JP2004300328A - Functional polymer compound and biosensor using the same - Google Patents

Functional polymer compound and biosensor using the same Download PDF

Info

Publication number
JP2004300328A
JP2004300328A JP2003096624A JP2003096624A JP2004300328A JP 2004300328 A JP2004300328 A JP 2004300328A JP 2003096624 A JP2003096624 A JP 2003096624A JP 2003096624 A JP2003096624 A JP 2003096624A JP 2004300328 A JP2004300328 A JP 2004300328A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
pms
group
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003096624A
Other languages
Japanese (ja)
Other versions
JP4614630B2 (en
Inventor
Tokio Hagiwara
時男 萩原
Shunichi Uchiyama
俊一 内山
Yasushi Hasebe
靖 長谷部
Hiroko Kaneko
浩子 金子
Yoshihisa Suda
吉久 須田
Kunio Yamada
邦生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Tsukuba Materials Information Laboratory Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Tsukuba Materials Information Laboratory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd, Tsukuba Materials Information Laboratory Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP2003096624A priority Critical patent/JP4614630B2/en
Publication of JP2004300328A publication Critical patent/JP2004300328A/en
Application granted granted Critical
Publication of JP4614630B2 publication Critical patent/JP4614630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biosensor obtained by immobilizing a molecule derived from an organism such as an enzyme on a substrate such as carbon by using a polymer compound having maleimide groups on the side chains. <P>SOLUTION: The surface of a carbon electrode having many reactive residues on the surface is modified with amino groups by using APTES (γ-aminopropyltriethoxysilane) and the surface of the carbon electrode is modified with polymaleimidestyrene (PMS) by reacting the amino groups with parts of maleimide groups which are side chains of PMS, and further, the enzyme is immobilized by using the residue of maleimide groups which are the side chains of PMS. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、側鎖に酵素、電子移動メディエータなどの生体由来分子を化学的に結合させた機能性高分子、および、それを基材や炭素電極に固定したバイオセンサに関する。
【0002】
【従来の技術】
これまでタンパク表面に存在するリジン残基やカルボキシル基などの官能基の反応性を利用してタンパクを化学結合により固定化する技術が多数開発されてきた。しかし、これまではこれらの官能基と反応する官能基をあらかじめ固定化担体に修飾しなくてはならず、例えばガラスビーズ表面へのアミノアリル基の導入とそのジアゾ化やグルタルアルデヒド修飾などが良く知られているが、いずれもかなりの煩雑さが伴っている。
【0003】
マレイミドはチオール基と極めて迅速に化学結合することが知られており、従来より、チオール基を酵素や抗体などのタンパクに導入してマレイミドに結合させることが行われている。しかし、これまでタンパク固定に用いられるマレイミドはモノマーや低分子化合物に限られており、マレイミド基を表面に密に有するポリマーを用いたタンパク固定については全く報告がない。
【0004】
本願の発明者の一人である萩原は1991年にN−(4−ビニルフェニル)マレイミドモノマーのスチレン基をカチオン重合により重合させて化学反応活性のあるマレイミド基を密にペンダントさせた水に不溶なポリスチレン(ポリマレイミドスチレン:PMS)を合成し、その物性について報告した(非特許文献1)。
【0005】
【非特許文献1】
T. Hagiwara et al.,“Synthesis and Polymerization of N−(4−Viny lphenyl) maleimide”, Macromolecules, 24 (1991), p6856−6858
【0006】
【発明が解決しようとする課題】
本発明は、このPMSをはじめとする、側鎖にマレイミド基を有する高分子化合物に着目し、これを用いた機能性高分子、および、この機能性高分子を利用した酵素センサや機能性電極などのバイオセンサを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の機能性高分子化合物は、下記一般式(1)で表わされる繰り返し単位の少なくとも一部に1級アミノ基、2級アミノ基またはチオール基を有する生体由来分子が付加され、該生体由来分子が付加された繰り返し単位は下記一般式(2)で表わされることを特徴とするものである。
【0008】
【化2】

