JP2004304090A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2004304090A
JP2004304090A JP2003097587A JP2003097587A JP2004304090A JP 2004304090 A JP2004304090 A JP 2004304090A JP 2003097587 A JP2003097587 A JP 2003097587A JP 2003097587 A JP2003097587 A JP 2003097587A JP 2004304090 A JP2004304090 A JP 2004304090A
Authority
JP
Japan
Prior art keywords
layer
gap
carrier concentration
emitting diode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003097587A
Other languages
Japanese (ja)
Other versions
JP4150909B2 (en
Inventor
Naoki Kaneda
直樹 金田
Taiichiro Konno
泰一郎 今野
Kenji Shibata
憲治 柴田
Tsunehiro Unno
恒弘 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003097587A priority Critical patent/JP4150909B2/en
Publication of JP2004304090A publication Critical patent/JP2004304090A/en
Application granted granted Critical
Publication of JP4150909B2 publication Critical patent/JP4150909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a light emitting diode which has a large light emitting output and a low operating voltage and also is strong in an overvoltage. <P>SOLUTION: The light emitting diode has an active layer 104 composed of at least an InGaAlP based material on a first conductive type semiconductor substrate 101, a second conductive type upper clad layer 105 which is formed on this active layer and is composed of InGaAlP having a greater band cap than the active layer, and a second conductive type current diffusion layer which is formed thereon and is composed of GaP. The second conductive type current diffusion layer has a structure in which a GaP layer 107a of a low carrier concentration in which a carrier concentration is 1×10<SP>17</SP>cm<SP>-3</SP>or less is sandwiched between GaP layers 106 and 107b of a higher carrier concentration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発光出力が大きく、動作電圧が低く、しかも過電圧に強い発光ダイオードに関するものである。
【0002】
【従来の技術】
AlGaInP系の発光ダイオード(LED)は各種表示用光源として広く用いられている。特に屋外ディスプレイや交通信号用光源は高出力で信頼性が高く、しかも安価であることが求められている。
【0003】
高出力を得るための施策としては、例えば活性層の上部に位置する活性層(発光層)の発光に対しほぼ透明な層(いわゆる電流拡散層)の厚膜化が行われており、その材料としては例えば特開平3−171679号(特許文献1)に開示されているAlGaAsや、米国特許US5008718号(特許文献2)に開示されているGaP等が広く用いられている。
【0004】
高出力を得るための他の施策としては、例えば特開平3−283674号(特許文献3)に開示されているように、抵抗率の小さい第2のクラッド層を挿入して電流の拡散を促すことにより高出力化する方法がある。
【0005】
高出力を得るための他の施策としては、例えば特開平4−87379号(特許文献4)に開示されているように、基板側にキャリア濃度の低い層を挿入することにより電流の拡散を促すことにより高出力化する方法がある。
【0006】
高出力を得るための他の施策としては、例えば特開平4−229665号(特許文献5)に開示されているように、電流阻止層を具備させ電流の集中を高めることにより高出力化する方法がある。
【0007】
高出力を得るための他の施策としては、例えば特開平7−202264号(特許文献6)に開示されているように、低ポテンシャル、且つ高伝導性の層を挿入することによって電流拡散を増強し、高出力化する方法がある。
【0008】
また、特開平9−260724号(特許文献7)には、AlGaInP層とGaP層の間にAlInAs、GaAs又はAlGaInPから成る中間層を介在させ、エネルギーバンドプロファイルを滑らかにして動作電圧の上昇を抑えるという方法が開示されている。
【0009】
【特許文献1】
特開平3−171679号
【0010】
【特許文献2】
米国特許US5008718号
【0011】
【特許文献3】
特開平3−283674号
【0012】
【特許文献4】
特開平4−87379号
【0013】
【特許文献5】
特開平4−229665号
【0014】
【特許文献6】
特開平7−202264号
【0015】
【特許文献7】
特開平9−260724号
【0016】
【発明が解決しようとする課題】
しかしながら、上記した特許文献1〜6の方法では、高出力化という観点からは所望の効果が得られるものの、素子に過大な電圧を加えると、ダイオードの特性上、電圧に対し指数関数的に電流が増加するため、破壊し易いという問題がある。例えば発光波長650nmの発光ダイオード素子の活性層のバンドギャップは約1.9eVであるため、素子に加える電圧が約1.9Vを超えると、素子を流れる電流は指数関数的に増加し、遂には素子が破壊されるに至る。素子の放熱設計にもよるが、順方向電圧がおよそ3Vを超えると多くの素子が破壊されてしまう。
【0017】
信頼性の観点からは電流拡散層に酸化しやすいAlを含まないGaPの方が有利であるが、GaPとAlGaInPのヘテロ界面にはエネルギーバンドプロファイルにノッチが生じ、動作電圧が高くなってしまうという問題がある。このため例えば特許文献7に開示されているように、AlGaInP層とGaP層の間に中間層を介在させ、エネルギーバンドプロファイルを滑らかにして動作電圧の上昇を抑えるという方法がある。これにより動作電圧を低減することができたが、できる限り下げることが好ましい。
