JP2004297249A - Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines - Google Patents

Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines Download PDF

Info

Publication number
JP2004297249A
JP2004297249A JP2003084150A JP2003084150A JP2004297249A JP 2004297249 A JP2004297249 A JP 2004297249A JP 2003084150 A JP2003084150 A JP 2003084150A JP 2003084150 A JP2003084150 A JP 2003084150A JP 2004297249 A JP2004297249 A JP 2004297249A
Authority
JP
Japan
Prior art keywords
phase
power line
signal transmission
frequency signal
transmission transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084150A
Other languages
Japanese (ja)
Inventor
Masahiro Maki
昌弘 牧
Yuji Igata
裕司 井形
Toshiyuki Wakizaka
俊幸 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003084150A priority Critical patent/JP2004297249A/en
Publication of JP2004297249A publication Critical patent/JP2004297249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coupler between different phase lines that can simply and safely be installed in order to obtain power communication between different phase lines of a single phase three-wire system. <P>SOLUTION: In the coupler between the different phase lines, a first high frequency signal transmission transformer 21 is configured by winding a secondary coil of the first high frequency signal transmission transformer 21 spirally to a first phase power line U acting as a primary coil of the first high frequency signal transmission transformer 21 with a sheath layer of the power line U interposed therebetween. A second high frequency signal transmission transformer 22 is configured by winding a secondary coil of the second high frequency signal transmission transformer 22 spirally to a second phase power line W acting as a primary coil of the second high frequency signal transmission transformer 22 with a sheath layer of the power line W interposed therebetween. The secondary coil of the first high frequency signal transmission transformer 21 is connected in series with the secondary coil of the second high frequency signal transmission transformer 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一般住宅等宅内に設置されている電力線を利用した電力線通信において、単相三線式電力線通信を実現し、かつ、設置が簡便で安全である、異相線間カプラー及びその装着方法に関するものである。
【0002】
【従来の技術】
宅内電力線通信は、宅内の電気コンセントにモデム等を接続して、宅内に敷設されている電力線を伝送路として、宅内での情報通信を行うものである。既設の電力線と電気コンセントをそのまま利用して、例えば、コンピュータ及びその周辺装置、あるいは、家電製品を結ぶホームネットワークの構築と家庭内情報化を容易に実現できることから、近年注目を集めている。
【0003】
わが国の現行制度では、電力線通信に使用できる周波数帯は、10kHz〜450kHzと定められており、低速のデータ通信(9.6kbps程度)に利用されている。しかし、今後より高速のデータ通信(数10Mbps)が実現できるように、電力線通信に使用できる周波数帯に、2MHz〜30MHzの周波数帯を新たに追加する検討が行われている。
【0004】
図9は、従来の宅内単相三線式電力線通信システムの配線図である。100V及び200Vの電力は、柱上トランス91から三本の電力線、即ち、第一の相の電力線U、中性線N、及び第二の相の電力線Wを用いて、宅内に配電される。100V系は、宅内では、分電盤内の主幹ブレーカ92を経て、電力線Uと中性線Nを対とした第一の配電系統と、電力線Wと中性線Nを対とした第二の配電系統とに分かれて、それぞれ配電される。
【0005】
第一の配電系統に接続された、モデム93とモデム94は、同一の回路内にあるため、相互の通信を容易に行える。即ち、モデム93から送信するデータは、差動信号として第一の相の電力線Uと中性線Nに入力される。この差動信号は、同じ配電系統にあるモデム94で、容易に、かつ良好に受信される。これが、同相における電力線通信である。
【0006】
しかし、第一の配電系統に接続された、モデム93あるいはモデム94と、第二の配電系統に接続された、モデム95との間の電力線通信は、異相線間電力線通信と呼ばれ、通常の状態では良好な通信を行うことが出来ない。
【0007】
単相三線式配電では、中性線Nは共通であるが、第一の相の電力線Uと第二の相の電力線Wとは、異相関係にあり、これらは、柱上トランス91のおいて、接続されているに過ぎない。したがって、電力線通信に使用する数10kHz以上の周波数帯においては、第一の配電系統と第二の配電系統とは、それぞれ独立した別回路として動作する。即ち、モデム93あるいはモデム94から、第一の配電系統に入力された差動信号は、第二の配電系統に接続されたモデム95の受信点では、著しく減衰しており、モデム95は、良好な信号検出が出来ない。
【0008】
このため、単相三線式電力通信では、異相線間の通信を実現するためには特別の仕組みが必要である。
【0009】
これを解決するため、図9に示されるように、コンデンサー96あるいはハイパスフィルタ(図示せず)を用いた異相線間カプラーを、主幹ブレーカ92の内部、あるいはその近傍に設置して、異相線間を高周波的に接続する方式が提案されている(特許文献1参照)。
【0010】
しかしながら、このようなコンデンサーやハイパスフィルタを既設の分電盤内部に取り付けるには、高電圧回路の工事となるため、電気主任技術者あるいは電気工事士による工事が必要となり、これらの資格を持たない一般人は、このような取り付けを禁じられている。
【0011】
【特許文献1】特開2002−232332号公報
【0012】
【発明が解決しようとする課題】
従来技術では、単相三線式異相線間電力通信を実現するために、特別な工事が必要であり、一般の家庭で、容易に実施することが出来ないという問題があった。
【0013】
そこで本発明は、簡便にかつ安全に設置できて、単相三線式異相線間電力通信を実現できる、異相線間カプラー及びその関連技術を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1記載の異相線間カプラーは、第一の相の電力線と、中性線と、第二の相の電力線とを備える単相三線式電力線を用いて行う異相線間電力線通信に使用される、異相線間カプラーであって、第一の相の電力線と第二の相の電力線のいずれの導体とも非接触でありながら、第一の相の電力線と第二の相の電力線とを、商用電源周波数において遮断し、かつ、電力線通信を行う高周波域において電気的に接続する結合部を備える。
【0015】
この構成によれば、異相線間カプラーは、電力線の導体とは非接触であり、かつ、異相線間を高周波的に接続して、異相線間で電力線通信の信号を伝達できる。
【0016】
請求項2記載の異相線間カプラーでは、結合部は、一次コイルと二次コイルとを有する第一の高周波信号伝達トランスと、同じく、一次コイルと二次コイルとを有する第二の高周波信号伝達トランスとを備え、第一の高周波信号伝達トランスは、第一の相の電力線を一次コイルとし、第二の高周波信号伝達トランスは、第二の相の電力線を一次コイルとし、第一の高周波信号伝達トランスの二次コイルと、第二の高周波信号伝達トランスの二次コイルとが、直列に接続される。
【0017】
この構成によれば、電磁誘導作用を利用した高周波信号伝達トランスにより、異相線間を高周波的に結合して、電力線通信の信号を伝達できる。
【0018】
請求項3記載の異相線間カプラーでは、第一の高周波信号伝達トランスと第二の高周波信号伝達トランスは、空芯トランスである。
【0019】
この構成によれば、強磁性体コアを使用することなく、高周波信号伝達トランスを実現できる。また、強磁性体コアを使用していないので、商用周波数の遮断効率が高いという利点がある。
【0020】
請求項4記載の異相線間カプラーでは、第一の高周波信号伝達トランスと第二の高周波信号伝達トランスは、それぞれ、一体型の強磁性体コアあるいは複数個に分割可能な強磁性体コアを備える、有芯トランスである。
【0021】
この構成によれば、強磁性体コアを使用することにより、高周波信号伝達トランスの伝達特性を改善でき、高効率の異相線間カプラーを実現できる。また、複数個に分割可能な強磁性体コアを用いれば、設置が極めて簡単となり、省施工性が図れる。
【0022】
請求項5記載の異相線間カプラーでは、第一の高周波信号伝達トランスは、第一の高周波信号伝達トランスの一次コイルである第一の相の電力線に、第一の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回して構成され、第二の高周波信号伝達トランスは、第二の高周波信号伝達トランスの一次コイルである第二の相の電力線に、第二の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回して構成される。
【0023】
この構成によれば、強磁性体コアが不要となり、より廉価な異相線間カプラーを実現できる。
【0024】
請求項6記載の異相線間カプラーでは、第一の高周波信号伝達トランスと第二の高周波信号伝達トランスとは、それぞれの一次コイルと二次コイルの巻線数比がm対n(mとnは自然数)である。
【0025】
この構成によれば、第一の配電系統と第二の配電系統との間の伝達特性が可逆的となり、通信品質が均一な異相線間電力線通信が可能となる。
【0026】
請求項7記載の異相線間カプラーでは、結合部は、第一の相の電力線を一次コイルとし、第二の相の電力線を二次コイルとする、高周波信号伝達トランスを備え、高周波信号伝達トランスは、空芯トランスである。
【0027】
この構成によれば、第一の相の電力線と第二の相の電力線を、空芯の高周波信号伝達トランスで直接結合して、簡便に異相線間カプラーを実現できる。また、高周波信号伝達トランスは一つでよく、二次コイルも不要であるから、簡単かつ経済的な異相線間カプラーを実現できる。
【0028】
請求項8記載の異相線間カプラーでは、結合部は、第一の相の電力線を一次コイルとし、第二の相の電力線を二次コイルとする、高周波信号伝達トランスを備え、高周波信号伝達トランスは、一体型の強磁性体コアあるいは複数個に分割可能な強磁性体コアを備える。
【0029】
この構成によれば、第一の相の電力線と第二の相の電力線を、強磁性体コアを有芯とした高周波信号伝達トランスで直接結合して、結合効率の高い異相線間カプラーを実現できる。また、高周波信号伝達トランスは一つでよく、二次コイルも不要であるから、簡単かつ経済的な異相線間カプラーを実現できる。さらに、複数個に分割可能な強磁性体コアを用いれば、設置が極めて簡単となり、施工性に優れる。
【0030】
請求項9記載の異相線間カプラーでは、結合部は、第一の相の電力線と第二の相の電力線との並行部分の一部を覆い、第一の相の電力線と第二の相の電力線とを高周波的に接続する、強磁性体ブロックを備え、強磁性体ブロックは、第一の相の電力線と第二の相の電力線とを覆う部分を境界として、複数個に分割可能である。
【0031】
この構成によれば、簡便にして、第一の相の電力線と第二の相の電力線を高周波的に結合できる。また、強磁性体ブロックは複数個に分割可能であるから、設置が極めて簡単となり、施工性に優れる。
【0032】
請求項10記載の異相線間カプラーの装着方法は、複数個に分割可能な第一の強磁性体コアと、複数個に分割可能な第二の強磁性体コアとを備えた、異相線間カプラーの装着方法であって、第一の高周波信号伝達トランスにおいては、分割可能な第一の強磁性体コアのコア孔部分に、第一の相の電力線を挿入して一次コイルとするステップと、あらかじめボビンに巻回してなる二次コイルを、分割可能な第一の強磁性体コアに挿入するステップと、分割可能な第一の強磁性体コアを使用して、閉磁路を構成するステップとを含み、第二の高周波信号伝達トランスにおいては、分割可能な第二の強磁性体コアのコア孔部分に、第二の相の電力線を挿入して一次コイルとするステップと、あらかじめボビンに巻回してなる二次コイルを、分割可能な第二の強磁性体コアに挿入するステップと、分割可能な第二の強磁性体コアを使用して、閉磁路を構成するステップとを含み、第一の高周波信号伝達トランスに装着された二次コイルと、第二の高周波信号伝達トランスに装着された二次コイルとを直列に接続するステップとを含む。
【0033】
この方法によれば、既設の電力線を分電盤の取り付け端子から外す必要はなく、また、電力線の導体にも接続する必要がないから、取り付け作業の省力化と安全性を確保できる。
【0034】
請求項11記載の異相線間カプラーの装着方法は、複数個に分割可能な強磁性体コアを備えた、異相線間カプラーの装着方法であって、分割可能な強磁性体コアのコア孔部分に、第一の相の電力線と、第二の相の電力線とを挿入するステップと、分割可能な強磁性体コアを使用して、閉磁路を構成するステップとを含む。
【0035】
この方法によれば、既設の電力線を分電盤の取り付け端子から外したり、電力線の導体に接続したり、別個の配線をしたりする必要がないから、取り付け作業はきわめて簡単で、その安全性もきわめて高い。
【0036】
請求項12記載の異相線間カプラーの装着方法は、複数個に分割された強磁性体ブロックに、第一の相の電力線と、第二の相の電力線とを挿入するステップと、複数個に分割された強磁性体ブロックをもって、第一の相の電力線と第二の相の電力線との並行部分の一部を覆い、閉磁路を構成するステップとを含む。
【0037】
この方法によれば、請求項11と全く同様の効果が期待できる。
【0038】
請求項13記載の異相線間のカップリング方法は、第一の相の電力線と、中性線と、第二の相の電力線とを備える単相三線式電力線を用いて行う異相線間電力線通信における、異相線間のカップリング方法であって、第一の相の電力線と第二の相の電力線のいずれの導体とも非接触でありながら、第一の相の電力線と第二の相の電力線とを、商用電源周波数において遮断し、かつ、電力線通信を行う高周波域において電気的に結合する結合ステップを含む。
【0039】
この方法によれば、電力線の導体とは非接触であり、かつ、異相線間を高周波的に接続して、異相線間で電力線通信の信号を可能とする、異相線間のカップリング方法を提供できる。
【0040】
請求項14記載の異相線間のカップリング方法は、結合ステップは、一次コイルと二次コイルとを有する第一の高周波信号伝達トランスにおいて、第一の相の電力線を一次コイルとし、一次コイルと二次コイルとを有する第二の高周波信号伝達トランスにおいて、第二の相の電力線を一次コイルとし、第一の高周波信号伝達トランスの二次コイルと、第二の高周波信号伝達トランスの二次コイルとが、直列に接続され、第一の相の電力線と第二の相の電力線とを、第一の高周波信号伝達トランスと第二の高周波信号伝達トランスとを介して、電力線通信を行う高周波域において、電気的に結合するステップを含む。
【0041】
この方法によれば、電磁誘導作用を利用した高周波信号伝達トランスにより、異相線間を高周波的に結合して、電力線通信の信号を可能とする、異相線間のカップリング方法を提供できる。
【0042】
請求項15記載の異相線間のカップリング方法は、結合ステップは、第一の高周波信号伝達トランスにおいて、第一の高周波信号伝達トランスの一次コイルである第一の相の電力線に、第一の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回し、第二の高周波信号伝達トランスにおいて、第二の高周波信号伝達トランスの一次コイルである第二の相の電力線に、第二の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回し、第一の高周波信号伝達トランスの二次コイルと、第二の高周波信号伝達トランスの二次コイルとを、直列に接続し、第一の相の電力線と第二の相の電力線とを、第一の高周波信号伝達トランスと第二の高周波信号伝達トランスとを介して、電力線通信を行う高周波域において、電気的に結合するステップを含む。
【0043】
この方法によれば、強磁性体コアが不要で、より廉価な異相線間カプラーを使用した、異相線間のカップリング方法を提供できる。
【0044】
請求項16記載の異相線間のカップリング方法は、結合ステップは、第一の相の電力線を一次コイルとし、第二の相の電力線を二次コイルとする、高周波信号伝達トランスを使用し、第一の相の電力線と第二の相の電力線とを、高周波信号伝達トランスを介して、電力線通信を行う高周波域において、電気的に結合するステップを含む。
【0045】
この方法によれば、第一の相の電力線と第二の相の電力線を、一つの高周波信号伝達トランスで直接結合して、結合効率の高い異相線間カプラーを実現できる。また、簡単かつ経済的な異相線間カプラーを実現できる。
【0046】
請求項17記載の異相線間のカップリング方法は、結合ステップは、強磁性体ブロックを使用して、第一の相の電力線と第二の相の電力線との並行部分の一部を覆い、第一の相の電力線と第二の相の電力線とを高周波的に接続するステップを含む。
【0047】
この方法によれば、簡便にして、第一の相の電力線と第二の相の電力線を高周波的に結合できる。
【0048】
【発明の実施の形態】
次に、図面を参照しながら、本発明の実施の形態を説明する。
【0049】
(第1の実施の形態)
【0050】
図1は、本発明の第1の実施の形態における異相線間カプラーの配線図である。
【0051】
図1に示すように、本形態における異相線間カプラー12は、第一の高周波信号伝達トランス13と、第二の高周波信号伝達トランス14を備え、第一の高周波信号伝達トランス13の一次コイルは、第一の相の電力線Uに接続され、第二の高周波信号伝達トランス14の一次コイルは、第二の相の電力線Wに接続されている。さらに、第一の高周波信号伝達トランス13の二次コイルは、第二の高周波信号伝達トランス14の二次コイルと直列に接続されている。中性線Nは、異相線間カプラー12とは、接続されていない。
【0052】
本形態における異相線間カプラー12の動作を以下に説明する。
【0053】
第一の相の電力線Uと中性線Nとからなる第一の配電系統に接続された、モデム15から送出される信号により、第一の高周波信号伝達トランス13の一次コイルに信号電流が流れる。その電流により、第一の高周波信号伝達トランス13の二次コイルに二次電流が誘起される。この誘起された二次電流は、第一の高周波信号伝達トランス13の二次コイルに直列に接続された、第二の高周波信号伝達トランス14の二次コイルに流れ、第二の高周波信号伝達トランス14の一次コイルに更なる電流を誘起する。第二の高周波信号伝達トランス14の一次コイルに誘起された電流は、第二の相の電力線Wと中性線Nとからなる第二の配電系統に接続された、モデム16に信号として検出される。
【0054】
同様に、モデム16から送出される信号は、相反の理により、第二の高周波信号伝達トランス14の一次コイルから、第二の高周波信号伝達トランス14の二次コイルと、第一の高周波信号伝達トランス13の二次コイルと、第一の高周波信号伝達トランス13の一次コイルとを、順次経由して、モデム15に検出される。
【0055】
このようにして、異相線に接続された、モデム15とモデム16の間の電力線通信が、本形態における異相線間カプラー12を介して、可能となる。
【0056】
本形態における異相線間カプラー12においては、第一の高周波信号伝達トランス13と第二の高周波信号伝達トランス14は、それぞれの一次コイルと二次コイルの電磁結合が、商用周波数を含む低周波域においては、きわめて低く、電力通信に使用する高周波域においては、十分に高くなるようにすると良い。
【0057】
したがって、第一の高周波信号伝達トランス13と第二の高周波信号伝達トランス14は、それぞれ、空芯トランスであっても、強磁性体コアを持つ有芯トランスであっても良い。空芯トランスは、当該の異相線間電力線通信に使用する周波数域において、トランスの結合係数が必要な程度に得られる場合に採用され、廉価な異相線間カプラーが実現できる。より高いトランスの結合係数が必要とされる場合には、強磁性体コアを持つ有芯トランスを採用する。この場合には、高効率の異相線間カプラーが実現できる。
【0058】
また、第一の高周波信号伝達トランス13と第二の高周波信号伝達トランス14は、それぞれ、一次コイルと二次コイルの巻線数比がm対n(mとnは自然数)であることが、可逆性が成立する観点から好ましいが、必ずしも、この巻線比の関係である必要はない。
【0059】
(第2の実施の形態)
【0060】
図2は、本発明の第2の実施の形態における異相線間カプラーの配線図である。なお、図2において、柱上トランスの部分は省略している。また、図2において、図1と同様の構成要素については、同一の符号を付すことにより、説明を省略する。
【0061】
図2に示す、本形態の異相線間カプラー12は、第一の相の電力線Uに、その被覆層を介して、二次コイルを螺旋状に巻回した、第一の高周波信号伝達トランス21と、第二の相の電力線Wに、その被覆層を介して、一次コイルを螺旋状に巻回した、第二の高周波信号伝達トランス22とを備え、第一の高周波信号伝達トランス21の二次コイルと第二の高周波信号伝達トランス22の二次コイルは、直列に接続される。
【0062】
図2に示す、本形態の異相線間カプラー12は、図1に示した、第1の実施の形態における異相線間カプラーを進化させ、単純化したものである。即ち、本形態の異相線間カプラー12においては、第一の高周波信号伝達トランス21と第二の高周波信号伝達トランス22は、それぞれ、空芯トランスであり、さらに、第一の高周波信号伝達トランス21の一次コイルと、第二の高周波信号伝達トランス22の一次コイルは、巻線数が1ターンである。また、第一の高周波信号伝達トランス21の二次コイルと、第二の高周波信号伝達トランス22の二次コイルの巻数は、電力通信に使用する高波数において、十分な信号が得られる値に選定される。
【0063】
したがって、図2において、モデム15とモデム16の間の異相線間電力通信の動作は、図1に示したモデム15とモデム16の間の異相線間電力通信の動作と、同様であり、その効果も同様である。
【0064】
本形態の異相線間カプラー12において、第一の高周波信号伝達トランス21の二次コイルと、第二の高周波信号伝達トランス22の二次コイルは、それぞれ、第一の相の電力線Uと第二の相の電力線Wに、直接巻回するため、コンパクトに実装できる。
【0065】
(第3の実施の形態)
【0066】
図3は、本発明の第3の実施の形態における異相線間カプラーの配線図である。なお、図3において、柱上トランスの部分は省略している。また、図3において、図1と同様の構成要素については、同一の符号を付すことにより、説明を省略する。
【0067】
図3に示す、本形態の異相線間カプラー12は、図1に示した、第1の実施の形態における異相線間カプラーにおける、二つの高周波信号伝達トランスを一体化し、中間のコイルを省略した構造である。即ち、本形態の異相線間カプラー12は、強磁性体コアからなる高周波信号伝達トランス31と、それに巻回したコイル32とコイル33を備え、コイル32は、第一の相の電力線Uに接続され、コイル33は、第二の相の電力線Wに接続される。さらに、コイル32とコイル33は互いに逆向きに巻回され、好ましくは、同じ巻数を持つ。
【0068】
本形態における異相線間カプラー12の動作を以下に説明する。
【0069】
第一の相の電力線Uと中性線Nとからなる第一の配電系統に接続された、モデム15から送出された信号により、高周波信号伝達トランス31のコイル32に信号電流が流れ、その電流により、高周波信号伝達トランス31のコア中に磁束が誘起される。この磁束はコアを周回し、コイル33と鎖交し、コイル33を流れる電流を誘起する。この誘起された電流は、第二の相の電力線Wと中性線Nとからなる第二の配電系統に接続された、モデム16に信号として検出される。
【0070】
同様に、モデム16から送出される信号は、相反の理により、コイル33から、高周波信号伝達トランス31のコアと、コイル32とを、順次介して、モデム15に検出される。
【0071】
コイル32とコイル33は互いに逆向きに巻回されているため、第一の相の電力線Uを流れる商用電流と、第二の相の電力線Wを流れる商用電流とは、高周波信号伝達トランス31のコア中に、逆向きのわずかな磁束を誘起し、互いに打ち消しあう。
【0072】
本形態における異相線間カプラー12は、小型軽量に構成でき、実装も簡単である。
【0073】
図3に示した異相線間カプラー31は、有芯トランスを使用しているが、当該周波数において、必要なトランスの結合係数が得られる場合には、空芯のトランスを使用しても良い。その場合には、コイル32とコイル33は、空芯のボビンなどに、隣接して、あるいは、重ねて、巻回される。
【0074】
(第4の実施の形態)
【0075】
図4は、本発明の第4の実施の形態における異相線間カプラーの構造図を示す。
【0076】
図4に示すように、本形態の異相線間カプラーは、上部強磁性体コア41aと上部強磁性体コア41bとを備え、上下の両強磁性体コアによって形成される中孔42を、第一の相の電力線Uと第二の相の電力線Wとが貫通する。中性線Nは、上部強磁性体コア41aの外部を通る。
【0077】
図3に示した第3の実施の形態の異相線間カプラー12では、コイル32とコイル33は、巻数が3ターンである例を示したが、図4に示す第4の実施の形態では、これらのコイルの巻数は、1ターンである。
【0078】
本形態の異相線間カプラーの動作は、第3の実施の形態の異相線間カプラー12と同様である。
【0079】
本形態の異相線間カプラーは、図4に示すように、単純な構造で小型軽量に作成でき、実装も至って簡単となる。
【0080】
本形態の異相線間カプラーは、図4に示すように、上部強磁性体コア41aと下部強磁性体コア41bの2部に分割されている。本異相線間カプラーを分電盤内部に装着するには、分電盤内部の主幹ブレーカ92の下流側において、中性線Nを下方に押し、第一の相の電力線Uと第二の相の電力線Wとをわずか上方に引き上げて、それらを下部強磁性体コア41bの半孔部分42に差し込み、上部強磁性体コア41aを蓋をするように上部から被せる。上部強磁性体コア41aと下部強磁性体コア41bとを固定するには、両コアの対向する接触面に接着剤を流し込んだ後に固着しても良く、両コアをそれらの外部からバンド状のもので留めても良く、または、別途設けた筐体を用いて固定しても良い。
【0081】
また、強磁性体コアは図4に例示した分割方法以外の方法で、装着に便利なように分割してよい。
【0082】
本形態の異相線間カプラーは、その装着において、いずれの電力線も切断、あるいは、主幹ブレーカ92などの端子から脱着する必要はなく、作業の安全性が高い。
【0083】
(第5の実施の形態)
【0084】
本発明者らは、第2から第4の実施の形態の異相線間カプラーにおける、異相線間電力線通信の信号伝達の原理を熟考した結果、異相線間電力線通信の信号を伝達するには、第一の相の電力線Uにより、強磁性体コア中に誘起される磁束が、部分的にでも、第二の相の電力線Wと鎖交すれば十分であるとの新たな知見を得て、以下に述べる、第5の実施の形態を考案するに至った。
【0085】
図5は、本発明の第5の実施の形態における異相線間カプラーの構造図である。
【0086】
本形態の異相線間カプラーは、図5に示すように、第一の相の電力線Uと第二の相の電力線Wとを磁束を介して高周波的に結合する、結合部52と、上蓋部51aと、上蓋部51bとを備える。結合部52の中央部は、中性線Nを通すために、凹部54が設けられている。結合部52と上蓋部51aとは、それらによって形成される孔53aの内部に、第一の相の電力線Uを通し、ある長さに亘って覆う。結合部52と上蓋部51bとは、それらによって形成される孔53bの内部に、第二の相の電力線Wを通し、ある長さに亘って覆う。
【0087】
結合部52と、上蓋部51aと、上蓋部51bとは、フェライトなどの強磁性体ブロックである。
【0088】
第一の相の電力線Uに一端を接続するモデムからの信号電流は、第一の相の電力線Uを流れ、結合部52と上蓋部51aの内部に、第一の相の電力線Uを周回する誘導磁束を発生する。この誘導磁束の一部は、結合部52を通って、第二の相の電力線Wと鎖交し、第二の相の電力線Wに誘導電流を誘起する。この誘導電流は、第二の相の電力線Wに一端を接続するモデムによって検出される。このように、本形態の異相線間カプラーを用いて、異相線間電力線通信が実現される。
【0089】
本形態の異相線間カプラーは、図5に示すように、結合部52と、上蓋部51aと、上蓋部51bとの、合計3つの部分に分割されている。この異相線間カプラーを分電盤内部に装着するには、分電盤内部の主幹ブレーカ92の下流側において、いずれの電力線もほとんど移動させることなく、第一の相の電力線Uと第二の相の電力線Wとを結合部52の半孔部分53a、53bに押し込み、上蓋部51aと上蓋部51bとを蓋をするように上部から被せる。中性線Nは、結合部52の凹部54を通り、本異相線間カプラーの外部にある。
【0090】
結合部52と、上蓋部51aと、上蓋部51bとを固定するには、それぞれの部材の対向する接触面に接着剤を流し込んだ後に固着しても良く、それぞれの部材をそれらの外部からバンド状のもので留めても良く、または、別途設けた筐体を用いて固定しても良い。
【0091】
図6(a)は、図5を用いて説明した、本発明の第5の実施の形態における異相線間カプラー断面図であり、分割の状態を示している。
【0092】
図6(b)は、本発明の第5の実施の形態における異相線間カプラーの変形断面図であり、異なる分割例を示す。
【0093】
図6(b)に示す分割例では、本形態の異相線間カプラーは、左側蓋部61a、結合部61b、右側蓋部61cとに分割されている。結合部61bの中央部は、中性線Nを通すために、凹部63が設けられている。結合部61bと左側蓋部61aとは、それらによって形成される孔62aの内部に、第一の相の電力線Uを通し、ある長さに亘って覆う。結合部61bと右側蓋部61cとは、それらによって形成される孔62bの内部に、第二の相の電力線Wを通し、ある長さに亘って覆う。中性線Nは、結合部61bの凹部63を通る。
【0094】
図6(b)に示す分割例での異相線間カプラーの動作は、図6(a)に示した分割例のそれと、実質的に変わらない。
【0095】
図6(a)と図6(b)の分割方法は、装着しやすいものを選択すればよいし、さらに別の分割方法を採用しても良い。
【0096】
(第6の実施の形態)
【0097】
図7は、本発明の第6の実施の形態における異相線間カプラーの構造図である。
【0098】
図7に示す、本形態の異相線間カプラーは、分電盤内部での異相線間カプラー装着において、電力線が、通常、多少とも、移動可能なたるみを有している点に着目し、第5の実施の形態をさらに進化させたものである。即ち、より単純な構造で、より高効率の異相線間カプラーである。
【0099】
図7に示すように、本形態の異相線間カプラーは、上部結合部71aと下部結合部71bを備え、上部結合部71aと下部結合部71bとは、第一の相の電力線Uと第二の相の電力線Wとを通すための孔72aと孔72bを有す。
【0100】
実装後では、第一の相の電力線Uと第二の相の電力線Wとは、上部結合部71aと下部結合部71bとによって、ある長さに亘って覆われ、中性線Nは、下部結合部71bの外部を通る。
【0101】
上部結合部71aと下部結合部71bとは、フェライトなどの強磁性体ブロックである。
【0102】
図7に示す本形態の異相線間カプラーの動作は、図5に示した第5の実施の形態のそれと本質的に同じである。しかし、本形態の異相線間カプラーは、第5の実施の形態に比較して、結合部に凹部がなく、第一の相の電力線Uと第二の相の電力線Wとが、より近接して設置されているため、より高効率である。
【0103】
ちなみに、図7に示す本形態の異相線間カプラーにおいて、第一の相の電力線Uと第二の相の電力線Wとをさらに近接させ、両電力線の間の磁性体を除去すると、すでに述べた、図4に示す形態となる。
【0104】
図7に示す本形態の異相線間カプラーの装着方法は、図4に示した第4の実施の形態と類似であり、説明を省略する。
【0105】
図8(a)は、図7を用いて説明した、本発明の第6の実施の形態における異相線間カプラー断面図であり、分割の状態を示している。
【0106】
図8(b)は、本発明の第6の実施の形態における異相線間カプラーの変形断面図であり、異なる分割例を示す。
【0107】
図8(b)に示す分割例では、本形態の異相線間カプラーは、左側蓋部81a、結合部81b、右側蓋部81cとに分割されている。結合部81bと左側蓋部81aとは、それらによって形成される孔82aの内部に、第一の相の電力線Uを通し、ある長さに亘って覆う。結合部81bと右側蓋部81cとは、それらによって形成される孔82bの内部に、第二の相の電力線Wを通し、ある長さに亘って覆う。中性線Nは、結合部81bの外部を通る。
【0108】
図8(b)に示す分割例の異相線間カプラーの動作は、図8(a)に示した分割例のそれと、実質的に変わりない。
【0109】
図8(a)と図8(b)の分割方法は、装着しやすいものを選択すればよいし、さらに別の分割方法を採用しても良い。
【0110】
【発明の効果】
本発明によれば、宅内単相三線式電力線の異相線間を、商用周波数では遮断して、高周波では接続する、異相線間カプラーを提供でき、単相三線式異相線間電力通信を実現出来る。本発明による異相線間カプラーは、その構造が簡単であり、また、簡便かつ安全に設置できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における異相線間カプラーの配線図
【図2】本発明の第2の実施の形態における異相線間カプラーの配線図
【図3】本発明の第3の実施の形態における異相線間カプラーの配線図
【図4】本発明の第4の実施の形態における異相線間カプラーの構造図
【図5】本発明の第5の実施の形態における異相線間カプラーの構造図
【図6】(a)本発明の第5の実施の形態における異相線間カプラー断面図
(b)本発明の第5の実施の形態における異相線間カプラーの変形断面図
【図7】本発明の第6の実施の形態における異相線間カプラーの構造図
【図8】(a)本発明の第6の実施の形態における異相線間カプラー断面図
(b)本発明の第6の実施の形態における異相線間カプラーの変形断面図
【図9】従来の宅内単相三線式電力線通信システムの配線図
【符号の説明】
U 第一の相の電力線
N 中性線
W 第二の相の電力線
10 柱上トランス
12 異相線間カプラー
13 第一の高周波信号伝達トランス
14 第二の高周波信号伝達トランス
15、16 モデム
21 第一の高周波信号伝達トランス
22 第二の高周波信号伝達トランス
31 高周波信号伝達トランス
41a 上部強磁性体コア
41b 下部強磁性体コア
51a、51b 上蓋部
52 結合部
71a 上部結合部
71b 下部結合部
91 柱上トランス
92 主幹ブレーカ
93、94、95 モデム
96 コンデンサー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power line communication using a power line installed in a house such as a general house, realizes a single-phase three-wire power line communication, and is simple and safe to install. Things.
[0002]
[Prior art]
In-home power line communication is a method in which a modem or the like is connected to an in-home electric outlet, and information communication within the home is performed using the power line laid in the home as a transmission path. The use of existing power lines and electrical outlets as they are, for example, has attracted attention in recent years because, for example, it is easy to construct a home network connecting computers and peripheral devices or home electric appliances and to realize home informationization.
[0003]
In the current system in Japan, the frequency band that can be used for power line communication is defined as 10 kHz to 450 kHz, and is used for low-speed data communication (about 9.6 kbps). However, studies are underway to newly add a frequency band of 2 MHz to 30 MHz to a frequency band usable for power line communication so that higher-speed data communication (several tens of Mbps) can be realized in the future.
[0004]
FIG. 9 is a wiring diagram of a conventional in-home single-phase three-wire power line communication system. The electric power of 100 V and 200 V is distributed from the pole transformer 91 to the house using three power lines, that is, the first-phase power line U, the neutral line N, and the second-phase power line W. In the home, the 100 V system passes through the main breaker 92 in the distribution board and passes through the first power distribution system having the power line U and the neutral line N as a pair, and the second power system having the power line W and the neutral line N as a pair. Power is distributed to the distribution system separately.
[0005]
Since the modem 93 and the modem 94 connected to the first power distribution system are in the same circuit, they can easily communicate with each other. That is, data transmitted from the modem 93 is input to the power line U and the neutral line N of the first phase as differential signals. This differential signal is easily and well received by the modem 94 in the same distribution system. This is power line communication in the same phase.
[0006]
However, the power line communication between the modem 93 or the modem 94 connected to the first power distribution system and the modem 95 connected to the second power distribution system is called out-of-phase power line communication, In this state, good communication cannot be performed.
[0007]
In the single-phase three-wire system, the neutral line N is common, but the first-phase power line U and the second-phase power line W are in different phases, and these are located in the pole transformer 91. , Just connected. Therefore, in the frequency band of several tens of kHz or more used for power line communication, the first power distribution system and the second power distribution system operate as independent circuits. That is, the differential signal input to the first power distribution system from the modem 93 or the modem 94 is significantly attenuated at the reception point of the modem 95 connected to the second power distribution system. Signal cannot be detected.
[0008]
Therefore, in the single-phase three-wire power communication, a special mechanism is required to realize communication between different-phase lines.
[0009]
To solve this, as shown in FIG. 9, a different-phase line coupler using a condenser 96 or a high-pass filter (not shown) is installed inside the main breaker 92 or in the vicinity thereof, and Has been proposed for connecting the two at high frequencies (see Patent Document 1).
[0010]
However, installing such a condenser or high-pass filter inside an existing distribution board requires high-voltage circuit work, which requires construction by a chief electrician or electrician, and does not have these qualifications. The general public is prohibited from making such attachments.
[0011]
[Patent Document 1] JP-A-2002-232332
[0012]
[Problems to be solved by the invention]
In the prior art, there is a problem that special construction is required to realize single-phase three-wire power communication between different-phase lines, and it cannot be easily implemented in ordinary homes.
[0013]
Therefore, an object of the present invention is to provide a different-phase line coupler capable of being easily and safely installed and realizing a single-phase three-wire type different-phase line power communication, and a related technology thereof.
[0014]
[Means for Solving the Problems]
The out-of-phase power line coupler according to claim 1 is used for out-of-phase power line communication using a single-phase three-wire power line including a first-phase power line, a neutral line, and a second-phase power line. A different-phase line coupler, wherein the first-phase power line and the second-phase power line are not in contact with any conductor of the first-phase power line and the second-phase power line, A coupling unit that cuts off at a commercial power supply frequency and is electrically connected in a high frequency range where power line communication is performed.
[0015]
According to this configuration, the out-of-phase line coupler is in non-contact with the conductor of the power line, and can connect the out-of-phase lines at a high frequency to transmit a power line communication signal between the out-of-phase lines.
[0016]
In the out-of-phase line coupler according to claim 2, the coupling unit includes a first high-frequency signal transmission transformer having a primary coil and a secondary coil, and a second high-frequency signal transmission similarly having a primary coil and a secondary coil. A first high-frequency signal transmission transformer, a first-phase power line as a primary coil, a second high-frequency signal transmission transformer, a second-phase power line as a primary coil, and a first high-frequency signal The secondary coil of the transmission transformer and the secondary coil of the second high-frequency signal transmission transformer are connected in series.
[0017]
According to this configuration, the high-frequency signal transmission transformer using the electromagnetic induction effect can couple the different-phase lines at a high frequency and transmit the signal of the power line communication.
[0018]
According to the third aspect of the present invention, the first high-frequency signal transmission transformer and the second high-frequency signal transmission transformer are air-core transformers.
[0019]
According to this configuration, a high-frequency signal transmission transformer can be realized without using a ferromagnetic core. Further, since the ferromagnetic core is not used, there is an advantage that the cutoff efficiency of the commercial frequency is high.
[0020]
In the out-of-phase line coupler according to the fourth aspect, each of the first high-frequency signal transmission transformer and the second high-frequency signal transmission transformer includes an integrated ferromagnetic core or a ferromagnetic core that can be divided into a plurality of ferromagnetic cores. , A cored transformer.
[0021]
According to this configuration, by using the ferromagnetic core, the transmission characteristics of the high-frequency signal transmission transformer can be improved, and a high-efficiency out-of-phase line coupler can be realized. Further, if a ferromagnetic core that can be divided into a plurality of pieces is used, installation is extremely simple, and workability can be reduced.
[0022]
In the out-of-phase line coupler according to claim 5, the first high-frequency signal transmission transformer is connected to a first-phase power line, which is a primary coil of the first high-frequency signal transmission transformer, by a secondary of the first high-frequency signal transmission transformer. A coil is spirally wound through a coating layer, and the second high-frequency signal transmission transformer is connected to a second-phase power line, which is a primary coil of the second high-frequency signal transmission transformer, by a second high-frequency signal transmission transformer. The secondary coil of the high-frequency signal transmission transformer is spirally wound through a coating layer.
[0023]
According to this configuration, a ferromagnetic core is not required, and a more inexpensive out-of-phase line coupler can be realized.
[0024]
In the out-of-phase line coupler according to claim 6, the first high-frequency signal transmission transformer and the second high-frequency signal transmission transformer each have a primary-to-secondary coil winding ratio of m to n (m and n). Is a natural number).
[0025]
According to this configuration, the transfer characteristics between the first power distribution system and the second power distribution system are reversible, and the inter-phase power line communication with uniform communication quality can be performed.
[0026]
8. The coupler according to claim 7, wherein the coupling unit includes a high-frequency signal transmission transformer, wherein the first-phase power line is a primary coil, and the second-phase power line is a secondary coil. Is an air core transformer.
[0027]
According to this configuration, the power line of the first phase and the power line of the second phase are directly coupled by the air-core high-frequency signal transmission transformer, so that an out-of-phase line coupler can be easily realized. Also, since only one high-frequency signal transmission transformer is required and no secondary coil is required, a simple and economical out-of-phase line coupler can be realized.
[0028]
9. The coupler according to claim 8, wherein the coupling unit includes a high-frequency signal transmission transformer, wherein the first-phase power line is a primary coil, and the second-phase power line is a secondary coil. Is provided with an integrated ferromagnetic core or a ferromagnetic core that can be divided into a plurality.
[0029]
According to this configuration, the power line of the first phase and the power line of the second phase are directly coupled by a high-frequency signal transmission transformer having a ferromagnetic core as a core, thereby realizing a coupler having a high coupling efficiency between different phases. it can. Also, since only one high-frequency signal transmission transformer is required and no secondary coil is required, a simple and economical out-of-phase line coupler can be realized. Further, if a ferromagnetic core that can be divided into a plurality of parts is used, the installation becomes extremely simple and the workability is excellent.
[0030]
In the out-of-phase line coupler according to claim 9, the coupling portion covers a part of a parallel portion of the first phase power line and the second phase power line, and connects the first phase power line and the second phase power line. A ferromagnetic block that connects the power line with the power line at a high frequency is provided.The ferromagnetic block can be divided into a plurality of parts with a portion covering the power line of the first phase and the power line of the second phase as a boundary. .
[0031]
According to this configuration, the power line of the first phase and the power line of the second phase can be easily coupled at a high frequency. Further, since the ferromagnetic block can be divided into a plurality of blocks, the installation is extremely simple and the workability is excellent.
[0032]
The method of mounting a coupler between different phases according to claim 10, further comprising: a first ferromagnetic core that can be divided into a plurality of pieces; and a second ferromagnetic core that can be divided into a plurality of pieces. A method of mounting a coupler, wherein in a first high-frequency signal transmission transformer, a power line of a first phase is inserted into a core hole portion of a dividable first ferromagnetic core to form a primary coil. Inserting a secondary coil previously wound around a bobbin into a first ferromagnetic core that can be split, and configuring a closed magnetic circuit using the first ferromagnetic core that can be split. In the second high-frequency signal transmission transformer, a step of inserting a power line of a second phase into a core hole portion of a dividable second ferromagnetic core to form a primary coil, Split secondary coil that is wound Inserting a second ferromagnetic core and forming a closed magnetic circuit using the dividable second ferromagnetic core. Connecting the secondary coil and a secondary coil mounted on the second high-frequency signal transmission transformer in series.
[0033]
According to this method, it is not necessary to disconnect the existing power line from the mounting terminal of the distribution board, and it is not necessary to connect the power line to the conductor of the power line.
[0034]
12. The mounting method of a heterophase line coupler according to claim 11, wherein the ferromagnetic core includes a plurality of dividable ferromagnetic cores, the core hole portion of the divisible ferromagnetic core. Inserting a power line of the first phase and a power line of the second phase, and forming a closed magnetic circuit using a divisible ferromagnetic core.
[0035]
According to this method, there is no need to remove the existing power line from the mounting terminal of the distribution board, connect it to the conductor of the power line, or perform separate wiring, so the installation work is extremely simple and its safety is high. Is also very high.
[0036]
The method for mounting a coupler between different phases according to claim 12 includes a step of inserting a power line of the first phase and a power line of the second phase into the plurality of divided ferromagnetic blocks. Forming a closed magnetic circuit by covering a part of a parallel portion of the first phase power line and the second phase power line with the divided ferromagnetic block.
[0037]
According to this method, the same effect as that of the eleventh aspect can be expected.
[0038]
The method for coupling between different-phase lines according to claim 13, wherein the single-phase three-wire type power line including a first-phase power line, a neutral line, and a second-phase power line is used. In the method for coupling between different phase lines, wherein the first phase power line and the second phase power line are not in contact with any conductor of the first phase power line and the second phase power line. And a coupling step of cutting off at a commercial power supply frequency and electrically coupling in a high frequency range where power line communication is performed.
[0039]
According to this method, there is provided a coupling method between different-phase lines that is not in contact with the conductor of the power line and that connects the different-phase lines at a high frequency to enable power line communication signals between the different-phase lines. Can be provided.
[0040]
The coupling method according to claim 14, wherein the coupling step is such that, in the first high-frequency signal transmission transformer having a primary coil and a secondary coil, the power line of the first phase is a primary coil; In a second high-frequency signal transmission transformer having a secondary coil, the power line of the second phase is a primary coil, a secondary coil of the first high-frequency signal transmission transformer, and a secondary coil of the second high-frequency signal transmission transformer Are connected in series, and a first phase power line and a second phase power line, through a first high-frequency signal transmission transformer and a second high-frequency signal transmission transformer, a high-frequency range for power line communication And electrically coupling.
[0041]
According to this method, it is possible to provide a coupling method between out-of-phase lines in which out-of-phase lines are coupled at a high frequency by a high-frequency signal transmission transformer using an electromagnetic induction action, thereby enabling power line communication signals.
[0042]
The coupling method according to claim 15, wherein the coupling step includes, in the first high-frequency signal transmission transformer, a first phase power line that is a primary coil of the first high-frequency signal transmission transformer; The secondary coil of the high-frequency signal transmission transformer is spirally wound through the coating layer, and in the second high-frequency signal transmission transformer, the secondary coil is connected to the power line of the second phase, which is the primary coil of the second high-frequency signal transmission transformer. The secondary coil of the second high-frequency signal transmission transformer is spirally wound through the coating layer, and the secondary coil of the first high-frequency signal transmission transformer and the secondary coil of the second high-frequency signal transmission transformer Are connected in series, and a first-phase power line and a second-phase power line are connected to each other via a first high-frequency signal transmission transformer and a second high-frequency signal transmission transformer to perform high-frequency communication. smell , Comprising the step of electrically coupling.
[0043]
According to this method, it is possible to provide a coupling method between different-phase lines, which does not require a ferromagnetic core and uses a less expensive coupler between different-phase lines.
[0044]
The coupling method according to claim 16, wherein the coupling step uses a high-frequency signal transmission transformer, wherein the power line of the first phase is a primary coil and the power line of the second phase is a secondary coil, The method includes a step of electrically coupling the first-phase power line and the second-phase power line via a high-frequency signal transmission transformer in a high-frequency range where power line communication is performed.
[0045]
According to this method, the power line of the first phase and the power line of the second phase are directly coupled by one high-frequency signal transmission transformer, so that a heterophase line coupler having high coupling efficiency can be realized. Further, a simple and economical out-of-phase line coupler can be realized.
[0046]
The coupling method according to claim 17, wherein the coupling step covers a part of a parallel portion between the first phase power line and the second phase power line using a ferromagnetic block, Connecting the first phase power line and the second phase power line at a high frequency.
[0047]
According to this method, the power line of the first phase and the power line of the second phase can be simply coupled at a high frequency.
[0048]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0049]
(First Embodiment)
[0050]
FIG. 1 is a wiring diagram of the out-of-phase line coupler according to the first embodiment of the present invention.
[0051]
As shown in FIG. 1, the out-of-phase line coupler 12 in the present embodiment includes a first high-frequency signal transmission transformer 13 and a second high-frequency signal transmission transformer 14, and the primary coil of the first high-frequency signal transmission transformer 13 is , The primary coil of the second high-frequency signal transmission transformer 14 is connected to the power line W of the second phase. Further, the secondary coil of the first high-frequency signal transmission transformer 13 is connected in series with the secondary coil of the second high-frequency signal transmission transformer 14. The neutral line N is not connected to the out-of-phase line coupler 12.
[0052]
The operation of the out-of-phase line coupler 12 in this embodiment will be described below.
[0053]
A signal current flows through the primary coil of the first high-frequency signal transmission transformer 13 by a signal transmitted from the modem 15 connected to the first power distribution system including the first phase power line U and the neutral line N. . The current induces a secondary current in the secondary coil of the first high-frequency signal transmission transformer 13. The induced secondary current flows through the secondary coil of the second high-frequency signal transmission transformer 14 connected in series to the secondary coil of the first high-frequency signal transmission transformer 13, and Induce additional current in the 14 primary coils. The current induced in the primary coil of the second high-frequency signal transmission transformer 14 is detected as a signal by the modem 16 connected to the second power distribution system including the power line W and the neutral line N of the second phase. You.
[0054]
Similarly, the signal transmitted from the modem 16 is transmitted from the primary coil of the second high-frequency signal transmission transformer 14 to the secondary coil of the second high-frequency signal transmission transformer 14 by the reciprocity. Detected by the modem 15 via the secondary coil of the transformer 13 and the primary coil of the first high-frequency signal transmission transformer 13 sequentially.
[0055]
In this way, power line communication between the modem 15 and the modem 16 connected to the out-of-phase line becomes possible via the out-of-phase line coupler 12 in the present embodiment.
[0056]
In the out-of-phase line coupler 12 according to the present embodiment, the first high-frequency signal transmission transformer 13 and the second high-frequency signal transmission transformer 14 are configured such that the electromagnetic coupling between the primary coil and the secondary coil is performed in a low frequency band including a commercial frequency. Is very low, and should be sufficiently high in the high frequency range used for power communication.
[0057]
Therefore, each of the first high-frequency signal transmission transformer 13 and the second high-frequency signal transmission transformer 14 may be an air-core transformer or a cored transformer having a ferromagnetic core. The air-core transformer is adopted when the coupling coefficient of the transformer can be obtained to a necessary degree in the frequency range used for the out-of-phase power line communication, and an inexpensive out-of-phase line coupler can be realized. If a higher transformer coupling coefficient is required, a cored transformer with a ferromagnetic core is employed. In this case, a highly efficient out-of-phase line coupler can be realized.
[0058]
Further, the first high-frequency signal transmission transformer 13 and the second high-frequency signal transmission transformer 14 each have a winding ratio between the primary coil and the secondary coil of m to n (m and n are natural numbers). It is preferable from the viewpoint that reversibility is established, but it is not always necessary to satisfy the relationship of the turns ratio.
[0059]
(Second embodiment)
[0060]
FIG. 2 is a wiring diagram of the out-of-phase line coupler according to the second embodiment of the present invention. In FIG. 2, the pole transformer is omitted. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
[0061]
The out-of-phase line coupler 12 of the present embodiment shown in FIG. 2 includes a first high-frequency signal transmission transformer 21 in which a secondary coil is spirally wound around a first-phase power line U via a coating layer. And a second high-frequency signal transmission transformer 22 in which a primary coil is spirally wound around the power line W of the second phase via the coating layer. The secondary coil and the secondary coil of the second high-frequency signal transmission transformer 22 are connected in series.
[0062]
The out-of-phase line coupler 12 of the present embodiment shown in FIG. 2 is obtained by evolving and simplifying the out-of-phase line coupler of the first embodiment shown in FIG. That is, in the out-of-phase line coupler 12 of the present embodiment, the first high-frequency signal transmission transformer 21 and the second high-frequency signal transmission transformer 22 are air-core transformers, respectively. The primary coil and the primary coil of the second high-frequency signal transmission transformer 22 have one turn. In addition, the number of turns of the secondary coil of the first high-frequency signal transmission transformer 21 and the number of turns of the secondary coil of the second high-frequency signal transmission transformer 22 are selected so that a sufficient signal can be obtained at the high wave number used for power communication. Is done.
[0063]
Therefore, in FIG. 2, the operation of the out-of-phase line power communication between the modem 15 and the modem 16 is the same as the operation of the out-of-phase line power communication between the modem 15 and the modem 16 shown in FIG. The effect is the same.
[0064]
In the out-of-phase line coupler 12 of this embodiment, the secondary coil of the first high-frequency signal transmission transformer 21 and the secondary coil of the second high-frequency signal transmission transformer 22 are respectively connected to the power line U of the first phase and the second coil. Since it is directly wound around the power line W of the phase, it can be compactly mounted.
[0065]
(Third embodiment)
[0066]
FIG. 3 is a wiring diagram of the out-of-phase line coupler according to the third embodiment of the present invention. In FIG. 3, the pole transformer is omitted. Also, in FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0067]
The out-of-phase line coupler 12 of the present embodiment shown in FIG. 3 integrates two high-frequency signal transmission transformers in the out-of-phase line coupler of the first embodiment shown in FIG. 1 and omits an intermediate coil. Structure. That is, the out-of-phase line coupler 12 of this embodiment includes a high-frequency signal transmission transformer 31 composed of a ferromagnetic core, a coil 32 and a coil 33 wound around the transformer, and the coil 32 is connected to the power line U of the first phase. Then, the coil 33 is connected to the power line W of the second phase. Further, coil 32 and coil 33 are wound in opposite directions, and preferably have the same number of turns.
[0068]
The operation of the out-of-phase line coupler 12 in this embodiment will be described below.
[0069]
A signal transmitted from the modem 15 connected to the first power distribution system including the first phase power line U and the neutral line N causes a signal current to flow through the coil 32 of the high-frequency signal transmission transformer 31, Thereby, a magnetic flux is induced in the core of the high-frequency signal transmission transformer 31. This magnetic flux goes around the core, links with the coil 33, and induces a current flowing through the coil 33. The induced current is detected as a signal by the modem 16 connected to the second power distribution system including the second-phase power line W and the neutral line N.
[0070]
Similarly, the signal transmitted from the modem 16 is detected by the modem 15 from the coil 33 via the core of the high-frequency signal transmission transformer 31 and the coil 32 in order, based on the reciprocity.
[0071]
Since the coil 32 and the coil 33 are wound in opposite directions, the commercial current flowing through the first phase power line U and the commercial current flowing through the second phase power line W Induces a small amount of magnetic flux in the core in the opposite direction and cancels each other.
[0072]
The out-of-phase line coupler 12 in this embodiment can be configured to be small and lightweight, and is easy to mount.
[0073]
Although the out-of-phase line coupler 31 shown in FIG. 3 uses a cored transformer, an air-core transformer may be used if a required transformer coupling coefficient can be obtained at the frequency. In that case, the coil 32 and the coil 33 are wound adjacent to or over an air-core bobbin or the like.
[0074]
(Fourth embodiment)
[0075]
FIG. 4 shows a structural diagram of the out-of-phase line coupler according to the fourth embodiment of the present invention.
[0076]
As shown in FIG. 4, the out-of-phase line coupler of the present embodiment includes an upper ferromagnetic core 41a and an upper ferromagnetic core 41b, and a hole 42 formed by the upper and lower ferromagnetic cores is formed by a fourth hole. The power line U of one phase and the power line W of the second phase pass through. The neutral line N passes outside the upper ferromagnetic core 41a.
[0077]
In the out-of-phase line coupler 12 of the third embodiment shown in FIG. 3, an example in which the number of turns of the coil 32 and the coil 33 is three is shown. However, in the fourth embodiment shown in FIG. The number of turns of these coils is one turn.
[0078]
The operation of the out-of-phase line coupler of this embodiment is the same as that of the out-of-phase line coupler 12 of the third embodiment.
[0079]
As shown in FIG. 4, the out-of-phase line coupler of the present embodiment can be made small and lightweight with a simple structure, and its mounting is very simple.
[0080]
As shown in FIG. 4, the heterophase line coupler of this embodiment is divided into two parts, an upper ferromagnetic core 41a and a lower ferromagnetic core 41b. In order to mount the out-of-phase line coupler inside the distribution board, the neutral line N is pushed downward on the downstream side of the main breaker 92 inside the distribution board, so that the power line U of the first phase and the second phase Are pulled slightly upward, and they are inserted into the half-hole portion 42 of the lower ferromagnetic core 41b, and the upper ferromagnetic core 41a is covered from above so as to cover the upper ferromagnetic core 41a. In order to fix the upper ferromagnetic core 41a and the lower ferromagnetic core 41b, the cores may be fixed after pouring an adhesive into the opposing contact surfaces of the two cores. It may be fixed by using a device, or may be fixed by using a separately provided housing.
[0081]
Further, the ferromagnetic core may be divided by a method other than the dividing method illustrated in FIG. 4 so as to be convenient for mounting.
[0082]
The out-of-phase line coupler of the present embodiment does not require any power line to be disconnected or detached from a terminal such as the main breaker 92 when the coupler is mounted, and the work safety is high.
[0083]
(Fifth embodiment)
[0084]
The present inventors have considered the signal transmission principle of the out-of-phase power line communication in the out-of-phase line couplers of the second to fourth embodiments. As a result, to transmit the signal of the out-of-phase power line communication, With the new knowledge that it is sufficient that the magnetic flux induced in the ferromagnetic core by the first phase power line U is at least partially linked to the second phase power line W, The fifth embodiment described below has been devised.
[0085]
FIG. 5 is a structural diagram of the out-of-phase line coupler according to the fifth embodiment of the present invention.
[0086]
As shown in FIG. 5, the out-of-phase line coupler of the present embodiment includes a coupling portion 52 that couples the first-phase power line U and the second-phase power line W at high frequency via magnetic flux, and a top cover portion. 51a and an upper lid 51b. A concave portion 54 is provided at the center of the coupling portion 52 for passing the neutral wire N. The coupling part 52 and the upper lid part 51a pass through the power line U of the first phase and cover a certain length inside the hole 53a formed by them. The coupling part 52 and the upper lid part 51b pass through the power line W of the second phase inside the hole 53b formed by them and cover over a certain length.
[0087]
The coupling portion 52, the upper lid 51a, and the upper lid 51b are ferromagnetic blocks such as ferrite.
[0088]
A signal current from a modem having one end connected to the first-phase power line U flows through the first-phase power line U, and goes around the first-phase power line U inside the coupling portion 52 and the upper cover 51a. Generates induced magnetic flux. A part of the induced magnetic flux passes through the coupling portion 52 and interlinks with the power line W of the second phase, and induces an induced current in the power line W of the second phase. This induced current is detected by a modem having one end connected to the power line W of the second phase. As described above, the out-of-phase power line communication is realized by using the out-of-phase line coupler of the present embodiment.
[0089]
As shown in FIG. 5, the out-of-phase line coupler of this embodiment is divided into a total of three portions: a coupling portion 52, an upper lid portion 51 a, and an upper lid portion 51 b. In order to mount the out-of-phase line coupler inside the distribution board, the first phase power line U and the second phase power line U are hardly moved on the downstream side of the main breaker 92 inside the distribution board. The phase power line W is pushed into the half-hole portions 53a and 53b of the connecting portion 52, and the upper lid 51a and the upper lid 51b are covered from above so as to cover. The neutral line N passes through the concave portion 54 of the connecting portion 52 and is outside the present interphase coupler.
[0090]
In order to fix the connecting portion 52, the upper lid portion 51a, and the upper lid portion 51b, the adhesive may be poured into the opposing contact surfaces of the respective members and then fixed, and the respective members may be banded from outside thereof. It may be fixed in a shape, or may be fixed using a separately provided housing.
[0091]
FIG. 6A is a cross-sectional view of the out-of-phase line coupler according to the fifth embodiment of the present invention, which has been described with reference to FIG. 5, and illustrates a split state.
[0092]
FIG. 6B is a modified cross-sectional view of the out-of-phase line coupler according to the fifth embodiment of the present invention, showing a different example of division.
[0093]
In the division example shown in FIG. 6B, the out-of-phase line coupler of the present embodiment is divided into a left lid 61a, a coupling part 61b, and a right lid 61c. A concave portion 63 is provided at a central portion of the coupling portion 61b to allow the neutral wire N to pass therethrough. The coupling portion 61b and the left lid portion 61a cover a certain length through the power line U of the first phase inside the hole 62a formed by them. The coupling portion 61b and the right lid portion 61c cover a certain length through the power line W of the second phase inside the hole 62b formed by them. The neutral line N passes through the concave portion 63 of the coupling portion 61b.
[0094]
The operation of the out-of-phase line coupler in the division example shown in FIG. 6B is substantially the same as that of the division example shown in FIG.
[0095]
6 (a) and 6 (b), it is sufficient to select an easy-to-wear one, or another dividing method may be adopted.
[0096]
(Sixth embodiment)
[0097]
FIG. 7 is a structural view of the out-of-phase line coupler according to the sixth embodiment of the present invention.
[0098]
The out-of-phase line coupler of this embodiment shown in FIG. 7 focuses on the fact that, when the out-of-phase line coupler is mounted inside the distribution board, the power line usually has at least some movable slack. This is a further evolution of the fifth embodiment. That is, it is a simpler structure and higher efficiency out-of-phase line coupler.
[0099]
As shown in FIG. 7, the out-of-phase line coupler of the present embodiment includes an upper coupling portion 71a and a lower coupling portion 71b, and the upper coupling portion 71a and the lower coupling portion 71b are connected to the power line U of the first phase and the second coupling portion 71b. Hole 72a and a hole 72b for passing the power line W of the second phase.
[0100]
After the mounting, the power line U of the first phase and the power line W of the second phase are covered over a certain length by the upper coupling portion 71a and the lower coupling portion 71b, and the neutral line N is It passes outside the coupling portion 71b.
[0101]
The upper coupling portion 71a and the lower coupling portion 71b are ferromagnetic blocks such as ferrite.
[0102]
The operation of the out-of-phase line coupler of this embodiment shown in FIG. 7 is essentially the same as that of the fifth embodiment shown in FIG. However, the out-of-phase line coupler of this embodiment has no concave portion in the coupling portion as compared with the fifth embodiment, and the power line U of the first phase and the power line W of the second phase are closer to each other. It is more efficient because it is installed in a location.
[0103]
By the way, in the out-of-phase line coupler of the present embodiment shown in FIG. 7, it has already been described that the power line U of the first phase and the power line W of the second phase are brought closer to each other and the magnetic material between both power lines is removed. , FIG.
[0104]
The mounting method of the out-of-phase line coupler of this embodiment shown in FIG. 7 is similar to that of the fourth embodiment shown in FIG. 4, and the description is omitted.
[0105]
FIG. 8A is a cross-sectional view of the out-of-phase line coupler according to the sixth embodiment of the present invention described with reference to FIG.
[0106]
FIG. 8B is a modified cross-sectional view of the out-of-phase line coupler according to the sixth embodiment of the present invention, showing a different example of division.
[0107]
In the division example shown in FIG. 8B, the out-of-phase line coupler of the present embodiment is divided into a left lid 81a, a coupling part 81b, and a right lid 81c. The coupling portion 81b and the left lid portion 81a cover the inside of the hole 82a formed by them through the power line U of the first phase and over a certain length. The coupling portion 81b and the right lid portion 81c cover the inside of the hole 82b formed by them through the power line W of the second phase over a certain length. Neutral wire N passes outside coupling portion 81b.
[0108]
The operation of the out-of-phase line coupler of the division example shown in FIG. 8B is substantially the same as that of the division example shown in FIG.
[0109]
8 (a) and 8 (b), a method which is easy to attach may be selected, or another dividing method may be adopted.
[0110]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a coupler between different phases of a home single-phase three-wire power line, which is cut off at a commercial frequency and connected at a high frequency, and a single-phase three-wire type different-phase power communication can be realized. . The out-of-phase line coupler according to the present invention has a simple structure and can be easily and safely installed.
[Brief description of the drawings]
FIG. 1 is a wiring diagram of an out-of-phase line coupler according to a first embodiment of the present invention.
FIG. 2 is a wiring diagram of an out-of-phase line coupler according to a second embodiment of the present invention.
FIG. 3 is a wiring diagram of an out-of-phase line coupler according to a third embodiment of the present invention.
FIG. 4 is a structural diagram of an out-of-phase line coupler according to a fourth embodiment of the present invention.
FIG. 5 is a structural diagram of a heterophase line coupler according to a fifth embodiment of the present invention.
FIG. 6A is a cross-sectional view of a coupler between different phases according to a fifth embodiment of the present invention.
(B) Modified cross-sectional view of the out-of-phase line coupler according to the fifth embodiment of the present invention.
FIG. 7 is a structural diagram of an out-of-phase line coupler according to a sixth embodiment of the present invention.
FIG. 8A is a cross-sectional view of a coupler between different phases according to a sixth embodiment of the present invention.
(B) Modified cross-sectional view of the out-of-phase line coupler according to the sixth embodiment of the present invention.
FIG. 9 is a wiring diagram of a conventional in-house single-phase three-wire power line communication system.
[Explanation of symbols]
U first phase power line
N neutral line
W second phase power line
10 pole transformer
12 Out-of-phase line coupler
13. First high-frequency signal transmission transformer
14 Second high-frequency signal transmission transformer
15, 16 modem
21. First high-frequency signal transmission transformer
22 Second high-frequency signal transmission transformer
31 High-frequency signal transmission transformer
41a Upper ferromagnetic core
41b Lower ferromagnetic core
51a, 51b Upper lid
52 Joint
71a upper joint
71b Lower joint
91 pole transformer
92 Master breaker
93, 94, 95 Modem
96 condenser

Claims (17)

第一の相の電力線と、中性線と、第二の相の電力線とを備える単相三線式電力線を用いて行う異相線間電力線通信に使用される、異相線間カプラーであって、
前記第一の相の電力線と前記第二の相の電力線のいずれの導体とも非接触でありながら、前記第一の相の電力線と前記第二の相の電力線とを、商用電源周波数において遮断し、かつ、電力線通信を行う高周波域において電気的に接続する結合部を備える、異相線間カプラー。
A first-phase power line, a neutral wire, and a different-phase inter-line coupler used for out-of-phase power line communication performed using a single-phase three-wire power line including a second-phase power line,
The first phase power line and the second phase power line are cut off at a commercial power frequency while being out of contact with any conductor of the first phase power line and the second phase power line. An out-of-phase line coupler comprising a coupling portion electrically connected in a high-frequency range for performing power line communication.
前記結合部は、
一次コイルと二次コイルとを有する第一の高周波信号伝達トランスと、同じく、一次コイルと二次コイルとを有する第二の高周波信号伝達トランスとを備え、
前記第一の高周波信号伝達トランスは、前記第一の相の電力線を一次コイルとし、
前記第二の高周波信号伝達トランスは、前記第二の相の電力線を一次コイルとし、
前記第一の高周波信号伝達トランスの二次コイルと、前記第二の高周波信号伝達トランスの二次コイルとが、直列に接続される、請求項1記載の異相線間カプラー。
The connecting portion is
A first high-frequency signal transmission transformer having a primary coil and a secondary coil, and, similarly, a second high-frequency signal transmission transformer having a primary coil and a secondary coil,
The first high-frequency signal transmission transformer, the power line of the first phase as a primary coil,
The second high-frequency signal transmission transformer uses the power line of the second phase as a primary coil,
The heterophase line coupler according to claim 1, wherein a secondary coil of the first high-frequency signal transmission transformer and a secondary coil of the second high-frequency signal transmission transformer are connected in series.
前記第一の高周波信号伝達トランスと前記第二の高周波信号伝達トランスは、空芯トランスである、請求項2記載の異相線間カプラー。The heterophase line-to-line coupler according to claim 2, wherein the first high-frequency signal transmission transformer and the second high-frequency signal transmission transformer are air-core transformers. 前記第一の高周波信号伝達トランスと前記第二の高周波信号伝達トランスは、それぞれ、一体型の強磁性体コアあるいは複数個に分割可能な強磁性体コアを備える、有芯トランスである、請求項2記載の異相線間カプラー。The said 1st high-frequency signal transmission transformer and said 2nd high-frequency signal transmission transformer are each a cored transformer provided with an integral type ferromagnetic core or a ferromagnetic core which can be divided into a plurality. 2. The heterophase line coupler according to 2. 前記第一の高周波信号伝達トランスは、
前記第一の高周波信号伝達トランスの一次コイルである前記第一の相の電力線に、前記第一の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回して構成され、
前記第二の高周波信号伝達トランスは、
前記第二の高周波信号伝達トランスの一次コイルである前記第二の相の電力線に、前記第二の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回して構成される、請求項2記載の異相線間カプラー。
The first high-frequency signal transmission transformer,
A secondary coil of the first high-frequency signal transmission transformer is spirally wound around a power line of the first phase, which is a primary coil of the first high-frequency signal transmission transformer, with a coating layer interposed therebetween. ,
The second high-frequency signal transmission transformer,
A secondary coil of the second high-frequency signal transmission transformer is spirally wound around a power line of the second phase, which is a primary coil of the second high-frequency signal transmission transformer, with a coating layer interposed therebetween. The heterophase line coupler according to claim 2, wherein
前記第一の高周波信号伝達トランスと前記第二の高周波信号伝達トランスとは、それぞれの一次コイルと二次コイルの巻線数比がm対n(mとnは自然数)である、請求項2から5記載の異相線間カプラー。3. The first high-frequency signal transmission transformer and the second high-frequency signal transmission transformer each have a primary-to-secondary coil winding ratio of m to n (m and n are natural numbers). 4. 6. The heterophasic interline coupler according to 5. 前記結合部は、
前記第一の相の電力線を一次コイルとし、前記第二の相の電力線を二次コイルとする、高周波信号伝達トランスを備え、
前記高周波信号伝達トランスは、空芯トランスである、請求項1記載の異相線間カプラー。
The connecting portion is
The power line of the first phase is a primary coil, the power line of the second phase is a secondary coil, comprising a high-frequency signal transmission transformer,
2. The coupler of claim 1, wherein the high-frequency signal transmission transformer is an air-core transformer.
前記結合部は、
前記第一の相の電力線を一次コイルとし、前記第二の相の電力線を二次コイルとする、高周波信号伝達トランスを備え、
前記高周波信号伝達トランスは、一体型の強磁性体コアあるいは複数個に分割可能な強磁性体コアを備える、請求項1記載の異相線間カプラー。
The connecting portion is
The power line of the first phase is a primary coil, the power line of the second phase is a secondary coil, comprising a high-frequency signal transmission transformer,
The heterophase line-to-line coupler according to claim 1, wherein the high-frequency signal transmission transformer includes an integrated ferromagnetic core or a ferromagnetic core that can be divided into a plurality of ferromagnetic cores.
前記結合部は、
前記第一の相の電力線と前記第二の相の電力線との並行部分の一部を覆い、前記第一の相の電力線と前記第二の相の電力線とを高周波的に接続する、強磁性体ブロックを備え、
前記強磁性体ブロックは、前記第一の相の電力線と前記第二の相の電力線とを覆う部分を境界として、複数個に分割可能である、請求項1記載の異相線間カプラー。
The connecting portion is
Ferromagnetic covering a part of a parallel portion of the power line of the first phase and the power line of the second phase, and connecting the power line of the first phase and the power line of the second phase in high frequency, ferromagnetic With body block,
2. The heterophase line coupler according to claim 1, wherein the ferromagnetic block can be divided into a plurality of portions with a portion covering the power line of the first phase and the power line of the second phase as a boundary.
複数個に分割可能な第一の強磁性体コアと、複数個に分割可能な第二の強磁性体コアとを備えた、請求項4記載の異相線間カプラーの装着方法であって、
前記第一の高周波信号伝達トランスにおいては、前記分割可能な第一の強磁性体コアのコア孔部分に、前記第一の相の電力線を挿入して一次コイルとするステップと、
あらかじめボビンに巻回してなる二次コイルを、前記分割可能な第一の強磁性体コアに挿入するステップと、
前記分割可能な第一の強磁性体コアを使用して、閉磁路を構成するステップとを含み、
前記第二の高周波信号伝達トランスにおいては、前記分割可能な第二の強磁性体コアのコア孔部分に、前記第二の相の電力線を挿入して一次コイルとするステップと、
あらかじめボビンに巻回してなる二次コイルを、前記分割可能な第二の強磁性体コアに挿入するステップと、
前記分割可能な第二の強磁性体コアを使用して、閉磁路を構成するステップとを含み、
前記第一の高周波信号伝達トランスに装着された前記二次コイルと、前記第二の高周波信号伝達トランスに装着された前記二次コイルとを直列に接続するステップとを含む、異相線間カプラーの装着方法。
A first ferromagnetic core that can be divided into a plurality of pieces, and a second ferromagnetic core that can be divided into a plurality of pieces, comprising the method for mounting a coupler between different phases according to claim 4,
In the first high-frequency signal transmission transformer, a power line of the first phase is inserted into a core hole portion of the dividable first ferromagnetic core to form a primary coil,
Inserting a secondary coil previously wound around a bobbin into the first ferromagnetic core that can be divided,
Configuring a closed magnetic circuit using the first splittable ferromagnetic core,
In the second high-frequency signal transmission transformer, inserting a power line of the second phase into a core hole of the dividable second ferromagnetic core to form a primary coil;
Inserting a secondary coil previously wound around a bobbin into the dividable second ferromagnetic core,
Configuring a closed magnetic circuit using the second ferromagnetic core that can be divided,
Connecting the secondary coil mounted on the first high-frequency signal transmission transformer and the secondary coil mounted on the second high-frequency signal transmission transformer in series, Mounting method.
複数個に分割可能な強磁性体コアを備えた、請求項8記載の異相線間カプラーの装着方法であって、
前記分割可能な強磁性体コアのコア孔部分に、前記第一の相の電力線と、前記第二の相の電力線とを挿入するステップと、
前記分割可能な強磁性体コアを使用して、閉磁路を構成するステップとを含む、異相線間カプラーの装着方法。
The method for mounting a heterophase line coupler according to claim 8, comprising a ferromagnetic core that can be divided into a plurality of parts.
Inserting the power line of the first phase and the power line of the second phase into the core hole portion of the dividable ferromagnetic core,
Forming a closed magnetic circuit using the splittable ferromagnetic core.
請求項9記載の異相線間カプラーの装着方法であって、
前記複数個に分割された強磁性体ブロックに、前記第一の相の電力線と、前記第二の相の電力線とを挿入するステップと、
前記複数個に分割された強磁性体ブロックをもって、前記第一の相の電力線と前記第二の相の電力線との並行部分の一部を覆い、閉磁路を構成するステップとを含む、異相線間カプラーの装着方法。
A method for installing a coupler between different phases according to claim 9,
Inserting the first-phase power line and the second-phase power line into the plurality of divided ferromagnetic blocks,
Forming a closed magnetic circuit by covering a part of a parallel portion of the power line of the first phase and the power line of the second phase with the plurality of divided ferromagnetic blocks. How to install the coupler in between.
第一の相の電力線と、中性線と、第二の相の電力線とを備える単相三線式電力線を用いて行う異相線間電力線通信における、異相線間のカップリング方法であって、
前記第一の相の電力線と前記第二の相の電力線のいずれの導体とも非接触でありながら、
前記第一の相の電力線と前記第二の相の電力線とを、商用電源周波数において遮断し、かつ、電力線通信を行う高周波域において電気的に結合する結合ステップを含む、異相線間のカップリング方法。
A first phase power line, a neutral line, in a different-phase power line communication performed using a single-phase three-wire power line including a second phase power line, a coupling method between different-phase lines,
While not in contact with any conductor of the first phase power line and the second phase power line,
Coupling between different-phase lines, including a coupling step of disconnecting the first-phase power line and the second-phase power line at a commercial power supply frequency and electrically coupling in a high-frequency range where power line communication is performed. Method.
前記結合ステップは、
一次コイルと二次コイルとを有する第一の高周波信号伝達トランスにおいて、前記第一の相の電力線を一次コイルとし、
一次コイルと二次コイルとを有する第二の高周波信号伝達トランスにおいて、前記第二の相の電力線を一次コイルとし、
前記第一の高周波信号伝達トランスの二次コイルと、前記第二の高周波信号伝達トランスの二次コイルとが、直列に接続され、
前記第一の相の電力線と前記第二の相の電力線とを、前記第一の高周波信号伝達トランスと前記第二の高周波信号伝達トランスとを介して、電力線通信を行う高周波域において、電気的に結合するステップを含む、請求項13記載の異相線間のカップリング方法。
The combining step includes:
In a first high-frequency signal transmission transformer having a primary coil and a secondary coil, the power line of the first phase is a primary coil,
In a second high-frequency signal transmission transformer having a primary coil and a secondary coil, the power line of the second phase is a primary coil,
A secondary coil of the first high-frequency signal transmission transformer and a secondary coil of the second high-frequency signal transmission transformer are connected in series,
The first-phase power line and the second-phase power line are electrically connected in a high-frequency range in which power line communication is performed via the first high-frequency signal transmission transformer and the second high-frequency signal transmission transformer. 14. The method for coupling between different phase lines according to claim 13, further comprising the step of coupling.
前記結合ステップは、
前記第一の高周波信号伝達トランスにおいて、
前記第一の高周波信号伝達トランスの一次コイルである前記第一の相の電力線に、前記第一の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回し、
前記第二の高周波信号伝達トランスにおいて、
前記第二の高周波信号伝達トランスの一次コイルである前記第二の相の電力線に、前記第二の高周波信号伝達トランスの二次コイルを、被覆層を介して、螺旋状に巻回し、
前記第一の高周波信号伝達トランスの二次コイルと、前記第二の高周波信号伝達トランスの二次コイルとを、直列に接続し、
前記第一の相の電力線と前記第二の相の電力線とを、前記第一の高周波信号伝達トランスと前記第二の高周波信号伝達トランスとを介して、電力線通信を行う高周波域において、電気的に結合するステップを含む、請求項14記載の異相線間のカップリング方法。
The combining step includes:
In the first high-frequency signal transmission transformer,
On the power line of the first phase, which is a primary coil of the first high-frequency signal transmission transformer, a secondary coil of the first high-frequency signal transmission transformer is spirally wound via a coating layer,
In the second high-frequency signal transmission transformer,
On the power line of the second phase, which is the primary coil of the second high-frequency signal transmission transformer, a secondary coil of the second high-frequency signal transmission transformer is spirally wound via a coating layer,
A secondary coil of the first high-frequency signal transmission transformer and a secondary coil of the second high-frequency signal transmission transformer are connected in series,
The first-phase power line and the second-phase power line are electrically connected in a high-frequency range in which power line communication is performed via the first high-frequency signal transmission transformer and the second high-frequency signal transmission transformer. The method for coupling between different phase lines according to claim 14, further comprising a step of coupling.
前記結合ステップは、
前記第一の相の電力線を一次コイルとし、前記第二の相の電力線を二次コイルとする、高周波信号伝達トランスを使用し、
前記第一の相の電力線と前記前記第二の相の電力線とを、前記高周波信号伝達トランスを介して、電力線通信を行う高周波域において、電気的に結合するステップを含む、請求項13記載の異相線間のカップリング方法。
The combining step includes:
Using a high-frequency signal transmission transformer, wherein the power line of the first phase is a primary coil and the power line of the second phase is a secondary coil,
The method according to claim 13, further comprising electrically coupling the power line of the first phase and the power line of the second phase via the high-frequency signal transmission transformer in a high-frequency range where power line communication is performed. Coupling method between different phases.
前記結合ステップは、
強磁性体ブロックを使用して、前記第一の相の電力線と前記第二の相の電力線との並行部分の一部を覆い、前記第一の相の電力線と前記第二の相の電力線とを高周波的に接続するステップを含む、請求項13記載の異相線間のカップリング方法。
The combining step includes:
Using a ferromagnetic block, a part of the parallel part of the power line of the first phase and the power line of the second phase is partially covered, and the power line of the first phase and the power line of the second phase are 14. The method for coupling between different-phase lines according to claim 13, further comprising the step of connecting at a high frequency.
JP2003084150A 2003-03-26 2003-03-26 Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines Pending JP2004297249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084150A JP2004297249A (en) 2003-03-26 2003-03-26 Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084150A JP2004297249A (en) 2003-03-26 2003-03-26 Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines

Publications (1)

Publication Number Publication Date
JP2004297249A true JP2004297249A (en) 2004-10-21

Family

ID=33399375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084150A Pending JP2004297249A (en) 2003-03-26 2003-03-26 Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines

Country Status (1)

Country Link
JP (1) JP2004297249A (en)

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095402A1 (en) * 2005-03-07 2006-09-14 Mitsubishi Denki Kabushiki Kaisha Signal bypass device
JP2009159302A (en) * 2007-12-26 2009-07-16 Preminet Inc Single-phase three-wire alternating power line plc signal gate device and distribution board and power meter having the same
JP2009239575A (en) * 2008-03-27 2009-10-15 Smk Corp Coupler between different phase lines, and coupling method
JP2010136108A (en) * 2008-12-04 2010-06-17 Smk Corp Coupler between different phase lines
US7764928B2 (en) 2006-01-19 2010-07-27 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
US7857230B2 (en) 2007-07-18 2010-12-28 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US7871008B2 (en) 2008-06-25 2011-01-18 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US7931206B2 (en) 2007-05-10 2011-04-26 Murata Manufacturing Co., Ltd. Wireless IC device
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US7997501B2 (en) 2007-07-17 2011-08-16 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8031124B2 (en) 2007-01-26 2011-10-04 Murata Manufacturing Co., Ltd. Container with electromagnetic coupling module
US8070070B2 (en) 2007-12-26 2011-12-06 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
US8081121B2 (en) 2006-10-27 2011-12-20 Murata Manufacturing Co., Ltd. Article having electromagnetic coupling module attached thereto
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8179329B2 (en) 2008-03-03 2012-05-15 Murata Manufacturing Co., Ltd. Composite antenna
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
CN102594410A (en) * 2012-03-07 2012-07-18 深圳市共进电子股份有限公司 Power line communication equipment based on smartlink technology and communication method thereof
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8264357B2 (en) 2007-06-27 2012-09-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8299968B2 (en) 2007-02-06 2012-10-30 Murata Manufacturing Co., Ltd. Packaging material with electromagnetic coupling module
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8360324B2 (en) 2007-04-09 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device
US8360325B2 (en) 2008-04-14 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8390459B2 (en) 2007-04-06 2013-03-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US8474725B2 (en) 2007-04-27 2013-07-02 Murata Manufacturing Co., Ltd. Wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8632014B2 (en) 2007-04-27 2014-01-21 Murata Manufacturing Co., Ltd. Wireless IC device
US8668151B2 (en) 2008-03-26 2014-03-11 Murata Manufacturing Co., Ltd. Wireless IC device
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
KR101501292B1 (en) * 2009-05-08 2015-03-11 엘에스전선 주식회사 Hybrid Coupler for interfacing between HFC Network and Home Network
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095402A1 (en) * 2005-03-07 2006-09-14 Mitsubishi Denki Kabushiki Kaisha Signal bypass device
US8078106B2 (en) 2006-01-19 2011-12-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8725071B2 (en) 2006-01-19 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8326223B2 (en) 2006-01-19 2012-12-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7764928B2 (en) 2006-01-19 2010-07-27 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8676117B2 (en) 2006-01-19 2014-03-18 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
DE112007001222B4 (en) * 2006-05-26 2017-10-05 Murata Manufacturing Co., Ltd. Data Coupler
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US8228765B2 (en) 2006-06-30 2012-07-24 Murata Manufacturing Co., Ltd. Optical disc
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8081121B2 (en) 2006-10-27 2011-12-20 Murata Manufacturing Co., Ltd. Article having electromagnetic coupling module attached thereto
US8031124B2 (en) 2007-01-26 2011-10-04 Murata Manufacturing Co., Ltd. Container with electromagnetic coupling module
US8299968B2 (en) 2007-02-06 2012-10-30 Murata Manufacturing Co., Ltd. Packaging material with electromagnetic coupling module
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8390459B2 (en) 2007-04-06 2013-03-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8360324B2 (en) 2007-04-09 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device
US8424762B2 (en) 2007-04-14 2013-04-23 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8474725B2 (en) 2007-04-27 2013-07-02 Murata Manufacturing Co., Ltd. Wireless IC device
US8632014B2 (en) 2007-04-27 2014-01-21 Murata Manufacturing Co., Ltd. Wireless IC device
US7931206B2 (en) 2007-05-10 2011-04-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8264357B2 (en) 2007-06-27 2012-09-11 Murata Manufacturing Co., Ltd. Wireless IC device
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US8662403B2 (en) 2007-07-04 2014-03-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8552870B2 (en) 2007-07-09 2013-10-08 Murata Manufacturing Co., Ltd. Wireless IC device
US7997501B2 (en) 2007-07-17 2011-08-16 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8191791B2 (en) 2007-07-17 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8413907B2 (en) 2007-07-17 2013-04-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
US7857230B2 (en) 2007-07-18 2010-12-28 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
US8610636B2 (en) 2007-12-20 2013-12-17 Murata Manufacturing Co., Ltd. Radio frequency IC device
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US8070070B2 (en) 2007-12-26 2011-12-06 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8360330B2 (en) 2007-12-26 2013-01-29 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
JP2009159302A (en) * 2007-12-26 2009-07-16 Preminet Inc Single-phase three-wire alternating power line plc signal gate device and distribution board and power meter having the same
US8179329B2 (en) 2008-03-03 2012-05-15 Murata Manufacturing Co., Ltd. Composite antenna
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8668151B2 (en) 2008-03-26 2014-03-11 Murata Manufacturing Co., Ltd. Wireless IC device
JP4627552B2 (en) * 2008-03-27 2011-02-09 Smk株式会社 Heterogeneous wire coupler and coupling method
JP2009239575A (en) * 2008-03-27 2009-10-15 Smk Corp Coupler between different phase lines, and coupling method
US8360325B2 (en) 2008-04-14 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device
US9022295B2 (en) 2008-05-21 2015-05-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8960557B2 (en) 2008-05-21 2015-02-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8047445B2 (en) 2008-05-22 2011-11-01 Murata Manufacturing Co., Ltd. Wireless IC device and method of manufacturing the same
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US8011589B2 (en) 2008-06-25 2011-09-06 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US7871008B2 (en) 2008-06-25 2011-01-18 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
JP2010136108A (en) * 2008-12-04 2010-06-17 Smk Corp Coupler between different phase lines
JP4652442B2 (en) * 2008-12-04 2011-03-16 Smk株式会社 Interphase wire coupler
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8876010B2 (en) 2009-04-14 2014-11-04 Murata Manufacturing Co., Ltd Wireless IC device component and wireless IC device
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9203157B2 (en) 2009-04-21 2015-12-01 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9564678B2 (en) 2009-04-21 2017-02-07 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
KR101501292B1 (en) * 2009-05-08 2015-03-11 엘에스전선 주식회사 Hybrid Coupler for interfacing between HFC Network and Home Network
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US8704716B2 (en) 2009-11-20 2014-04-22 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8528829B2 (en) 2010-03-12 2013-09-10 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8757502B2 (en) 2011-02-28 2014-06-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
CN102594410A (en) * 2012-03-07 2012-07-18 深圳市共进电子股份有限公司 Power line communication equipment based on smartlink technology and communication method thereof
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag

Similar Documents

Publication Publication Date Title
JP2004297249A (en) Coupler between different phase lines, mounting method therefor, and coupling method between different phase lines
JP2004297107A (en) Power line carrier device
EA005560B1 (en) Coupling circuit for power line communication
JP2004517545A (en) Inductive coupling of data signals to power transmission cables
KR20090053251A (en) Coupling apparatus for medium voltage power line communication built-in impedance matching transformer and control circuit of phase selection
JP2008245202A (en) Bridge circuit for power line carrier communication, and network system therefor
EP0141673A2 (en) Filtering electrical signals
JP2006115481A (en) Distribution apparatus, distribution board and wiring method of the distribution apparatus
JP4757123B2 (en) Transmission equipment for power line carrier communication, outlet plug, outlet plug box, table tap, coupling device, communication device, and communication system
EP2665196B1 (en) Signal coupling apparatus for power line communication
JP2004032585A (en) Input/output circuit for power distribution line carrier signal
US7675386B2 (en) Inductive coupling circuit and telecommunication method by sheathed cables of an electrical current distribution network
US8097973B2 (en) Power mains transformer data bridge
JP2006295247A (en) Power line communication system
CZ305996A3 (en) Method of transmitting telecommunication signals and a telecommunication network for making the same
JP5778016B2 (en) Power line communication system
JP2001503201A (en) Inductor
JP2009194782A (en) Power-line carrier communication apparatus and electromagnetic coupler therefor
TWI740303B (en) Coupling device
JP3539405B2 (en) Carrier filter
JP2010147520A (en) Filter for distribution switchboard, distribution switchboard, and distribution switchboard power line communication system
JP2007335526A (en) Common mode choke coil, outlet plug, outlet adapter, table tap, and wiring adapter
JP2010074632A (en) High frequency signal supplying device
JPH10510115A (en) Power line signal transmission system
JPH07264777A (en) Transformation panel board