チャンバー11の外部に配設された成形手段としての油圧シリンダのシリンダロッド26で押圧することにより、対向面としてのモールド15の底部18側に移動可能となっている。
【0030】
なお、このシリンダロッド26を備えた油圧シリンダは、外部から供給する油圧を調整することにより加圧されて移動するように構成されているが、詳細な図示は省略されている。
【0031】
これらのモールド15及び天板23は、塊状の石英ガラス25の成形時の温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に塊状の石英ガラス25と接触しても不純物を混入し難い材料から形成されており、ここでは全てグラファイトにより形成されている。
【0032】
次に、以上のような構成の成形装置10を用いて、この実施の形態の方法により、塊状の石英ガラス25を成形する場合について説明する。まず、真空チャンバー11内に底板16、受板17、側壁部20を組合わせてモールド15を形成する。そして、モールド15の中空部21内に塊状の石英ガラス25を配置する。この実施の形態では、塊状の石英ガラス25として合成石英ガラスインゴットを用いており、リードタイムの短縮化のために、モールド15の中空部21に収容する前に、予め300℃未満の温度で余熱したものを用いるのが好ましい。
【0033】
そして、中空部21内に収容した塊状の石英ガラス25の上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。そして、真空チャンバー11内を不活性ガスで置換し、真空チャンバー11内を圧力を、例えば1×10Pa〜1×10Paとする。
【0034】
次に、カーボンヒータ13a、13bにより、モールド15及びその中空部21に収容された塊状の石英ガラス25を加熱する。この加熱時には、まず、カーボンヒータ13a、13bを発熱させて、真空チャンバー11内を500〜1000℃/hrの昇温速度で昇温する。そして、モールド15の上部側、即ち、天板23側のカーボンヒータ13aの発熱量を増加させて、塊状の石英ガラス25の天板23側(即ち、上部)の温度が受板17側(即ち、下部)よりも高くなるように、カーボンヒータ13a、13bの発熱量を制御する。
【0035】
この状態で、塊状の石英ガラス25の内部まで十分に加熱される程度の時間、例えば15〜45分間保持することにより、塊状の石英ガラス25の温度分布の幅、即ち、天板23側の頂部25aとモールド15の底部18側の底面部25bとの温度差を5℃以上50℃以下とすることができる。ここでは、塊状の石英ガラス25の温度分布が5℃未満であると、十分な座屈抑制効果が小さくなり、一方、50℃より高いと、十分な座屈抑制効果は得られるものの、石英ガラス25の加圧方向の温度勾配が大き過ぎるため、石英ガラス25の加圧変形が狭い範囲で起こり、その結果、加圧変形に要する時間が長くなり、種々の不具合が生じる。例えば、不純物による汚染が大きくなり、また、一回の成形に要するサイクルタイムが長くなることによって生産効率が低下し、更に屈折率の均質性が低下する。
【0036】
更に、この成形に際しては、塊状の石英ガラス25の全体の温度を、結晶化温度以上軟化点以下、具体的には1570℃〜1670℃の成形温度に昇温するのが好ましいが、成形の開始段階で、塊状の石英ガラス25の頂部25a付近を加圧する時点では、少なくとも頂部25a側が、成形温度に到達していればよい。
【0037】
そして、このように塊状の石英ガラス25を加熱した状態で、油圧シリンダへの油圧を制御調整することにより、シリンダロッド26を下方へ移動させて、シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23がモールド15の底部18側の加圧方向へ移動し、天板23の加圧面23aの底部18との間で塊状の石英ガラス25が加圧される。
【0038】
すると、石英ガラス25は頂部25a側が底面部25b側より高温となっているため、頂部25a側が底面部25b側より変形し易く、天板23の加圧面23aにより加圧されると、頂部25a側から順次変形されることになる。
【0039】
このとき、天板23の下降速度を、例えば5〜15cm/minとすることにより、より頂部25a側から変形させ易くできる。
【0040】
また、成形時に天板23から加える圧力は、成形初期の段階で天板23の圧力を小さくし、最終段階で最大加圧力となるようにするのが好ましく、例えば、初期の段階では天板23の加圧面23aの単位面積当りに換算した圧力を0.3〜1.5Kg/cmとし、成形の最終段階では1.0〜5.0Kg/cmとすることができる。このような範囲とすることによっても、頂部25a側から変形させ易くできる。
【0041】
そして、石英ガラス25が所定形状の板状体に成形された段階で、天板23による加圧を終了する。その後、板状に成形された石英ガラス25を、モールド15内に配置した状態のままで冷却し、真空チャンバ11から成形体を取り出すことにより成形が完了する。
【0042】
以上のようにして、塊状の石英ガラス25を成形すれば、モールド15の中空部21に収容された塊状の石英ガラス25を、天板13側の頂部25aをモールド15の底部18側より高温となるようにカーボンヒータ13a、13bで加熱するので、塊状の石英ガラス25の天板23側が底部18側より成形され易く、成形時に天板23で塊状の石英ガラス25を加圧すると、天板23側から順に成形することができる。そのため、成形途中に中空部21内の塊状の石英ガラス25が座屈を生じにくく、得られる板状の石英ガラス25の残留歪みを抑えることができ、均質な板状体が得られる。
【0043】
また、ここでは、発熱量を独立して調整可能なカーボンヒータ13a、13bを、モールド15の側面側加圧方向に並べて配置したので、モールド15の中空部21内に収容された塊状の石英ガラス25を、加圧方向に温度分布を形成するように加熱し易い。
【0044】
なお、上記実施の形態1では、結晶化温度以上軟化点温度以下の温度で成形する例について説明したが、成形温度は石英ガラス25の結晶化温度以上であればよく、例えば一部を軟化点より高い温度にして成形することも可能である。
【0045】
また、上記では、加熱手段として、発熱量が異なる2つのカーボンヒータ13a、13bを用いた例を示したが、3つ以上のヒータを配置することも可能である。また、1つのヒータをモールド15の側面に配置し、部分的に発熱量を異ならせたり、1つの発熱量が均一なヒータを用いて、底面部25b側を遮蔽板等で遮蔽することにより加熱量を異ならせることも可能である。
【0046】
[実施の形態2]
実施の形態2の成形装置では、図2に示すように、断熱材12の縦壁内に、モールド15の天板23側の側面に配置されたカーボンヒータ13と、モールド15の底部18にリング形状に埋設されて塊状の石英ガラス25の底面部25bを加熱する底部ヒータ27とが設けられている。その他は、実施の形態の1と同様に構成されている。
【0047】
このような成形装置10であっても、カーボンヒータ13と底部ヒータ27との発熱量を調整することにより、塊状の石英ガラス15の頂部25a側を底面部25b側より高温となるように加熱することができ、成形途中の塊状の石英ガラス25に座屈が生じることを抑制できる。
【0048】
しかも、このように石英ガラス25の底面部25bを加熱する底部ヒータ27を備えると、塊状の石英ガラス25の内部を加熱し易く、加圧方向と直交する断面が大きい塊状の石英ガラス25であっても、内部まで加熱し易く、成形を容易にすることができる。
【0049】
なお、この実施の形態2では、モールド15の側面側に配置されたカーボンヒータ13は全面で均一に発熱量が得られるものを用いたが、図1のように、モールド15の側面側に複数のカーボンヒータを配置することも可能である。
【0050】
【実施例】
以下、実施例について説明する。
【0051】
実施例1
図1に示すような成形装置を用い、直径50cmで高さが70cmの合成石英ガラスインゴットからなる塊状の石英ガラス25から、一辺が100cmの正方形形状で厚さが13.7cmの板状の石英ガラス25を成形した。
【0052】
この成形では、真空ポンプにて、真空チャンバー11内の圧力を0.67Paまで減圧した後、純粋な窒素ガスを圧力10kPaまで充填させた後、400℃/hrの昇温速度で、塊状の石英ガラス25の頂部25aに相当する部分のモールド15の温度が1640℃、底面部25bに相当する部分のモールド15の温度が1620℃で、分布の幅が20℃となるように制御して昇温し、その後、40分間保持した。
【0053】
このとき、モールド15の温度は二色温度計により測定した。
【0054】
その後、シリンダロッド26により、初期荷重を5ton、プレス速度を1mm/secにて天板23を押圧し、インゴットの成形を行った。プレス荷重が25tonとなった時点で加圧を終了し、冷却した。
【0055】
得られた板状体を直交クロスニコル法により歪を観察したところ、成形途中の座屈に起因するような歪は見られなかった。
【0056】
実施例2
図2に示すような成形装置を用い、頂部25aに相当する部分のモールド15の温度が1650℃、底面部25bに相当する部分のモールド15の温度が1600℃で、分布の幅が50℃となるように昇温した他は、実施例1と同様にして板状体の石英ガラス25を成形した。
【0057】
得られた板状体を直交クロスニコル法により歪を観察したところ、成形途中の座屈に起因するような歪は見られなかった。
【0058】
実施例3
頂部25aに相当する部分のモールド15の温度を1650℃、底面部25bに相当する部分のモールド15の温度を1550℃、分布の幅を100℃とした他は、実施例1と同様にして板状体の石英ガラス25を成形した。
【0059】
得られた板状体のを直交クロスニコル法により歪を観察したところ、成形途中の座屈に起因するような歪は確認できなかったものの、成形前に比べて若干の不純物の混入が認められた。また、屈折率の均質性の悪化が認められた。
【0060】
比較例1
カーボンヒータ13a及び13bに相当する大きさの1つのカーボンヒータを装着している他は、図1と同一の成形装置を用い、カーボンヒータを均一に発熱させることにより昇温する他は、実施例1と同じ手順で板状体の石英ガラスを成形した。この成形時には、頂部25aに相当する部分のモールド15の温度が1670℃、底面部25bに相当する部分のモールド15の温度が1667℃で、分布の幅は3℃となっていた。
【0061】
得られた板状体を直交クロスニコル法により歪を観察したところ、成形途中の座屈に起因するスジ状の歪が確認できた。また、そのスジ状の歪発生部位付近に多数の気泡が面状に連なり発生していた。この部位が座屈部と推測される。
【0062】
比較例2
頂部25a及び底面部25bに相当する部分のモールド15の温度を共に1630℃とした他は、実施例1と同様にして板状体の石英ガラスを成形した。
【0063】
得られた板状体を直交クロスニコル法により歪を観察したところ、成形途中の座屈に起因する スジ状の歪が確認できた。また、そのスジ状の歪発生部位付近に上記の比較例1と同様に面状に連なった多数の気泡が発生していた。
【0064】
【発明の効果】
以上詳述の通り、請求項1に記載の発明によれば、石英ガラス塊の温度分布を、加圧部側が対向部側より高温となるように調整して加圧するので、石英ガラス塊の加圧部側が対向部側より成形され易くて、加圧時に加圧部側から順に成形することが可能となる。そのため、成形途中で石英ガラス塊の座屈が生じ難く、残留歪みを抑えて均質に石英ガラスを成形し易い。
【0065】
更に、請求項2に記載の発明によれば、石英ガラス塊の温度分布の幅が5℃以上50℃以下であるので、成形途中に座屈が生じることをより確実に抑制することができる。
【0066】
また、請求項3に記載の発明によれば、モールドの中空部に収容された石英ガラス塊を加熱する加熱手段が、石英ガラス塊の加圧部側を底部側より高温となるように加熱するものであるので、成形時に加圧部をモールドの底部側に移動させて石英ガラス塊を加圧すると、加圧部側から順に成形することが可能である。そのため、成形途中にモールドの中空部内で石英ガラス塊が座屈を生じにくく、所定形状に成形した石英ガラスの残留歪みを抑えて、均質に成形体を成形し易い。
【0067】
更に、請求項4に記載の発明によれば、加熱手段がモールドの側面側に配置され、加圧部側と前記底部側とで発熱量を独立して調整可能に構成されているので、モールドの中空部内に収容された石英ガラス塊の温度を調整し易い。
【0068】
また、請求項5に記載の発明によれば、モールドの底面側に配置されて、石英ガラス塊の底面部を加熱する底部ヒータを有しているので、石英ガラス塊の内部まで加熱し易く、加圧方向と直交する断面が大きい石英ガラス塊の場合であっても、内部まで加熱できて成形がより容易である。
【図面の簡単な説明】
【図1】この発明の実施の形態1の成形装置の一部を示す概略縦断面図である。
【図2】この発明の実施の形態2の成形装置の一部を示す概略縦断面図である。
【符号の説明】
10 成形装置
11 真空チャンバ
13、13a、13b カーボンヒータ
15 モールド
18 底部
20 側壁部
21 中空部
23 天板(加圧板)
25 石英ガラス塊
26 シリンダロッド(成形手段)
27 底部ヒータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a forming method and a forming apparatus for forming a uniform quartz glass into a predetermined shape by pressurizing while holding and heating quartz glass in a mold.
[0002]
[Prior art]
A projection exposure apparatus (or an optical lithography apparatus) is mainly used for transferring an integrated circuit pattern such as an IC or an LSI. The projection optical system used in this apparatus is required to have a wider exposure area and higher resolution over the entire exposure area as the integration of integrated circuits becomes higher. In order to improve the resolution of the projection optical system, the exposure wavelength is shortened or the numerical aperture (NA) of the projection optical system is increased.
[0003]
The exposure wavelength has been shortened from g-line (436 nm) to i-line (365 nm), KrF (248 nm) and ArF (193 nm) excimer lasers. In order to further increase the integration, methods of using an F 2 (157 nm) excimer laser, an X-ray, and an electron beam as a light source are currently being studied. In this, a reduction projection exposure apparatus using F 2 excimer laser, which can be made by utilizing the heretofore design concepts have been suddenly attracted attention.
[0004]
In general, optical glass used as an illumination optical system or a lens member of a projection optical system of a reduction projection exposure apparatus using a light source having a wavelength longer than the i-line has a sharp decrease in light transmittance in a wavelength region shorter than the i-line. In particular, in the wavelength region of 250 nm or less, almost no optical glass transmits light. Therefore, only quartz glass and calcium fluoride crystal can be used as a material of a lens constituting an optical system of a reduction projection exposure apparatus using an excimer laser as a light source. These two materials are indispensable materials for performing chromatic aberration correction in an imaging optical system of an excimer laser.
[0005]
A reticle is another important element for printing a circuit on a wafer in a reduction projection exposure apparatus. As a material used for this reticle, not only excimer laser durability but also thermal expansion due to heat generation of the substrate becomes a major problem. Therefore, a method called a direct method that has good durability and a small coefficient of thermal expansion (flame hydrolysis) A method for producing a transparent quartz glass by the method described above) is used.
[0006]
In the direct method, a combustible gas (oxygen-containing gas, for example, oxygen gas) and a combustible gas (hydrogen-containing gas, for example, hydrogen gas or natural gas) are mixed and burned in a quartz glass burner, and the center of the burner is burned. A high-purity silicon compound (for example, silicon tetrachloride gas) is diluted with a carrier gas (usually oxygen gas) as a raw material gas and ejected, and the raw material gas is reacted (hydrolyzed) by burning the surrounding oxygen gas and hydrogen gas. Reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target formed of an opaque quartz glass plate which is arranged below the burner and rotates, swings and pulls down, and simultaneously the oxygen gas In addition, a quartz glass ingot is obtained by melting and vitrification by the heat of combustion of hydrogen gas.
[0007]
According to this method, since a quartz glass ingot having a relatively large diameter is easily obtained, an optical member having a desired shape and size can be manufactured by cutting a block from the ingot.
[0008]
In recent years, in order to obtain an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, a preformed quartz glass block such as an ingot is formed into a flat shape by heating and pressing. A molding method for enlarging the area is used.
[0009]
In this molding method, while the quartz glass block is housed in a mold and heated, the molding is performed by pressing with a pressurizing plate, and then the mold is gradually cooled or further annealed to perform the annealing on the one facing surface. A molded article having a predetermined shape with an enlarged area can be obtained.
[0010]
As a method for performing such heat and pressure molding, for example, heat and pressure molding is performed to a temperature of 1700 ° C. or more in a helium gas atmosphere having an absolute pressure of 0.1 Torr or more and an atmospheric pressure or less in a graphite mold. Then, a method of rapidly cooling to 1100 to 1300 ° C is known. In addition, a method of press-molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure for relaxing stress caused by a difference in thermal expansion coefficient between quartz glass and a mold material of the mold (see Patent Document 1 below). ) Or a molding apparatus in which the graphite mold has a vertical structure of two or more divisions (see Patent Documents 2 and 3 below). Furthermore, there is also known a method in which a coating layer made of quartz powder is provided on the inner surface of a graphite mold and pressed at 1550 ° C. to 1700 ° C. (see Patent Document 4 below).
[0011]
[Patent Document 1]
Japanese Patent Publication No. 4-54626.
[0012]
[Patent Document 2]
JP-A-56-129621.
[0013]
[Patent Document 3]
JP-A-57-67031.
[0014]
[Patent Document 4]
JP-A-2002-22020.
[0015]
[Problems to be solved by the invention]
However, in the conventional heat and pressure molding, a quartz glass lump is held in a chamber heated to a predetermined temperature by a heater capable of uniformly heating, and the quartz glass is heated to a moldable temperature by holding the mold for a predetermined time. I was For this reason, when a cylindrical or prismatic quartz glass block is formed by pressing in the longitudinal direction, substantially the entire quartz glass block is uniformly heated to a moldable temperature and softened. A phenomenon in which a quartz glass block is deformed and broken at an intermediate portion or a lower portion, so-called buckling, may occur.
[0016]
However, when buckling occurs and is formed from the middle part or lower part of the quartz glass block, the buckling part becomes a boundary surface, many bubbles are generated, and the residual strain of the obtained quartz glass increases, It has been found that optical inhomogeneity is likely to occur.
[0017]
In particular, when forming large-sized lenses, mirrors, and optical members such as reticles required for batch exposure of a large area these days, a larger quartz glass lump is used to form a large molding apparatus in a chamber of a large-sized molding apparatus. Heating had to be carried out for a longer time, buckling was liable to occur, and optical inhomogeneity was likely to occur.
[0018]
In view of the above, the present invention provides a molding method and a molding apparatus capable of suppressing molding abnormalities such as buckling and molding uniform quartz glass with little residual strain when a quartz glass block is heated and pressed. The purpose is to:
[0019]
[Means for Solving the Problems]
The invention according to claim 1, which solves the above problem, heats the quartz glass lump in a mold, and presses the quartz glass lump between the opposed part by moving a pressing unit. In the method of forming into a predetermined shape, the quartz glass block is pressurized by the pressurizing unit in a state where the temperature distribution of the quartz glass block is controlled to be higher at the pressurizing unit side than at the opposing unit side.
[0020]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the width of the temperature distribution of the quartz glass block is 5 ° C. or more and 50 ° C. or less.
[0021]
Further, the invention according to claim 3 is a mold having a hollow portion capable of accommodating a quartz glass lump, a pressing portion movably disposed in the hollow portion, and the quartz glass accommodated in the hollow portion. Heating means for heating the lump, and moving the pressurizing portion to the bottom side while heating the quartz glass lump by the heating means, thereby pressing the quartz glass lump to form a predetermined shape. The apparatus is characterized in that the heating means heats the pressurized portion side of the quartz glass block to a temperature higher than the bottom side of the mold.
[0022]
According to a fourth aspect of the present invention, in addition to the configuration of the third aspect, the heating means is disposed on a side surface of the mold, and independently generates a calorific value on the pressing portion side and the bottom portion side. And is configured to be adjustable.
[0023]
Further, the invention according to claim 5 is the bottom heater according to claim 3 or 4, wherein the heating means is disposed on a bottom surface side of the mold and heats a bottom portion of the quartz glass block. It is characterized by having.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described.
[0025]
FIG. 1 shows a molding apparatus according to this embodiment.
[0026]
This molding apparatus 10 is used to adjust the refractive index of an ingot of synthetic quartz glass manufactured from a silicon compound such as silicon tetrachloride, silane, or organosilicon as a raw material or a part thereof, or Ge, Ti, B, F, Al, or the like. From a synthetic quartz glass ingot to which a component to be changed is added or a quartz glass lump such as a part thereof, for example, a substrate for a reticle (photomask) such as a large-sized liquid crystal mask or a semiconductor mask, or a large-sized imaging optical system. This is an apparatus for forming a plate-like body having a wide surface such as a lens material and other large glass blocks.
[0027]
In the molding apparatus 10, a heat insulating material 12 provided over the entire inner wall of a metal vacuum chamber 11 and a plurality of carbon heaters 13 a and 13 b as heating means provided in vertical walls of the heat insulating material 12 are provided. A mold 15 having a hollow portion 21 is provided at a substantially central portion inside the vacuum chamber 11. Here, the carbon heaters 13a and 13b are each configured to be capable of adjusting the amount of heat generated independently, and are arranged vertically around the entire periphery of the side surface of the mold 15.
[0028]
The mold 15 includes a bottom 18 having a bottom plate 16 and a receiving plate 17, and a side wall 20 formed in a cylindrical shape on the top of the bottom 18. The hollow portion 21 is formed by the cylindrical side wall 20 and the bottom 18. Is formed.
[0029]
In the hollow portion 21, a top plate 23 as a pressing portion having a shape corresponding to the shape of the hollow portion 21 is disposed, and a pressing surface 23b (upper surface) of the top plate 23 is disposed outside the vacuum chamber 11. By pressing with a cylinder rod 26 of a hydraulic cylinder as a forming means, it is possible to move to the bottom portion 18 side of the mold 15 as an opposing surface.
[0030]
The hydraulic cylinder provided with the cylinder rod 26 is configured to move by being pressurized by adjusting the hydraulic pressure supplied from the outside, but is not shown in detail.
[0031]
The mold 15 and the top plate 23 have heat resistance and strength against the temperature and pressure at the time of forming the massive quartz glass 25, and hardly mix impurities even when contacting the massive quartz glass 25 at the time of molding. It is formed of a material, and here is entirely formed of graphite.
[0032]
Next, a case where the bulky quartz glass 25 is formed by the method of this embodiment using the forming apparatus 10 having the above-described configuration will be described. First, the mold 15 is formed by combining the bottom plate 16, the receiving plate 17, and the side wall 20 in the vacuum chamber 11. Then, a massive quartz glass 25 is arranged in the hollow portion 21 of the mold 15. In this embodiment, a synthetic quartz glass ingot is used as the bulk quartz glass 25. In order to shorten the lead time, before being housed in the hollow portion 21 of the mold 15, the preheating is performed at a temperature of less than 300 ° C. It is preferable to use one that has been used.
[0033]
Then, the top plate 23 is disposed above the massive quartz glass 25 housed in the hollow portion 21, and further, the pressing portion 23 a of the cylinder rod 26 of the hydraulic cylinder is brought into contact with the pressing surface 23 b of the top plate 23. I do. Then, the inside of the vacuum chamber 11 is replaced with an inert gas, and the pressure inside the vacuum chamber 11 is set to, for example, 1 × 10 4 Pa to 1 × 10 5 Pa.
[0034]
Next, the bulk quartz glass 25 accommodated in the mold 15 and the hollow portion 21 thereof is heated by the carbon heaters 13a and 13b. At the time of this heating, first, the carbon heaters 13a and 13b are caused to generate heat, and the inside of the vacuum chamber 11 is heated at a heating rate of 500 to 1000 ° C./hr. Then, the calorific value of the carbon heater 13a on the upper side of the mold 15, that is, on the top plate 23 side is increased, and the temperature of the massive quartz glass 25 on the top plate 23 side (ie, upper side) is increased to the receiving plate 17 side (that is, the upper side). , Lower part), the calorific values of the carbon heaters 13a and 13b are controlled.
[0035]
In this state, by keeping the inside of the massive quartz glass 25 sufficiently long, for example, for 15 to 45 minutes, the width of the temperature distribution of the massive quartz glass 25, that is, the top of the top plate 23 side The temperature difference between 25a and bottom surface 25b on the bottom 18 side of mold 15 can be set to 5 ° C or more and 50 ° C or less. Here, if the temperature distribution of the massive quartz glass 25 is less than 5 ° C., the sufficient buckling suppressing effect is reduced. On the other hand, if the temperature distribution is higher than 50 ° C., the sufficient buckling suppressing effect is obtained. Since the temperature gradient in the pressing direction of 25 is too large, the pressing deformation of the quartz glass 25 occurs in a narrow range, and as a result, the time required for the pressing deformation becomes long, and various problems occur. For example, contamination by impurities becomes large, and a cycle time required for one molding becomes long, thereby lowering production efficiency and further reducing homogeneity of refractive index.
[0036]
Furthermore, in this molding, it is preferable to raise the temperature of the whole quartz glass 25 to a molding temperature from the crystallization temperature to the softening point, specifically from 1570 ° C. to 1670 ° C. At the time of pressurizing the vicinity of the top 25a of the massive quartz glass 25 at the stage, it is sufficient that at least the top 25a side has reached the molding temperature.
[0037]
Then, while the massive quartz glass 25 is heated in this way, the cylinder rod 26 is moved downward by controlling and controlling the oil pressure to the hydraulic cylinder, and the top plate 23 is pressed by the pressing portion 26a of the cylinder rod 26. The pressing surface 23b is pressed. Accordingly, the top plate 23 moves in the pressing direction on the bottom portion 18 side of the mold 15, and the massive quartz glass 25 is pressed between the top plate 23 and the bottom portion 18 of the pressing surface 23 a.
[0038]
Then, since the quartz glass 25 has a higher temperature at the top 25a side than at the bottom section 25b side, the top section 25a is more easily deformed than the bottom section 25b side, and when pressed by the pressing surface 23a of the top plate 23, the top section 25a side Will be sequentially transformed.
[0039]
At this time, the top plate 23 can be more easily deformed from the top 25a side by setting the descending speed of the top plate 23 to, for example, 5 to 15 cm / min.
[0040]
Further, the pressure applied from the top plate 23 during molding is preferably such that the pressure of the top plate 23 is reduced in the early stage of molding and is set to the maximum pressing force in the final stage. the pressure in terms of per unit area of the pressing surface 23a of the 0.3~1.5Kg / cm 2, at the final stage of molding can be 1.0~5.0Kg / cm 2. With such a range, deformation can be easily performed from the top 25a side.
[0041]
Then, at the stage where the quartz glass 25 is formed into a plate having a predetermined shape, the pressing by the top plate 23 is completed. Thereafter, the plate-shaped quartz glass 25 is cooled while being placed in the mold 15, and the formed body is removed from the vacuum chamber 11 to complete the forming.
[0042]
As described above, when the massive quartz glass 25 is molded, the massive quartz glass 25 accommodated in the hollow portion 21 of the mold 15 is heated at a higher temperature than the top portion 25a of the top plate 13 side than the bottom portion 18 side of the mold 15. Since the heating is performed by the carbon heaters 13a and 13b so that the top plate 23 side of the massive quartz glass 25 is easily formed from the bottom 18 side, when the massive quartz glass 25 is pressed by the top plate 23 during molding, the top plate 23 It can be formed sequentially from the side. For this reason, the bulk quartz glass 25 in the hollow portion 21 is less likely to buckle during molding, and the residual distortion of the resulting plate-like quartz glass 25 can be suppressed, and a uniform plate-like body can be obtained.
[0043]
In this case, since the carbon heaters 13a and 13b whose heating values can be independently adjusted are arranged in the pressing direction on the side surface of the mold 15, the massive quartz glass housed in the hollow portion 21 of the mold 15 is provided. 25 is easily heated so as to form a temperature distribution in the pressing direction.
[0044]
In the first embodiment, an example in which the molding is performed at a temperature equal to or higher than the crystallization temperature and equal to or lower than the softening point is described. However, the molding temperature may be equal to or higher than the crystallization temperature of the quartz glass 25. It is also possible to mold at higher temperatures.
[0045]
Further, in the above description, an example is shown in which two carbon heaters 13a and 13b having different heating values are used as the heating means. However, three or more heaters can be arranged. In addition, one heater is arranged on the side surface of the mold 15 to partially vary the amount of heat generated, or one heater having a uniform amount of heat is used to shield the bottom surface 25b side with a shield plate or the like to heat the heater. It is also possible to vary the amount.
[0046]
[Embodiment 2]
In the molding apparatus according to the second embodiment, as shown in FIG. 2, a carbon heater 13 disposed on the side of the mold 15 on the top plate 23 side and a ring A bottom heater 27 for heating the bottom surface 25b of the massive quartz glass 25 buried in the shape is provided. The other configuration is the same as that of the first embodiment.
[0047]
Even in such a molding apparatus 10, by adjusting the amount of heat generated by the carbon heater 13 and the bottom heater 27, the top 25 a side of the massive quartz glass 15 is heated to be higher than the bottom 25 b side. Buckling can be suppressed in the bulk quartz glass 25 being formed.
[0048]
Moreover, when the bottom heater 27 for heating the bottom surface 25b of the quartz glass 25 is provided, the inside of the massive quartz glass 25 is easily heated, and the massive quartz glass 25 having a large cross section orthogonal to the pressing direction is provided. Even so, the inside can be easily heated and molding can be facilitated.
[0049]
In the second embodiment, the carbon heater 13 disposed on the side surface of the mold 15 is such that a uniform amount of heat is obtained over the entire surface. However, as shown in FIG. It is also possible to arrange a carbon heater.
[0050]
【Example】
Hereinafter, examples will be described.
[0051]
Example 1
Using a molding apparatus as shown in FIG. 1, a lump of quartz glass 25 made of a synthetic quartz glass ingot having a diameter of 50 cm and a height of 70 cm is converted to a plate-like quartz having a square shape of 100 cm on a side and a thickness of 13.7 cm. Glass 25 was formed.
[0052]
In this molding, after the pressure in the vacuum chamber 11 is reduced to 0.67 Pa by a vacuum pump, pure nitrogen gas is filled to a pressure of 10 kPa, and then the mass of quartz is increased at a heating rate of 400 ° C./hr. The temperature of the mold 15 at the portion corresponding to the top 25a of the glass 25 is 1640 ° C., the temperature of the mold 15 at the portion corresponding to the bottom portion 25b is 1620 ° C., and the distribution width is controlled to be 20 ° C. Then, it was kept for 40 minutes.
[0053]
At this time, the temperature of the mold 15 was measured by a two-color thermometer.
[0054]
Thereafter, the top plate 23 was pressed by the cylinder rod 26 at an initial load of 5 ton and a press speed of 1 mm / sec to form an ingot. When the press load became 25 tons, the pressurization was terminated and the system was cooled.
[0055]
Observation of distortion of the obtained plate-like body by the crossed Nicols method revealed no distortion due to buckling during molding.
[0056]
Example 2
Using a molding apparatus as shown in FIG. 2, the temperature of the mold 15 corresponding to the top 25a is 1650 ° C., the temperature of the mold 15 corresponding to the bottom 25b is 1600 ° C., and the distribution width is 50 ° C. A plate-shaped quartz glass 25 was formed in the same manner as in Example 1 except that the temperature was raised to be as follows.
[0057]
Observation of distortion of the obtained plate-like body by the crossed Nicols method revealed no distortion due to buckling during molding.
[0058]
Example 3
Except that the temperature of the mold 15 corresponding to the top 25a was 1650 ° C., the temperature of the mold 15 corresponding to the bottom 25b was 1550 ° C., and the distribution width was 100 ° C. A quartz glass 25 in the shape of a body was formed.
[0059]
Observation of distortion of the obtained plate-like body by the orthogonal crossed Nicols method showed that no distortion due to buckling during molding could be confirmed, but some contamination of impurities was observed compared to before molding. Was. In addition, deterioration in the homogeneity of the refractive index was recognized.
[0060]
Comparative Example 1
Except that one carbon heater having a size corresponding to the carbon heaters 13a and 13b is mounted, the same molding apparatus as that of FIG. 1 is used, and the temperature is raised by uniformly heating the carbon heater. A plate-shaped quartz glass was formed in the same procedure as in 1. During this molding, the temperature of the mold 15 corresponding to the top 25a was 1670 ° C., the temperature of the mold 15 corresponding to the bottom 25b was 1667 ° C., and the distribution width was 3 ° C.
[0061]
When the obtained plate-like body was observed for distortion by the orthogonal crossed Nicols method, streak-like distortion caused by buckling during molding was confirmed. In addition, a number of air bubbles were continuously formed in the vicinity of the streak-like strain generation site. This part is assumed to be a buckling part.
[0062]
Comparative Example 2
A plate-like quartz glass was formed in the same manner as in Example 1 except that the temperature of the mold 15 at the portions corresponding to the top portion 25a and the bottom portion 25b was both 1630 ° C.
[0063]
When the obtained plate-like body was observed for distortion by the crossed Nicols method, streak-like distortion caused by buckling during molding was confirmed. Further, a large number of air bubbles connected in a plane were generated in the vicinity of the streak-like strain generation site as in Comparative Example 1.
[0064]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, the temperature distribution of the quartz glass block is adjusted such that the temperature of the pressurizing section is higher than that of the opposing section and pressurized. The pressure portion side is more easily formed than the opposing portion side, and it is possible to form the pressure portion in order from the pressure portion side. Therefore, buckling of the quartz glass lump is less likely to occur during molding, and it is easy to uniformly form quartz glass while suppressing residual strain.
[0065]
Furthermore, according to the second aspect of the present invention, since the width of the temperature distribution of the quartz glass block is 5 ° C. or more and 50 ° C. or less, it is possible to more reliably suppress buckling during molding.
[0066]
According to the third aspect of the present invention, the heating means for heating the quartz glass block accommodated in the hollow portion of the mold heats the pressurized portion side of the quartz glass block to be higher than the bottom side. Therefore, when the pressing portion is moved to the bottom side of the mold at the time of molding and the quartz glass block is pressed, it is possible to form the quartz glass block in order from the pressing portion side. For this reason, the quartz glass lump is unlikely to buckle in the hollow portion of the mold during the molding, and the residual distortion of the quartz glass molded into a predetermined shape is suppressed, so that the molded body can be easily homogeneously molded.
[0067]
Furthermore, according to the invention as set forth in claim 4, since the heating means is arranged on the side surface of the mold and the amount of heat generation can be adjusted independently on the pressing portion side and the bottom portion side, the mold It is easy to adjust the temperature of the quartz glass block accommodated in the hollow portion.
[0068]
According to the fifth aspect of the present invention, since the bottom heater that is arranged on the bottom surface side of the mold and heats the bottom portion of the quartz glass block is provided, it is easy to heat the inside of the quartz glass block, Even in the case of a quartz glass block having a large cross section orthogonal to the pressing direction, the inside can be heated and molding is easier.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a part of a molding apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a schematic longitudinal sectional view showing a part of a molding apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Forming apparatus 11 Vacuum chamber 13, 13a, 13b Carbon heater 15 Mold 18 Bottom part 20 Side wall part 21 Hollow part 23 Top plate (pressure plate)
25 Quartz glass block 26 Cylinder rod (forming means)
27 Bottom heater

Claims (5)

石英ガラス塊をモールド内に収容して加熱し、加圧部を移動させることにより、前記石英ガラス塊を対向部との間で加圧して所定形状に成形する方法において、
前記石英ガラス塊の温度分布を、前記加圧部側が前記対向部側より高温となるように制御した状態で、前記加圧部により加圧することを特徴とする石英ガラスの成形方法。
In the method of housing the quartz glass block in a mold and heating and moving the pressing section, the quartz glass block is pressed between the opposing section and formed into a predetermined shape,
A method of forming quartz glass, wherein the quartz glass block is pressurized by the pressurizing section while controlling the temperature distribution of the bulk of the quartz glass so that the temperature of the pressurizing section is higher than that of the opposing section.
前記石英ガラス塊の温度分布の幅が、5℃以上50℃以下であることを特徴とする請求項1に記載の石英ガラスの成形方法。The method for forming quartz glass according to claim 1, wherein the width of the temperature distribution of the quartz glass block is 5 ° C or more and 50 ° C or less. 石英ガラス塊を収容可能な中空部を有するモールドと、前記中空部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラス塊を加熱する加熱手段とを備え、前記石英ガラス塊を前記加熱手段で加熱しつつ、前記加圧部を前記モールドの底部側に移動させることにより、該石英ガラス塊を加圧して所定形状に成形する装置であって、
前記加熱手段が、前記石英ガラス塊の前記加圧部側を前記底部側より高温となるように加熱するものであることを特徴とする石英ガラスの成形装置。
A mold having a hollow portion capable of accommodating a quartz glass lump, a pressurizing portion movably disposed in the hollow portion, and heating means for heating the quartz glass lump accommodated in the hollow portion, While heating the quartz glass block by the heating means, by moving the pressing unit to the bottom side of the mold, the quartz glass block is pressurized and formed into a predetermined shape,
An apparatus for forming quartz glass, wherein the heating means heats the pressurized portion side of the quartz glass block to be higher in temperature than the bottom portion side.
前記加熱手段は、前記モールドの側面側に配置され、前記加圧部側と前記底部側とで発熱量を独立して調整可能に構成されていることを特徴とする請求項3に記載の石英ガラスの成形装置。4. The quartz according to claim 3, wherein the heating unit is disposed on a side surface of the mold, and is configured to be capable of independently adjusting a calorific value on the pressing unit side and the bottom side. 5. Glass forming equipment. 前記加熱手段は、前記モールドの底面側に配置されて、前記石英ガラス塊の底面部を加熱する底部ヒータを有することを特徴とする請求項3又は4に記載の石英ガラスの成形装置。The quartz glass forming apparatus according to claim 3, wherein the heating unit includes a bottom heater arranged on a bottom side of the mold to heat a bottom portion of the quartz glass block.
JP2003103365A 2003-04-07 2003-04-07 Quartz glass molding method and molding apparatus Expired - Lifetime JP4288413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103365A JP4288413B2 (en) 2003-04-07 2003-04-07 Quartz glass molding method and molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103365A JP4288413B2 (en) 2003-04-07 2003-04-07 Quartz glass molding method and molding apparatus

Publications (2)

Publication Number Publication Date
JP2004307266A true JP2004307266A (en) 2004-11-04
JP4288413B2 JP4288413B2 (en) 2009-07-01

Family

ID=33466525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103365A Expired - Lifetime JP4288413B2 (en) 2003-04-07 2003-04-07 Quartz glass molding method and molding apparatus

Country Status (1)

Country Link
JP (1) JP4288413B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092938A1 (en) * 2005-03-01 2006-09-08 Nikon Corporation Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
JP2010163300A (en) * 2009-01-14 2010-07-29 Sumitomo Electric Ind Ltd Method for heat molding silica glass
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2015017005A (en) * 2013-07-10 2015-01-29 オリンパス株式会社 Method for manufacturing optical element and apparatus for manufacturing optical element
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN115259655A (en) * 2022-08-15 2022-11-01 中天科技精密材料有限公司 Large-size quartz glass and preparation method and system thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8679994B2 (en) 2005-03-01 2014-03-25 Nikon Corporation Method of inspecting synthetic silicia glass molded body
WO2006092938A1 (en) * 2005-03-01 2006-09-08 Nikon Corporation Synthetic quartz glass molded product, molding method therefor and method for inspecting synthetic quartz glass molded product
US8539793B2 (en) 2005-03-01 2013-09-24 Nikon Corporation Method of molding synthetic silica glass molded body
JP5024673B2 (en) * 2005-03-01 2012-09-12 株式会社ニコン Synthetic quartz glass molded body and molding method thereof
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010163300A (en) * 2009-01-14 2010-07-29 Sumitomo Electric Ind Ltd Method for heat molding silica glass
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
JP2015017005A (en) * 2013-07-10 2015-01-29 オリンパス株式会社 Method for manufacturing optical element and apparatus for manufacturing optical element
CN115259655A (en) * 2022-08-15 2022-11-01 中天科技精密材料有限公司 Large-size quartz glass and preparation method and system thereof

Also Published As

Publication number Publication date
JP4288413B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4288413B2 (en) Quartz glass molding method and molding apparatus
JP4341277B2 (en) Method of forming quartz glass
CN104860521B (en) The heat treatment method of synthetic quartz glass
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP4415367B2 (en) Method of forming quartz glass
US20080006056A1 (en) Process for producing synthetic quartz and synthetic quartz glass for optical member
JP4465974B2 (en) Quartz glass molding equipment
JP4835998B2 (en) Method of forming quartz glass
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JP4374964B2 (en) Quartz glass molding method and molding apparatus
JP4760137B2 (en) Method of forming quartz glass
JP2006169033A (en) Forming method and forming apparatus for quartz glass
JP2007022847A (en) Molding apparatus of quartz glass and method of molding quartz glass using the same
EP1219571B1 (en) process for producing a synthetic quartz glass article
JPH06166527A (en) Production of quartz glass
JP3163857B2 (en) Method for producing quartz glass and quartz glass member produced thereby
JP3965552B2 (en) Method for producing synthetic quartz glass
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP3975334B2 (en) Heat treatment method for synthetic quartz glass
JP2002053332A (en) Method and device for molding synthetic quartz glass
JP6532269B2 (en) Method of manufacturing synthetic quartz glass
JP3126188B2 (en) Quartz glass substrate for photomask
JP2010195603A (en) Glass mold and method for producing glass molding
JP2001213689A (en) Crystal manufacturing method and crystal manufacturing apparatus, and exposure apparatus and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

R150 Certificate of patent or registration of utility model

Ref document number: 4288413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150410

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150410

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150410

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250