【0018】
そこで、本発明の目的は、上記課題を解決し、このような従来の欠点を除去し、発光出力が大きく、動作電圧が低く、しかも過電圧に強い発光ダイオードを提供することにある。
【0019】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0020】
請求項1の発明に係る発光ダイオードは、第1導電型の半導体基板上に、少なくともInGaAlP系材料からなる活性層と、この活性層上に形成された、該活性層よりもバンドギャップが大きいInGaAlPからなる第2導電型のクラッド層と、その上に形成されたGaPからなる第2導電型の電流拡散層とを有する発光ダイオードにおいて、上記第2導電型の電流拡散層が、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層をそれより高キャリア濃度のGaP層の間に挟み込んだ構造を有することを特徴とする。
【0021】
これは、第2導電型のGaP電流拡散層を、例えばGaP層中に高抵抗層を入れた形態として、過電圧に強いLEDとするものであり、代表的にはキャリア濃度が1×1017cm−3以下である低キャリア濃度層部分を、キャリア濃度が1×1018cm−3以上の高キャリア濃度層部分で挟み込んだ構造とするものである。
【0022】
請求項2の発明に係る発光ダイオードは、第1導電型の半導体基板上に、少なくともInGaAlP系材料からなる活性層と、この活性層上に形成された、該活性層よりもバンドギャップが大きいInGaAlPからなる第2導電型のクラッド層と、その上に形成されたGaPからなる第2導電型の電流拡散層とを有する発光ダイオードにおいて、上記第2導電型の電流拡散層がキャリア濃度の異なる第1のGaP層と第2のGaP層から成り、そのうちの第2導電型のクラッド層に接している側の第1のGaP層のキャリア濃度が3×1018cm−3以上であり、その上の第2のGaP層が、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層と、キャリア濃度が1×1018cm−3以上の高キャリア濃度のGaP層を含む層構造(2層以上の多層構造)として形成されていることを特徴とする。
【0023】
請求項3の発明は、請求項2記載の発光ダイオードにおいて、上記第2のGaP層が、キャリア濃度が1×1017cm−3以下である低キャリア濃度層と、キャリア濃度が1×1018cm−3以上の高キャリア濃度層を含む三層以上の多層構造として形成されていることを特徴とする。
【0024】
請求項4の発明は、請求項2又は3記載の発光ダイオードにおいて、上記第1導電型の半導体基板がn型の導電性を有するGaAs基板またはGe基板から成ることを特徴とする。
【0025】
請求項5の発明に係る発光ダイオードは、n型のGaAs基板またはGe基板から成る半導体基板上に、少なくともInGaAlP系材料からなるn型の下部クラッド層と、該クラッド層よりバンドギャップエネルギーが小さいInGaAlP系材料からなる活性層と、該活性層よりバンドギャップエネルギーが大きいInGaAlPからなるp型の上部クラッド層と、p型のクラッド層上に形成された、p型のクラッド層よりも厚いp型のGaP層を有する発光ダイオードにおいて、上記p型のGaP層がキャリア濃度の異なる複数層から成っており、そのうちのp型の上部クラッド層に接している側のGaP層がキャリア濃度が3×1018cm−3以上の第1のGaP層として形成され、この第1のGaP層上に、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層と、キャリア濃度が1×1018cm−3以上の高濃度キャリアのGaP層とを含む多層構造からなる第2のGaP層が形成されていることを特徴とする。
【0026】
上記請求項1〜4に記載の発明は、シングルヘテロ構造の形態のみ成らず、活性層を両側から挟み込む第1導電型の下部クラッド層及び第2導電型の上部クラッド層とを含む積層構造(ダブルヘテロ構造)の形態を含むことを前提としている。これに対し、請求項5に記載の発明は、ダブルヘテロ構造の形態を特定したものである。
【0027】
<作用>
LEDで発光輝度を高くするためには、電流分散を良くする必要がある。電流分散をよくするためには、電気の流れを起こすための駆動力である電界による流れと濃度拡散による流れを有効に活用する必要がある。電界の効果を用いて電気を流そうとすると、どうしても電圧を高くする必要があり、駆動電圧が高くなる。
【0028】
本発明のように高キャリア濃度層の間に低キャリア濃度層を挟み込むと、低キャリア濃度層がポテンシャル障壁になり、流れ込んできたキャリアがその障壁で止められ電流が横に広がっていく。このポテンシャルを高くすれば電流は十分拡散するが、それではポテンシャルを越えるだけの電圧が必要となり、駆動電圧が高くなってしまう。そこでこのポテンシャルは低くして、それを何層にもする事により、駆動電圧を低く押さえた状態で電流分散を起こす事ができる。
【0029】
このようにして作製した障壁に電圧を印加して電流電圧特性を測定すると、この障壁は直列抵抗成分として働く。このため例えば3乃至5V程度の電圧を加えても急激に電流値が増えることが無い。上記施策を講じたGaP層により、出力が大きく、動作電圧が低く、しかも過電圧に強いLEDを得ることができる。
【0030】
【発明の実施の形態】
本発明は上記した従来の欠点を解消するために成されたものであり、発光出力が大きく、動作電圧が低く、しかも過電圧に強い発光ダイオードを得ることを目的としている。本発明の代表的な形態では、第一の導電型をn型とし、n型の導電性を有するGaAs基板またはGe基板から成る半導体基板と、この半導体基板上に形成された、InGaAlP系材料からなる活性層と、この活性層上に形成された、該活性層よりもバンドギャップが大きいAlGaInPからなるp型導電型クラッド層と、p型導電型クラッド層上に形成された、p型導電型クラッド層よりも厚いp型導電型のGaP層を有する発光ダイオードにおいて、p型導電型のGaP層をキャリア濃度の異なる複数層から構成し、p型導電型クラッド層に接しているGaP層のキャリア濃度を3×1018cm−3以上の第1のGaP層とし、第1のGaP層上に、キャリア濃度が1×1017cm−3以下であるGaP層とキャリア濃度が1×1018cm−3以上のGaP層の多層構造からなる第2のGaP層を具備させる構成とし、これにより、目的とする発光ダイオードを達成する。
【0031】
図1は、本発明の実施形態に係る発光ダイオードの構成を示したものである。この発光ダイオードは、n型の導電性を有するGaAs基板またはGe基板から成る半導体基板101と、この半導体基板上にn型のAlGaAsバッファ層102を介して形成された積層構造であって、InGaAlP系材料からなるn型の下部クラッド層103と、該クラッド層よりバンドギャップエネルギーが小さいInGaAlP系材料からなる活性層(発光層)104と、この活性層上に形成された、該活性層よりもバンドギャップが大きいAlGaInPからなるp型の上部クラッド層105と、このp型の上部クラッド層105上に形成された、当該p型の上部クラッド層105よりも厚いp型のGaP層からなる電流拡散層を有する。そして、発光ダイオードにおいて、上記p型のGaP電流拡散層は、キャリア濃度の異なる複数層、ここでは第1のGaP層106と第2のGaP層107から構成されている。この実施形態の場合、p型の上部クラッド層105に接している側の第1のGaP層106は、そのキャリア濃度が3×1018cm−3以上のGaP層からなる。また、この第1のGaP層上に形成されている第2のGaP層107は、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層107aと、キャリア濃度が1×1018cm−3以上の高キャリア濃度のGaP層107bを含む多層構造(ここでは2層構造)からなる。
【0032】
本発明の効果を確認するため、上記構成のLEDについて、p型の上部クラッド層105に接している第1のGaP層106のキャリア濃度を変化させて、20mA通電時のLEDの順方向電圧を調べたところ、図2に示すように、順方向電圧はキャリア濃度の上昇に伴い単調に減少し、キャリア濃度が3×1018cm−3を超えると順方向電圧がほぼ一定となった。これよりp型の上部クラッド層105に接している第1のGaP層106のキャリア濃度は、3×1018cm−3以上であれば、低い順方向電圧とするに十分な効果が得られることが分かった。なお、図の横軸の単位は、例えば1E+18で1×1018cm−3を表す。
【0033】
また、第2のGaP層107のうち、低キャリア濃度のGaP層107aのキャリア濃度を1×1018cm−3から1×1017cm−3まで下げていった構造のものを試作し、電流電圧特性を調べた。図3に、低キャリア濃度のGaP層107aのキャリア濃度を1×1018cm−3、5×1017cm−3、1×1017cm−3と変えたときの電流電圧特性を示す。電流電圧特性を調べた結果、図3に示す如く、低キャリア濃度部のキャリア濃度の減少にしたがって高電圧印加時の素子破壊電圧が高くなっていくことが分かった。これより、第2のGaP層107のうち、低キャリア濃度のGaP層107aのキャリア濃度は、1×1017cm−3以下とすることが好ましいことが分かった。
【0034】
[実施例]
MOVPE法によりGe基板上に、(Al0.1Ga0.90.5In0.5活性層を有し、GaPウインドウ層(電流拡散層)を有するLEDを作製した。
【0035】
半導体基板101としてはn型Ge単結晶基板を使用し、Ga、Al、In原料としてはトリエチルガリウム又はトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウムを使用した。P原料としてはフォスフィン(PH)を使用した。As原料としてはアルシン(AsH)を使用した。活性層の組成は発光波長に応じて適当な組成にしても良く、量子井戸構造としてもよい。
【0036】
まず、成長炉内に半導体基板(Ge基板)101を配置し、基板温度700℃においてn型の導電性を有し、厚さ0.5μmのAlGaAsバッファ層102を形成した。このときのGa及びAs原料としてはトリエチルガリウム及びアルシンを用いた。基板の面方位は(100)基板を使用したが、面方位は特に限定されるものではない。次に基板温度は700℃のままで、n型の導電性を有し厚さ1.0μmの(Al0.7Ga0.30.5In0.5P下部クラッド層103、アンドープで厚さ0.5μmの(Al0.1Ga0.90.5In0.5P活性層104、p型の導電性を有し、厚さ1.0μmの(Al0.7Ga0.30.5In0.5P上部クラッド層105を順次形成した。
【0037】
次に基板温度を600〜650℃に設定し厚さ0.5μmの第1のGaP層106を形成した。第1のGaP層106にはCをドーピングし、キャリア濃度を3×1018〜3×1019cm−3とした。
【0038】
次に基板温度を700℃として、キャリア濃度が1×1017cm−3以下で厚さが0.5μmのGaP層107aを、次いで基板温度を600〜650℃に設定して、キャリア濃度が1×1018cm−3以上で厚さが10μmのGaP層107bを形成し、これらを第2のGaP層107とした。第2のGaP層107は、キャリア濃度が1×1017cm−3以下の層と、キャリア濃度が1×1018cm−3以上の層の3層以上の多層構造としても良い。
【0039】
このようにして得られたLEDエピタキシャルウェハからLEDチップを作製した。チップの大きさは300μm角で、エピタキシャルウェハの基板101側にあたるチップ下面全体にAu−Ge−Ni合金からなる下部電極108を、第2のGaP層107側にはAu−Be−Ni合金からなる直径150μmの円形の上部電極109を形成した。
【0040】
このLEDチップをステム上に組み、I−L(電流−発光出力)特性、I−V(電流−電圧)特性を調べた。比較参考のため従来構造の試作LEDと比較した。すなわちGaP層以外の構造はすべて同じとし、GaP層部の全厚さは同じであるが、低キャリア濃度層(実施例において第2のGaP層107の構成層のうちキャリア濃度が1×1017cm−3以下のGaP層107a)が無い構造のLEDを作製し、本実施例と比較した。この結果、図4に示すようにI−L特性はほぼ同じであった。
【0041】
また信頼性につき阻止破壊電圧を調べたところ、図5のI−V特性図に示すように、高電圧印加時の素子破壊電圧を従来例の3Vから5V以上に上昇することができた。
【0042】
上記実施例では、半導体基板101としてGe基板を用いたがGaAs基板を用いた場合でも、本発明の効果を得ることができる。
【0043】
【発明の効果】
以上説明したように、本発明によれば、第1導電型の半導体基板上に、少なくともInGaAlP系材料からなる活性層と、この活性層上に形成された、該活性層よりもバンドギャップが大きいInGaAlPからなる第2導電型のクラッド層と、その上に形成されたGaPからなる第2導電型の電流拡散層とを有する発光ダイオードにおいて、上記第2導電型の電流拡散層を、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層をそれより高キャリア濃度のGaP層の間に挟み込んだ構造としているので、発光出力が大きく、動作電圧が低く、しかも過電圧に強い発光ダイオードの提供、特に、順方向電圧がほぼ3Vを超えても素子が破壊されないような過電圧に強い発光ダイオードを作製することができる。
【図面の簡単な説明】
【図1】本発明の発光ダイオードの構成を示す図である。
【図2】p型クラッド層に接している部分のGaP層のキャリア濃度と、20mA通電時のLEDの動作電圧の関係を示す図である。
【図3】第2のGaP層のうち、低キャリア濃度部のキャリア濃度の異なる3つのLEDの電流電圧特性を示す図である。
【図4】本発明の発光ダイオードの電流−発光出力特性を従来例と比較して示す図である。
【図5】本発明の発光ダイオードの電流−電圧特性を従来例と比較して示す図である。
【符号の説明】
101 半導体基板
102 バッファ層
103 下部クラッド層
104 活性層(発光層)
105 上部クラッド層
106 第1のGaP層
107 第2のGaP層
107a 低キャリア濃度のGaP層
107b 高キャリア濃度のGaP層
108 下部電極
109 上部電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting diode having a high light-emitting output, a low operating voltage, and a high resistance to overvoltage.
[0002]
[Prior art]
AlGaInP-based light emitting diodes (LEDs) are widely used as light sources for various displays. In particular, light sources for outdoor displays and traffic signals are required to have high output, high reliability, and low cost.
[0003]
As a measure for obtaining a high output, for example, an active layer (light-emitting layer) located above the active layer is made thicker by a layer that is almost transparent to light emission (a so-called current diffusion layer). For example, AlGaAs disclosed in Japanese Patent Application Laid-Open No. 3-171679 (Patent Document 1), GaP disclosed in US Pat. No. 5,008,718 (Patent Document 2), and the like are widely used.
[0004]
As another measure for obtaining a high output, as disclosed in, for example, Japanese Patent Application Laid-Open No. 3-283674 (Patent Document 3), a second cladding layer having a small resistivity is inserted to promote current diffusion. There is a method of increasing the output by using this method.
[0005]
As another measure for obtaining high output, for example, as disclosed in JP-A-4-87379 (Patent Document 4), current diffusion is promoted by inserting a layer having a low carrier concentration on the substrate side. There is a method of increasing the output by using this method.
[0006]
As another measure for obtaining a high output, for example, as disclosed in JP-A-4-229665 (Patent Document 5), a method for increasing the output by providing a current blocking layer and increasing the concentration of current is disclosed. There is.
[0007]
As another measure for obtaining high output, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-202264 (Patent Document 6), current diffusion is enhanced by inserting a low potential and high conductivity layer. Then, there is a method of increasing the output.
[0008]
Japanese Patent Application Laid-Open No. 9-260724 (Patent Document 7) discloses that an intermediate layer made of AlInAs, GaAs, or AlGaInP is interposed between an AlGaInP layer and a GaP layer to suppress an increase in operating voltage by smoothing an energy band profile. Is disclosed.
[0009]
[Patent Document 1]
JP-A-3-171679
[Patent Document 2]
US Patent No. US5088718
[Patent Document 3]
JP-A-3-283674
[Patent Document 4]
JP-A-4-87379
[Patent Document 5]
JP-A-4-229665
[Patent Document 6]
JP-A-7-202264
[Patent Document 7]
JP-A-9-260724
[Problems to be solved by the invention]
However, in the methods of Patent Documents 1 to 6 described above, although a desired effect is obtained from the viewpoint of increasing the output, when an excessive voltage is applied to the element, the current exponentially increases with respect to the voltage due to the characteristics of the diode. Therefore, there is a problem that it is easily broken. For example, since the band gap of the active layer of a light emitting diode device having a light emission wavelength of 650 nm is about 1.9 eV, when the voltage applied to the device exceeds about 1.9 V, the current flowing through the device increases exponentially, and finally. The device is destroyed. Although depending on the heat dissipation design of the elements, many elements will be destroyed if the forward voltage exceeds about 3V.
[0017]
From the viewpoint of reliability, GaP which does not contain easily oxidizable Al in the current diffusion layer is more advantageous, but a notch is generated in the energy band profile at the hetero interface between GaP and AlGaInP, and the operating voltage is increased. There's a problem. For this reason, for example, as disclosed in Patent Document 7, there is a method in which an intermediate layer is interposed between an AlGaInP layer and a GaP layer to smoothen an energy band profile and suppress an increase in operating voltage. As a result, the operating voltage could be reduced, but it is preferable to lower the operating voltage as much as possible.
[0018]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to eliminate such conventional disadvantages, and to provide a light-emitting diode having a large light-emitting output, a low operating voltage, and being resistant to overvoltage.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0020]
The light emitting diode according to the first aspect of the present invention provides an active layer made of at least an InGaAlP-based material on a semiconductor substrate of a first conductivity type, and an InGaAlP formed on the active layer and having a larger band gap than the active layer. In a light emitting diode having a second conductivity type cladding layer made of GaP and a second conductivity type current spreading layer made of GaP formed thereon, the second conductivity type current spreading layer has a carrier concentration of 1%. It has a structure in which a GaP layer having a low carrier concentration of × 10 17 cm −3 or less is sandwiched between GaP layers having a higher carrier concentration.
[0021]
This is an LED in which the second conductivity type GaP current diffusion layer has a high resistance layer in a GaP layer, for example, and is resistant to overvoltage. Typically, the carrier concentration is 1 × 10 17 cm. The low carrier concentration layer portion of −3 or less is sandwiched between the high carrier concentration layer portions of 1 × 10 18 cm −3 or more.
[0022]
According to a second aspect of the present invention, there is provided a light emitting diode comprising: an active layer made of at least an InGaAlP-based material on a semiconductor substrate of a first conductivity type; and an InGaAlP formed on the active layer and having a larger band gap than the active layer. In the light emitting diode having a second conductivity type cladding layer made of GaP and a second conductivity type current diffusion layer made of GaP formed thereon, the second conductivity type current diffusion layer has a different carrier concentration. The first GaP layer of the first GaP layer in contact with the second conductivity type clad layer has a carrier concentration of 3 × 10 18 cm −3 or more. second GaP layer, a GaP layer with a low carrier concentration in which the carrier concentration is 1 × 10 17 cm -3, a high carrier concentration carrier concentration of 1 × 10 18 cm -3 or more of Characterized in that it is formed as a layered structure including a GaP layer (multilayer structure of two or more layers).