Figure 2004300328
【0009】
本発明のバイオセンサは、基材と、該基材に物理的または化学的に固定され、側鎖にマレイミド基を有する高分子化合物と、該高分子化合物の側鎖のマレイミド基の少なくとも一部に化学的に結合された1級アミノ基、2級アミノ基またはチオール基を有する生体由来分子とを具備することを特徴とするものである。
【0010】
前記生体由来分子は例えば酵素及び/又は該酵素の電極反応を促進する電子移動メディエータである。
【0011】
前記基材は、例えば端面に反応性残基を実質的に有する炭素電極である。
【0012】
前記基材は、また例えば炭素多孔体である。
【0013】
【発明の実施の形態】
本発明は、例えばポリマレイミドスチレン(PMS)のマレイミド基がチオール基だけでなくリジンとも速やかに結合することができることを実証し、PMSが酵素の簡便迅速な固定化材料として極めて有用であることを見いだしたことに基づいている。酵素のチオール基およびリジン残基のアミンとポリマーの結合反応式を図1に示す。なお、図には1級アミンとの結合が示されているが、PMSは2級アミンとも結合する。
【0014】
本発明によれば、PMSを被覆したカーボン電極やガス透過性膜を有するセンサを酵素溶液に浸すだけで極めて簡便迅速に酵素センサを作製することができる。さらにPMSとカーボンなどの電極表面への被覆状態の安定性の向上を図るため、図2のようにカーボン電極表面にアミノ基を修飾してPMSと結合させれば長期間ポリマーが脱離することなく使用できる。
【0015】
この場合に、電極材料として、高分子樹脂に黒鉛を混合し、黒鉛の結晶を一方向に配向させつつ成形した後、焼成して得られるPFC(Plastic Formed Carbon)は、端面に多数の反応性残基が存在するので、アミノ基による修飾に適する。図3にPFC電極表面をAPTES(γ−アミノプロピルトリエトキシシラン)を用いてアミノ基で修飾し、次いでPMSで修飾し、さらに酵素で修飾する過程を示す。
【0016】
PMSはクロロホルムなどの極性のある有機溶媒に溶けて均一溶液となる。そこでPMSの均一溶液を用いてPMSを被覆させた多孔性膜を作製すればこの膜をタンパク溶液に浸すだけで酵素や抗体が固定でき、各種電極やセンサデバイスに装着することによって酵素反応や抗原抗体反応に関与する反応物や生成物を検出する方式のセンサが作製できる。
【0017】
【実施例】
1.前駆体ポリマーの合成
(実施例1)
前述の非特許文献1の記載に従い、N−(p−ビニルフェニル)マレイミド(VPMI)=2.5×10−2 mol/L、BF ・O(C =1.0×10−2 mol/Lの濃度で窒素下、フラスコにてジクロロメタン中、0℃で12時間重合を行った。
【0018】
重合はメタノールを加えて停止し、その後大量のメタノール中に投入して、沈澱したポリマーを回収した。その後ジクロロメタンに再度溶解、メタノールに再沈澱することによりポリマーを精製し、ろ過後減圧乾燥にてポリマーを単離した。
【0019】
収率:56%、
数平均分子量=1.0×10
数平均分子量はGPC(ゲルパーミエーションクロマトグラフィ)にて単分散ポリスチレンを用いた検量線により測定した。
【0020】
NMRにて構造を解析した。 H NMR:VPMIに観測された、6.8ppm のビニレン基の吸収(2H)は線幅が広がるものの化学シフトおよび吸収強度に変化なく、5.3,5.8、および6.7ppm のビニル基の吸収は消失、新たに1.4−2.5ppm にポリマー主鎖のメチン、メチレンの吸収(3H)が観測された。
【0021】
以上からポリマレイミドスチレン(PMS)が合成されたと確認した。
(実施例2)
下式(3)の構造を有するp−マレイミドスチレンオキシド(MISO)を次のようにして合成した。
【0022】
還流冷却器を付けた200ml二口フラスコにクロロホルム20mlに溶解させた5.5mmol(1.02g)のp−マレイミドスチレンを入れ、そこへクロロホルム30mlに溶解させた8.8mmol(1.51g)のm−クロロ安息香酸を室温で2.5時間かけて滴下した。滴下終了後、加熱しクロロホルム還流下反応させた。反応はガスクロマトグラフィーで追跡し、原料のp−マレイミドスチレンが完全に反応しガスクロマトグラフィー上ピークが観測されなくなるまで反応を行った。その後20%亜硫酸ナトリウム水溶液、10%炭酸ナトリウム水溶液、飽和食塩水にて後処理し、溶媒のクロロホルムを除去することにより、淡黄色の固体として生成物であるp−マレイミドスチレンオキシドを得た。収量296mg、収率24.9%。
【0023】
H NMR:2.7,3.0ppm (d,1H,d,1H、エポキシ環内のメチレン水素)、3.8ppm (d−d,1H エポキシ環内のメチレン水素)、6.8ppm (s,2H イミド環内のビニレン水素)、7.25〜7.34ppm (m,4H,p−ジ置換フェニル)。
【0024】
【化3】
Figure 2004300328
【0025】
10mlのジクロロメタンにMISO 215mg(1mmol)、BF ・O(C 5.68mg(0.04mmol)を入れ、−10℃で24時間反応させた。反応はメタノールにて停止し、大量のメタノール中に投入してポリマーを沈澱させ単離した。得られたポリマーは下図のような構造のpoly(MISO)であった。
【0026】
【化4】
Figure 2004300328
【0027】
収量150mg、収率69.8%。
【0028】
H NMR:2.7,3.0ppm (d,1H,d,1H、エポキシ環内のメチレン水素)及び、3.8ppm (d−d,1H エポキシ環内のメチン水素)が消失。かわって、3.7〜4.2ppm にポリマー主鎖のオキシエチレン(3H)に由来するピークを観察した。6.8ppm (s,2H イミド環内のビニレン水素)、7.2〜7.4ppm (m,4H,p−ジ置換フェニル)の吸収は変化なく観測された。
2.機能性高分子合成とキャラクタリゼーション
(実施例3)
実施例1にて合成したポリマレイミドスチレン0.2g(マレイミドユニット1.0×10−3mol )を50mlのクロロホルムに溶解させたポリマー溶液と、L−システイン1.2g(1.0×10−2mol )を純水100mlに溶解させた溶液を分液ロートにて10分間振盪した。水層と有機層の境界面に白色のレイヤーが出現し、それを回収、純水およびクロロホルムにて3回洗浄後乾燥し、目的物を単離した。
(実施例4)
実施例1にて合成したポリマレイミドスチレン0.2g(マレイミドユニット1.0×10−3mol )を50mlのクロロホルムに溶解させたポリマー溶液と、L−リジン1.5g(1.0×10−2mol )を純水100mlに溶解させた溶液を分液ロートにて10分間振盪した。水層と有機層の境界面に白色のレイヤーが出現し、それを回収、純水およびクロロホルムにて3回洗浄後乾燥し、目的物を単離した。
(実施例5)
実施例1にて合成したポリマレイミドスチレン0.2g(マレイミドユニット1.0×10−3mol )を50mlのクロロホルムに溶解させたポリマー溶液にカーボンフェルトに浸し引き上げ乾燥させた。そのポリマー被覆カーボンフェルトを1g/Lのウレアーゼ水溶液に10分間浸漬後引き上げ、十分に純水にて洗浄した後、さらに純水中で超音波を照射、洗浄することにより物理的な吸着物を全て洗い流すことによりカーボンフェルト上に目的物を生成させた。
(実施例6)
実施例3にて合成した目的物をNMRとIRにてキャラクタリゼーションした。
【0029】
H NMR:6.8ppm に観測されたビニレン基の吸収は消失し、3.5−4.5ppm に新たにスクシンイミド環内のメチレンおよび硫黄原子に隣接したメチン水素が観測され、システイン由来の吸収もそれぞれ観測された。また主鎖のメチン、メチレンの吸収もそれぞれ観測された。
【0030】
IR:2700〜3500cm−1および3400cm−1付近にそれぞれアミノ酸のカルボキシル基とアミノ基の吸収が観測された。前駆体ポリマーであるポリマレイミドスチレンに存在した1678cm−1のビニレン基の二重結合由来の吸収はシステインのメルカプト基が二重結合に反応し、共有結合にて付加するため観測されなかった。
【0031】
また、ニンヒドリン反応に対しても陽性であった。
【0032】
従って、得られた物質は下式(5)の構造を有すると結論できる。
【0033】
【化5】
Figure 2004300328
【0034】
(実施例7)
実施例4にて得られた高分子化合物も実施例3と同様な解析により、スクシンイミド環にリジンのアミノ基が付加共有結合を形成した下式(6)の構造を有する化合物であることが明かとなった。
【0035】
【化6】
Figure 2004300328
【0036】
(実施例8)
実施例5にて得られた高分子化合物については、物理的吸着を排除した後の生成物がニンヒドリン反応に対して明白な陽性を示すことに加え、実施例6および実施例7でアミノ酸のメルカプト基またはアミノ基が前駆体ポリマー(ポリマレイミドスチレン)のマレイミド基の二重結合に付加しスクシンイミド環に共有結合することが明らかになっていることおよびウレアーゼはタンパク質すなわちポリアミノ酸であることを考慮すると、ウレアーゼの有するメルカプト基および/またはアミノ基がマレイミドの二重結合と反応し、スクシンイミド環にウレアーゼが共有結合して、下式(7)の構造をした高分子化合物が生成したことは明白である。
【0037】
【化7】
Figure 2004300328
【0038】
(実施例9)
同様な方法にて、実施例2で合成したpoly(MISO)のクロロホルム溶液とL−システインの水溶液または、ウレアーゼ水溶液を分液ロート中で振盪することにより機能性高分子化合物を合成した。生体由来分子がマレイミド環のビニレン基に付加反応し、スクシンイミド環の構造を有するポリマーが生成したことは、実施例6,7と同様な方法にて確かめた。
3.PFC電極の作製
(実施例10)
塩素化塩化ビニル樹脂(日本カーバイド社製T−741)30部、フラン樹脂(日立化成社製ヒタフランVF−302)45部、の混合樹脂系を用い、これに黒鉛微粉末(日本黒鉛社製SP−300S平均粒度2μm)25部を複合した組成物100部に対し、可塑剤としてジアリルフタレートモノマー20部を添加して、ヘンシェル・ミキサーを用いて分散した後、表面温度を120℃に保ったミキシング用二本ロールを用いて十分に混練を繰り返してシート状組成物を得、ペレタイザーによってペレット化し成形用組成物を得た。このペレットをスクリュー型押出機で直径3.6mmのダイスを用い脱気を行いつつ130℃で3m/秒の速度で押し出し、これを枠に固定して、180℃に加熱されたエアー・オーブン中で10時間処理してプリ・カーサー(炭素前駆体)線材とした。次に、これを窒素ガス中で500℃までを10℃/h、500℃から1000℃迄を50℃/hの昇温速度で昇温し、その後1500℃迄を100℃/時で昇温し、1500℃で3時間保持した後自然冷却することで断面部直径3mmの円柱状カーボン電極を得た。
【0039】
得られたカーボン電極の細孔直径を、湯浅アイオニクス社製ポロシメーター(オートスキャン−60)を用いて水銀圧入法により測定した結果、最大細孔直径は120オングストロームであった。電極特性としては、柳本製ポーラログラフィクアナライザー(YANACO P−1100)を使用し、電極反応活性の目安として5×10−3M Fe(CN) 4− と1M KCl系中でのフェロ/フェリシアンイオンのレドックス反応性を観察した結果、特別な前処理を施さなくてもブランク電流は小さく、シャープな酸化波、還元波のピークが得られ、ピーク電位の差ΔEpは理論値に近似した。又、電解液の侵入に伴なう電流値の増加は見られず、実質的にガラス状炭素並の電解液不浸透性を示した。
4.炭素多孔体の作製
(実施例11)
フラン樹脂初期縮合物(日立化成社製 ヒタフランVF−302)75部に、乾留ピッチ(呉羽化学工業社製 KH−1P)5部、平均粒径1μmの天然鱗状黒鉛微粉末(日本黒鉛社製 CSSP−B)20部を加え、ミキサーで混合して液状組成物を調製した。次いで、三次元網目構造を有し気孔率60%のポリウレタンフォームに上記液状組成物を含浸させた。余剰の液状組成物を取り除いた後100℃乾燥機中で3時間かけ硬化反応させた。次に、180℃乾燥機中で10時間かけ炭素前駆体化処理を行なった。この前駆体処理物を、窒素ガス中で500℃迄を20℃/hの昇温速度で昇温し、その後1000℃迄を100℃/hで昇温し、1000℃で3時間保持した後自然冷却して炭素多孔体を得た。
5.ポリマレイミドスチレンを酵素固定化担体とするポテンショメトリックバイオセンサ
(実施例12)
アンモニア検出型ウレアーゼ固定化尿素センサ
クロロホルムに溶解したポリマレイミドポリスチレン(PMS)溶液をアンモニア電極のアンモニアガス透過性膜上に浸して乾燥させた後、ウレアーゼ溶液(1mg/ml from Jackbean)に30分浸漬し、ウレアーゼを結合させた。そして0.01Mジチオスレイトール(dithiothreitol)溶液に30分浸して酵素を活性化させた。ウレアーゼは酵素活性の発現にSH基が不可欠なSH酵素として良く知られており、固定化段階で一部SH基が酸化されてジスルフィド(S−S)結合を形成して失活している酵素分子があり、S−S結合切断試薬であるジチオスレイトールを加えて酵素活性を再生させた。この酵素修飾アンモニアガス透過性膜を装着したアンモニア電極の構造を図4に示す。このセンサをpH8の0.1Mリン酸緩衝液に入れてバックグランド電位が安定した後尿素を加えたところ、尿素濃度に応じた電位変化が生じた。尿素が加水分解されてアンモニアと炭酸ガスを生じる反応は(8)式に示す通りである。
【0040】
尿素 + H O → 2NH + CO (8)
試料添加から20分程度で電位応答が定常値となったが、この応答速度はPMSの膜圧によって大きく変化する。センサ作製してから3日後に得られた検量線を図5に示す。検量線の傾きは55mV/decadeとほぼネルンスト応答を示した。また毎日検量線の作成実験を行ったところ1週間後に30%の応答減少が生じた。これは主としてポリマーの隔膜からの離脱が関係しているものと考えられるので担体表面へのアミンの導入などを行ってポリマーの強固な担体への固定を行う必要がある。
【0041】
またウレアーゼは表面にSH基を有することが知られており、ウレアーゼのチオール基の炭素電極における酸化で活性が失われることを本願発明者の内山らは見いだしている(S. Uchiyama et al.,“Electrical Control of Urease Activity Immobilized to the Conducting Polymer on the Carbon Felt Electrode”, Electroanalysis 2002, 14 pp.1644−1647)。さらにウレアーゼを金網に吸着固定させたところ、活性を保持した状態で金に結合することがわかり、またシステインとほぼ同じ電極酸化波を有することから、ウレアーゼ自身のSH基がマレイミドと反応して固定化されたものと考えられる。なぜならSH基とマレイミドの反応速度の方がリジン残基とマレイミドのそれより極めて大きいことが知られているからである。さらに水晶振動子センサを用いて金表面にウレアーゼが直接結合あるいは強い吸着をすることを確認している。従って、ウレアーゼのように酵素表面にチオール基を有するタンパクは自身のチオール基で結合させることができるが、これまで天然のタンパク分子の表面のチオール基を用いて固定化したとの報告は見受けられない。
(実施例13)
二酸化炭素検出型ウレアーゼ固定化尿素センサ
クロロホルムに溶解したポリマレイミドスチレン(PMS)溶液にカーボンフェルトを浸して乾燥された後ウレアーゼ溶液(1mg/ml)に30分浸漬し、ウレアーゼを結合させた。そして炭酸ガス電極のガス透過性膜上に装着し、二酸化炭素検出型尿素センサを作製した。このセンサも上述のアンモニア電極を検出電極とするセンサと同様に電位応答が得られた。検量線の傾きが40mV/decadeと小さかったが、応答時間が5〜10分程度と迅速であった。なお、このセンサの応答は作成してから30日後に約50%の減少が見られたもののアンモニアガスの隔膜上に被覆させた時よりもより安定であった。これはポリマー鎖とカーボンフェルト表面の親和力の方がポリマー鎖とガス透過性膜のそれより強いことに起因していると考えられる。
(実施例14)
アデノシンデイミナーゼ固定アデノシンセンサ
カーボンペーパーを1mg/mlのポリマーのクロロホルム溶液1mlに浸し、乾燥させ、ポリマー被覆カーボンペーパーを作製した。次にアデノシンデイミナーゼ溶液(pH7のリン酸緩衝液)に30分浸けた後水洗し、アンモニアガス透過性膜上に装着した。この電極を緩衝液中に入れ、電位が安定した後、アデノシン溶液を段階的に加えて電位応答を記録した。検量線の傾きは約40mV/decade応答時間は20分程度であった(図6)。アデノシンデイミナーゼも迅速にPMSと結合するので表面に存在するSH基とポリマーが結合したものと考えられる。アデノシンの酵素による加水分解反応は(9)式の通りである。なおセンサ応答は3週間ほとんど低下しなかった。
【0042】
アデノシン + H O → イノシン + NH (9)
6.ポリマレイミドスチレンに電子移動メディエータを固定した機能性電極
(実施例15)
ドーパミン結合PMS修飾PFC(Plastic formed carbon)電極によるアスコルビン酸の電極酸化触媒波の測定
1mg/mlのPMSクロロホルム溶液中にPFC電極を浸して乾燥させ、PMSを被覆した後、0.01Mドーパミン溶液(pH9.0リン酸緩衝液)に30分浸してドーパミンの側鎖のアミノ基をマレイミドに固定化させた。このドーパミン固定化電極を用いて0.1mMアスコルビン酸溶液(pH7.0)のサイクリックボルタンメトリーを行ったところ、アスコルビン酸の電極酸化メディエータ電流が観察された。全くPMS処理をしていないPFC電極では溶液に浸されている電極面積が大きいので大きな容量性電流があらわれているのに対し、PMS被覆電極では小さな容量性電流となった。しかし、アスコルビン酸の電解酸化電流が前置波として現れた。この前置波は固定化されたドーパミンが電解酸化されて生成するドーパミンキノンがアスコルビン酸に還元再生されることにより発生したものである。固定化反応を図7に示す。
7.PFC電極に被覆したPMSを酵素固定層とするアンペロメトリック酵素センサ
(実施例16)
PFC電極を研磨しエッジ面をろ出させた後、PMS塩化メチレン溶液をディップコーティングした。その後チロシナーゼ(ポリフェノールオキシダーゼ)(0.25mg/ml)溶液(pH6.5リン酸緩衝液)と反応させ、チロシナーゼを固定化した。これを作用極として銀塩化銀電極を参照極、白金線を対極として−0.05Vで定電位アンペロメトリーを行った。電解液には0.1Mリン酸緩衝液pH6.5 10mlを用い、撹拌子により溶液を一定測度で撹拌しながら、測定対象となるチロシナーゼ基質の標準液を所定量添加した。本センサではチロシナーゼ触媒反応によりカテコール化合物またはフェノール化合物から生じたo−キノン化合物をPFC電極で電解還元再生することにより図8に示すような循環反応が生じ、カテコールまたはフェノール化合物などのチロシナーゼ基質を高感度に測定することができる。この応答は迅速であり、5〜10秒程度で定常値に達した。また図3を参照して説明したように、あらかじめAPTES処理によりPFC電極にアミノ基を導入後MPSを被覆すると、測定感度が増大するとともに、連続測定に対する安定性が向上した。図9にAPTES処理をしない場合とした場合のカテコールの検量線を示す。
【0043】
測定可能なフェノール化合物の例としては、フェノール、クロロフェノール、アミノフェノール、クレゾールなどが挙げられ、測定可能なカテコール化合物の例としては、カテコール、ドーパミン、L−ドーパ、アドレナリン、カフェイン酸などが挙げられる。
【0044】
また、上記チロシナーゼ基質を一定量添加し定常電流値が得られたところでCN ,N3 ,SCN 、安息香酸、コウジ酸、アトラジンなどの酵素阻害剤を加えることで、その阻害電流から各種阻害剤の測定も可能であった。
【0045】
PFCに酵素のチロシナーゼと同様にチオニンなどのチオール基、1級アミノ基、2級アミノ基を有する電子移動メディエータを同時に固定化することも可能であり、これにより、感度の向上を達成することができた。
(実施例17)
実施例16と同様にPFC電極にPMSをコーティングした後、さらに西洋ワサビペルオキシダーゼ(HRP)(1mg/ml)とチオニン(0.1mM)の混合溶液に浸し酵素およびチオニンを固定化した。この応答は、電子メディエーターをPMSに同時に固定することにより著しく向上した。
【0046】
図10に示すように、過酸化水素とペルオキシダーゼの反応(1)で生じた2種の酸化型ペルオキシダーゼ中間体は、電子メディエータ(フェノチアジン・フェノオキサジン系電子メディエータ)により順次還元され(2)酵素が再生される。−0.2V(vs.Ag.AgCl)で、電子メディエータの還元電流(3)を検出した。
【0047】
ペルオキシダーゼとチオニンまたはトルイジンブルーを同時にPMSに固定化すると、上記反応スキームにより過酸化水素濃度に依存した定常電流応答を得ることができた。PMSの膜厚により若干応答速度は異なるが、過酸化水素に対する応答時間は10秒以内と迅速である。
【0048】
また、メルドラブルー、メチレンブルーはPFC電極に強く吸着するため、PFCにあらかじめこれらを吸着させた後、PMSを被覆し、HRPを固定しても同様にセンサを構築できた。電子メディエータを用いず、HRPのみを固定化しても酸素中間体と電極間の直接電子移動反応に基づく電流応答が得られたが、感度は、メディエーターを同時固定した場合の1/100程度であった。
8.多孔性カーボン電極に被覆したPMSを酵素固定層とするフロー型バイオセンサ
(実施例18)
炭素多孔体や多孔性カーボンフェルト(CF)をフロー型検出器の作用極として用いることで実施例16〜17の反応はすべて、図11に示すようなフロー型バイオセンサに応用可能である。この場合にも炭素多孔体および多孔性CFをPMSで被覆した。さらにチロシナーゼおよびHRPを固定化し、それぞれカテコール(またはフェノール)センサ、過酸化水素センサを構築した。またアミノ基を有するチオニンをPMSに酵素と同時に固定化することで感度の著しい増加が得られた。特にチロシナーゼ・チオニン系ではp−クロロフェノールに対して10nMまで計測可能であった(図12、図13)。APTES処理による感度増幅および再現性の向上も認められた(図14)。
【図面の簡単な説明】
【図1】PMSとチオール基またはアミノ基を有する酵素との結合反応を示す図である。
【図2】炭素電極表面に修飾したアミノ基とPMSとの結合を示す図である。
【図3】APTESを用いた炭素表面のアミノ基による修飾、そのPMSによる修飾、さらにPMS−酵素による修飾の過程を示す図である。
【図4】酵素で修飾されたアンモニアガス透過膜を装着したアンモニア電極を示す図である。
【図5】図4のセンサにおける、透過膜に固定化されたウレアーゼによる尿素の検量線を示すグラフである。
【図6】図4のセンサにおける、透過膜に固定化されたアデノシンデイミナーゼによるアデノシンの検量線を示すグラフである。
【図7】電子移動メディエータとしてのドーパミンのPMSへの固定化反応を示す図である。
【図8】PMSによりPFC電極に固定化されたチロシナーゼによる循環反応を示す図である。
【図9】PFC電極をアミノ基で修飾した場合と修飾しない場合の測定感度を示すグラフである。
【図10】HRPとチオニンの循環反応による過酸化水素の検出の反応を示す図である。
【図11】フロー型バイオセンサの構成を示す図である。
【図12】図11のセンサにおけるp−クロロフェノールの測定結果を示すグラフである。
【図13】図12の結果に基づくp−クロロフェノールの検量線を示すグラフである。
【図14】APTES処理による感度増幅および再現性の向上を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a functional polymer in which a biological molecule such as an enzyme or an electron transfer mediator is chemically bonded to a side chain, and a biosensor in which the functional polymer is immobilized on a base material or a carbon electrode.
[0002]
[Prior art]
Until now, many techniques for immobilizing proteins by chemical bonding utilizing the reactivity of functional groups such as lysine residues and carboxyl groups present on the protein surface have been developed. However, until now, functional groups that react with these functional groups must be modified in advance on the immobilization carrier. For example, introduction of aminoallyl groups on the surface of glass beads, diazotization thereof, and modification with glutaraldehyde are well known. However, all of them have considerable complications.
[0003]
It is known that a maleimide chemically bonds to a thiol group very quickly. Conventionally, a thiol group is introduced into a protein such as an enzyme or an antibody to bond the maleimide. However, maleimides used for protein immobilization are limited to monomers and low molecular weight compounds, and there is no report on protein immobilization using a polymer having a maleimide group densely on the surface.
[0004]
Hagiwara, one of the inventors of the present application, in 1991 polymerized the styrene group of N- (4-vinylphenyl) maleimide monomer by cationic polymerization to form a chemically reactive maleimide group densely pendant and insoluble in water. Polystyrene (polymaleimide styrene: PMS) was synthesized and its physical properties were reported (Non-Patent Document 1).
[0005]
[Non-patent document 1]
T. Hagiwara et al. , "Synthesis and Polymerization of N- (4-Vinyl phenyl) maleimide", Macromolecules,24  (1991), p6856-6858.
[0006]
[Problems to be solved by the invention]
The present invention focuses on a polymer compound having a maleimide group in a side chain, such as the PMS, a functional polymer using the same, and an enzyme sensor or a functional electrode using the functional polymer. And the like.
[0007]
[Means for Solving the Problems]
The functional polymer compound of the present invention is obtained by adding a biological molecule having a primary amino group, a secondary amino group or a thiol group to at least a part of the repeating unit represented by the following general formula (1). The repeating unit to which the molecule is added is characterized by being represented by the following general formula (2).
[0008]
Embedded image
Figure 2004300328
[0009]
The biosensor of the present invention comprises a substrate, a polymer compound physically or chemically fixed to the substrate and having a maleimide group in a side chain, and at least a part of the maleimide group in the side chain of the polymer compound. And a biologically-derived molecule having a primary amino group, a secondary amino group, or a thiol group chemically bonded to a biological molecule.
[0010]
The biological molecule is, for example, an enzyme and / or an electron transfer mediator that promotes an electrode reaction of the enzyme.
[0011]
The base material is, for example, a carbon electrode substantially having a reactive residue on an end face.
[0012]
The substrate is, for example, a carbon porous body.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention has demonstrated that, for example, the maleimide group of polymaleimide styrene (PMS) can quickly bind not only thiol groups but also lysine, and that PMS is extremely useful as a simple and quick immobilization material for enzymes. It is based on what you find. FIG. 1 shows the reaction formula for coupling the amine with the thiol group and lysine residue of the enzyme to the polymer. Although the figure shows a bond with a primary amine, PMS also bonds with a secondary amine.
[0014]
ADVANTAGE OF THE INVENTION According to this invention, an enzyme sensor can be manufactured very simply and quickly only by immersing a sensor having a carbon electrode or a gas-permeable membrane coated with PMS in an enzyme solution. Furthermore, if the surface of the carbon electrode is modified with an amino group as shown in Fig. 2 and bonded to PMS, the polymer will be released for a long period of time in order to improve the stability of the coating state of the electrode surface such as PMS and carbon. Can be used without.
[0015]
In this case, PFC (Plastic Formed Carbon) obtained by mixing graphite with a polymer resin as an electrode material, forming the graphite crystal while orienting the graphite crystal in one direction, and firing the resultant, has many reactive surfaces on the end face. Since the residue is present, it is suitable for modification with an amino group. FIG. 3 shows the process of modifying the surface of the PFC electrode with an amino group using APTES (γ-aminopropyltriethoxysilane), then modifying it with PMS, and further modifying it with an enzyme.
[0016]
PMS is dissolved in a polar organic solvent such as chloroform to form a homogeneous solution. Therefore, if a porous membrane coated with PMS is prepared using a uniform solution of PMS, enzymes and antibodies can be immobilized simply by immersing the membrane in a protein solution. Enzyme reactions and antigens can be performed by attaching the membrane to various electrodes and sensor devices. A sensor of a type for detecting a reaction product or a product involved in an antibody reaction can be produced.
[0017]
【Example】
1. Synthesis of precursor polymer
(Example 1)
According to the description of the aforementioned Non-patent Document 1, N- (p-vinylphenyl) maleimide (VPMI) = 2.5 × 10-2  mol / L, BF3  ・ O (C2H5)2  = 1.0 × 10-2  Polymerization was performed at 0 ° C. for 12 hours in dichloromethane in a flask under a nitrogen atmosphere at a concentration of mol / L.
[0018]
The polymerization was stopped by adding methanol, and then poured into a large amount of methanol to recover the precipitated polymer. Thereafter, the polymer was purified by re-dissolving in dichloromethane and re-precipitating in methanol, followed by filtration and drying under reduced pressure to isolate the polymer.
[0019]
Yield: 56%,
Number average molecular weight = 1.0 × 105
The number average molecular weight was measured by GPC (gel permeation chromatography) using a calibration curve using monodispersed polystyrene.
[0020]
The structure was analyzed by NMR.11 H NMR: The absorption (2H) of the vinylene group at 6.8 ppm observed by VPMI showed no change in the chemical shift and absorption intensity, although the line width was widened, and the 5.3, 5.8, and 6.7 ppm vinyl groups were absorbed. Disappeared, and the absorption (3H) of methine and methylene in the polymer main chain was newly observed at 1.4 to 2.5 ppm.
[0021]
From the above, it was confirmed that polymaleimide styrene (PMS) was synthesized.
(Example 2)
P-Maleimide styrene oxide (MISO) having the structure of the following formula (3) was synthesized as follows.
[0022]
5.5 mmol (1.02 g) of p-maleimidostyrene dissolved in 20 ml of chloroform was placed in a 200 ml two-necked flask equipped with a reflux condenser, and 8.8 mmol (1.51 g) of 8.8 mmol (1.51 g) dissolved in 30 ml of chloroform was added thereto. m-Chlorobenzoic acid was added dropwise at room temperature over 2.5 hours. After completion of the dropwise addition, the mixture was heated and reacted under reflux of chloroform. The reaction was followed by gas chromatography, and the reaction was continued until the starting material p-maleimidostyrene was completely reacted and no peak was observed on gas chromatography. Thereafter, the product was post-treated with a 20% aqueous sodium sulfite solution, a 10% aqueous sodium carbonate solution and saturated saline, and the solvent, chloroform, was removed to obtain p-maleimide styrene oxide as a pale yellow solid. Yield 296 mg, 24.9%.
[0023]
11 H NMR: 2.7, 3.0 ppm (d, 1H, d, 1H, methylene hydrogen in epoxy ring), 3.8 ppm (dd, 1H methylene hydrogen in epoxy ring), 6.8 ppm (s, 2H vinylene hydrogen in imide ring), 7.25 to 7.34 ppm (m, 4H, p-disubstituted phenyl).
[0024]
Embedded image
Figure 2004300328
[0025]
215 mg (1 mmol) of MISO in 10 ml of dichloromethane, BF3  ・ O (C2  H5  )2  5.68 mg (0.04 mmol) was added and reacted at -10 ° C for 24 hours. The reaction was stopped with methanol and poured into a large amount of methanol to precipitate and isolate the polymer. The obtained polymer was poly (MISO) having a structure as shown below.
[0026]
Embedded image
Figure 2004300328
[0027]
Yield 150 mg, 69.8%.
[0028]
11 H NMR: 2.7, 3.0 ppm (d, 1H, d, 1H, methylene hydrogen in the epoxy ring) and 3.8 ppm (dd, 1H methine hydrogen in the epoxy ring) disappeared. Instead, a peak derived from oxyethylene (3H) in the polymer main chain was observed at 3.7 to 4.2 ppm. Absorption of 6.8 ppm (vinylene hydrogen in the s, 2H imide ring) and 7.2 to 7.4 ppm (m, 4H, p-disubstituted phenyl) were observed without change.
2. Functional polymer synthesis and characterization
(Example 3)
0.2 g of the polymaleimide styrene synthesized in Example 1 (maleimide unit 1.0 × 10-3mol) was dissolved in 50 ml of chloroform, and 1.2 g of L-cysteine (1.0 × 10-2(mol) in 100 ml of pure water was shaken for 10 minutes in a separating funnel. A white layer appeared on the interface between the aqueous layer and the organic layer. The white layer was collected, washed three times with pure water and chloroform, and then dried to isolate the desired product.
(Example 4)
0.2 g of the polymaleimide styrene synthesized in Example 1 (maleimide unit 1.0 × 10-3mol.) in 50 ml of chloroform and 1.5 g of L-lysine (1.0 × 10-2(mol) in 100 ml of pure water was shaken for 10 minutes in a separating funnel. A white layer appeared on the interface between the aqueous layer and the organic layer. The white layer was collected, washed three times with pure water and chloroform, and then dried to isolate the desired product.
(Example 5)
0.2 g of the polymaleimide styrene synthesized in Example 1 (maleimide unit 1.0 × 10-3mol) was dissolved in 50 ml of chloroform and immersed in carbon felt and pulled up and dried. The polymer-coated carbon felt is immersed in a 1 g / L urease aqueous solution for 10 minutes, pulled up, washed sufficiently with pure water, irradiated with ultrasonic waves in pure water, and washed to remove all physically adsorbed substances. The target object was formed on the carbon felt by washing away.
(Example 6)
The target compound synthesized in Example 3 was characterized by NMR and IR.
[0029]
11 H NMR: The absorption of vinylene groups observed at 6.8 ppm disappeared, and methine hydrogen adjacent to methylene and sulfur atoms in the succinimide ring was newly observed at 3.5 to 4.5 ppm. Each was observed. The absorption of methine and methylene in the main chain was also observed.
[0030]
IR: 2700-3500cm-1And 3400cm-1In the vicinity, absorption of a carboxyl group and an amino group of the amino acid was observed, respectively. 1678 cm present in the precursor polymer, polymaleimide styrene-1No absorption due to the double bond of the vinylene group was observed because the mercapto group of cysteine reacted with the double bond and was added by a covalent bond.
[0031]
It was also positive for the ninhydrin reaction.
[0032]
Therefore, it can be concluded that the obtained substance has the structure of the following formula (5).
[0033]
Embedded image
Figure 2004300328
[0034]
(Example 7)
The same analysis as in Example 3 revealed that the polymer compound obtained in Example 4 was also a compound having the structure of the following formula (6) in which the amino group of lysine formed an additional covalent bond on the succinimide ring. It was ok.
[0035]
Embedded image
Figure 2004300328
[0036]
(Example 8)
Regarding the polymer compound obtained in Example 5, in addition to the fact that the product after the elimination of physical adsorption shows a clear positivity to the ninhydrin reaction, the mercapto amino acid in Examples 6 and 7 was used. Considering that it has been shown that a group or amino group is added to the double bond of the maleimide group of the precursor polymer (polymaleimidostyrene) and covalently bonds to the succinimide ring, and that urease is a protein, ie a polyamino acid, It is obvious that the mercapto group and / or amino group of urease reacted with the double bond of maleimide, and urease was covalently bonded to the succinimide ring to produce a polymer compound having the structure of the following formula (7). is there.
[0037]
Embedded image
Figure 2004300328
[0038]
(Example 9)
In the same manner, a functional polymer compound was synthesized by shaking the chloroform solution of poly (MISO) and the aqueous solution of L-cysteine or the aqueous solution of urease synthesized in Example 2 in a separating funnel. It was confirmed in the same manner as in Examples 6 and 7 that an addition reaction of a bio-origin molecule to a vinylene group of a maleimide ring produced a polymer having a succinimide ring structure.
3. Fabrication of PFC electrode
(Example 10)
A mixed resin system of 30 parts of chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carbide Co., Ltd.) and 45 parts of furan resin (Hitafuran VF-302 manufactured by Hitachi Chemical Co., Ltd.) was used. After mixing 20 parts of diallyl phthalate monomer as a plasticizer with 100 parts of a composition obtained by combining 25 parts of -300S average particle size of 2 μm) and dispersing them using a Henschel mixer, mixing was performed while maintaining the surface temperature at 120 ° C. The mixture was sufficiently kneaded using a two-roll mill to obtain a sheet-like composition, which was pelletized by a pelletizer to obtain a molding composition. The pellets were extruded with a screw type extruder at a speed of 3 m / sec at 130 ° C. while degassing using a 3.6 mm diameter die, and the pellets were fixed to a frame and placed in an air oven heated to 180 ° C. For 10 hours to obtain a precursor (carbon precursor) wire. Next, this is heated in a nitrogen gas at a rate of 10 ° C./h up to 500 ° C. and at a rate of 50 ° C./h from 500 ° C. to 1000 ° C., and then up to 1500 ° C. at 100 ° C./hour. After maintaining at 1500 ° C. for 3 hours, the mixture was naturally cooled to obtain a columnar carbon electrode having a cross-sectional diameter of 3 mm.
[0039]
As a result of measuring the pore diameter of the obtained carbon electrode by a mercury intrusion method using a porosimeter (Autoscan-60) manufactured by Yuasa Ionics, the maximum pore diameter was 120 angstroms. As the electrode characteristics, a polarographic analyzer (YANACO P-1100 manufactured by Yanagimoto) was used.-3M Fe (CN)6 4-  As a result of observing the redox reactivity of ferro / ferricyan ion in 1M KCl system, the blank current was small, sharp oxidation wave and reduction wave peaks were obtained without special pretreatment, and peak potential was obtained. Was close to the theoretical value. In addition, no increase in the current value due to the intrusion of the electrolyte was observed, and the electrolyte showed substantially the same impermeability as the glassy carbon.
4. Production of porous carbon
(Example 11)
75 parts of furan resin initial condensate (Hitafuran VF-302 manufactured by Hitachi Chemical Co., Ltd.), 5 parts of dry distillation pitch (KH-1P manufactured by Kureha Chemical Industry Co., Ltd.), natural scale-like graphite fine powder having an average particle diameter of 1 μm (CSSP manufactured by Nippon Graphite Co., Ltd.) -B) 20 parts were added and mixed with a mixer to prepare a liquid composition. Next, a polyurethane foam having a three-dimensional network structure and a porosity of 60% was impregnated with the liquid composition. After removing the excess liquid composition, a curing reaction was performed in a dryer at 100 ° C. for 3 hours. Next, a carbon precursor conversion treatment was performed in a dryer at 180 ° C. for 10 hours. The temperature of the precursor-treated product was increased in nitrogen gas up to 500 ° C. at a rate of 20 ° C./h, then up to 1000 ° C. at 100 ° C./h, and held at 1000 ° C. for 3 hours. The carbon porous body was obtained by natural cooling.
5. Potentiometric biosensor using polymaleimide styrene as enzyme-immobilized support
(Example 12)
Urease immobilized urea sensor with ammonia detection
A polymaleimide polystyrene (PMS) solution dissolved in chloroform was immersed on an ammonia gas permeable membrane of an ammonia electrode and dried, and then immersed in a urease solution (1 mg / ml from Jackbean) for 30 minutes to bind urease. Then, the enzyme was activated by immersion in a 0.01 M dithiothreitol solution for 30 minutes. Urease is well known as an SH enzyme in which an SH group is indispensable for the expression of enzymatic activity, and an enzyme in which a part of the SH group is oxidized in an immobilization step to form a disulfide (SS) bond and is inactivated. The molecule was present and the enzymatic activity was regenerated by the addition of dithiothreitol, an SS bond cleavage reagent. FIG. 4 shows the structure of the ammonia electrode equipped with the enzyme-modified ammonia gas permeable membrane. When this sensor was placed in a 0.1 M phosphate buffer of pH 8 and the background potential was stabilized, urea was added, and a potential change corresponding to the urea concentration occurred. The reaction in which urea is hydrolyzed to produce ammonia and carbon dioxide gas is as shown in equation (8).
[0040]
Urea + H2  O → 2NH3    + CO2        (8)
The potential response became a steady value about 20 minutes after the sample was added, but this response speed greatly changes depending on the membrane pressure of the PMS. FIG. 5 shows a calibration curve obtained three days after the production of the sensor. The slope of the calibration curve was approximately 55 mV / decade, indicating a nearly Nernst response. Further, when an experiment for preparing a calibration curve was carried out every day, a response was reduced by 30% one week later. This is considered to be mainly related to the detachment of the polymer from the membrane, so it is necessary to fix the polymer to a strong carrier by introducing an amine onto the surface of the carrier.
[0041]
Urease is known to have an SH group on its surface, and Uchiyama et al. Of the present inventor have found that the activity of the thiol group of urease is lost by oxidation at a carbon electrode (S. Uchiyama et al., "Electrical Control of Urease Activity Immobilized to the Conducting Polymer on the Carbon Felt Electrode", Electroanalysis 2002,14  pp. 1644-1647). Furthermore, when urease was adsorbed and immobilized on a wire mesh, it was found that the urease was bound to gold while maintaining its activity, and because it had almost the same electrode oxidation wave as cysteine, the SH group of urease itself reacted with maleimide to fix it. It is considered to be This is because it is known that the reaction rate between the SH group and the maleimide is much higher than that between the lysine residue and the maleimide. Furthermore, it has been confirmed that urease directly binds or strongly adheres to the gold surface using a quartz oscillator sensor. Therefore, a protein having a thiol group on the enzyme surface, such as urease, can be bound with its own thiol group, but it has been reported that the protein was immobilized using a thiol group on the surface of a natural protein molecule. Absent.
(Example 13)
Urease immobilized urea sensor with carbon dioxide detection
The carbon felt was immersed in a polymaleimide styrene (PMS) solution dissolved in chloroform and dried, and then immersed in a urease solution (1 mg / ml) for 30 minutes to bind urease. Then, the urea sensor was mounted on a gas permeable membrane of a carbon dioxide gas electrode to produce a carbon dioxide detection type urea sensor. In this sensor, a potential response was obtained in the same manner as the above-described sensor using the ammonia electrode as a detection electrode. The slope of the calibration curve was as small as 40 mV / decade, but the response time was quick, about 5 to 10 minutes. The response of this sensor was reduced by about 50% 30 days after the preparation, but was more stable than when the ammonia gas was coated on the diaphragm. This is considered to be due to the fact that the affinity between the polymer chains and the carbon felt surface is stronger than that between the polymer chains and the gas permeable membrane.
(Example 14)
Adenosine deiminase immobilized adenosine sensor
The carbon paper was immersed in 1 ml of a 1 mg / ml polymer chloroform solution and dried to prepare a polymer-coated carbon paper. Next, it was immersed in an adenosine deiminase solution (phosphate buffer solution of pH 7) for 30 minutes, washed with water, and mounted on an ammonia gas permeable membrane. The electrode was placed in a buffer solution, and after the potential was stabilized, an adenosine solution was added stepwise to record the potential response. The slope of the calibration curve was about 40 mV / decade, and the response time was about 20 minutes (FIG. 6). Since adenosine deiminase also rapidly binds to PMS, it is considered that the SH group present on the surface is bound to the polymer. The hydrolysis reaction of adenosine by the enzyme is as shown in equation (9). The sensor response hardly decreased for 3 weeks.
[0042]
Adenosine + H2  O → Inosine + NH3      (9)
6. Functional electrode with electron transfer mediator immobilized on polymaleimide styrene
(Example 15)
Measurement of catalytic oxidation wave of ascorbic acid using dopamine-bound PMS-modified PFC (Plastic formed carbon) electrode
The PFC electrode was immersed in a 1 mg / ml PMS chloroform solution and dried, coated with PMS, and then immersed in a 0.01 M dopamine solution (pH 9.0 phosphate buffer) for 30 minutes to remove the amino groups on the side chain of dopamine. Immobilized on maleimide. When cyclic voltammetry of a 0.1 mM ascorbic acid solution (pH 7.0) was performed using the dopamine-immobilized electrode, an electrode oxidation mediator current of ascorbic acid was observed. In the case of the PFC electrode without any PMS treatment, a large capacitive current appeared because the electrode area immersed in the solution was large, whereas the PMS-coated electrode showed a small capacitive current. However, the ascorbic acid electro-oxidation current appeared as a pre-wave. This pre-wave is generated by the reduction and regeneration of dopamine quinone, which is produced by the electrolytic oxidation of immobilized dopamine, to ascorbic acid. The immobilization reaction is shown in FIG.
7. Amperometric enzyme sensor using PMS coated on PFC electrode as enzyme fixed layer
(Example 16)
After the PFC electrode was polished and the edge face was filtered off, a PMS methylene chloride solution was dip-coated. Then, it was reacted with a tyrosinase (polyphenol oxidase) (0.25 mg / ml) solution (pH 6.5 phosphate buffer) to immobilize tyrosinase. Using this as a working electrode, constant potential amperometry was performed at -0.05 V using a silver-silver chloride electrode as a reference electrode and a platinum wire as a counter electrode. As the electrolyte, 10 ml of 0.1 M phosphate buffer pH 6.5 was used, and a predetermined amount of a standard solution of a tyrosinase substrate to be measured was added while stirring the solution with a stirrer at a constant rate. In this sensor, an o-quinone compound generated from a catechol compound or a phenol compound by a tyrosinase-catalyzed reaction is electrolytically reduced and regenerated with a PFC electrode, whereby a circulating reaction as shown in FIG. 8 occurs, and a tyrosinase substrate such as a catechol or a phenol compound is increased. Sensitivity can be measured. The response was rapid, reaching a steady state in about 5-10 seconds. Further, as described with reference to FIG. 3, when the PFC electrode was previously introduced with an amino group by APTES treatment and then covered with MPS, the measurement sensitivity was increased and the stability for continuous measurement was improved. FIG. 9 shows a calibration curve of catechol when the APTES treatment was not performed.
[0043]
Examples of measurable phenol compounds include phenol, chlorophenol, aminophenol, cresol, and the like.Examples of measurable catechol compounds include catechol, dopamine, L-dopa, adrenaline, caffeic acid, and the like. Can be
[0044]
When a constant current value was obtained by adding a certain amount of the tyrosinase substrate, CN  , N3  , SCN  By adding enzyme inhibitors such as benzoic acid, kojic acid and atrazine, various inhibitors could be measured from their inhibition currents.
[0045]
It is also possible to simultaneously immobilize an electron transfer mediator having a thiol group such as thionin, a primary amino group and a secondary amino group on the PFC in the same manner as the enzyme tyrosinase, thereby achieving an improvement in sensitivity. did it.
(Example 17)
After coating the PFC electrode with PMS in the same manner as in Example 16, the enzyme and thionin were immobilized by further immersing in a mixed solution of horseradish peroxidase (HRP) (1 mg / ml) and thionin (0.1 mM). This response was significantly improved by co-immobilizing the electron mediator to the PMS.
[0046]
As shown in FIG. 10, two oxidized peroxidase intermediates generated in the reaction (1) between hydrogen peroxide and peroxidase are sequentially reduced by an electron mediator (phenothiazine / phenoxazine-based electron mediator), and (2) the enzyme is Will be played. At −0.2 V (vs. Ag. AgCl), the reduction current (3) of the electron mediator was detected.
[0047]
When peroxidase and thionine or toluidine blue were simultaneously immobilized on PMS, a steady-state current response depending on the concentration of hydrogen peroxide could be obtained by the above reaction scheme. Although the response speed slightly varies depending on the thickness of the PMS, the response time to hydrogen peroxide is as quick as 10 seconds or less.
[0048]
In addition, since Meldora Blue and methylene blue strongly adsorb to the PFC electrode, a sensor could be similarly constructed by adsorbing PFC in advance, coating PMS, and fixing HRP. Even if HRP alone was immobilized without using an electron mediator, a current response based on a direct electron transfer reaction between the oxygen intermediate and the electrode was obtained, but the sensitivity was about 1/100 of that when the mediator was simultaneously immobilized. Was.
8. Flow type biosensor using PMS coated on porous carbon electrode as enzyme immobilized layer
(Example 18)
By using a porous carbon material or porous carbon felt (CF) as the working electrode of the flow type detector, all the reactions of Examples 16 to 17 can be applied to a flow type biosensor as shown in FIG. Also in this case, the carbon porous body and the porous CF were covered with PMS. Further, tyrosinase and HRP were immobilized, and a catechol (or phenol) sensor and a hydrogen peroxide sensor were respectively constructed. In addition, a significant increase in sensitivity was obtained by immobilizing thionin having an amino group on the PMS simultaneously with the enzyme. In particular, the tyrosinase / thionine system was able to measure p-chlorophenol up to 10 nM (FIGS. 12 and 13). Improvements in sensitivity amplification and reproducibility due to the APTES treatment were also observed (FIG. 14).
[Brief description of the drawings]
FIG. 1 is a diagram showing a binding reaction between PMS and an enzyme having a thiol group or an amino group.
FIG. 2 is a diagram showing a bond between an amino group modified on the surface of a carbon electrode and PMS.
FIG. 3 is a diagram showing a process of modification of a carbon surface with an amino group using APTES, modification with a PMS, and modification with a PMS-enzyme.
FIG. 4 is a view showing an ammonia electrode equipped with an ammonia gas permeable membrane modified with an enzyme.
FIG. 5 is a graph showing a calibration curve of urea by urease immobilized on a permeable membrane in the sensor of FIG. 4;
6 is a graph showing a calibration curve of adenosine by adenosine deiminase immobilized on a permeable membrane in the sensor of FIG.
FIG. 7 is a diagram showing a reaction of immobilizing dopamine as an electron transfer mediator on PMS.
FIG. 8 is a diagram showing a circulatory reaction by tyrosinase immobilized on a PFC electrode by PMS.
FIG. 9 is a graph showing measurement sensitivity when a PFC electrode is modified with an amino group and when the PFC electrode is not modified.
FIG. 10 is a diagram showing a reaction of detecting hydrogen peroxide by a circulating reaction between HRP and thionine.
FIG. 11 is a diagram showing a configuration of a flow-type biosensor.
FIG. 12 is a graph showing measurement results of p-chlorophenol in the sensor of FIG.
FIG. 13 is a graph showing a calibration curve of p-chlorophenol based on the results of FIG.
FIG. 14 is a graph showing sensitivity amplification and improvement in reproducibility by APTES processing.

Claims (6)

下記一般式(1)で表わされる繰り返し単位の少なくとも一部に1級アミノ基、2級アミノ基またはチオール基を有する生体由来分子が付加され、該生体由来分子が付加された繰り返し単位は下記一般式(2)で表わされる機能性高分子化合物。
Figure 2004300328
A biologically-derived molecule having a primary amino group, a secondary amino group or a thiol group is added to at least a part of the repeating unit represented by the following general formula (1). A functional polymer compound represented by the formula (2).
Figure 2004300328
前記生体由来分子は、酵素及び/又は該酵素の電極反応を促進する電子移動メディエータである請求項1記載の機能性高分子化合物。The functional polymer compound according to claim 1, wherein the biological molecule is an enzyme and / or an electron transfer mediator that promotes an electrode reaction of the enzyme. 基材と、
該基材に物理的または化学的に固定され、側鎖にマレイミド基を有する高分子化合物と、
該高分子化合物の側鎖のマレイミド基の少なくとも一部に化学的に結合された1級アミノ基、2級アミノ基またはチオール基を有する生体由来分子とを具備するバイオセンサ。
A substrate,
A polymer compound physically or chemically fixed to the base material and having a maleimide group in a side chain,
A biosensor comprising: a biological molecule having a primary amino group, a secondary amino group, or a thiol group chemically bonded to at least a part of a maleimide group in a side chain of the polymer compound.
前記生体由来分子は、酵素及び/又は該酵素の電極反応を促進する電子移動メディエータである請求項3記載のバイオセンサ。4. The biosensor according to claim 3, wherein the biological molecule is an enzyme and / or an electron transfer mediator that promotes an electrode reaction of the enzyme. 前記基材は、端面に反応性残基を実質的に有する炭素電極である請求項3または4記載のバイオセンサ。The biosensor according to claim 3, wherein the substrate is a carbon electrode having a reactive residue substantially on an end face. 前記基材は、炭素多孔体である請求項3または4記載のバイオセンサ。The biosensor according to claim 3, wherein the substrate is a carbon porous body.
JP2003096624A 2003-03-31 2003-03-31 Functional polymer compound and biosensor using the same Expired - Fee Related JP4614630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096624A JP4614630B2 (en) 2003-03-31 2003-03-31 Functional polymer compound and biosensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096624A JP4614630B2 (en) 2003-03-31 2003-03-31 Functional polymer compound and biosensor using the same

Publications (2)

Publication Number Publication Date
JP2004300328A true JP2004300328A (en) 2004-10-28
JP4614630B2 JP4614630B2 (en) 2011-01-19

Family

ID=33408623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096624A Expired - Fee Related JP4614630B2 (en) 2003-03-31 2003-03-31 Functional polymer compound and biosensor using the same

Country Status (1)

Country Link
JP (1) JP4614630B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170877A (en) * 2004-12-17 2006-06-29 Shunichi Uchiyama Enzyme linked immunoassay material and enzyme linked immunoassay method using same
JP2007064945A (en) * 2005-09-02 2007-03-15 Horiba Ltd Measuring method of azide
WO2008029843A1 (en) * 2006-09-05 2008-03-13 Toyota Jidosha Kabushiki Kaisha Electrode catalyst and enzyme electrode
JP2011501161A (en) * 2007-10-17 2011-01-06 オームクス コーポレーション New chemistry for biosensors
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8647489B2 (en) 2005-09-30 2014-02-11 Bayer Healthcare Llc Gated voltammetry devices
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292843A (en) * 1998-04-06 1999-10-26 Nof Corp Polymerizable monomer, its production and its polymer
JP2002501788A (en) * 1998-01-30 2002-01-22 アドヴァンスト カーディオヴァスキュラー システムズ インコーポレーテッド Hydrophilic coating for medical devices for internal use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501788A (en) * 1998-01-30 2002-01-22 アドヴァンスト カーディオヴァスキュラー システムズ インコーポレーテッド Hydrophilic coating for medical devices for internal use
JPH11292843A (en) * 1998-04-06 1999-10-26 Nof Corp Polymerizable monomer, its production and its polymer

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10067082B2 (en) 2004-02-06 2018-09-04 Ascensia Diabetes Care Holdings Ag Biosensor for determining an analyte concentration
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor
JP2006170877A (en) * 2004-12-17 2006-06-29 Shunichi Uchiyama Enzyme linked immunoassay material and enzyme linked immunoassay method using same
JP4549837B2 (en) * 2004-12-17 2010-09-22 俊一 内山 Method for producing enzyme immunoassay material
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8877035B2 (en) 2005-07-20 2014-11-04 Bayer Healthcare Llc Gated amperometry methods
JP2007064945A (en) * 2005-09-02 2007-03-15 Horiba Ltd Measuring method of azide
US9835582B2 (en) 2005-09-30 2017-12-05 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US11435312B2 (en) 2005-09-30 2022-09-06 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US8647489B2 (en) 2005-09-30 2014-02-11 Bayer Healthcare Llc Gated voltammetry devices
US10670553B2 (en) 2005-09-30 2020-06-02 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US9110013B2 (en) 2005-09-30 2015-08-18 Bayer Healthcare Llc Gated voltammetry methods
JP2008064514A (en) * 2006-09-05 2008-03-21 Toyota Central R&D Labs Inc Electrode catalyst and enzyme electrode
US8361662B2 (en) 2006-09-05 2013-01-29 Toyota Jidosha Kabushiki Kaisha Electrocatalyst and enzymatic electrode
WO2008029843A1 (en) * 2006-09-05 2008-03-13 Toyota Jidosha Kabushiki Kaisha Electrode catalyst and enzyme electrode
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US10190150B2 (en) 2006-10-24 2019-01-29 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US9005527B2 (en) 2006-10-24 2015-04-14 Bayer Healthcare Llc Transient decay amperometry biosensors
US11091790B2 (en) 2006-10-24 2021-08-17 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US8470604B2 (en) 2006-10-24 2013-06-25 Bayer Healthcare Llc Transient decay amperometry
JP2011501161A (en) * 2007-10-17 2011-01-06 オームクス コーポレーション New chemistry for biosensors
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US10690614B2 (en) 2007-12-10 2020-06-23 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor

Also Published As

Publication number Publication date
JP4614630B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
Erden et al. A review of enzymatic uric acid biosensors based on amperometric detection
Pundir et al. Biosensors for determination of D and L-amino acids: A review
Scouten et al. Enzyme or protein immobilization techniques for applications in biosensor design
Lakshmi et al. Electrochemical detection of uric acid in mixed and clinical samples: a review
Delvaux et al. Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles
Kirsch et al. Towards the development of molecularly imprinted polymer based screen-printed sensors for metabolites of PAHs
Liu et al. Al2O3 sol–gel derived amperometric biosensor for glucose
Jing-Juan et al. Amperometric glucose sensor based on coimmobilization of glucose oxidase and poly (p-phenylenediamine) at a platinum microdisk electrode
Demirkol et al. Enzyme immobilization in biosensor constructions: self-assembled monolayers of calixarenes containing thiols
WO2000063685A1 (en) Biosensor
JPH07260737A (en) Monitor method of bioelectricity chemical reaction and reaction medium thereof
Liu et al. A mediator‐free tyrosinase biosensor based on ZnO sol‐gel matrix
JP4614630B2 (en) Functional polymer compound and biosensor using the same
Lata et al. Construction of amperometric l-amino acid biosensor based on l-amino acid oxidase immobilized onto ZnONPs/c-MWCNT/PANI/AuE
KR20120103911A (en) Biosensor for detecting nitric oxide and preparation method thereof
Mourzina et al. Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors
US7034164B1 (en) Electrically conductive polymers capable of being covalently grafted on by light, method for obtaining same and uses as supports in probes for specific identification in electronic biosensors
CN108445063B (en) Electrochemical detection method of biological molecules
A Alonso-Lomillo et al. Screen-printed biosensors in drug analysis
Hou et al. An amperometric enzyme electrode for glucose using immobilized glucose oxidase in a ferrocene attached poly (4-vinylpyridine) multilayer film
Wang et al. Amperometric urea biosensor using aminated glassy carbon electrode covered with urease immobilized carbon sheet, based on the electrode oxidation of carbamic acid
Budnikov et al. Chemically modified electrodes with amperometric response in enantioselective analysis
Benkert et al. Size Exclusion Redox‐Labeled Immunoassay (SERI): a new format for homogeneous amperometric creatinine determination
Pogorelova et al. Analysis of NAD (P)+-cofactors by redox-functionalized ISFET devices
Şenel et al. A novel amperometric hydrogen peroxide biosensor based on catalase immobilization on poly (glycidyl methacrylate-co-vinylferrocene)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees