JP2004289545A - Color separation optical system and image pickup device using the same - Google Patents

Color separation optical system and image pickup device using the same Download PDF

Info

Publication number
JP2004289545A
JP2004289545A JP2003079718A JP2003079718A JP2004289545A JP 2004289545 A JP2004289545 A JP 2004289545A JP 2003079718 A JP2003079718 A JP 2003079718A JP 2003079718 A JP2003079718 A JP 2003079718A JP 2004289545 A JP2004289545 A JP 2004289545A
Authority
JP
Japan
Prior art keywords
light
prism
dichroic film
infrared
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079718A
Other languages
Japanese (ja)
Inventor
Masao Nozaki
雅夫 野崎
Keizo Kono
景三 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003079718A priority Critical patent/JP2004289545A/en
Publication of JP2004289545A publication Critical patent/JP2004289545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color separation optical system easily usable for infrared light at a low cost. <P>SOLUTION: Three prisms include, from the side for receiving incident light, a first prism 3R for red wavelength range light, a second prism 3B for blue wavelength range light and a third prism 3G for green wavelength range light. A dichroic film 4R for reflecting a region including the red wavelength range light and the infrared region light is provided on the first prism 3R. A dichroic film 4B for reflecting a region including the blue wavelength range light is provided on the second prism 3B. The optical system is for use of visible light by installing an infrared light cut filter 2, and for use of the infrared light by removing the cut filter 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、レンズにて集光した被写体からの入射光を赤(R),緑(G),青(B)の3原色光に分解するための色分解光学系及びこれを用いた撮像装置に関する。
【0002】
【従来の技術】
テレビジョンカメラ等の撮像装置においては、R,G,B用の3つのプリズムを用いて、レンズにて集光した被写体からの入射光を3原色光に分解する色分解光学系を備えている。この色分解光学系では、ダイクロイック膜によって、R,G,Bを選択的に反射または透過させて、R,G,Bそれぞれの光を得る(特許文献1)。特許文献1には、R,G,B用の3つのプリズムを、光の入射側からB,R,Gの順に配置している。
【0003】
色分解光学系によって分解されたR,G,B光は、それぞれ、固体撮像素子(CCDやC−MOS等)によって光電変換される。それぞれの固体撮像素子から得られた電気信号に各種の信号処理を施し、例えばNTSC方式の複合カラー映像信号を生成する。なお、固体撮像素子は、赤外領域まで感度が高いため、赤外領域を遮断して色再現性をよくするため、プリズムの前方に赤外光カットフィルタを配置する。
【0004】
【特許文献1】
特開2001−78216号公報
【0005】
【発明が解決しようとする課題】
赤外領域まで感度が高いという固体撮像素子の特徴を生かし、赤外光カットフィルタを取り除いて、赤外光用撮像装置とすることが考えられる。上記の特許文献1に記載のような、3つのプリズムをB,R,Gの順に配置した色分解光学系を用いて赤外光用撮像装置を構成しようとすると、第1番目のプリズムがB用であるがゆえ、B用のダイクロイック膜における長波長側の抑圧特性を赤外領域(900nm以上)まで広げる必要がある。すると、そのダイクロイック膜の蒸着積層数は40層以上必要となり、コストが高くなり、プリズムの硝材の特性を変質させてしまうおそれもある。
【0006】
本発明はこのような問題点に鑑みなされたものであり、低コストで容易に赤外光用とすることができる色分解光学系を提供することを目的とする。また、可視光用と赤外光用のいずれとすることもできる可視光用及び赤外光用兼用の撮像装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上述した従来の技術の課題を解決するため、
(a)入射光を3原色光に分解する色分解光学系において、前記入射光が入射する側より順に配置した赤色波長域光用の第1のプリズム(3R)、青色波長域光用の第2のプリズム(3B)、緑色波長域光用の第3のプリズム(3G)よりなる3つのプリズムと、前記第1のプリズムに設けられ、赤色波長域光及び赤外領域光を含む領域を反射する第1のダイクロイック膜(4R)と、前記第2のプリズムに設けられ、青色波長域光を含む領域を反射する第2のダイクロイック膜(4B)とを備えて構成したことを特徴とする色分解光学系を提供し、
(b)撮影レンズ(1)にて集光した被写体からの入射光を撮像する撮像装置において、前記撮影レンズ側より順に配置した赤色波長域光用の第1のプリズム(3R)、青色波長域光用の第2のプリズム(3B)、緑色波長域光用の第3のプリズム(3G)よりなる3つのプリズムと、前記第1のプリズムに設けられ、赤色波長域光及び赤外領域光を含む領域を反射する第1のダイクロイック膜(4R)と、前記第2のプリズムに設けられ、青色波長域光を含む領域を反射する第2のダイクロイック膜(4B)と、前記撮影レンズと前記の第1のプリズムとの間に配置した着脱自在の赤外光カットフィルタ(2)とを備えて構成したことを特徴とする撮像装置を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明の色分解光学系及びこれを用いた撮像装置について、添付図面を参照して説明する。図1は本発明の色分解光学系及びこれを用いた撮像装置の一実施形態を示す平面図、図2は本発明におけるR用のダイクロイック膜の反射分光特性を示す図、図3は本発明におけるB用のダイクロイック膜の反射分光特性を示す図、図4は本発明におけるG用のプリズムの透過分光特性を示す図、図5は本発明における総合分光特性を示す図である。
【0009】
図1において、撮影レンズ1によって集光した被写体からの実線で示す入射光は、R用の第1のプリズム3Rに入射する。撮影レンズ1と第1のプリズム3Rとの間には、赤外光カットフィルタ2が選択的に配置される。即ち、本発明の色分解光学系及び撮像装置を可視光用として用いる場合には、赤外光カットフィルタ2を使用する。赤外光カットフィルタ2は着脱自在とされており、本発明の色分解光学系及び撮像装置を赤外光用として用いる場合には、赤外光カットフィルタ2を取り外し、ダミーフィルタ(図示せず)を使用する。
【0010】
なお、長方形のプレートに赤外光カットフィルタ2とダミーフィルタとを配列して、プレートをスライドすることにより、赤外光カットフィルタ2とダミーフィルタとを切り換えたり、円板に赤外光カットフィルタ2とダミーフィルタとを配列して、円板を回転するすることにより、赤外光カットフィルタ2とダミーフィルタとを切り換えるようにしてもよい。
【0011】
第1のプリズム3Rには、微小間隔の空気層(図示せず)を介してB用の第2のプリズム3Bが接合されている。第1のプリズム3Rの第2のプリズム3B側の反射面には、R用のダイクロイック膜4Rが積層されている。図2は、ダイクロイック膜4Rの反射分光特性を示している。ダイクロイック膜4Rの反射分光特性は、図2に示すように、赤波長域だけでなく、長波長側を赤外領域(900nm以上)まで広げられており、短波長側は400nm付近(青色に相当)まで抑圧するような特性となっている。
【0012】
赤外光カットフィルタ2がない場合、入射光の内、赤色波長域光及び赤外領域光(赤外光)は、ダイクロイック膜4Rで反射し、第1のプリズム3Rの前面3R1で全反射する。赤外光カットフィルタ2がある場合には、赤色波長域光のみダイクロイック膜4Rで反射し、第1のプリズム3Rの前面3R1で全反射する。第1のプリズム3Rにおける光の出射面には、余分な色成分を取り除くためのR用のトリミングフィルタ5Rが接合されている。
【0013】
R用のトリミングフィルタ5Rには、長波長側を規制するダイクロイック膜は設けられておらず、反射防止膜が積層されているのみである。
【0014】
第1のプリズム3Rの前面3R1で全反射した光はトリミングフィルタ5Rを介して出射し、R用の固体撮像素子6Rの結像面6R1に入射する。固体撮像素子6Rでの信号処理及び後段の信号処理については説明を省略する。
【0015】
第2のプリズム3Bには、G用の第3のプリズム3Gが接合されている。第2のプリズム3Bの第3のプリズム3G側の反射面には、B用のダイクロイック膜4Bが積層されている。図3は、ダイクロイック膜4Bの反射分光特性を示している。ダイクロイック膜4Bの反射分光特性は、長波長側は600nm付近まで抑圧する特性であり、青色波長域光を反射する特性となっている。
【0016】
ダイクロイック膜4Rを透過した光の内、青色波長域光は、ダイクロイック膜4Bで反射し、第2のプリズム3Bの前面3B1で全反射する。第2のプリズム3Bにおける青色波長域光の出射面には、余分な色成分を取り除くためのB用のトリミングフィルタ5Bが接合されている。トリミングフィルタ5Bは、色ガラスにダイクロイック膜が積層された構成である。トリミングフィルタ5Bは、色ガラスで短波長側、ダイクロイック膜で長波長側を規制するバンドパスフィルタを構成する。
【0017】
第2のプリズム3Bの前面3B1で全反射した青色波長域光はトリミングフィルタ5Bを介して出射し、B用の固体撮像素子6Bの結像面6B1に入射する。固体撮像素子6Rでの信号処理及び後段の信号処理については説明を省略する。
【0018】
ダイクロイック膜4R,4Bで反射せず透過した緑色波長域光は、第3のプリズム3Gを透過して出射する。図4は、第3のプリズム3Gの透過分光特性(ダイクロイック膜4R,4Bの透過特性)を示している。図4の実線はダイクロイック膜4Bの透過特性であり、破線はダイクロイック膜4Rの透過特性である。この特性により、緑色波長域光が得られる。
【0019】
第3のプリズム3Gにおける緑色波長域光の出射面には、余分な色成分を取り除くためのG用のトリミングフィルタ5Gが接合されている。トリミングフィルタ5Gは、色ガラスにダイクロイック膜が積層された構成である。トリミングフィルタ5Gは、色ガラスで短波長側、ダイクロイック膜で長波長側を規制するバンドパスフィルタを構成する。
【0020】
緑色波長域光は、トリミングフィルタ5Gを介して出射し、G用の固体撮像素子6Gの結像面6G1に入射する。固体撮像素子6Gでの信号処理及び後段の信号処理については説明を省略する。
【0021】
図5は、本実施形態における総合分光出力特性(トリミングフィルタ5R,5B,5Gを含む)を示している。図5において、一点鎖線は、赤色波長域光及び赤外領域光の特性、二点鎖線は青色波長域光の特性、破線は緑色波長域光の特性を示している。また、実線は、赤外光カットフィルタ2の特性を示している。赤外光カットフィルタ2を図1の如く配置した場合には、赤外領域光が遮断され、可視光用の撮像装置とすることができる。赤外光カットフィルタ2を取り外した場合には、赤外光用兼用の撮像装置とすることができる。
【0022】
本発明によれば、R用のダイクロイック膜4Rの積層数は38層程度、B用のダイクロイック膜4Bの積層数は25層程度で、可視光用及び赤外光用兼用の色分解光学系及び撮像装置とすることができる。
【0023】
【発明の効果】
以上詳細に説明したように、本発明の色分解光学系及びこれを用いた撮像装置は、低コストで容易に赤外光用とすることができ、可視光用と赤外光用のいずれとすることもできる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す平面図である。
【図2】本発明におけるR用のダイクロイック膜の反射分光特性を示す図である。
【図3】本発明におけるB用のダイクロイック膜の反射分光特性を示す図である。
【図4】本発明におけるG用のプリズムの透過分光特性を示す図である。
【図5】本発明における総合分光特性を示す図である。
【符号の説明】
1 撮影レンズ
2 赤外光カットフィルタ
3R 第1のプリズム
3B 第2のプリズム
3G 第3のプリズム
4R,4B ダイクロイック膜
5R,5B,5G トリミングフィルタ
6R,6B,6G 固体撮像素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a color separation optical system for separating incident light from a subject condensed by a lens into three primary color lights of red (R), green (G), and blue (B), and an imaging apparatus using the same. About.
[0002]
[Prior art]
2. Description of the Related Art An imaging apparatus such as a television camera includes a color separation optical system that uses three prisms for R, G, and B to separate incident light from a subject condensed by a lens into three primary color lights. . In this color separation optical system, R, G, and B are selectively reflected or transmitted by a dichroic film to obtain R, G, and B light (Patent Document 1). In Patent Document 1, three prisms for R, G, and B are arranged in the order of B, R, and G from the light incident side.
[0003]
The R, G, and B lights separated by the color separation optical system are each photoelectrically converted by a solid-state imaging device (CCD, C-MOS, or the like). Various signal processing is performed on the electric signals obtained from the respective solid-state imaging devices to generate, for example, a composite color video signal of the NTSC system. Since the solid-state imaging device has high sensitivity up to the infrared region, an infrared light cut filter is disposed in front of the prism to block the infrared region and improve color reproducibility.
[0004]
[Patent Document 1]
JP 2001-78216 A
[Problems to be solved by the invention]
Taking advantage of the characteristic of the solid-state imaging device having high sensitivity up to the infrared region, it is conceivable to remove the infrared light cut filter to obtain an infrared light imaging device. If an image pickup apparatus for infrared light is to be constructed using a color separation optical system in which three prisms are arranged in the order of B, R, and G as described in Patent Document 1, the first prism is B Therefore, it is necessary to extend the suppression characteristic on the long wavelength side of the dichroic film for B to the infrared region (900 nm or more). In this case, the number of layers of the dichroic film to be deposited is required to be 40 or more, the cost is increased, and the properties of the glass material of the prism may be deteriorated.
[0006]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a color separation optical system that can be easily used for infrared light at low cost. It is another object of the present invention to provide an image pickup device that can be used for both visible light and infrared light and that is used for both visible light and infrared light.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems of the related art.
(A) In a color separation optical system that separates incident light into three primary color lights, a first prism (3R) for red wavelength light arranged in order from the side where the incident light is incident, a first prism for blue wavelength light. And two prisms (3B) and a third prism (3G) for green wavelength region light, and a region provided on the first prism and reflecting a region including red wavelength region light and infrared region light. A first dichroic film (4R), and a second dichroic film (4B) provided on the second prism and reflecting a region containing blue wavelength region light. Provide resolution optics,
(B) In an imaging apparatus for imaging incident light from a subject condensed by an imaging lens (1), a first prism (3R) for red wavelength light arranged in order from the imaging lens side; Three prisms including a second prism (3B) for light and a third prism (3G) for green wavelength light, and three prisms provided in the first prism, for red light and infrared light. A first dichroic film (4R) that reflects an area including the light, a second dichroic film (4B) provided on the second prism and reflecting an area including light in the blue wavelength range, It is an object of the present invention to provide an imaging apparatus characterized by comprising a detachable infrared light cut filter (2) disposed between the first prism and the first prism.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a color separation optical system according to the present invention and an imaging apparatus using the same will be described with reference to the accompanying drawings. FIG. 1 is a plan view showing an embodiment of a color separation optical system of the present invention and an image pickup apparatus using the same, FIG. 2 is a diagram showing reflection spectral characteristics of a dichroic film for R in the present invention, and FIG. FIG. 4 is a diagram showing the reflection spectral characteristics of the dichroic film for B in FIG. 4, FIG. 4 is a diagram showing the transmission spectral characteristics of the G prism in the present invention, and FIG. 5 is a diagram showing the overall spectral characteristics in the present invention.
[0009]
In FIG. 1, incident light indicated by a solid line from a subject condensed by a photographing lens 1 is incident on an R first prism 3R. An infrared cut filter 2 is selectively disposed between the taking lens 1 and the first prism 3R. That is, when the color separation optical system and the imaging device of the present invention are used for visible light, the infrared light cut filter 2 is used. The infrared light cut filter 2 is detachable. When the color separation optical system and the imaging device of the present invention are used for infrared light, the infrared light cut filter 2 is removed and a dummy filter (not shown) is used. ).
[0010]
The infrared light cut filter 2 and the dummy filter are arranged on a rectangular plate, and the plate is slid to switch between the infrared light cut filter 2 and the dummy filter. The infrared light cut filter 2 and the dummy filter may be switched by arranging the dummy filter 2 and the dummy filter and rotating the disk.
[0011]
The second prism 3B for B is joined to the first prism 3R via a minutely spaced air layer (not shown). An R dichroic film 4R is laminated on the reflection surface of the first prism 3R on the side of the second prism 3B. FIG. 2 shows the reflection spectral characteristics of the dichroic film 4R. As shown in FIG. 2, the reflection spectral characteristics of the dichroic film 4R extend not only in the red wavelength region but also in the long wavelength region to the infrared region (900 nm or more), and in the short wavelength region around 400 nm (equivalent to blue). ).
[0012]
When the infrared light cut filter 2 is not provided, the red wavelength region light and the infrared region light (infrared light) of the incident light are reflected by the dichroic film 4R and totally reflected by the front surface 3R1 of the first prism 3R. . When the infrared light cut filter 2 is provided, only the red wavelength region light is reflected by the dichroic film 4R and totally reflected by the front surface 3R1 of the first prism 3R. An R trimming filter 5R for removing extra color components is joined to the light exit surface of the first prism 3R.
[0013]
The R trimming filter 5R is not provided with a dichroic film for regulating the long wavelength side, but is merely provided with an antireflection film.
[0014]
The light totally reflected by the front surface 3R1 of the first prism 3R exits through the trimming filter 5R, and enters the image forming surface 6R1 of the R solid-state imaging device 6R. The description of the signal processing in the solid-state imaging device 6R and the signal processing in the subsequent stage is omitted.
[0015]
The third prism 3G for G is joined to the second prism 3B. On the reflection surface of the second prism 3B on the third prism 3G side, a dichroic film 4B for B is laminated. FIG. 3 shows the reflection spectral characteristics of the dichroic film 4B. The reflection spectral characteristic of the dichroic film 4B is a characteristic that suppresses light to around 600 nm on the long wavelength side, and a characteristic that reflects light in a blue wavelength range.
[0016]
Of the light transmitted through the dichroic film 4R, blue wavelength region light is reflected by the dichroic film 4B and totally reflected by the front surface 3B1 of the second prism 3B. A trimming filter 5B for B for removing an extra color component is joined to the emission surface of the blue light in the blue wavelength region of the second prism 3B. The trimming filter 5B has a configuration in which a dichroic film is laminated on colored glass. The trimming filter 5B constitutes a bandpass filter that regulates the short wavelength side with colored glass and the long wavelength side with the dichroic film.
[0017]
The blue wavelength region light totally reflected by the front surface 3B1 of the second prism 3B exits through the trimming filter 5B and enters the image forming surface 6B1 of the B solid-state imaging device 6B. The description of the signal processing in the solid-state imaging device 6R and the signal processing in the subsequent stage is omitted.
[0018]
The green wavelength region light transmitted without being reflected by the dichroic films 4R and 4B passes through the third prism 3G and is emitted. FIG. 4 shows transmission spectral characteristics of the third prism 3G (transmission characteristics of the dichroic films 4R and 4B). The solid line in FIG. 4 shows the transmission characteristics of the dichroic film 4B, and the broken line shows the transmission characteristics of the dichroic film 4R. With this characteristic, green wavelength band light can be obtained.
[0019]
A G trimming filter 5G for removing extra color components is joined to the emission surface of the third prism 3G for emitting green wavelength light. The trimming filter 5G has a configuration in which a dichroic film is laminated on colored glass. The trimming filter 5G constitutes a bandpass filter that regulates the short wavelength side with colored glass and the long wavelength side with the dichroic film.
[0020]
The green wavelength region light exits through the trimming filter 5G and enters the image forming surface 6G1 of the G solid-state imaging device 6G. Descriptions of the signal processing in the solid-state imaging device 6G and the signal processing in the subsequent stage are omitted.
[0021]
FIG. 5 shows the total spectral output characteristics (including the trimming filters 5R, 5B, 5G) in the present embodiment. In FIG. 5, the dashed line indicates the characteristics of the red wavelength region light and the infrared region light, the two-dot chain line indicates the characteristics of the blue wavelength region light, and the broken line indicates the characteristics of the green wavelength region light. The solid line shows the characteristics of the infrared light cut filter 2. When the infrared light cut filter 2 is arranged as shown in FIG. 1, the infrared region light is cut off, and a visible light imaging device can be obtained. When the infrared light cut filter 2 is removed, the imaging device can be used as a dual-purpose imaging device for infrared light.
[0022]
According to the present invention, the number of laminated dichroic films 4R for R is about 38, the number of laminated dichroic films 4B for B is about 25, and a color separation optical system for both visible light and infrared light. It can be an imaging device.
[0023]
【The invention's effect】
As described in detail above, the color separation optical system of the present invention and the imaging apparatus using the same can be easily used at low cost for infrared light, and can be used for either visible light or infrared light. You can also.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of the present invention.
FIG. 2 is a diagram showing reflection spectral characteristics of a dichroic film for R in the present invention.
FIG. 3 is a diagram showing reflection spectral characteristics of a dichroic film for B in the present invention.
FIG. 4 is a diagram showing transmission spectral characteristics of a G prism according to the present invention.
FIG. 5 is a diagram showing overall spectral characteristics in the present invention.
[Explanation of symbols]
Reference Signs List 1 photographing lens 2 infrared light cut filter 3R first prism 3B second prism 3G third prism 4R, 4B dichroic films 5R, 5B, 5G trimming filters 6R, 6B, 6G solid-state imaging device

Claims (2)

入射光を3原色光に分解する色分解光学系において、
前記入射光が入射する側より順に配置した赤色波長域光用の第1のプリズム、青色波長域光用の第2のプリズム、緑色波長域光用の第3のプリズムよりなる3つのプリズムと、
前記第1のプリズムに設けられ、赤色波長域光及び赤外領域光を含む領域を反射する第1のダイクロイック膜と、
前記第2のプリズムに設けられ、青色波長域光を含む領域を反射する第2のダイクロイック膜とを備えて構成したことを特徴とする色分解光学系。
In a color separation optical system that separates incident light into three primary color lights,
A first prism for red wavelength region light, a second prism for blue wavelength region light, and a third prism for green wavelength region light arranged in order from the side where the incident light is incident;
A first dichroic film provided on the first prism and reflecting a region including red wavelength region light and infrared region light;
A color separation optical system, comprising: a second dichroic film provided on the second prism and reflecting a region including blue wavelength region light.
撮影レンズにて集光した被写体からの入射光を撮像する撮像装置において、
前記撮影レンズ側より順に配置した赤色波長域光用の第1のプリズム、青色波長域光用の第2のプリズム、緑色波長域光用の第3のプリズムよりなる3つのプリズムと、
前記第1のプリズムに設けられ、赤色波長域光及び赤外領域光を含む領域を反射する第1のダイクロイック膜と、
前記第2のプリズムに設けられ、青色波長域光を含む領域を反射する第2のダイクロイック膜と、
前記撮影レンズと前記の第1のプリズムとの間に配置した着脱自在の赤外光カットフィルタとを備えて構成したことを特徴とする撮像装置。
In an imaging device that captures incident light from a subject collected by a taking lens,
Three prisms including a first prism for red wavelength band light, a second prism for blue wavelength band light, and a third prism for green wavelength band light arranged in order from the photographing lens side;
A first dichroic film provided on the first prism and reflecting a region including red wavelength region light and infrared region light;
A second dichroic film provided on the second prism and reflecting a region including blue wavelength region light;
An image pickup apparatus, comprising: a detachable infrared light cut filter disposed between the photographing lens and the first prism.
JP2003079718A 2003-03-24 2003-03-24 Color separation optical system and image pickup device using the same Pending JP2004289545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079718A JP2004289545A (en) 2003-03-24 2003-03-24 Color separation optical system and image pickup device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079718A JP2004289545A (en) 2003-03-24 2003-03-24 Color separation optical system and image pickup device using the same

Publications (1)

Publication Number Publication Date
JP2004289545A true JP2004289545A (en) 2004-10-14

Family

ID=33293758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079718A Pending JP2004289545A (en) 2003-03-24 2003-03-24 Color separation optical system and image pickup device using the same

Country Status (1)

Country Link
JP (1) JP2004289545A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062637A1 (en) * 2006-11-20 2008-05-29 Olympus Corporation Imaging device
JP2009075543A (en) * 2007-03-30 2009-04-09 Fujinon Corp Color separation optical system and imaging apparatus
JP2009251096A (en) * 2008-04-02 2009-10-29 Fujinon Corp Color separation optical system and imaging apparatus
JP2009251097A (en) * 2008-04-02 2009-10-29 Fujinon Corp Color separation optical system and imaging apparatus
JP2010026312A (en) * 2008-07-22 2010-02-04 Fujinon Corp Color separation optical system
JP2011528918A (en) * 2008-03-18 2011-12-01 ノヴァダク テクノロジーズ インコーポレイテッド Imaging system for combined full color reflection and near infrared imaging
EP2641530A1 (en) * 2008-04-26 2013-09-25 Intuitive Surgical Operations, Inc. Augmented stereoscopic visualization for a surgical robot
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062637A1 (en) * 2006-11-20 2008-05-29 Olympus Corporation Imaging device
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
JP2009075543A (en) * 2007-03-30 2009-04-09 Fujinon Corp Color separation optical system and imaging apparatus
US9173554B2 (en) 2008-03-18 2015-11-03 Novadaq Technologies, Inc. Imaging system for combined full-color reflectance and near-infrared imaging
JP2011528918A (en) * 2008-03-18 2011-12-01 ノヴァダク テクノロジーズ インコーポレイテッド Imaging system for combined full color reflection and near infrared imaging
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
JP2013163027A (en) * 2008-03-18 2013-08-22 Novadaq Technologies Inc Imaging system for combined full-color reflectance and near-infrared imaging
JP2016064150A (en) * 2008-03-18 2016-04-28 ノバダック テクノロジーズ インコーポレイテッド Imaging system for combined full-color reflected light and near-infrared imaging
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
JP2009251096A (en) * 2008-04-02 2009-10-29 Fujinon Corp Color separation optical system and imaging apparatus
JP2009251097A (en) * 2008-04-02 2009-10-29 Fujinon Corp Color separation optical system and imaging apparatus
US9775499B2 (en) 2008-04-26 2017-10-03 Intuitive Surgical Operations, Inc. Augmented visualization for a surgical robot using a captured visible image combined with a fluorescence image and a captured visible image
US10524644B2 (en) 2008-04-26 2020-01-07 Intuitive Surgical Operations, Inc. Augmented visualization for a surgical robot using a captured visible image combined with a fluorescence image and a captured visible image
EP2641530A1 (en) * 2008-04-26 2013-09-25 Intuitive Surgical Operations, Inc. Augmented stereoscopic visualization for a surgical robot
US8810631B2 (en) 2008-04-26 2014-08-19 Intuitive Surgical Operations, Inc. Augmented stereoscopic visualization for a surgical robot using a captured visible image combined with a fluorescence image and a captured visible image
US8803955B2 (en) 2008-04-26 2014-08-12 Intuitive Surgical Operations, Inc. Augmented stereoscopic visualization for a surgical robot using a camera unit with a modified prism
JP2010026312A (en) * 2008-07-22 2010-02-04 Fujinon Corp Color separation optical system
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Similar Documents

Publication Publication Date Title
JP5066420B2 (en) Color separation optical system and imaging apparatus
JP2004289545A (en) Color separation optical system and image pickup device using the same
JP4506678B2 (en) Prism optical system and imaging device
WO2007086155A1 (en) Solid-state imaging device, signal processing method, and camera
JP5776006B2 (en) Three-plate camera device
JP2002281515A (en) Optical image pickup system and image pickup device
JP2004200358A (en) Color separation device for solid state image sensor
JPH08275182A (en) Television camera in common use for color mode and infrared ray mode
JPH08201750A (en) Camera apparatus for lcd panel picture quality inspecting device
JP5056002B2 (en) Color separation prism and color imaging device
JP3125182B2 (en) Color separation prism assembly for C-mount color TV
JP4072977B2 (en) TV lens with still shooting function
JP2001078216A (en) Color separation optical system and image pickup device using same
JP2011248047A (en) Color separation optical system and imaging device
JP2823096B2 (en) Color separation optics
JP4144816B2 (en) TV lens with still shooting function
JP2004208212A (en) Imaging device
JP3104432B2 (en) Color separation optics
JPH079121Y2 (en) Color separation prism
JP2584974Y2 (en) Color separation optics
JP4044683B2 (en) Color separation optical system
JP2797635B2 (en) Photographing lens system having spectral characteristic control means
JPH0346612A (en) Image pickup device
JPH06292213A (en) Video camera
JPH04120921U (en) Color separation optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071116