[0023]
According to a third aspect of the present invention, in the light emitting diode according to the second aspect, the second GaP layer includes a low carrier concentration layer having a carrier concentration of 1 × 10 17 cm −3 or less and a carrier concentration of 1 × 10 18. It is characterized by being formed as a multilayer structure of three or more layers including a high carrier concentration layer of cm -3 or more.
[0024]
According to a fourth aspect of the present invention, in the light emitting diode according to the second or third aspect, the semiconductor substrate of the first conductivity type comprises a GaAs substrate or a Ge substrate having n-type conductivity.
[0025]
A light emitting diode according to a fifth aspect of the present invention is a light emitting diode, comprising: an n-type lower cladding layer made of at least an InGaAlP-based material on an n-type GaAs substrate or a Ge substrate; An active layer made of a base material, a p-type upper cladding layer made of InGaAlP having a bandgap energy larger than that of the active layer, and a p-type cladding layer formed on the p-type cladding layer, which is thicker than the p-type cladding layer. In the light emitting diode having a GaP layer, the p-type GaP layer is composed of a plurality of layers having different carrier concentrations, and the GaP layer in contact with the p-type upper cladding layer has a carrier concentration of 3 × 10 18. cm- 3 or more as a first GaP layer having a carrier concentration of 1 × on the first GaP layer. A second GaP layer having a multilayer structure including a GaP layer having a low carrier concentration of 10 17 cm −3 or less and a GaP layer of a high concentration carrier having a carrier concentration of 1 × 10 18 cm −3 or more is formed. It is characterized by having.
[0026]
The invention according to claims 1 to 4 has a stacked structure including not only a single hetero structure but also a first conductive type lower clad layer and a second conductive type upper clad layer sandwiching an active layer from both sides. (Double hetero structure). On the other hand, the invention according to claim 5 specifies the form of the double hetero structure.
[0027]
<Action>
In order to increase the light emission luminance of the LED, it is necessary to improve the current dispersion. In order to improve the current distribution, it is necessary to effectively utilize the flow due to the electric field which is the driving force for generating the flow of electricity and the flow due to the concentration diffusion. In order to conduct electricity using the effect of the electric field, the voltage must be increased, and the driving voltage is increased.
[0028]
When the low carrier concentration layer is sandwiched between the high carrier concentration layers as in the present invention, the low carrier concentration layer becomes a potential barrier, and the flowing carriers are stopped by the barrier, and the current spreads laterally. If the potential is increased, the current is sufficiently diffused, but a voltage that exceeds the potential is required, and the driving voltage increases. Therefore, by lowering this potential and increasing the number of layers, it is possible to cause current dispersion while keeping the drive voltage low.
[0029]
When a voltage is applied to the barrier thus manufactured and the current-voltage characteristics are measured, the barrier functions as a series resistance component. Therefore, even if a voltage of, for example, about 3 to 5 V is applied, the current value does not suddenly increase. With the GaP layer in which the above measures are taken, it is possible to obtain an LED having a large output, a low operating voltage, and a high resistance to overvoltage.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional disadvantages, and has as its object to obtain a light emitting diode having a large light emitting output, a low operating voltage, and a high resistance to overvoltage. In a typical embodiment of the present invention, the first conductivity type is n-type, and a semiconductor substrate made of a GaAs substrate or a Ge substrate having n-type conductivity, and an InGaAlP-based material formed on the semiconductor substrate. An active layer formed on the active layer, a p-type conductive cladding layer made of AlGaInP having a band gap larger than that of the active layer, and a p-type conductive layer formed on the p-type conductive cladding layer. In a light-emitting diode having a p-type conductivity GaP layer thicker than a cladding layer, the p-type conductivity GaP layer is composed of a plurality of layers having different carrier concentrations, and a carrier of the GaP layer in contact with the p-type conductivity cladding layer. A first GaP layer having a concentration of 3 × 10 18 cm −3 or more, a GaP layer having a carrier concentration of 1 × 10 17 cm −3 or less, and a carrier concentration of 1 × 10 17 cm −3 or less are formed on the first GaP layer. A structure in which a second GaP layer having a multilayer structure of a GaP layer of × 10 18 cm −3 or more is provided, thereby achieving a desired light emitting diode.
[0031]
FIG. 1 shows a configuration of a light emitting diode according to an embodiment of the present invention. This light-emitting diode has a stacked structure formed of a semiconductor substrate 101 made of a GaAs substrate or a Ge substrate having n-type conductivity and an n-type AlGaAs buffer layer 102 on the semiconductor substrate. An n-type lower cladding layer 103 made of a material, an active layer (light emitting layer) 104 made of an InGaAlP-based material having a smaller band gap energy than the cladding layer, and a band formed on the active layer, which is smaller than the active layer. A p-type upper cladding layer 105 made of AlGaInP having a large gap, and a current diffusion layer formed on the p-type upper cladding layer 105 and made of a p-type GaP layer thicker than the p-type upper cladding layer 105. Having. In the light emitting diode, the p-type GaP current diffusion layer includes a plurality of layers having different carrier concentrations, here, a first GaP layer 106 and a second GaP layer 107. In the case of this embodiment, the first GaP layer 106 on the side in contact with the p-type upper cladding layer 105 is made of a GaP layer having a carrier concentration of 3 × 10 18 cm −3 or more. The second GaP layer 107 formed on the first GaP layer has a low carrier concentration of 1 × 10 17 cm −3 or less and a low carrier concentration of 1 × 10 17 cm −3. It has a multilayer structure (here, a two-layer structure) including the GaP layer 107b having a high carrier concentration of 18 cm −3 or more.
[0032]
In order to confirm the effect of the present invention, for the LED having the above configuration, the forward voltage of the LED at the time of 20 mA current was changed by changing the carrier concentration of the first GaP layer 106 in contact with the p-type upper cladding layer 105. As a result of the examination, as shown in FIG. 2, the forward voltage monotonously decreased with an increase in the carrier concentration, and when the carrier concentration exceeded 3 × 10 18 cm −3 , the forward voltage became almost constant. As a result, if the carrier concentration of the first GaP layer 106 in contact with the p-type upper cladding layer 105 is 3 × 10 18 cm −3 or more, a sufficient effect for obtaining a low forward voltage can be obtained. I understood. The unit on the horizontal axis in the figure is, for example, 1E + 18, which represents 1 × 10 18 cm −3 .
[0033]
Further, of the second GaP layers 107, a prototype having a structure in which the carrier concentration of the GaP layer 107a having a low carrier concentration was reduced from 1 × 10 18 cm −3 to 1 × 10 17 cm −3 was prototyped. The voltage characteristics were examined. FIG. 3 shows current-voltage characteristics when the carrier concentration of the low carrier concentration GaP layer 107a is changed to 1 × 10 18 cm −3 , 5 × 10 17 cm −3 , and 1 × 10 17 cm −3 . As a result of examining the current-voltage characteristics, as shown in FIG. 3, it was found that the element breakdown voltage when a high voltage was applied increased as the carrier concentration in the low carrier concentration portion decreased. From this, it was found that the carrier concentration of the low carrier concentration GaP layer 107a in the second GaP layer 107 is preferably 1 × 10 17 cm −3 or less.
[0034]
[Example]
An LED having a (Al 0.1 Ga 0.9 ) 0.5 In 0.5 active layer and a GaP window layer (current diffusion layer) on a Ge substrate by MOVPE was produced.
[0035]
An n-type Ge single crystal substrate was used as the semiconductor substrate 101, and triethylgallium or trimethylgallium, trimethylaluminum, and trimethylindium were used as Ga, Al, and In raw materials. Phosphine (PH 3 ) was used as the P raw material. Arsine (AsH 3 ) was used as the As raw material. The composition of the active layer may be an appropriate composition according to the emission wavelength, or may be a quantum well structure.
[0036]
First, a semiconductor substrate (Ge substrate) 101 was placed in a growth furnace, and an AlGaAs buffer layer 102 having n-type conductivity and a thickness of 0.5 μm was formed at a substrate temperature of 700 ° C. At this time, triethylgallium and arsine were used as Ga and As raw materials. The plane orientation of the substrate used was a (100) substrate, but the plane orientation is not particularly limited. Next, while keeping the substrate temperature at 700 ° C., the (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P lower cladding layer 103 having n-type conductivity and a thickness of 1.0 μm is undoped. (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer 104 having a thickness of 0.5 μm, having p-type conductivity and having a thickness of 1.0 μm (Al 0.7 Ga 0) .3) were successively formed a 0.5 an In 0.5 P upper cladding layer 105.
[0037]
Next, the substrate temperature was set to 600 to 650 ° C., and a first GaP layer 106 having a thickness of 0.5 μm was formed. The first GaP layer 106 was doped with C to have a carrier concentration of 3 × 10 18 to 3 × 10 19 cm −3 .
[0038]
Next, the substrate temperature is set to 700 ° C., the GaP layer 107a having a carrier concentration of 1 × 10 17 cm −3 or less and a thickness of 0.5 μm is set, and then the substrate temperature is set to 600 to 650 ° C. × 10 18 cm -3 or more in thickness to form a GaP layer 107b of 10 [mu] m, and these and second GaP layer 107. The second GaP layer 107 may have a multilayer structure of three or more layers including a layer having a carrier concentration of 1 × 10 17 cm −3 or less and a layer having a carrier concentration of 1 × 10 18 cm −3 or more.
[0039]
An LED chip was manufactured from the LED epitaxial wafer thus obtained. The size of the chip is 300 μm square, and the lower electrode 108 made of an Au—Ge—Ni alloy is formed on the entire lower surface of the chip corresponding to the substrate 101 side of the epitaxial wafer, and the Au—Be—Ni alloy is formed on the second GaP layer 107 side. A circular upper electrode 109 having a diameter of 150 μm was formed.
[0040]
This LED chip was assembled on a stem, and the IL (current-emission output) characteristic and the IV (current-voltage) characteristic were examined. It was compared with a prototype LED having a conventional structure for comparative reference. That is, the structure except for the GaP layer is the same, and the total thickness of the GaP layer portion is the same, but the low carrier concentration layer (in the embodiment, the carrier concentration of the second GaP layer 107 is 1 × 10 17 An LED having a structure without the GaP layer 107 a) of cm −3 or less was manufactured and compared with the present example. As a result, the IL characteristics were almost the same as shown in FIG.
[0041]
Further, when the blocking breakdown voltage was examined for reliability, as shown in the IV characteristic diagram of FIG. 5, the element breakdown voltage at the time of applying a high voltage could be increased from 3 V of the conventional example to 5 V or more.
[0042]
In the above embodiment, the Ge substrate is used as the semiconductor substrate 101, but the effects of the present invention can be obtained even when a GaAs substrate is used.
[0043]
【The invention's effect】
As described above, according to the present invention, an active layer made of at least an InGaAlP-based material is formed on a semiconductor substrate of a first conductivity type, and a band gap is formed on the active layer and is larger than the active layer. In a light emitting diode having a second conductivity type cladding layer made of InGaAlP and a second conductivity type current diffusion layer made of GaP formed thereon, the second conductivity type current diffusion layer has a carrier concentration of Since a GaP layer having a low carrier concentration of 1 × 10 17 cm −3 or less is sandwiched between GaP layers having a higher carrier concentration, light emission output is large, operating voltage is low, and light emission is strong against overvoltage. By providing a diode, in particular, a light-emitting diode that is resistant to overvoltage such that the element is not destroyed even when the forward voltage exceeds approximately 3 V can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a light emitting diode of the present invention.
FIG. 2 is a diagram showing the relationship between the carrier concentration of a portion of a GaP layer in contact with a p-type cladding layer and the operating voltage of an LED when a current of 20 mA is applied.
FIG. 3 is a diagram showing current-voltage characteristics of three LEDs of the second GaP layer having different carrier concentrations in a low carrier concentration portion.
FIG. 4 is a diagram showing current-emission output characteristics of a light-emitting diode of the present invention in comparison with a conventional example.
FIG. 5 is a diagram showing current-voltage characteristics of a light emitting diode of the present invention in comparison with a conventional example.
[Explanation of symbols]
101 semiconductor substrate 102 buffer layer 103 lower cladding layer 104 active layer (light emitting layer)
105 upper cladding layer 106 first GaP layer 107 second GaP layer 107a low carrier concentration GaP layer 107b high carrier concentration GaP layer 108 lower electrode 109 upper electrode

Claims (5)

第1導電型の半導体基板上に、少なくともInGaAlP系材料からなる活性層と、この活性層上に形成された、該活性層よりもバンドギャップが大きいInGaAlPからなる第2導電型のクラッド層と、その上に形成されたGaPからなる第2導電型の電流拡散層とを有する発光ダイオードにおいて、
上記第2導電型の電流拡散層が、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層をそれより高キャリア濃度のGaP層の間に挟み込んだ構造を有することを特徴とする発光ダイオード。
An active layer made of at least an InGaAlP-based material on a semiconductor substrate of the first conductivity type; a cladding layer of a second conductivity type made of InGaAlP having a larger band gap than the active layer formed on the active layer; A light-emitting diode having a second conductivity type current diffusion layer made of GaP formed thereon;
The current diffusion layer of the second conductivity type has a structure in which a low carrier concentration GaP layer having a carrier concentration of 1 × 10 17 cm −3 or less is sandwiched between GaP layers having a higher carrier concentration. Light emitting diode.
第1導電型の半導体基板上に、少なくともInGaAlP系材料からなる活性層と、この活性層上に形成された、該活性層よりもバンドギャップが大きいInGaAlPからなる第2導電型のクラッド層と、その上に形成されたGaPからなる第2導電型の電流拡散層とを有する発光ダイオードにおいて、
上記第2導電型の電流拡散層がキャリア濃度の異なる第1のGaP層と第2のGaP層から成り、
そのうちの第2導電型のクラッド層に接している側の第1のGaP層のキャリア濃度が3×1018cm−3以上であり、
その上の第2のGaP層が、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層と、キャリア濃度が1×1018cm−3以上の高キャリア濃度のGaP層を含む層構造として形成されていることを特徴とする発光ダイオード。
An active layer made of at least an InGaAlP-based material on a semiconductor substrate of the first conductivity type; a cladding layer of a second conductivity type made of InGaAlP having a larger band gap than the active layer formed on the active layer; A light-emitting diode having a second conductivity type current diffusion layer made of GaP formed thereon;
The second conductivity type current diffusion layer includes a first GaP layer and a second GaP layer having different carrier concentrations;
The carrier concentration of the first GaP layer on the side in contact with the second conductivity type cladding layer is 3 × 10 18 cm −3 or more;
The second GaP layer thereon is composed of a low carrier concentration GaP layer having a carrier concentration of 1 × 10 17 cm −3 or less and a high carrier concentration GaP layer having a carrier concentration of 1 × 10 18 cm −3 or more. A light-emitting diode, which is formed as a layer structure including:
請求項2記載の発光ダイオードにおいて、
上記第2のGaP層が、キャリア濃度が1×1017cm−3以下である低キャリア濃度層と、キャリア濃度が1×1018cm−3以上の高キャリア濃度層を含む三層以上の多層構造として形成されていることを特徴とする発光ダイオード。
The light emitting diode according to claim 2,
The second GaP layer has three or more layers including a low carrier concentration layer having a carrier concentration of 1 × 10 17 cm −3 or less and a high carrier concentration layer having a carrier concentration of 1 × 10 18 cm −3 or more. A light emitting diode formed as a structure.
請求項2又は3記載の発光ダイオードにおいて、
上記第1導電型の半導体基板がn型の導電性を有するGaAs基板またはGe基板から成ることを特徴とする発光ダイオード。
The light emitting diode according to claim 2 or 3,
A light emitting diode, wherein the semiconductor substrate of the first conductivity type comprises a GaAs substrate or a Ge substrate having n-type conductivity.
n型のGaAs基板またはGe基板から成る半導体基板上に、少なくともInGaAlP系材料からなるn型の下部クラッド層と、該クラッド層よりバンドギャップエネルギーが小さいInGaAlP系材料からなる活性層と、該活性層よりバンドギャップエネルギーが大きいInGaAlPからなるp型の上部クラッド層と、p型のクラッド層上に形成された、p型のクラッド層よりも厚いp型のGaP層を有する発光ダイオードにおいて、
上記p型のGaP層がキャリア濃度の異なる複数層から成っており、
そのうちのp型の上部クラッド層に接している側のGaP層がキャリア濃度が3×1018cm−3以上の第1のGaP層として形成され、
この第1のGaP層上に、キャリア濃度が1×1017cm−3以下である低キャリア濃度のGaP層と、キャリア濃度が1×1018cm−3以上の高濃度キャリアのGaP層とを含む多層構造からなる第2のGaP層が形成されていることを特徴とする発光ダイオード。
An n-type lower cladding layer made of at least an InGaAlP-based material, an active layer made of an InGaAlP-based material having a smaller band gap energy than the cladding layer, and a semiconductor substrate made of an n-type GaAs substrate or a Ge substrate. In a light emitting diode having a p-type upper cladding layer made of InGaAlP having a larger band gap energy and a p-type GaP layer formed on the p-type cladding layer and having a thickness larger than that of the p-type cladding layer,
The p-type GaP layer is composed of a plurality of layers having different carrier concentrations;
The GaP layer of the side in contact with the p-type upper cladding layer is formed as a first GaP layer having a carrier concentration of 3 × 10 18 cm −3 or more,
This first GaP layer, a GaP layer with a low carrier concentration in which the carrier concentration is 1 × 10 17 cm -3, the carrier concentration of 1 × 10 18 cm -3 or more high-concentration carrier and a GaP layer A light emitting diode, wherein a second GaP layer having a multilayer structure is formed.
JP2003097587A 2003-04-01 2003-04-01 Light emitting diode Expired - Fee Related JP4150909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097587A JP4150909B2 (en) 2003-04-01 2003-04-01 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097587A JP4150909B2 (en) 2003-04-01 2003-04-01 Light emitting diode

Publications (2)

Publication Number Publication Date
JP2004304090A true JP2004304090A (en) 2004-10-28
JP4150909B2 JP4150909B2 (en) 2008-09-17

Family

ID=33409332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097587A Expired - Fee Related JP4150909B2 (en) 2003-04-01 2003-04-01 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4150909B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299846A (en) * 2006-04-28 2007-11-15 Sharp Corp Semiconductor light emitting element and manufacturing method thereof
WO2009017155A1 (en) * 2007-07-31 2009-02-05 Shin-Etsu Handotai Co., Ltd. High-luminance light-emitting diode and manufacturing method thereof
WO2011083551A1 (en) * 2010-01-06 2011-07-14 パナソニック株式会社 Nitride semiconductor light-emitting element and process for production thereof
US8319253B2 (en) 2010-01-21 2012-11-27 Stanley Electric Co., Ltd. Semiconductor light-emitting device
US8410498B2 (en) 2009-05-14 2013-04-02 Stanley Electric Co., Ltd. Semiconductor light emitting device and method for manufacturing the same
US8450718B2 (en) 2010-03-19 2013-05-28 Stanley Electric Co., Ltd. Semiconductor light emitting device and a production method thereof
KR20140001352A (en) * 2012-06-26 2014-01-07 엘지이노텍 주식회사 Light emitting device
KR101513803B1 (en) 2013-10-02 2015-04-20 광전자 주식회사 Fabrication of high power AlGaInP light emitting diode grown directly on transparent substrate
CN105914265A (en) * 2016-05-05 2016-08-31 厦门市三安光电科技有限公司 GaAs-based light emitting diode and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299846A (en) * 2006-04-28 2007-11-15 Sharp Corp Semiconductor light emitting element and manufacturing method thereof
WO2009017155A1 (en) * 2007-07-31 2009-02-05 Shin-Etsu Handotai Co., Ltd. High-luminance light-emitting diode and manufacturing method thereof
JP2009038132A (en) * 2007-07-31 2009-02-19 Shin Etsu Handotai Co Ltd High-luminance light-emitting diode and manufacturing method thereof
TWI404231B (en) * 2007-07-31 2013-08-01 Shinetsu Handotai Kk Highly luminous light emitting diode and method for manufacturing the same
US8410498B2 (en) 2009-05-14 2013-04-02 Stanley Electric Co., Ltd. Semiconductor light emitting device and method for manufacturing the same
WO2011083551A1 (en) * 2010-01-06 2011-07-14 パナソニック株式会社 Nitride semiconductor light-emitting element and process for production thereof
CN102334204A (en) * 2010-01-06 2012-01-25 松下电器产业株式会社 Nitride semiconductor light-emitting element and process for production thereof
JP4833383B2 (en) * 2010-01-06 2011-12-07 パナソニック株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
US8587022B2 (en) 2010-01-06 2013-11-19 Panasonic Corporation Nitride semiconductor light-emitting element and process for production thereof
US8319253B2 (en) 2010-01-21 2012-11-27 Stanley Electric Co., Ltd. Semiconductor light-emitting device
US8450718B2 (en) 2010-03-19 2013-05-28 Stanley Electric Co., Ltd. Semiconductor light emitting device and a production method thereof
KR20140001352A (en) * 2012-06-26 2014-01-07 엘지이노텍 주식회사 Light emitting device
KR101513803B1 (en) 2013-10-02 2015-04-20 광전자 주식회사 Fabrication of high power AlGaInP light emitting diode grown directly on transparent substrate
CN105914265A (en) * 2016-05-05 2016-08-31 厦门市三安光电科技有限公司 GaAs-based light emitting diode and manufacturing method thereof

Also Published As

Publication number Publication date
JP4150909B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP3063756B1 (en) Nitride semiconductor device
TW419871B (en) Light-emitting diode device and method for fabricating the same
JP4592560B2 (en) Nitride semiconductor light emitting device
TWI403002B (en) Semiconductor light-emitting device
JP5315899B2 (en) Light emitting element
US20050145871A1 (en) Nitride semiconductor element
KR100703091B1 (en) Nitride semiconductor light emitting device and method for manufacturing the same
US10756960B2 (en) Light-emitting device
JP2000244013A (en) Nitride semiconductor element
JP5407359B2 (en) Light emitting diode
JP2014045108A (en) Semiconductor light-emitting element
KR20040073307A (en) Semiconductor light emitting device
JP4150909B2 (en) Light emitting diode
JP3620292B2 (en) Nitride semiconductor device
JP4890801B2 (en) Light emitting diode
JP5148885B2 (en) Nitride semiconductor light emitting device
JP3543809B2 (en) Nitride semiconductor device
KR100511530B1 (en) The nitride semiconductor device
JP4255710B2 (en) Semiconductor light emitting device
JP2021141258A (en) Semiconductor light-emitting element
KR100644151B1 (en) Light-emitting diode device and production method thereof
JP2005064072A (en) Semiconductor light emitting element
JP2004095634A (en) Oxide semiconductor light emitting device and its manufacturing method
JPH11220172A (en) Gallium nitride compound semiconductor light-emitting element
JP4039187B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees