JP2004307265A - Molding apparatus for quartz glass - Google Patents

Molding apparatus for quartz glass Download PDF

Info

Publication number
JP2004307265A
JP2004307265A JP2003103364A JP2003103364A JP2004307265A JP 2004307265 A JP2004307265 A JP 2004307265A JP 2003103364 A JP2003103364 A JP 2003103364A JP 2003103364 A JP2003103364 A JP 2003103364A JP 2004307265 A JP2004307265 A JP 2004307265A
Authority
JP
Japan
Prior art keywords
quartz glass
side plates
molding
fitting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103364A
Other languages
Japanese (ja)
Other versions
JP4281397B2 (en
Inventor
Tetsuya Abe
哲也 阿邊
Shoji Yajima
昭司 矢島
Masashi Fujiwara
誠志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003103364A priority Critical patent/JP4281397B2/en
Priority to KR1020040023657A priority patent/KR101096477B1/en
Priority to TW093109546A priority patent/TW200502183A/en
Publication of JP2004307265A publication Critical patent/JP2004307265A/en
Application granted granted Critical
Publication of JP4281397B2 publication Critical patent/JP4281397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding apparatus of a quartz glass which can apply higher pressure than heretofore in molding and hardly causes strain or crack in the quartz glass in cooling in a quartz glass heating, pressing and molding process. <P>SOLUTION: The molding apparatus has a hollow part 21 capable of housing the quartz glass 25, and is provided with a mold 15 made of a material having larger expansion coefficient than that of the quartz glass 25, a pressing part 23 arranged movably inside the hollow part 21 and a heating means 13, thereby molding the quartz glass 25 into a desired shape by pressing by a pressing part 23 while heating it. The mold 15 has a plurality of side plates assembled to be in contact with each other to form the hollow part 21 and engaging means 16a and 24 engaged with the outside of a plurality of the side plates 19 and an engaged surface of a plurality of the side plates 19 with the engaging means 16a and 24 is formed to be tapered to keep the engaged state in the molding and release the engaged state in the cooling after the molding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、石英ガラスより膨張係数の大きい材料からなるモールド内に石英ガラスを収容して加熱加圧成形することにより、石英ガラスを所定形状に成形する装置に関する。
【0002】
【従来の技術】
i線より短波長の光源を用いた投影露光装置の照明光学系あるいは投影光学系のレンズ、ミラー、レチクル等の光学部材では、材料として石英ガラスが多用されている。この石英ガラスは、例えば、火炎加水分解により透明石英ガラスを製造する直接法などの方法で合成されている。
【0003】
直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば、酸素ガス)及び可燃性ガス(水素含有ガス、例えば、水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば、四塩化ケイ素ガス)をキャリアガス(通常酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転および揺動および引き下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。
【0004】
この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状,大きさの光学部材を製造することができる。
【0005】
また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。
【0006】
この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧部により加圧することにより成形を行い、その後モールド内で徐冷したり、更にアニール処理を行い、1対向面の面積が拡大された所定形状の成形体を得ている。
【0007】
このような加熱加圧成形を行うものとしては、例えば、グラファイト製のモールド内で、絶対圧が 0.1Torr以上大気圧以下のヘリウムガス雰囲気下に、1700℃以上の温度に加熱加圧成形し、ついで1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照。)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照。)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照。)も知られている。
【0008】
【特許文献1】
特公平4−54626号公報。
【0009】
【特許文献2】
特開昭56−129621号公報。
【0010】
【特許文献3】
特開昭57−67031号公報。
【0011】
【特許文献4】
特開2002−22020号公報。
【0012】
【発明が解決しようとする課題】
しかしながら、このような加熱加圧成形においては、不純物の混入を防止して成形時の耐熱強度を確保するため、グラファイトから肉厚に形成されたモールドが用いられている。このグラファイトの膨張係数は石英ガラスの膨張係数より著しく大きく、グラファイトが8×10−6/℃であるのに対し、石英ガラスが5.5×10−7/℃である。そのため、成形後、モールド内に石英ガラスが収容された状態で冷却されると、石英ガラスの収縮量よりモールドの収縮量が大きくなるため、冷却時に石英ガラスがモールドにより圧迫され、その結果、石英ガラスに歪みや割れが生じ易かった。また、このような石英ガラスの歪みや割れは、成形体の角部分に集中し易かった。
【0013】
一方、上記特許文献2及び3などのように、予め分割された分割式のモールドを用いて成形するものでは、冷却時にモールドが分離されて石英ガラスに負荷される応力を緩和することができるが、モールドの分割体をピンにより接合するため、成形時の圧力が高いと成形途中でモールドが分離され易いという問題点があった。
【0014】
そこで、この発明は、石英ガラスの加熱加圧成形において、成形時に従来より高い圧力を負荷することができるとともに、冷却時に石英ガラスに歪みや割れが生じにくい石英ガラスの成形装置を提供することを課題とする。
【0015】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の発明は、石英ガラスを収容可能な中空部を有し、該石英ガラスより膨張係数の大きい材料からなるモールドと、前記中空部の内部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラスを加熱する加熱手段とを備え、前記中空部内の石英ガラスを前記加熱手段で加熱しつつ前記加圧部により加圧して所定形状に成形する成型装置であって、前記モールドは、互いに当接した状態で組合されて前記中空部を形成する複数の側板と、該組合された複数の側板の周囲に嵌合される嵌合手段とを有し、前記成形時には前記嵌合手段により嵌合状態が維持されるとともに、該成形後の冷却時には、前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に負荷される外方向の力により前記嵌合手段の嵌合状態が解除されて前記複数の側板が離間するように、前記複数の側板と嵌合手段との嵌合面がテーパ形状に形成されていることを特徴とする。
【0016】
また、請求項2に記載の発明は、請求項1に記載の構成に加え、前記嵌合手段は、前記複数の側板の外側に嵌合された枠形状の支持リングを有し、前記外方向の力により前記嵌合面同士が摺動して前記支持リングが抜け方向に移動することにより前記複数の側板が離間するように構成されたことを特徴とする。
【0017】
更に、請求項3に記載の発明は、請求項1又は2に記載の構成に加え、前記嵌合手段は、前記複数の側板の下端部が嵌合される凹部を備えた底部を有し、前記外方向の力により前記複数の側板が前記底部の凹部から抜け方向に移動することにより、前記複数の側板が離間するように構成されたことを特徴とする。
【0018】
また、請求項4に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部がR形状に形成されていることを特徴とする。
【0019】
更に、請求項5に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部が鈍角となるように複数の傾斜面が形成されたことを特徴とする。
【0020】
【発明の実施の形態】
[実施の形態1]
以下、この発明の実施の形態1について説明する。
【0021】
図1乃至図3はこの実施の形態の成形装置を示す。
【0022】
この成形装置10は、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料して製造される合成石英ガラスのインゴットやその一部、または、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラスから、例えば、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系の大型のレンズ材料などのように広い面を有する板状体やその他の大型ガラスブロックを成形するための装置である。
【0023】
この成形装置10では、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられた加熱手段としてのカーボンヒータ13とが設けられ、更に、真空チャンバー11内部の略中央部に中空部21を有するモールド15が収容されている。
【0024】
このモールド15は、底板16及び受板17を備えた底部18と、この底部18の上部に配置された側壁部20とを備え、この側壁部20の内側に中空部21が形成されている。
【0025】
側壁部20は、複数の側板19と、嵌合手段としての支持リング24とから組立てられたものである。側板19は、一方の面が中空部21の壁面を構成する内面19aとなり、他方の面が側壁部20の外表面を構成する外面19bとなる4角形状の板材である。この側板19の両側には、内面19a側に配向する傾斜側面19cを有し、上端部19d及び下端部19eには、それぞれ外面19b側に配向するテーパ形状の嵌合面19f、19gを有している。
【0026】
支持リング24は、中空に形成された4角形状の枠であり、側板19の嵌合面19fと一致するテーパ形状の嵌合面24aを内側に有している。
【0027】
そして、側壁部20は、傾斜側面19c同士を面接触させて当接させて4枚の側板19を四角筒状に組合わせ、この状態で4枚の側板19の周囲に支持リング24を装着して、側板19の嵌合面19fに支持リング24の嵌合面24aを嵌合させることにより形成されている。
【0028】
また、底部18の底板16には、側壁部20の下端部19gを挿入可能に嵌合手段としての凹部16aが形成されている。この凹部16aには、4枚の側板19の嵌合面19gのと一致するテーパ形状の嵌合面16bが形成されている。
【0029】
そして、前記のように組立られた状態の側板19の下端部19e側をこの凹部16aに挿入することにより、嵌合面19gの周囲に凹部16の嵌合面16bを嵌合させ、更に、中空部21内の下端部19g側に受板17を配置することにより、モールド15が形成されている。
【0030】
このモールド15の中空部21は、図3に示すように、横断面形状が四角形状を呈し、全てのコーナー部27がR形状に形成されている。この中空部21には、塊状の石英ガラス25が配置された状態で、中空部21の形状に対応する形状の加圧部としての天板23が移動可能に配置されている。
【0031】
天板23は、押圧面23b(上面)を、真空チャンバー11の外部に配設された成形手段としての油圧シリンダのシリンダロッド26で押圧することにより、天板23の加圧面23aで塊状の石英ガラス25を加圧可能に構成されている。
【0032】
なお、シリンダロッド26を備えた油圧シリンダは、外部から供給する油圧を調整することにより加圧されて移動するように構成されているが、詳細な図示は省略されている。
【0033】
これらの底板16、受板17、側板19、支持リング24、及び天板23は、何れも石英ガラス25の成形時の温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に石英ガラス25と接触しても不純物を混入しにくい材料から形成されており、ここでは全て、石英ガラスの膨張係数より大きい膨張係数を有するグラファイトにより形成されている。
【0034】
このうち、側板19は成形時に大きな曲げ方向の力が負荷される。そのため、側板19の板厚を成形時に負荷する圧力に応じて選択するのがよく、例えば、成形時の成形圧力が天板23の加圧面23aの単位面積当たりに換算した圧力の0.3〜5.0Kg/cmの場合、好ましくは20〜70mm、特に、30〜50mmの範囲とするのが好適である。板厚が薄いと、側板19が撓んで、冷却時に石英ガラス25を圧縮する応力が増加し易くなり、一方、板厚が厚いと、伝熱に余分な時間を要することになる。
【0035】
この成形装置10では、モールド15の側板19の嵌合面19fと支持リング24の嵌合面24aとのテーパ形状、並びに、側板19の嵌合面19gと凹部16aの嵌合面16bとのテーパ形状は、何れも成形時に嵌合状態を維持することができるとともに、成形後の冷却時には嵌合状態を解除できるように設定されている。
【0036】
即ち、側板19の嵌合面19fと支持リング24の嵌合面24a、並びに側板19の嵌合面19fと凹部16aの嵌合面16bには、それぞれ嵌合状態とすることにより、互いに相対移動を抑制する摩擦力が作用している。この状態で、各側壁19に外方向の力が負荷されると、嵌合面19f、24a間、並びに嵌合面19g、16b間には、テーパ形状に応じたぬけ方向の力が作用する。ここでは、抜け方向の力が、嵌合状態の摩擦力より小さい範囲では、各嵌合面19f、24a間、並びに嵌合面19g、16b間は摺動することなく、嵌合状態を維持することができる。一方、抜け方向の力が嵌合状態の摩擦力より大きくなると、各嵌合面19f、24a間、並びに嵌合面19g、16b間が摺動して嵌合状態が解除される。
【0037】
従って、この成形装置10では、成形時に石英ガラス25が天板23により加圧されて変形することにより生じる側板19の外方向の力では、嵌合面19f、24a間、並びに嵌合面19g、16b間の嵌合状態が維持されるテーパ形状となっている。
【0038】
同時に、成形後の冷却時に、モールド15と石英ガラス25との膨張係数の相違による収縮量の差から各側板19に支持リング24及び凹部16aに対して外方向となる力が作用した場合には、各嵌合面19f、24a間、並びに嵌合面19g、16b間が摺動して、嵌合状態が解除されるテーパ形状となっている。
【0039】
このようなテーパ形状は、各嵌合面の性状等により適宜選択することができるが、例えば、成形時の天板23による圧力が0.3〜5.0Kg/cmの範囲の場合、各嵌合面のテーパ形状を60°〜75°の仰角となるように設定するのが好ましい。
【0040】
次に、以上のような構成の成形装置10により、塊状の石英ガラス25を加熱加圧成形する場合について説明する。まず、真空チャンバー11内に底板16、受板17、側板19及び支持リング24を組合わせてモールド15を形成する。そして、モールド15の中空部21内に塊状の石英ガラス25を配置し、その上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。この実施の形態では、塊状の石英ガラス25として合成石英ガラスインゴットを用いている。
【0041】
そして、真空チャンバー11内を不活性ガスで置換し、カーボンヒータ13により中空部21内の塊状の石英ガラス25を加熱して、結晶化温度以上軟化点以下、具体的には1570℃〜1670℃に昇温して成形を行う。
【0042】
成形時には、各油圧シリンダのシリンダロッド26を油圧で下方へ移動させて、シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23が底部側の加圧方向に移動し、天板23の加圧面23aにより塊状の石英ガラス25が加圧される。
【0043】
ここでは、成形初期の段階で天板23の圧力を小さくし、最終段階で最大加圧力となるようにしている。例えば、初期の段階では天板23の加圧面23aの単位面積当りに換算した圧力を0.3〜1.5Kg/cmとし、成形の最終段階では1.0〜5.0Kg/cmとすることができる。また、天板23の下降速度を、例えば5〜20cm/minとすることができる。このような圧力や下降速度の範囲にすることにより、石英ガラス25を徐々に変形させ易く、モールド15に局部的に大きな力が負荷されにくくすることができる。
【0044】
天板23により石英ガラス25を加圧する間、複数の側板19には、石英ガラス25を介して天板23の押圧力が外方向の力として負荷される。成形の最終段階では、天板23より下側の中空部21の体積が石英ガラス25の体積となり、内部に空隙が無くなるように予め設定された所定量分シリンダーロッド26及び天板23が移動することにより、最終的に天板23の圧力が複数の側板19に負荷される。そのとき、複数の側板19の上端部19dが支持リング24の貫通孔24aに嵌合した状態で維持されるため、複数の側板19の上端部19dは外方向に移動することはない。また、複数の側板19の下端部19eが底板16の凹部16aに嵌合した状態で維持されるため、複数の側板19の下端部19eが外方向に移動することはない。従って、成形時には、モールド15の中空部21の形状が確実に維持される。
【0045】
そして、塊状の石英ガラス25が所定形状の板状体に成形された段階で、天板23による加圧を終了する。
【0046】
加圧終了後、板状の石英ガラス25を、モールド15内に配置した状態のまま適宜冷却速度を設定して冷却を行う。
【0047】
このとき、成形直後の石英ガラス25はモールド15の中空部21の内壁に密着した状態で配置されており、この状態から温度が低下すると、温度変化に応じた石英ガラス25及びモールド15とが熱収縮を起こす。このときの収縮量はそれぞれの膨張係数に応じたものとなるため、モールド15の収縮量が石英ガラス25より大きくなる。
【0048】
そのため、枠状の支持リング24が収縮すると、その内周の嵌合面24aに当接する側板19の上端部19dの嵌合面19fを内側に圧迫する。しかし、石英ガラス25の収縮が少ないため、側板19の上端部19dは内側に移動できず、その結果、支持リング24に側板19から外方向の力が負荷される。これにより、側板19の嵌合面19fと支持リング24の嵌合面24aとの嵌合状態が解除されて、支持リング24が側板19から上側の抜け方向に移動する。
【0049】
また、底板16の収縮により凹部16aが収縮すると、その内周面に当接する側板19の下端部19eの嵌合面19gが内側に圧迫される。しかし、石英ガラス25の収縮が少ないため、側板19の下端部19eは内側に移動できず、側板19から凹部16aに外方向の力が負荷される。これにより、側板19の嵌合面19gと凹部16aの嵌合面16bとの嵌合状態が解除されて、側板19が凹部16aから上側の抜け方向に移動する。
【0050】
このように嵌合面の嵌合状態が解除されることにより、複数の側板19が離間して、成形された石英ガラス25がモールド15により圧縮されることを防止することができる。そして、十分に冷却することにより、成形が完了する。
【0051】
以上のような石英ガラス25の成形装置10によれば、モールド15が、互いに当接した状態で組合されて中空部21を形成する複数の側板19と、この複数の側板19の外側に嵌合する底板16の凹部16aまたは支持リング24とを有し、これらが成形時に嵌合状態を維持するとともに、成形後の冷却時に嵌合状態を解除できるように構成されているので、天板23で石英ガラス25を従来より高い圧力で加圧して成形しても、成形時には嵌合状態を維持して、モールド15及び中空部21の形状を維持することができ、成形が容易である。そして、成形後の冷却時には、嵌合状態が解除され、複数の側板19が離間されて応力を解放することができる。そのため、成形された石英ガラス25の割れや歪みを抑制することができ、歩留まりを向上することができる。
【0052】
また、枠形状の支持リング24が複数の側板19の外側に嵌合するものであるため、モールド15の組立及び分解の際に着脱が容易であり、同時に、この支持リング24が側板19の外側周囲に嵌合するものであって、外方向の力により抜け方向に移動可能となっているので、冷却時の石英ガラス25の歪みや割れの発生を防止しつつ、従来より高い圧力で成形する間に中空部21の形状を確実に保持しやすい。
【0053】
更に、底板16の凹部16aが複数の側板19の下端部19eの外表面に嵌合するものであって、複数の側板19が底板16の凹部16aから抜け方向に移動可能となっているので、組立及び分解が容易であるとともに、冷却時の歪みや割れの発生を防止しつつ、従来より高い圧力で成形する間にも複数の側板19の下端部19eを確実に保持し易く、中空部21の形状をより保持し易い。
【0054】
また、中空部21の横断面形状が略四角形形状を呈し、コーナー部27がR形状に形成されているので、成形された四角形形状の石英ガラス25において、コーナー部27に応力が集中されることを防止でき、コーナー部27の歪みや割れを防止して成形することができ、歩留まりを大幅に向上し易い。
【0055】
なお、上記の実施の形態1では、板状の石英ガラス25を成形する例について説明したが、板状体以外の成形体であっても、この発明は適宜適用可能である。
【0056】
また、上記では、天板23を1本の油圧シリンダのシリンダロッド26で押圧する例について説明したが、複数のシリンダロッド26を用いて天板23を押圧してもよく、更に、油圧シリンダでなく、他の機械的な成形手段を用いることも可能である。
【0057】
また、上記では、結晶化温度以上軟化点温度以下の温度で成形する例について説明したが、石英ガラス25の結晶化温度以上で成形すればよく、例えば軟化点より高い温度であってもよい。
【0058】
[発明の実施の形態2]
次に、実施の形態2について説明する。
【0059】
この実施の形態2の成形装置10では、横断面形状が略四角形形状の中空部21において、コーナー部27が鈍角となるように複数の傾斜辺29を設けた他は、実施の形態1の成形装置10と同一の構成を有している。
【0060】
このような成形装置10であっても、成形された略四角形形状の石英ガラス25において、コーナー部27に応力が集中されるのを防止することができるため、コーナー部27の歪みや割れを防止し易く、実施の形態1と同様に歩留まりを大幅に向上し易い。
【0061】
【実施例】
以下、実施例について説明する。
【0062】
比較例1
直径400mm、長さ500mm、重さ138Kgの四塩化ケイ素を原料として、直接法により製造された合成石英インゴットを、1辺が500mmの四方形状を有する四つ割のグラファイト製モールド15に入れ、ホットプレス機にセットした。このインゴットの上面に厚さ30mmの天板23を置き、このインゴットの下面に厚さ30mmの受板17を置いた。更に、天板23にシリンダロッド26を配置した。
【0063】
この後、真空ポンプにて、真空チャンバー11内の圧力を50Paまで減圧した後、純粋な窒素ガスを圧力3×10Paまで充填させた。
【0064】
そして、昇温を開始し、3時間で1620℃まで昇温させ、1620℃で0.5時間保持した。
【0065】
その後、シリンダロッド26により、初期荷重を3.5ton、プレス速度を5mm/secにて天板23を押圧し、インゴットの成形を行った。シリンダロッド26の変位ストロークが天板23より下側の中空部21に空隙が無くなる計算上の位置に達したところで加圧を終了し、カーボンヒータ13の温度を下げて300℃まで急冷した。
【0066】
この後、モールド15を取り出して、成形品を取り出した。成形品は一辺が500mmで、高さが250mmであった。
【0067】
成形品を観察したところ、全面が透明であったが、四隅の角部に若干の割れが生じていた。また、四隅に残留歪みが若干残っていた。そして、この成形品からは有効角材として1辺が400mm、厚さ210mm、重さ74kgの板状体が採取できた。
【0068】
実施例1
モールド15として、一辺が500mmの四方形状でコーナー部がR40のものを使用した他は、比較例1と同一にして成形品を成形した。成形品は一辺が500mmで、高さが252mmであった。
【0069】
成形品を観察したところ、全面が透明であったが、四隅のR形状には割れを確認できず、成形品の周辺15mmを除いて歪みを確認できなかった。そして、この成形品からは有効角材として1辺が460mm、厚さ215mm、重さ100kgの板状体が採取できた。
【0070】
実施例2
モールド15として、一辺が1000mmの四方形状で、コーナー部に傾斜面が34mmで2つの分割線を有する12角形状のものを使用した他は、比較例1と同一にして成形品を成形した。成形品は一辺が500mmで、高さが253mmであった。
【0071】
成形品を観察したところ、全面が透明であったが、四隅には割れ及び残留歪みを確認できなかった。そして、この成形品からは有効角材として1辺が470mm、厚さ215mm、重さ104kgの板状体が採取できた。
【0072】
【発明の効果】
以上詳述の通り、請求項1に記載の発明によれば、モールドが、互いに当接した状態で組合されて中空部を形成する複数の側板と、この組合された複数の側板の周囲に嵌合される嵌合手段とを有し、この嵌合手段により成形時に嵌合状態が維持されるとともに、成形後の冷却時に嵌合状態が解除されて複数の側板が離間するように、複数の側板と嵌合手段との嵌合面がテーパ形状に形成されているので、加圧部で石英ガラスを従来より高い圧力で加圧して成形する間にも、中空部の形状を維持することができて成形し易いとともに、成形後の冷却では嵌合手段の嵌合状態が解除できるため、膨張係数の差に基づいて石英ガラスとモールドとの収縮量に差が生じると、側板が分割されて応力を解放することができ、石英ガラスの割れや歪みを抑制することができる。
【0073】
また、請求項2に記載の発明によれば、嵌合手段が複数の側板の外側に嵌合された枠形状の支持リングを有し、外方向の力により嵌合面同士が摺動して支持リングが抜け方向に移動することにより複数の側板が離間するように構成されているので、モールドの組立及び分解の際に、着脱が容易であり、同時に、冷却時の歪みや割れの発生を防止しつつ、従来より高い圧力で成形する間に中空部の形状をより確実に保持することができる。
【0074】
更に、請求項3に記載の発明によれば、嵌合手段が複数の側板の下端部が嵌合される凹部を備えた底部を有し、外方向の力により複数の側板が底部の凹部から抜け方向に移動することにより、複数の側板が離間するように構成されているので、着脱が容易であり、同時に、冷却時の歪みや割れの発生を防止しつつ、従来より高い圧力で成形する間にも複数の側板の下部を確実に保持することができ、中空部の形状をより保持し易なる。
【0075】
また、請求項4に記載の発明によれば、中空部の横断面形状が略多角形状を呈し、該形状のコーナー部がR形状に形成されているので、成形された多角形形状の石英ガラスにおいて、コーナー部に応力が集中されるのを防止することができ、コーナー部の歪みや割れを防止して石英ガラスを成形し易く、歩留まりを大幅に向上し易い。
【0076】
更に、請求項5に記載の発明によれば、中空部の横断面形状が略多角形状を呈し、該形状のコーナー部が鈍角となるように複数の傾斜面が形成されているので、成形された多角形形状の石英ガラスにおいて、コーナー部に応力が集中されるのを防止することができ、コーナー部の歪みや割れを防止して石英ガラスを成形し易く、歩留まりを大幅に向上し易い。
【図面の簡単な説明】
【図1】この発明の実施の形態1の成形装置を示す概略縦断面図である。
【図2】同実施の形態の成形装置のモールドを示す概略縦断面図である。
【図3】同実施の形態の成形装置の側壁部の横端面図である。
【図4】この発明の実施の形態2の成形装置の側壁部の横端面図である。
【符号の説明】
10 成形装置
11 真空チャンバー
13 カーボンヒータ
15 モールド
16 底板
16a 凹部(嵌合手段)
18 底部
19 側板
20 側壁部
20a、20b テーパ部
21 中空部
23 天板(加圧部)
24 支持リング(嵌合手段)
25 石英ガラス
26 シリンダロッド(成形手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for forming quartz glass into a predetermined shape by housing quartz glass in a mold made of a material having a larger expansion coefficient than that of quartz glass and subjecting the quartz glass to heat and pressure molding.
[0002]
[Prior art]
For an illumination optical system of a projection exposure apparatus using a light source having a wavelength shorter than i-line or an optical member of a projection optical system such as a lens, a mirror, and a reticle, quartz glass is frequently used as a material. This quartz glass is synthesized by a method such as a direct method of producing transparent quartz glass by flame hydrolysis.
[0003]
In the direct method, a combustible gas (oxygen-containing gas, for example, oxygen gas) and a combustible gas (hydrogen-containing gas, for example, hydrogen gas or natural gas) are mixed and burned in a quartz glass burner, and the burner is burned. A high-purity silicon compound (for example, silicon tetrachloride gas) as a source gas is diluted with a carrier gas (usually oxygen gas) and ejected from the center, and the source gas reacts by burning the surrounding oxygen gas and hydrogen gas. (Hydrolysis reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target formed of an opaque quartz glass plate that is arranged below the burner and that performs rotation, swinging, and pulling down motions. The quartz glass ingot is obtained by melting and vitrification by the heat of combustion of the oxygen gas and the hydrogen gas.
[0004]
According to this method, since a quartz glass ingot having a relatively large diameter is easily obtained, an optical member having a desired shape and size can be manufactured by cutting a block from the ingot.
[0005]
In recent years, in order to obtain an optical member having a wide surface, such as a large lens or reticle, or a large liquid crystal display, a quartz glass block such as an ingot formed in advance is formed into a flat shape by heating and press forming. A molding method for enlarging is used.
[0006]
In this molding method, molding is performed by pressurizing the quartz glass block in a mold while being heated in a mold, and then gradually cooling or further annealing in the mold, and Of a predetermined shape with an enlarged area.
[0007]
Examples of such a heating / pressing molding include, for example, heating and pressing at a temperature of 1700 ° C. or more in a helium gas atmosphere having an absolute pressure of 0.1 Torr or more and an atmospheric pressure or less in a graphite mold. Then, a method of rapidly cooling to 1100 to 1300 ° C is known. In addition, a method of press-molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure for relaxing stress caused by a difference in thermal expansion coefficient between quartz glass and a mold material of the mold (see Patent Document 1 below). ) Or a molding apparatus in which the graphite mold has a vertical structure of two or more divisions (see Patent Documents 2 and 3 below). Furthermore, there is also known a method in which a coating layer made of quartz powder is provided on the inner surface of a graphite mold and pressed at 1550 ° C. to 1700 ° C. (see Patent Document 4 below).
[0008]
[Patent Document 1]
Japanese Patent Publication No. 4-54626.
[0009]
[Patent Document 2]
JP-A-56-129621.
[0010]
[Patent Document 3]
JP-A-57-67031.
[0011]
[Patent Document 4]
JP-A-2002-22020.
[0012]
[Problems to be solved by the invention]
However, in such heat and pressure molding, a mold formed from graphite to a large thickness is used in order to prevent impurities from being mixed and secure heat resistance during molding. The expansion coefficient of this graphite is significantly larger than the expansion coefficient of quartz glass.-6/ ° C, whereas quartz glass is 5.5 × 10-7/ ° C. Therefore, if the quartz glass is cooled with the quartz glass housed in the mold after molding, the shrinkage of the mold becomes larger than the shrinkage of the quartz glass. The glass was easily distorted and cracked. In addition, such distortion and cracking of the quartz glass tended to concentrate on the corners of the molded body.
[0013]
On the other hand, in the case of molding using a split mold which is divided in advance as in Patent Documents 2 and 3, etc., the stress applied to the quartz glass can be reduced by separating the mold during cooling. In addition, since the divided parts of the mold are joined by pins, there is a problem that if the pressure during molding is high, the mold is easily separated during the molding.
[0014]
Accordingly, the present invention provides a quartz glass forming apparatus that can apply a higher pressure during molding in heating and pressurizing quartz glass than before, and that does not easily cause distortion or cracks in the quartz glass during cooling. Make it an issue.
[0015]
[Means for Solving the Problems]
The invention according to claim 1, which solves the above problem, has a hollow portion capable of accommodating quartz glass, a mold made of a material having a larger expansion coefficient than the quartz glass, and movably disposed inside the hollow portion. And a heating unit for heating the quartz glass housed in the hollow portion. The quartz glass in the hollow portion is heated by the heating unit and pressurized by the pressurizing unit to have a predetermined shape. A molding device, wherein the molds are combined in a state of contacting each other to form a plurality of side plates forming the hollow portion, and fitting means fitted around the plurality of combined side plates. A fitting state is maintained by the fitting means during the molding, and a load is applied to the plurality of side plates during cooling after the molding based on a difference in expansion coefficient between the mold and the quartz glass. Be outward A fitting surface between the plurality of side plates and the fitting means is formed in a tapered shape so that a fitting state of the fitting means is released by force and the plurality of side plates are separated from each other. .
[0016]
According to a second aspect of the present invention, in addition to the first aspect, the fitting means has a frame-shaped support ring fitted outside the plurality of side plates, and The plurality of side plates are configured to be separated by moving the support ring in the pull-out direction by sliding the fitting surfaces with each other by the force.
[0017]
Furthermore, the invention described in claim 3 is the same as the structure described in claim 1 or 2, wherein the fitting means has a bottom having a concave portion into which lower ends of the plurality of side plates are fitted, The plurality of side plates are configured to be separated from each other by moving the plurality of side plates out of the concave portion of the bottom portion by the outward force.
[0018]
According to a fourth aspect of the present invention, in addition to the configuration according to any one of the first to third aspects, a cross section of the hollow portion has a substantially polygonal shape, and a corner portion of the shape has an R shape. It is characterized by being formed in.
[0019]
Furthermore, in the invention according to claim 5, in addition to the configuration according to any one of claims 1 to 3, the cross section of the hollow portion has a substantially polygonal shape, and the corner portion of the shape has an obtuse angle. A plurality of inclined surfaces are formed as described above.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described.
[0021]
1 to 3 show a molding apparatus according to this embodiment.
[0022]
The molding apparatus 10 is a synthetic quartz glass ingot manufactured from silicon compounds such as silicon tetrachloride, silane, and organosilicon, and a part thereof, or a refractive index of Ge, Ti, B, F, Al, or the like. From a synthetic quartz glass ingot and a part thereof, such as a synthetic quartz glass ingot added with a component that changes the size, for example, a substrate for a reticle (photomask) such as a large-sized liquid crystal mask and a semiconductor mask, and a large-sized imaging optical system. This is an apparatus for forming a plate-like body having a wide surface such as a lens material and other large glass blocks.
[0023]
In the forming apparatus 10, a heat insulating material 12 provided over the entire surface of an inner wall of a metal vacuum chamber 11 and a carbon heater 13 as heating means provided in a vertical wall of the heat insulating material 12 are provided. A mold 15 having a hollow portion 21 is housed at a substantially central portion inside the vacuum chamber 11.
[0024]
The mold 15 includes a bottom 18 having a bottom plate 16 and a receiving plate 17, and a side wall 20 disposed above the bottom 18, and a hollow portion 21 is formed inside the side wall 20.
[0025]
The side wall portion 20 is assembled from a plurality of side plates 19 and a support ring 24 as fitting means. The side plate 19 is a quadrangular plate material in which one surface is an inner surface 19a forming a wall surface of the hollow portion 21 and the other surface is an outer surface 19b forming an outer surface of the side wall portion 20. On both sides of the side plate 19, there are inclined side surfaces 19c oriented toward the inner surface 19a, and upper end portions 19d and lower end portions 19e have tapered fitting surfaces 19f, 19g oriented toward the outer surface 19b, respectively. ing.
[0026]
The support ring 24 is a hollow rectangular frame, and has a tapered fitting surface 24 a that matches the fitting surface 19 f of the side plate 19 inside.
[0027]
Then, the side wall portion 20 combines the four side plates 19 into a rectangular tube by bringing the inclined side surfaces 19 c into surface contact with each other, and in this state, mounting the support ring 24 around the four side plates 19. It is formed by fitting the fitting surface 24a of the support ring 24 to the fitting surface 19f of the side plate 19.
[0028]
The bottom plate 16 of the bottom portion 18 is formed with a concave portion 16a as a fitting means so that the lower end portion 19g of the side wall portion 20 can be inserted. The recess 16a is formed with a tapered fitting surface 16b that matches the fitting surface 19g of the four side plates 19.
[0029]
Then, by inserting the lower end 19e side of the side plate 19 assembled as described above into the concave portion 16a, the fitting surface 16b of the concave portion 16 is fitted around the fitting surface 19g. The mold 15 is formed by arranging the receiving plate 17 on the lower end portion 19g side in the portion 21.
[0030]
As shown in FIG. 3, the hollow portion 21 of the mold 15 has a rectangular cross-sectional shape, and all corners 27 are formed in an R shape. In the hollow portion 21, a top plate 23 as a pressing portion having a shape corresponding to the shape of the hollow portion 21 is movably arranged in a state where the massive quartz glass 25 is arranged.
[0031]
The top plate 23 presses the pressing surface 23b (upper surface) with a cylinder rod 26 of a hydraulic cylinder as a forming means provided outside the vacuum chamber 11, so that a massive quartz is formed on the pressing surface 23a of the top plate 23. The glass 25 is configured to be pressurizable.
[0032]
The hydraulic cylinder having the cylinder rod 26 is configured to move by being pressurized by adjusting the hydraulic pressure supplied from the outside, but is not shown in detail.
[0033]
Each of the bottom plate 16, the receiving plate 17, the side plate 19, the support ring 24, and the top plate 23 has heat resistance and strength against the temperature and pressure at the time of forming the quartz glass 25, and has the quartz glass 25 at the time of forming. Are made of a material that hardly mixes impurities even when they come into contact with, and in this case, all are made of graphite having an expansion coefficient larger than that of quartz glass.
[0034]
Among these, the side plate 19 is subjected to a large force in the bending direction during molding. Therefore, it is preferable to select the thickness of the side plate 19 according to the pressure applied at the time of molding. For example, the molding pressure at the time of molding is 0.3 to 0.3 to the pressure converted per unit area of the pressing surface 23a of the top plate 23. 5.0Kg / cm2In this case, the thickness is preferably in the range of 20 to 70 mm, particularly 30 to 50 mm. If the plate thickness is small, the side plate 19 bends and the stress for compressing the quartz glass 25 during cooling is likely to increase, while if the plate thickness is large, extra time is required for heat transfer.
[0035]
In the molding apparatus 10, the taper shape between the fitting surface 19f of the side plate 19 of the mold 15 and the fitting surface 24a of the support ring 24, and the taper between the fitting surface 19g of the side plate 19 and the fitting surface 16b of the recess 16a. Each of the shapes is set so that the fitted state can be maintained during molding, and the fitted state can be released during cooling after molding.
[0036]
That is, the fitting surface 19f of the side plate 19 and the fitting surface 24a of the support ring 24, and the fitting surface 19f of the side plate 19 and the fitting surface 16b of the concave portion 16a are respectively fitted to each other, so that they can move relative to each other. The frictional force that acts is acting. In this state, when an outward force is applied to each side wall 19, a force in the piercing direction corresponding to the tapered shape acts between the fitting surfaces 19f and 24a and between the fitting surfaces 19g and 16b. Here, in a range where the force in the disengagement direction is smaller than the frictional force in the fitted state, the fitted state is maintained without sliding between the fitting faces 19f and 24a and between the fitting faces 19g and 16b. be able to. On the other hand, if the force in the disengagement direction becomes larger than the frictional force in the fitted state, the fitted state is released by sliding between the fitting faces 19f and 24a and between the fitting faces 19g and 16b.
[0037]
Therefore, in this forming apparatus 10, the external force of the side plate 19 generated when the quartz glass 25 is pressed by the top plate 23 and deformed at the time of forming, causes the space between the fitting surfaces 19f and 24a and the fitting surface 19g, It has a tapered shape in which the fitted state between 16b is maintained.
[0038]
At the same time, at the time of cooling after molding, when a force acting in an outward direction acts on the support ring 24 and the concave portion 16a on each side plate 19 due to a difference in shrinkage due to a difference in expansion coefficient between the mold 15 and the quartz glass 25. The fitting surfaces 19f and 24a and the fitting surfaces 19g and 16b have a tapered shape in which the fitting state is released by sliding between the fitting surfaces 19f and 24a.
[0039]
Such a tapered shape can be appropriately selected depending on the properties of the respective fitting surfaces and the like. For example, the pressure by the top plate 23 during molding is 0.3 to 5.0 kg / cm.2In this case, it is preferable to set the tapered shape of each fitting surface so as to have an elevation angle of 60 ° to 75 °.
[0040]
Next, a case where the bulky quartz glass 25 is heated and pressed by the forming apparatus 10 having the above-described configuration will be described. First, the mold 15 is formed by combining the bottom plate 16, the receiving plate 17, the side plate 19, and the support ring 24 in the vacuum chamber 11. Then, a massive quartz glass 25 is disposed in the hollow portion 21 of the mold 15, a top plate 23 is disposed thereon, and a pressing portion 26 a of a cylinder rod 26 of a hydraulic cylinder is further disposed on a pressing surface 23 b of the top plate 23. Set it in contact. In this embodiment, a synthetic quartz glass ingot is used as the massive quartz glass 25.
[0041]
Then, the inside of the vacuum chamber 11 is replaced with an inert gas, and the massive quartz glass 25 in the hollow portion 21 is heated by the carbon heater 13 so that the crystallization temperature is higher than the crystallization temperature and lower than the softening point, specifically, 1570 ° C. to 1670 ° C. The temperature is raised to perform molding.
[0042]
At the time of molding, the cylinder rod 26 of each hydraulic cylinder is moved downward by hydraulic pressure to press the pressing surface 23b of the top plate 23 with the pressing portion 26a of the cylinder rod 26. As a result, the top plate 23 moves in the pressing direction on the bottom side, and the massive quartz glass 25 is pressed by the pressing surface 23a of the top plate 23.
[0043]
Here, the pressure of the top plate 23 is reduced in the early stage of molding, and is set to the maximum pressing force in the final stage. For example, in the initial stage, the pressure converted per unit area of the pressing surface 23a of the top plate 23 is 0.3 to 1.5 kg / cm.21.0 to 5.0 kg / cm in the final stage of molding2It can be. Further, the descending speed of the top plate 23 can be, for example, 5 to 20 cm / min. By setting the pressure and the descending speed in such ranges, the quartz glass 25 can be easily deformed gradually, and a large force can be hardly locally applied to the mold 15.
[0044]
While the quartz glass 25 is pressed by the top plate 23, the pressing force of the top plate 23 is applied to the plurality of side plates 19 via the quartz glass 25 as an outward force. In the final stage of the molding, the volume of the hollow portion 21 below the top plate 23 becomes the volume of the quartz glass 25, and the cylinder rod 26 and the top plate 23 move by a predetermined amount set so that there is no void inside. Thereby, the pressure of the top plate 23 is finally applied to the plurality of side plates 19. At this time, since the upper ends 19d of the plurality of side plates 19 are maintained in a state fitted in the through holes 24a of the support ring 24, the upper ends 19d of the plurality of side plates 19 do not move outward. Further, since the lower end portions 19e of the plurality of side plates 19 are maintained in a state of being fitted into the concave portions 16a of the bottom plate 16, the lower end portions 19e of the plurality of side plates 19 do not move outward. Therefore, at the time of molding, the shape of the hollow portion 21 of the mold 15 is reliably maintained.
[0045]
Then, at the stage where the massive quartz glass 25 is formed into a plate having a predetermined shape, the pressing by the top plate 23 is completed.
[0046]
After the pressurization, the cooling is performed by appropriately setting the cooling rate while the plate-shaped quartz glass 25 is placed in the mold 15.
[0047]
At this time, the quartz glass 25 immediately after molding is placed in a state of being in close contact with the inner wall of the hollow portion 21 of the mold 15, and when the temperature decreases from this state, the quartz glass 25 and the mold 15 corresponding to the temperature change heat up. Cause contraction. Since the shrinkage amount at this time is in accordance with the respective expansion coefficients, the shrinkage amount of the mold 15 is larger than that of the quartz glass 25.
[0048]
Therefore, when the frame-shaped support ring 24 contracts, it presses the fitting surface 19f of the upper end portion 19d of the side plate 19 in contact with the fitting surface 24a on the inner periphery thereof inward. However, since the quartz glass 25 is less shrunk, the upper end 19d of the side plate 19 cannot move inward, and as a result, an outward force is applied to the support ring 24 from the side plate 19. As a result, the fitting state between the fitting surface 19f of the side plate 19 and the fitting surface 24a of the support ring 24 is released, and the support ring 24 moves upward from the side plate 19 in the withdrawal direction.
[0049]
When the concave portion 16a contracts due to the contraction of the bottom plate 16, the fitting surface 19g of the lower end portion 19e of the side plate 19 abutting on the inner peripheral surface thereof is pressed inward. However, since the shrinkage of the quartz glass 25 is small, the lower end 19e of the side plate 19 cannot move inward, and an outward force is applied from the side plate 19 to the recess 16a. As a result, the fitting state between the fitting surface 19g of the side plate 19 and the fitting surface 16b of the recess 16a is released, and the side plate 19 moves upward from the recess 16a.
[0050]
By releasing the fitting state of the fitting surface in this manner, the plurality of side plates 19 are separated from each other, and the formed quartz glass 25 can be prevented from being compressed by the mold 15. Then, the molding is completed by sufficiently cooling.
[0051]
According to the quartz glass 25 forming apparatus 10 as described above, the molds 15 are combined in a state where they are in contact with each other, and the plurality of side plates 19 forming the hollow portion 21 are fitted to the outside of the plurality of side plates 19. The bottom plate 16 has a concave portion 16a or a support ring 24, which is configured to maintain the fitted state at the time of molding and to be able to release the fitted state at the time of cooling after molding. Even if the quartz glass 25 is molded by applying a higher pressure than before, the fitted state can be maintained at the time of molding, and the shapes of the mold 15 and the hollow portion 21 can be maintained, and molding is easy. Then, at the time of cooling after molding, the fitted state is released, and the plurality of side plates 19 are separated to release the stress. Therefore, cracking and distortion of the formed quartz glass 25 can be suppressed, and the yield can be improved.
[0052]
Further, since the frame-shaped support ring 24 fits on the outside of the plurality of side plates 19, it can be easily attached and detached when assembling and disassembling the mold 15, and at the same time, the support ring 24 is attached to the outside of the side plate 19. Since it is fitted around and can be moved in the pulling-out direction by an external force, the quartz glass 25 is formed with a higher pressure than before while preventing the occurrence of distortion and cracking of the quartz glass 25 during cooling. It is easy to reliably hold the shape of the hollow portion 21 between them.
[0053]
Further, since the concave portions 16a of the bottom plate 16 are fitted to the outer surfaces of the lower end portions 19e of the plurality of side plates 19, and the plurality of side plates 19 are movable in the detaching direction from the concave portions 16a of the bottom plate 16, In addition to being easy to assemble and disassemble, the lower end portions 19e of the plurality of side plates 19 are easily held during molding at a higher pressure than before, while preventing the occurrence of distortion and cracking during cooling. Is more easily retained.
[0054]
In addition, since the cross section of the hollow portion 21 has a substantially square shape and the corner portion 27 is formed in an R shape, stress is concentrated on the corner portion 27 in the formed rectangular quartz glass 25. Can be prevented and the corner portion 27 can be formed while preventing distortion and cracking, and the yield can be greatly improved.
[0055]
In the first embodiment, an example in which the plate-shaped quartz glass 25 is formed has been described. However, the present invention can be appropriately applied to a formed body other than the plate-shaped body.
[0056]
Further, in the above description, an example in which the top plate 23 is pressed by the cylinder rod 26 of one hydraulic cylinder has been described. However, the top plate 23 may be pressed by using a plurality of cylinder rods 26, and the top plate 23 may be further pressed by a hydraulic cylinder. Instead, other mechanical forming means can be used.
[0057]
Further, in the above description, the example in which the molding is performed at a temperature equal to or higher than the crystallization temperature and equal to or lower than the softening point is described. However, the molding may be performed at a temperature equal to or higher than the crystallization temperature of the quartz glass 25, and may be higher than the softening point.
[0058]
[Embodiment 2]
Next, a second embodiment will be described.
[0059]
In the molding apparatus 10 according to the second embodiment, a plurality of inclined sides 29 are provided so that a corner 27 is obtuse in a hollow section 21 having a substantially rectangular cross section. It has the same configuration as the device 10.
[0060]
Even with such a molding apparatus 10, stress can be prevented from being concentrated on the corner portions 27 of the formed substantially rectangular quartz glass 25, so that distortion and cracking of the corner portions 27 can be prevented. It is easy to significantly improve the yield as in the first embodiment.
[0061]
【Example】
Hereinafter, examples will be described.
[0062]
Comparative Example 1
A synthetic quartz ingot manufactured by a direct method using silicon tetrachloride having a diameter of 400 mm, a length of 500 mm, and a weight of 138 kg is placed in a quadrilateral graphite mold 15 having a square shape of 500 mm on a side, and hot. It was set on a press machine. The top plate 23 having a thickness of 30 mm was placed on the upper surface of the ingot, and the receiving plate 17 having a thickness of 30 mm was placed on the lower surface of the ingot. Further, the cylinder rod 26 was arranged on the top plate 23.
[0063]
Thereafter, the pressure in the vacuum chamber 11 was reduced to 50 Pa by a vacuum pump, and pure nitrogen gas was supplied at a pressure of 3 × 104It was filled up to Pa.
[0064]
Then, the temperature was raised, raised to 1620 ° C. in 3 hours, and maintained at 1620 ° C. for 0.5 hour.
[0065]
Thereafter, the top plate 23 was pressed by the cylinder rod 26 at an initial load of 3.5 ton and a press speed of 5 mm / sec to form an ingot. When the displacement stroke of the cylinder rod 26 reached a calculated position where there is no void in the hollow portion 21 below the top plate 23, the pressurization was terminated, the temperature of the carbon heater 13 was lowered, and the carbon heater 13 was rapidly cooled to 300 ° C.
[0066]
Thereafter, the mold 15 was taken out, and the molded product was taken out. The molded product had a side of 500 mm and a height of 250 mm.
[0067]
Observation of the molded product revealed that the entire surface was transparent, but some cracks were formed at the four corners. Also, some residual strain remained at the four corners. Then, from this molded product, a plate-like body having a side of 400 mm, a thickness of 210 mm, and a weight of 74 kg was obtained as an effective square bar.
[0068]
Example 1
A molded product was formed in the same manner as in Comparative Example 1, except that a mold 15 having a square shape with a side of 500 mm and a corner portion of R40 was used. The molded article had a side of 500 mm and a height of 252 mm.
[0069]
Observation of the molded product revealed that the entire surface was transparent, but no cracks could be confirmed in the R shapes at the four corners, and no distortion could be confirmed except for 15 mm around the molded product. From this molded product, a plate-like body having a length of 460 mm on one side, a thickness of 215 mm, and a weight of 100 kg was obtained as an effective square bar.
[0070]
Example 2
A molded product was formed in the same manner as in Comparative Example 1, except that a mold 15 was a square having a side of 1000 mm and a dodecagon having an inclined surface of 34 mm at a corner and two dividing lines. The molded product had a side of 500 mm and a height of 253 mm.
[0071]
Observation of the molded product revealed that the entire surface was transparent, but no cracks or residual strain could be confirmed at the four corners. From this molded product, a plate-like body having a side length of 470 mm, a thickness of 215 mm, and a weight of 104 kg was obtained as an effective square bar.
[0072]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, the molds are combined in a state where they are in contact with each other to form a hollow portion, and are fitted around the plurality of combined side plates. And a fitting means to be fitted, the fitting means maintains a fitting state at the time of molding, and a plurality of side plates are separated so that the fitting state is released at the time of cooling after the molding and the side plates are separated. Since the fitting surface between the side plate and the fitting means is formed in a tapered shape, it is possible to maintain the shape of the hollow portion even while pressing and molding the quartz glass at a pressure portion with a higher pressure than before. It is easy to mold and mold, and the cooling state after molding can release the fitting state of the fitting means, so if there is a difference in the amount of contraction between the quartz glass and the mold based on the difference in expansion coefficient, the side plate is divided. Releases stress and suppresses cracking and distortion of quartz glass It can be.
[0073]
According to the invention described in claim 2, the fitting means has a frame-shaped support ring fitted to the outside of the plurality of side plates, and the fitting surfaces slide with each other due to an outward force. Since the side plates are configured to move away from each other by moving the support ring in the removal direction, it is easy to attach and detach the mold when assembling and disassembling the mold. The shape of the hollow portion can be more reliably maintained while molding at a higher pressure than before, while preventing this.
[0074]
Furthermore, according to the third aspect of the present invention, the fitting means has a bottom provided with a concave portion into which the lower end portions of the plurality of side plates are fitted, and the plurality of side plates are moved from the concave portion of the bottom portion by an external force. By moving in the removal direction, the plurality of side plates are configured to be separated from each other, so that attachment and detachment are easy, and at the same time, molding is performed at a higher pressure than before while preventing generation of distortion and cracking during cooling. The lower portions of the plurality of side plates can be reliably held in between, and the shape of the hollow portion can be more easily held.
[0075]
According to the invention as set forth in claim 4, since the cross section of the hollow portion has a substantially polygonal shape, and the corner portion of the shape is formed in an R shape, the formed quartz glass having the polygonal shape is formed. In this case, stress can be prevented from being concentrated on the corners, distortion and cracks in the corners can be prevented, quartz glass can be easily formed, and the yield can be greatly improved.
[0076]
Furthermore, according to the invention as set forth in claim 5, since the hollow section has a substantially polygonal cross-sectional shape, and a plurality of inclined surfaces are formed so that the corners of the shape have an obtuse angle, it is molded. In the polygonal-shaped quartz glass, stress can be prevented from being concentrated on the corners, distortion and cracks in the corners can be prevented, the quartz glass can be easily formed, and the yield can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic vertical sectional view showing a molding apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a schematic vertical sectional view showing a mold of the molding apparatus according to the embodiment.
FIG. 3 is a lateral end view of a side wall of the molding apparatus according to the embodiment.
FIG. 4 is a lateral end view of a side wall of a molding apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
10 Molding equipment
11 Vacuum chamber
13 Carbon heater
15 Mold
16 Bottom plate
16a recess (fitting means)
18 bottom
19 Side plate
20 Side wall
20a, 20b Tapered part
21 hollow part
23 Top plate (Pressing part)
24 Support ring (fitting means)
25 quartz glass
26 Cylinder rod (forming means)

Claims (5)

石英ガラスを収容可能な中空部を有し、該石英ガラスより膨張係数の大きい材料からなるモールドと、前記中空部の内部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラスを加熱する加熱手段とを備え、前記中空部内の石英ガラスを前記加熱手段で加熱しつつ前記加圧部により加圧して所定形状に成形する成型装置であって、
前記モールドは、互いに当接した状態で組合されて前記中空部を形成する複数の側板と、該組合された複数の側板の周囲に嵌合される嵌合手段とを有し、
前記成形時には前記嵌合手段により嵌合状態が維持されるとともに、該成形後の冷却時には、前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に負荷される外方向の力により前記嵌合手段の嵌合状態が解除されて前記複数の側板が離間するように、前記複数の側板と嵌合手段との嵌合面がテーパ形状に形成されていることを特徴とする石英ガラスの成形装置。
It has a hollow portion capable of accommodating quartz glass, a mold made of a material having a larger expansion coefficient than the quartz glass, a pressurizing portion movably disposed inside the hollow portion, and accommodated in the hollow portion. A heating device for heating the quartz glass, and a molding device that pressurizes the quartz glass in the hollow portion by the pressurizing unit while heating the quartz glass in the heating unit into a predetermined shape,
The mold has a plurality of side plates that are combined in contact with each other to form the hollow portion, and a fitting unit that is fitted around the combined plurality of side plates,
The fitting state is maintained by the fitting means at the time of the molding, and at the time of cooling after the molding, an outward direction is applied to the plurality of side plates based on a difference in expansion coefficient between the mold and the quartz glass. A fitting surface between the plurality of side plates and the fitting means is formed in a tapered shape so that a fitting state of the fitting means is released by force and the plurality of side plates are separated from each other. Quartz glass forming equipment.
前記嵌合手段は、前記複数の側板の外側に嵌合された枠形状の支持リングを有し、前記外方向の力により前記嵌合面同士が摺動して前記支持リングが抜け方向に移動することにより、前記複数の側板が離間するように構成されたことを特徴とする請求項1に記載の石英ガラスの成形装置。The fitting means has a frame-shaped support ring fitted to the outside of the plurality of side plates, and the fitting surfaces slide by the force in the outward direction, so that the support ring moves in a detaching direction. The quartz glass forming apparatus according to claim 1, wherein the plurality of side plates are separated from each other by doing so. 前記嵌合手段は、前記複数の側板の下端部が嵌合される凹部を備えた底部を有し、前記外方向の力により前記複数の側板が前記底部の凹部から抜け方向に移動することにより、前記複数の側板が離間するように構成されたことを特徴とする請求項1又は2に記載の石英ガラスの成形装置。The fitting means has a bottom provided with a concave portion into which lower end portions of the plurality of side plates are fitted, and the plurality of side plates are moved in a detaching direction from the concave portion of the bottom portion by the outward force. The quartz glass forming apparatus according to claim 1, wherein the plurality of side plates are configured to be separated from each other. 前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部がR形状に形成されていることを特徴とする請求項1乃至3の何れか一つに記載の石英ガラスの成形装置。The quartz glass forming apparatus according to any one of claims 1 to 3, wherein a cross section of the hollow portion has a substantially polygonal shape, and a corner portion of the shape is formed in an R shape. . 前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部が鈍角となるように複数の傾斜面が形成されたことを特徴とする請求項1乃至3の何れか一つに記載の石英ガラスの成形装置。The cross section of the hollow portion has a substantially polygonal shape, and a plurality of inclined surfaces are formed so that a corner portion of the shape has an obtuse angle. Quartz glass forming equipment.
JP2003103364A 2003-04-07 2003-04-07 Quartz glass molding equipment Expired - Lifetime JP4281397B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003103364A JP4281397B2 (en) 2003-04-07 2003-04-07 Quartz glass molding equipment
KR1020040023657A KR101096477B1 (en) 2003-04-07 2004-04-07 Method and apparatus for forming a quartz glass
TW093109546A TW200502183A (en) 2003-04-07 2004-04-07 Molding apparatus and method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103364A JP4281397B2 (en) 2003-04-07 2003-04-07 Quartz glass molding equipment

Publications (2)

Publication Number Publication Date
JP2004307265A true JP2004307265A (en) 2004-11-04
JP4281397B2 JP4281397B2 (en) 2009-06-17

Family

ID=33466524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103364A Expired - Lifetime JP4281397B2 (en) 2003-04-07 2003-04-07 Quartz glass molding equipment

Country Status (1)

Country Link
JP (1) JP4281397B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006679A (en) * 2008-06-30 2010-01-14 Tosoh Quartz Corp Method of producing quartz glass formed member
KR20130112029A (en) 2010-09-21 2013-10-11 가부시키가이샤 니콘 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
JP2015157736A (en) * 2014-02-25 2015-09-03 信越石英株式会社 Weight, molding apparatus for quartz glass, and molding method for quartz glass
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089949A (en) * 2020-01-09 2021-07-19 삼성전자주식회사 Laser beam delivery system for extreme ultra violet light source

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010006679A (en) * 2008-06-30 2010-01-14 Tosoh Quartz Corp Method of producing quartz glass formed member
KR20130112029A (en) 2010-09-21 2013-10-11 가부시키가이샤 니콘 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
JP2015157736A (en) * 2014-02-25 2015-09-03 信越石英株式会社 Weight, molding apparatus for quartz glass, and molding method for quartz glass

Also Published As

Publication number Publication date
JP4281397B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP2004307265A (en) Molding apparatus for quartz glass
JP4419701B2 (en) Quartz glass molding equipment
JP4374964B2 (en) Quartz glass molding method and molding apparatus
JP5812005B2 (en) Mold for glass molding, glass molding apparatus, glass molding method, and photomask substrate manufacturing method
JP4341277B2 (en) Method of forming quartz glass
JP4288413B2 (en) Quartz glass molding method and molding apparatus
JP4465974B2 (en) Quartz glass molding equipment
JPH08151220A (en) Method for molding quartz glass
JP5292994B2 (en) Method and apparatus for forming quartz glass
EP1783103B1 (en) Method for forming quartz glass
JP4760137B2 (en) Method of forming quartz glass
KR101096477B1 (en) Method and apparatus for forming a quartz glass
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JPS6183638A (en) Quartz glass forming
US7275397B2 (en) Method of molding a silica article
JP2007022847A (en) Molding apparatus of quartz glass and method of molding quartz glass using the same
JP4094210B2 (en) Manufacturing method of glass optical element and molding die for glass optical element used therefor
JP3128007B2 (en) Quartz glass mold
JP2006169033A (en) Forming method and forming apparatus for quartz glass
JPS632421Y2 (en)
JP2004123439A (en) Process for manufacturing optical glass
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
JP2003063832A (en) Mold for forming optical element
JP2002053332A (en) Method and device for molding synthetic quartz glass
JP2007169125A (en) Press molding device, press molding method and method for manufacturing glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4281397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250