JP2004259966A - Aligner and device manufacturing method - Google Patents

Aligner and device manufacturing method Download PDF

Info

Publication number
JP2004259966A
JP2004259966A JP2003049366A JP2003049366A JP2004259966A JP 2004259966 A JP2004259966 A JP 2004259966A JP 2003049366 A JP2003049366 A JP 2003049366A JP 2003049366 A JP2003049366 A JP 2003049366A JP 2004259966 A JP2004259966 A JP 2004259966A
Authority
JP
Japan
Prior art keywords
liquid
substrate
area
projection
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049366A
Other languages
Japanese (ja)
Other versions
JP4604452B2 (en
Inventor
Hiroyuki Nagasaka
博之 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33115102&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004259966(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003049366A priority Critical patent/JP4604452B2/en
Publication of JP2004259966A publication Critical patent/JP2004259966A/en
Application granted granted Critical
Publication of JP4604452B2 publication Critical patent/JP4604452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aligner which can suppress a decline in pattern transferring accuracy caused by the temperature change of liquid when carrying out exposure, with a liquid immersion area formed between a projection optical system and a substrate. <P>SOLUTION: In the aligner EX, the liquid immersion area AR2 is formed on part of the substrate P including a projection region AR1 of the projection optical system PL. A pattern image is projected on the substrate P via the liquid 1 located between the projection optical system PL and the substrate P, and then a plurality of shot areas of the substrate P are exposed one by one. In order to form the liquid immersion region AR2, the aligner EX is equipped with a liquid supply mechanism 10 which supplies the liquid 1 to the substrate P at least down a side face 3 near the head of the projection optical system PL. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、投影光学系と基板との間に液浸領域を形成した状態で基板にパターンを露光する露光装置及びデバイス製造方法に関するものである。
【0002】
【従来の技術】
半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長はKrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。
R=k・λ/NA … (1)
δ=±k・λ/NA … (2)
ここで、λは露光波長、NAは投影光学系の開口数、k、kはプロセス係数である。(1)式、(2)式より、解像度Rを高めるために、露光波長λを短くして、開口数NAを大きくすると、焦点深度δが狭くなることが分かる。
【0003】
焦点深度δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のマージンが不足するおそれがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特許文献1に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間に水や有機溶媒等の液体を満たして液浸領域を形成し、液体中での露光光の波長が空気中の1/n(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。
【0004】
【特許文献1】
国際公開第99/49504号パンフレット
【0005】
【発明が解決しようとする課題】
露光装置においては、基板の露光中にフォーカス検出系より基板表面に検出光を投射し、その反射光を受光することで基板表面位置を検出することが一般に行われている。液浸法に基づく液浸露光装置においては投影光学系と基板との間に液浸領域が形成されるが、液体は空気等の気体に比べて比熱が大きく温度変化しやすい。そのため、温度変化しやすい液浸領域の液体中を検出光が通過すると、その液体の温度変化に基づく屈折率変化の影響を受けて基板表面の面位置が正確に検出できなくなる可能性が生じる。液浸領域の外側の基板表面に検出光を投射することも考えられるが、投影領域の面位置情報を精度良く検出するためには投影領域の近傍に検出光を投射することが好ましい。液体の温度管理を厳密に行うことにより検出光が液体中を通過しても基板表面の位置検出を精度良く行うことができるが、温度管理のために装置構成が複雑化する。
【0006】
また、液浸領域の液体は露光光の照射により温度変化(温度上昇)するが、例えば基板上に複数のショット領域を設定しこれら複数のショット領域のそれぞれを順次露光する際、ある1つのショット領域の露光に用いられ温度上昇した液体が基板上に残存していると、次のショット領域を露光するときに用いる液体が前記温度上昇した液体の影響を受けて液体の屈折率が変動し、パターンの像に悪影響を及ぼす可能性がある。この場合、次のショット領域では精度良いパターン転写を行うことができなくなる。
【0007】
本発明はこのような事情に鑑みてなされたものであって、投影光学系と基板との間に液浸領域を形成した状態で露光処理する際、液体の温度変化に起因するパターン転写精度の低下を抑制できる露光装置及びデバイス製造方法を提供することを目的とする。また本発明は、液浸露光を行う場合にも、投影領域の近傍に検出光を投射して基板表面位置を精度良く検出できる露光装置及びデバイス製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明は実施の形態に示す図1〜図18に対応付けした以下の構成を採用している。
本発明の露光装置(EX)は、投影光学系(PL)の投影領域(AR1)を含む基板(P)上の一部に液浸領域(AR2)を形成し、投影光学系(PL)と基板(P)との間の液体(1)及び投影光学系(PL)を介してパターン像を基板(P)上に投影し、基板(P)の複数のショット領域(S1〜S12)を順次露光する露光装置において、液浸領域(AR2)を形成するために、投影光学系(PL)の少なくとも先端付近の側面(3)を伝って基板(P)上に液体(1)を供給する液体供給機構(10)を備えたことを特徴とする。
【0009】
本発明によれば、投影光学系の先端付近の側面を伝って基板上に液体を供給するようにしたので、液浸領域を小さくすることができる。したがって、基板の面位置情報を検出するための検出光を液浸領域以外の空間(例えば空気中)を通過させつつ投影領域の近傍に投射することができる。このように、検出光は温度変化しやすい液体中を通過しないで基板上の投影領域の近傍に投射される構成であるので、液体の温度変化の影響を受けずに基板の面位置情報を精度良く検出することができ、高いパターン転写精度を得ることができる。また、液浸領域を小さくすることができるので、基板上に配置される液体量を少なくすることができ、これにより液体使用量を抑えることができるとともに、液体の基板(レジスト)表面に対する影響(レジスト溶解など)を最小限に抑えることができる。また、基板上に配置される液体量を少なくすることで液体の気化も抑えられ、基板のおかれている環境(湿度など)の変動を抑えることができ、これにより各種光学的検出装置の検出光の光路上の屈折率変化が生じる可能性を抑制して所望のパターン転写精度を得ることができる。
【0010】
本発明の露光装置(EX)は、投影光学系(PL)の投影領域(AR1)を含む基板(P)上の一部に液浸領域(AR2)を形成し、投影光学系(PL)と基板(P)との間の液体(1)及び投影光学系(PL)を介してパターン像を基板(P)上に投影し、基板(P)の複数のショット領域(S1〜S12)を順次露光する露光装置において、液浸領域(AR2)を形成するために基板(P)上に液体(1)を供給する液体供給機構(10)と、基板(P)上の第1ショット領域を露光するときに使われた液体(1)が第2ショット領域を露光するときに投影領域(AR1)に入らないように基板(P)上の液体(1)を回収する液体回収機構(20)とを備えたことを特徴とする。
【0011】
本発明によれば、基板上の複数のショット領域を順次露光する際、第1ショット領域を露光するときに使われた液体が第2ショット領域を露光するときに投影領域に入らないように回収するようにしたので、第2ショット領域を露光するときに使われる液体は、第1ショット領域を露光したときに使われ露光光の照射により温度上昇している液体の影響を受けない、もしくはその液体の影響が低減されている。したがって、液体の温度変化に起因する液体の屈折率変動の発生を抑制して精度良いパターン転写を行うことができる。また、露光に使われた液体は基板(レジスト)表面の不純物を混在している可能性があるが、第1ショット領域を露光するときに使われた液体は回収されて第2ショット領域を露光するときに投影領域に入らないので、各ショット領域のそれぞれについて清浄な液体を使って露光処理できる。また、1つのショット領域に対して使った液体を直ちに回収することにより、残存する液体の気化に起因する基板の熱変動の発生を抑えることができる。
ここで、第1ショット領域及び第2ショット領域は任意の連続した2つのショット領域をいう。また、第1ショット領域の露光中に使われた液体とは、少なくとも第1ショット領域の露光中に投影領域内に存在していた、あるいは投影領域を通過した液体を含むものである。
【0012】
本発明の露光装置(EX)は、投影光学系(PL)の投影領域(AR1)を含む基板(P)上の一部に液浸領域(AR2)を形成し、投影光学系(PL)と基板(P)との間の液体(1)及び投影光学系(PL)を介してパターン像を投影領域(AR1)内に投影するとともに、投影領域(AR1)に対して基板(P)を所定の走査方向(X)に移動することによって基板(P)上の複数のショット領域(S1〜S12)のそれぞれを順次露光する露光装置において、液浸領域(AR2)を形成するために基板(P)上に液体(1)を供給する液体供給機構(10)と、液体(1)の供給と並行して基板(P)上の液体(1)の回収を行う液体回収機構(20)とを備え、液体回収機構(20)は、投影領域(AR1)に対して走査方向(X)と交差する非走査方向(Y)に離れて配置された、非走査方向(Y)に延びる液体回収口(33A、34A)を有することを特徴とする。
【0013】
本発明によれば、前のショット領域の露光中に使われた液体をその露光後に効率良く回収でき、複数のショット領域のそれぞれを順次露光する際、基板上に液体が残存する状態が生じるのを抑えることができる。また、基板の面位置情報を検出するための検出光は、投影領域に対して走査方向に沿う基板上の所定領域(AF領域)に投射される場合が多いが、液体回収機構の液体回収口は、投影領域に対して非走査方向に離れて配置され、非走査方向に延びるように設けられているので、液体回収機構を検出光の光路を遮らない位置に配置することができ、これにより検出光による投影領域の面位置情報検出を円滑且つ高精度に行うことができる。
【0014】
本発明の露光装置(EX)は、投影光学系(PL)の投影領域(AR1)を含む基板(P)上の一部に液浸領域(AR2)を形成し、投影光学系(PL)と基板(P)との間の液体(1)及び投影光学系(PL)を介してパターン像を投影領域(AR1)内に投影するとともに、投影領域(AR1)に対して基板(P)を所定の走査方向(X)に移動することによって基板(P)上の複数のショット領域(S1〜S12)のそれぞれを順次露光する露光装置において、液浸領域(AR2)を形成するために基板(P)上に液体(1)を供給する液体供給機構(10)と、液体(1)の供給と並行して、投影領域(AR1)に対して走査方向(X)に離れた回収位置で、基板(P)上の液体(1)の回収を行う液体回収機構(20、31A、32A)と、パターン像が形成される像面と基板(P)表面との位置関係を調整するために、基板(P)表面の面位置情報を検出する検出系(60)とを備え、検出系(60)は、投影領域(AR1)と回収位置(31A、32A)との間で面位置情報の検出を行うことを特徴とする。
【0015】
本発明によれば、検出系による面位置情報検出は、投影領域と液体回収位置との間で行われるので、投影領域の近傍において投影領域の面位置情報を精度良く検出することができる。ここで、基板は所定の走査方向に移動しながら露光されるので、液体供給機構より基板上に供給された液体は基板上の移動方向手前側に拡がらず液浸領域を形成しない。したがって、検出光は液体中を通過することなく基板上の投影領域の近傍に投射可能となるので、投影領域の面位置情報を精度良く検出できる。
【0016】
本発明のデバイス製造方法は、上記記載の露光装置(EX)を用いることを特徴とする。本発明によれば、良好なパターン精度で形成されたパターンを有し、所望の性能を発揮できるデバイスを提供できる。
【0017】
【発明の実施の形態】
以下、本発明の露光装置について図面を参照しながら説明する。図1は本発明の露光装置の一実施形態を示す概略構成図である。
図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、基板Pを支持する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターン像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。
【0018】
また、本実施形態の露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、基板P上に液体1を供給する液体供給機構10と、液体供給機構10による液体1の供給と並行して基板P上の液体1を回収する液体回収機構20とを備えている。露光装置EXは、少なくともマスクMのパターン像を基板P上に転写している間、液体供給機構10から供給した液体1により投影光学系PLの投影領域AR1を含む基板P上の一部に液浸領域AR2を形成する。具体的には、露光装置EXは、投影光学系PLの先端部の光学素子2と基板Pの表面との間を液体1で満たし、この投影光学系PLと基板Pとの間の液体1及び投影光学系PLを介してマスクMのパターン像を基板P上に投影し、基板Pを露光する。
【0019】
ここで、本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内でマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、Z軸方向及びY軸方向に垂直な方向(非走査方向)をY軸方向とする。また、X軸、Y軸、及びZ軸まわり方向をそれぞれ、θX、θY、及びθZ方向とする。なお、ここでいう「基板」は半導体ウエハ上に感光性材料であるフォトレジストを塗布したものを含み、「マスク」は基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。
【0020】
照明光学系ILはマスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においてはArFエキシマレーザ光が用いられる。
【0021】
マスクステージMSTはマスクMを支持するものであって、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDにより駆動される。マスクステージ駆動装置MSTDは制御装置CONTにより制御される。マスクステージMST上には移動鏡50が設けられている。また、移動鏡50に対向する位置にはレーザ干渉計51が設けられている。マスクステージMST上のマスクMの2次元方向の位置、及び回転角はレーザ干渉計51によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計51の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。
【0022】
投影光学系PLはマスクMのパターンを所定の投影倍率βで基板Pに投影露光するものであって、基板P側の先端部に設けられた光学素子(レンズ)2を含む複数の光学素子で構成されており、これら光学素子は鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4あるいは1/5の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、本実施形態の投影光学系PLの先端部の光学素子2は鏡筒PKに対して着脱(交換)可能に設けられており、光学素子2には液浸領域AR2の液体1が接触する。
【0023】
更に、光学素子2を含む投影光学系PLの先端部付近はテーパ状に形成されており、投影光学系PLの先端部付近においてX軸方向(走査方向)両側のそれぞれには傾斜側面3、3が形成されている。本実施形態では、投影光学系PLの先端部に設けられた光学素子2がテーパ状に形成されており、この光学素子2に傾斜側面3、3が形成されている。なお、傾斜側面3、3は鏡筒PKに形成されていてもよいし、鏡筒PK及び光学素子2に亘って形成されていてもよい。また、側面3、3のそれぞれに沿うようにガイド板4、4が配置されている。ガイド板4、4は側面3、3と対向する位置において僅かに離間(例えば1mm程度)するように設けられており、側面3とガイド板4との間には流体1が流通可能である。
【0024】
基板ステージPSTは基板Pを支持するものであって、基板Pを基板ホルダを介して保持するZステージ52と、Zステージ52を支持するXYステージ53と、XYステージ53を支持するベース54とを備えている。基板ステージPSTはリニアモータ等の基板ステージ駆動装置PSTDにより駆動される。基板ステージ駆動装置PSTDは制御装置CONTにより制御される。Zステージ52を駆動することにより、Zステージ52に保持されている基板PのZ軸方向における位置(フォーカス位置)、及びθX、θY方向における位置が制御される。また、XYステージ53を駆動することにより、基板PのXY方向における位置(投影光学系PLの像面と実質的に平行な方向の位置)が制御される。すなわち、Zステージ52は、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表面をオートフォーカス方式、及びオートレベリング方式で投影光学系PLの像面に合わせ込み、XYステージ53は基板PのX軸方向及びY軸方向における位置決めを行う。なお、ZステージとXYステージとを一体的に設けてよいことは言うまでもない。
【0025】
基板ステージPST(Zステージ52)上には移動鏡55が設けられている。また、移動鏡55に対向する位置にはレーザ干渉計56が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及びθZ方向の回転角はレーザ干渉計56によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計56の計測結果に基づいて基板ステージ駆動装置PSTDを駆動することで基板ステージPSTに支持されている基板Pの位置決めを行う。また、露光装置EXは、基板ステージPSTに支持されている基板P表面の面位置情報を検出するためのフォーカス検出系60(図3参照)を備えている。基板ステージPST上の基板PのZ軸方向の位置情報、及びθX、θY方向の位置情報はフォーカス検出系60によりリアルタイムで検出され、検出結果は制御装置CONTに出力される。制御装置CONTはフォーカス検出系60の検出結果に基づいて基板ステージ駆動装置PSTDを駆動することで基板ステージPSTに支持されている基板Pの位置制御(姿勢制御)を行う。
【0026】
また、基板ステージPST(Zステージ52)上には、基板Pを囲むように補助プレート57が設けられている。補助プレート57は基板ホルダに保持された基板Pの表面とほぼ同じ高さの平面を有している。ここで、基板Pのエッジと補助プレート57との間には1〜2mm程度の隙間があるが、液体1の表面張力によりその隙間に液体1が流れ込むことはほとんどなく、基板Pの周縁近傍を露光する場合にも、補助プレート57により投影光学系PLの下に液体1を保持することができる。
【0027】
図2は液体供給機構10及び液体回収機構20を示す概略構成図である。図2において、液体供給機構10は液浸領域AR2を形成するために所定の液体1を基板P上に供給するものであって、液体1を供給可能な第1液体供給部11及び第2液体供給部12と、その一端部を第1液体供給部11に接続した流路を有する供給管11Aと、その一端部を第2液体供給部12に接続した流路を有する供給管12Aと、投影光学系PLの先端部付近の一方(−X側)の側面3とガイド板4との間に形成され、液体1を流通可能な第1流路13と、他方(+X側)の側面3とガイド板4との間に形成され、液体1を流通可能な第2流路14とを備えている。第1、第2流路13、14は、上端開口部である入口部13A、14A及び下端開口部である出口部13B、14Bをそれぞれ備えている。そして、供給管11Aの他端部が第1流路13の入口部13Aに接続され、供給管12Aの他端部が第2流路14の入口部14Aに接続されている。また、第1、第2流路13、14それぞれの出口部13B、14Bは基板Pの表面に近接して配置されている。第1、第2流路13、14は、第1、第2液体供給部11、12のそれぞれから送出され、供給管11A、12Aを通過した液体1を入口部13A、14Bより入れ、出口部13B、14Bから出すことで、液体1を基板P上に供給する。すなわち、液体供給機構10は、投影光学系PLの先端部の側面3を伝って基板P上に液体1を供給し、更に具体的には、側面3、3とガイド板4、4との間に形成された第1、第2流路13、14に液体1を流して、基板P上に液体1を供給する。ここで、第1、第2流路13、14それぞれの出口部13B、14Bは基板Pの面方向において互いに異なる位置に設けられている。具体的には、出口部13Bは投影領域AR1に対して走査方向一方側(−X側)に設けられ、出口部14Bは他方側(+X側)に設けられている。液体供給機構10は、第1、第2液体供給部11、12を駆動することにより、第1、第2流路13、14の出口部13B、14Bを介して、走査方向と平行な方向であるX軸方向に関して、投影領域AR1の両側で液体1の供給を同時に行うことができるようになっている。
【0028】
第1、第2液体供給部11、12のそれぞれは、液体1を収容するタンク、及び加圧ポンプ等を備えている。第1、第2液体供給部11、12の液体供給動作は制御装置CONTにより制御され、制御装置CONTは第1、第2液体供給部11、12による基板P上に対する単位時間あたりの液体供給量をそれぞれ独立して制御可能である。
【0029】
本実施形態において、液体1には純水が用いられる。純水はArFエキシマレーザ光のみならず、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。
【0030】
また、液体供給機構10のうち、流路13、14を構成する投影光学系PLの側面3には、液体1との親和性を高める親液化処理(親水化処理)が施されている。本実施形態において、液体1は水であるため、側面3には水との親和性に応じた表面処理が施されている。流路13、14を構成する側面3に親液化処理を施すことにより、流体1は円滑に流通される。
【0031】
側面3に対する表面処理は液体1の極性に応じて行われる。本実施形態における液体1は極性の大きい水であるため、側面3に対する親水化処理として、例えばアルコールなど極性の大きい分子構造の物質で薄膜を形成することで、この側面3に対して親水性を付与する。あるいは、側面3に対して、例えば処理ガスとして酸素(O)を用いてプラズマ処理するOプラズマ処理を施すことによっても親水性を付与することができる。このように、液体1として水を用いる場合には側面3にOH基など極性の大きい分子構造を持ったものを表面に配置させる処理が望ましい。ここで、表面処理のための薄膜は液体1に対して非溶解性の材料により形成される。また、親液化処理は、使用する液体1の材料特性に応じてその処理条件を適宜変更される。
【0032】
なお、親液化処理は投影光学系PLの側面3のみならず、流路13、14を構成するガイド板4に対しても親液化処理を施すことが可能である。
【0033】
図3は液体供給機構10及び液体回収機構20の概略構成を示す斜視図である。図3に示すように、ガイド板4は断面視コ字状に形成されており側面3に接続されている。そして、側面3とガイド板4との間にスリット状の流路13、14が設けられている。なお、流路13、14それぞれのY軸方向両端は断面視コ字状に形成されたガイド板4の側面により閉塞されている。流路13、14を流れた液体1はY軸方向に延びる出口部13B、14Bから基板P上に供給される。また、出口部13Bと出口部14BとのX軸方向における間隔は、投影光学系PLの先端部のX軸方向における大きさ、ひいては投影領域AR1のX軸方向における大きさとほぼ同じ値に設定されている。なお、図3において、光学素子2の上面は球面状に成形されている。また図3においては、簡単のために、光学素子2はXZ平面と平行な二つの側面を持つ形状となっているが、この二つの側面は実際にはXZ平面に対して傾斜した平面、又は曲面である。
【0034】
また、図3に示すように、露光装置EXは基板P表面の面位置情報を検出するためのフォーカス検出系60を備えている。フォーカス検出系60は、基板P上の投影領域AR1に対して走査方向一方側(−X側)の所定領域(以下、適宜「第1AF領域」と称する)AF1において面位置情報を検出する第1検出系61と、他方側(+X側)の所定領域(以下、適宜「第2AF領域」と称する)AF2において面位置情報を検出する第2検出系62とを備えている。本実施形態のフォーカス検出系60(61、62)は所謂斜入射方式フォーカス検出系であって、第1検出系61は、第1AF領域AF1に検出光を斜め方向から投射する投射部61Aと、第1AF領域AF1で反射した反射光を受光する受光部61Bとを備えている。一方、第2検出系62は、第2AF領域AF2に検出光を斜め方向から投射する投射部62Aと、第2AF領域AF2で反射した反射光を受光する受光部62Bとを備えている。ここで、投射部61Aと受光部61BとはY軸方向に沿って配置されており、検出光及びその反射光は基板Pの非走査方向であるY軸方向に沿う光路を有する。同様に、投射部62Aと受光部62BともY軸方向に沿って配置されており、検出光及びその反射光は基板Pの非走査方向であるY軸方向に沿う光路を有する。
【0035】
なお、図3においては、フォーカス検出系60の投射部61Aからの検出光は、第1AF領域AF1無いにおいて、走査方向(X方向)に沿って3箇所に投射されているが、非走査方向(Y方向)に沿った複数箇所に投射してもよいし、二次元的な複数箇所に投射するようにしてもよい。また1点に投射するようにしてもよい。また、投射部や受光部の位置も図3の位置に限られない。
【0036】
フォーカス検出系60による基板Pの面位置情報の検出結果は制御装置CONTに出力され、制御装置CONTはフォーカス検出系60の検出結果に基づいて、基板ステージ駆動装置PSTDを介して基板ステージPST上の基板Pの位置及び姿勢を制御することで、投影光学系PLのパターン像が形成される像面と基板P表面との位置関係を調整する。
【0037】
図2及び図3に示すように、基板P上の液体1を回収する液体回収機構20は、第1〜第4液体回収部21〜24(但し、図2には第4液体回収部は図示されていない)と、これら液体回収部21〜24のそれぞれに流路を有する回収管21A〜24Aを介して接続され、基板Pの表面に近接して配置された第1〜第4液体回収部材31〜34とを備えている。第1〜第4液体回収部材31〜34のそれぞれは基板P側に向いた第1〜第4液体回収口31A〜34Aを有している。液体回収部21〜24は例えば真空ポンプ等の吸引装置、及び回収した液体1を収容するタンク等を備えており、基板P上の液体1を液体回収部材31〜34及び回収管21A〜24Aを介して回収する。第1〜第4液体回収部21〜24の液体回収動作は制御装置CONTによりそれぞれ独立して制御され、制御装置CONTは第1〜第4液体回収部21〜24による単位時間あたりの液体回収量をそれぞれ独立して制御可能である。
【0038】
図4は第1〜第4液体回収部材31〜34の第1〜第4液体回収口31A〜34Aと、投影領域AR1及び第1、第2AF領域AF1、AF2との位置関係を模式的に示す平面図である。図4に示すように、投影光学系PLの投影領域AR1はY軸方向(非走査方向)を長手方向とする矩形状に設定されている。また、図4には図示していないが、上述したように液体供給機構10の出口部13B、14BのそれぞれはY軸方向に延びるスリット状であり、出口部13B、14BのX軸方向における間隔は投影領域AR1とほぼ同じ大きさに設定されているので、液体1が満たされる液浸領域AR2は投影領域AR1を含むように基板P上の一部に形成される。
【0039】
第1〜第4液体回収口31A〜34Aのそれぞれは、Y軸方向(非走査方向)に延びるように矩形状に設けられ、Y軸方向に関して所定の長さを有している。第1〜第4液体回収口31A〜34AそれぞれのY軸方向における長さは投影領域AR1より長く形成されている。更に好ましくは、液浸領域AR2のY軸方向における長さ(出口部13B、14BのY軸方向における長さ)より長く形成されている。第1、第2液体回収口31A、32AはX軸方向(走査方向)に関して投影領域AR1の両側に配置され、この投影領域AR1に対して離れた位置に設けられている。第3、第4液体回収口33A、34AはX軸方向と交差するY軸方向(非走査方向)に関して投影領域AR1の両側に配置され、この投影領域AR1に対して離れた位置に設けられている。具体的には、第1液体回収口31Aは投影領域AR1に対してX軸方向一方側(−X側)に設けられ、第2液体回収口32Aは他方側(+X側)に設けられ、第3液体回収口33AはY軸方向一方側(−Y側)に設けられ、第4液体回収口34Aは他方側(+Y側)に設けられている。
【0040】
液体回収機構20は、液体回収部21〜24を駆動することにより、液体回収口31A〜34Aを介して基板P上の液体1を回収する。すなわち、液体回収口31A〜34Aの設置位置が基板P上の液体1の回収を行う回収位置である。液体回収機構20は、第1、第2液体回収部21、22を駆動することにより、投影領域AR1に対してX軸方向に離れた回収位置で、基板P上の液体1の回収を行うことができる。また、液体回収機構20は、第3、第4液体回収部23、24を駆動することにより、投影領域AR1に対してY軸方向に離れた回収位置で、基板P上の液体1の回収を行うことができる。
【0041】
図4に示すように、第1AF領域AF1は投影領域AR1と第1液体回収口31Aとの間に設定され、第2AF領域AF2は投影領域AR1と第2液体回収口32Aとの間に設定されている。すなわち、本実施形態において、フォーカス検出系60(第1、第2検出系61、62)は、第1、第2液体回収口31A、32Aによる液体回収位置のそれぞれと投影領域AR1との間で、基板Pの面位置情報を検出を行うようになっている。
【0042】
面位置情報検出時に用いられる第1、第2AF領域AF1、AF2には液体1が配置されないようになっている。すなわち、基板Pの面位置情報検出時に用いられるAF領域AF1、AF2はどちらか一方が非液浸領域となっている。
【0043】
投影領域AR1に対してY軸方向両側に設けられた第3、第4回収部材33、34はY軸方向を長手方向とし、投影領域AR1に対してY軸方向に沿って並ぶように設けられ、しかもそのX軸方向の幅は投影領域AR1の幅とほぼ同じに設けられているので、Y軸方向に沿う光路を有し、第1、第2AF領域AF1、AF2に投射される検出光及びその反射光は液体回収部材31〜34によりその光路を遮られないようになっている。
【0044】
ここで、液体供給機構10及び液体回収機構20を構成する各部材のうち少なくとも液体1が流通する部材は、例えばポリ四フッ化エチレン等の合成樹脂により形成されている。これにより、液体1に不純物が含まれることを抑制できる。
【0045】
次に、上述した露光装置EXを用いてマスクMのパターン像を基板Pに露光する方法について説明する。
ここで、本実施形態における露光装置EXは、マスクMと基板PとをX軸方向(走査方向)に移動しながらマスクMのパターン像を基板Pに投影露光するものであって、走査露光時には、液浸領域AR2の液体1及び投影光学系PLを介してマスクMの一部のパターン像が投影領域AR1内に投影され、マスクMが−X方向(又は+X方向)に速度Vで移動するのに同期して、基板Pが投影領域AR1に対して+X方向(又は−X方向)に速度β・V(βは投影倍率)で移動する。そして、図5の平面図に示すように、基板P上には複数のショット領域S1〜S12が設定されており、1つのショット領域への露光終了後に、基板Pのステッピング移動によって次のショット領域が走査開始位置に移動し、以下、ステップ・アンド・スキャン方式で基板Pを移動しながら各ショット領域に対する走査露光処理が順次行われる。なお、本実施形態では、制御装置CONTは、投影光学系PLの光軸AXが図5の破線矢印58に沿って進むようにレーザ干渉計56の出力をモニタしつつXYステージ53を移動するものとする。
【0046】
まず、マスクMがマスクステージMSTにロードされるとともに、基板Pが基板ステージPSTにロードされたら、走査露光処理を行うに際し、制御装置CONTは液体供給機構10を駆動し、基板P上に対する液体供給動作を開始する。液浸領域AR2を形成するために液体供給機構10の第1、第2液体供給部11、12のそれぞれから供給された液体1は、供給管11A、12Aを流通した後、第1、第2流路13、14を介して基板P上に供給され、投影光学系PLと基板Pとの間に液浸領域AR2を形成する。ここで、供給管11A、12Aを流通した液体1はスリット状に形成された第1、第2流路13、14の幅方向に拡がり、出口部13B、14Bより基板P上の広い範囲に供給される。第1、第2流路13、14の出口部13B、14Bから基板P上に供給された液体1は、投影光学系PLの先端部(光学素子2)の下端面と基板Pとの間に濡れ拡がるように供給され、投影領域AR1を含む基板P上の一部に液浸領域AR2を形成する。このとき、制御装置CONTは、液体供給機構10のうち投影領域AR1のX軸方向(走査方向)両側に配置された第1、第2流路13、14の出口部13B、14Bのそれぞれより、投影領域AR1の両側から基板P上への液体1の供給を同時に行う。
【0047】
本実施形態において、投影領域AR1の走査方向両側から基板Pに対して液体1を供給する際、制御装置CONTは、液体供給機構10の第1、第2液体供給部11、12の液体供給動作を制御し、基板P上の1つのショット領域の走査露光中に、走査方向に関して投影領域AR1の一方側から供給する液体量(単位時間あたりの液体供給量)を、他方側から供給する液体量と異ならせる。具体的には、制御装置CONTは、走査方向に関して投影領域AR1の手前から供給する単位時間あたりの液体供給量を、その反対側で供給する液体供給量よりも多く設定する。
【0048】
例えば、基板Pを+X方向に移動しつつ露光処理する場合、制御装置CONTは、投影領域AR1に対して−X側(すなわち第1液体供給部11)からの液体量を、+X側(すなわち第2液体供給部12)からの液体量より多くし、一方、基板Pを−X方向に移動しつつ露光処理する場合、投影領域AR1に対して+X側からの液体量を、−X側からの液体量より多くする。このように、制御装置CONTは、基板Pの移動方向に応じて、第1、第2液体供給部11、12それぞれの単位時間あたりの液体供給量を変える。
【0049】
また、制御装置CONTは、液体供給機構10の駆動と並行して、液体回収機構20の第1〜第4液体回収部21〜24を駆動し、基板P上の液体1の回収動作を可能状態とする。制御装置CONTは、液体供給機構10及び液体回収機構20により基板Pの表面に対する液体1の供給と並行して基板P上の液体1の回収を行いつつ、基板Pを支持する基板ステージPSTをX軸方向(走査方向)に移動しながら、マスクMのパターン像を投影光学系PLと基板Pとの間の液体1及び投影光学系PLを介して基板P上に投影露光する。このとき、液体供給機構10は走査方向に関して投影領域AR1の両側から第1、第2流路13、14を介して液体1の供給を同時に行っているので、液浸領域AR2は均一且つ良好に形成されている。
【0050】
図6は、基板Pを−X方向に移動しながら基板P上に設定された第1のショット領域(例えば図5のS2、S4など)を露光処理する際の液体1の挙動を示す模式図である。図6において、投影光学系PLと基板Pとの間の空間に対して流路13、14から液体1が同時に供給され、これにより投影領域AR1を含むように液浸領域AR2が形成される。ここで、投影領域AR1に対して+X側に設けられてる流路14から供給される液体1の単位時間あたりの液体量が、−X側に設けられている流路13から供給される液体1の単位時間あたりの液体量より多く設定されており、流路14から供給された液体1は−X方向に移動する基板Pに引っ張られるようにして、投影領域AR1に対して−X側に液浸領域AR2が拡がっていく。
【0051】
基板Pを−X方向に移動しながら第1のショット領域を露光する際、基板Pの面位置情報を検出するために、投影領域AR1に対して+X側の第2AF領域AF2が用いられる。これにより、投影領域AR1には第2AF領域AF2を通過し、面位置情報を検出された基板P上の所定領域が配置される。制御装置CONTは、フォーカス検出系60のうち第2検出系62の投射部62Aより第2AF領域AF2に対して検出光を投射し、この反射光の受光部62Bでの受光結果に基づいて基板Pの面位置情報を検出し、この面位置情報検出結果に基づいて基板ステージPSTを介して基板Pの位置及び姿勢を制御しつつ投影領域AR1内にパターン像を投影する。
【0052】
ここで、液浸領域AR2の液体1は基板Pの−X方向への移動に伴って−X側に引っ張られ、図6に示すように−X側に尾を引くように流れる。このとき、第2AF領域AF2には液体1が拡がらず、第2AF領域AF2を良好に非液浸領域とすることができる。一方、図6に示すように、第1AF領域AF1の一部に液浸領域AR2が形成される場合があるが、この場合、第1AF領域AF1は面位置情報検出に用いられておらず、上述したように、制御装置CONTは第2AF領域AF2を用いて面位置情報検出を行っているので、基板Pの面位置情報を良好に検出できる。
【0053】
第1のショット領域に対する露光が終了したら、制御装置CONTは、液体供給機構10による液体供給動作を停止するとともに、前記第1のショット領域とは別の第2のショット領域(例えば図5のS3、S5など)を露光するために、基板Pをステッピング移動する。具体的には、例えばショット領域S2に対する走査露光処理終了後、このショット領域S2に対してY軸方向に近接したショット領域S3に対して走査露光処理を行うために、制御装置CONTは基板P上の2つのショット領域S2、S3間でY軸方向にステッピング移動する。
【0054】
図7は、基板Pを−Y方向にステッピング移動する際の液体1の挙動を示す模式図である。ここで、第1のショット領域に対する露光中、及びステッピング移動中に基板P上の液体1のうち一部は投影領域AR1に対して走査方向に離れた位置に設けられた第1液体回収口31A等を介して回収されるが、残りの一部は第1液体回収口31Aに回収されずに、基板P上に残存状態となる。したがって、ステッピング移動中に、図7に示すように、基板Pでは液体1を配置した状態が生じる。
【0055】
そして、基板Pが−Y方向にステッピング移動することにより、基板P上に残存した液体1は第3液体回収口33Aに到達する。これにより、液体回収機構20は、第1のショット領域の露光終了後の基板Pのステッピング移動中に、第1のショット領域の露光のときに使われた液体1の回収を第3液体回収口33Aを介して行うことができる。そして、ここでは、第1のショット領域(例えばS2)と第2のショット領域(例えばS3)とはY軸方向に近接しており、液体回収機構20は投影領域AR1に対してY軸方向に離れた第3液体回収口33Aによる回収位置で基板P上の液体1の回収を行う構成となっている。これにより、基板P上に残存する液体1を無くす、もしくは少なくでき、残存する液体1の気化による基板Pの温度変動等の不都合の発生を抑えることができる。
【0056】
図8は、基板Pを+X方向に移動しながら基板P上に設定された第2のショット領域(例えば図5のS3、S5など)を露光処理する際の液体1の挙動を示す模式図である。図8において、投影光学系PLと基板Pとの間の空間に対して流路13、14から液体1が同時に供給され、これにより投影領域AR1を含むように液浸領域AR2が形成される。ここで、投影領域AR1に対して−X側に設けられてる流路13から供給される液体1の単位時間あたりの液体量が、+X側に設けられている流路14から供給される液体1の単位時間あたりの液体量より多く設定されているため、流路13から供給された液体1は+X方向に移動する基板Pに引っ張られるようにして、投影光学系PLと基板Pとの間の空間に円滑に配置される。
【0057】
基板Pを+X方向に移動しながら第2のショット領域を露光する際、基板Pの面位置情報を検出するために、投影領域AR1に対して−X側の第1AF領域AF1が用いられる。これにより、投影領域AR1には第1AF領域AF1を通過し、面位置情報を検出された基板P上の所定領域が配置される。制御装置CONTは、フォーカス検出系60のうち第1検出系61の投射部61Aより第1AF領域AF1に対して検出光を投射し、この反射光の受光部61Bでの受光結果に基づいて基板Pの面位置情報を検出し、この面位置情報検出結果に基づいて基板ステージPSTを介して基板Pの位置及び姿勢を制御しつつ投影領域AR1内にパターン像を投影する。
【0058】
ここで、液浸領域AR2の液体1は基板Pの+X方向への移動に伴って+X側に引っ張られ、図8に示すように+X側に尾を引くように流れる。このとき、第1AF領域AF1には液体1が配置されず、第1AF領域AF1を良好に非液浸領域とすることができる。一方、図8に示すように、第2AF領域AF2の一部に液浸領域AR2が形成される場合があるが、この場合、第2AF領域AF2は面位置情報検出に用いられておらず、上述したように、制御装置CONTは第1AF領域AF1を用いて面位置情報検出を行っているので、基板Pの面位置情報を良好に検出できる。
【0059】
このとき、第1のショット領域の露光のときに使われた液体1が、ステッピング移動中に回収しきれない場合があるが、この残存した液体は基板Pの−Y方向へのステッピング移動により投影領域AR1から十分に離れているので、第2ショット領域の露光に影響しない。また、この残存した液体1は、第2のショット領域を露光するために基板Pが+X方向に移動することにより、第3液体回収口33Aに回収される。これにより、液体回収機構20は、第2のショット領域の露光中に、第1のショット領域のときに使われた液体1の残存分の回収を第3液体回収口33Aを介して行うことができる。ここで、液体回収口33AのY軸方向における大きさ(長さ)は、液浸領域AR2のY軸方向における大きさより大きく設定されているので、液体回収機構20は液体回収口より露光に使われた基板P上の液体1を円滑に回収することができる。
【0060】
以上のように第1のショット領域の露光中、基板Pのステッピング移動中及び第2のショット領域の露光中に、第1のショット領域の露光のときに使われた液体1を回収することで、液体回収機構20は、第1のショット領域を露光したときに使われた液体1が次の第2のショット領域を露光するときに投影領域AR1に入らないように基板P上の液体1を回収している。これにより、第1のショット領域の露光で使われ、温度上昇している液体1が第2のショット領域を露光するときの投影領域AR1に入ることを防止でき、液体1の温度上昇に起因する投影領域AR1内における液体1の屈折率の変動等の不都合の発生を抑制することができる。
【0061】
図6〜図8を参照して説明した手順により、図5に示すショット領域S1〜S6が順次露光される。
図9は、図5に示すショット領域(第1のショット領域)S6の露光終了後、投影領域AR1をショット領域(第2のショット領域)S7に移動するために、基板Pを−X方向に列移動(ステッピング移動)する際の液体1の挙動を示す模式図である。図9に示すように、液体回収機構20は、ショット領域S6の露光終了後の基板Pの列移動中に、ショット領域S6の露光のときに使われた液体1の回収を第1液体回収口31Aを介して回収することができる。そして、ここでは、第1のショット領域S6と第2のショット領域S7とはX軸方向に近接しており、液体回収機構20は投影領域AR1に対してX軸方向に離れた第1液体回収口31Aによる回収位置で基板P上の液体1の回収を行う構成となっている。これにより、列を変える±X方向へのステッピング移動を行う場合には、液体回収口31A(又は32A)により供給された液体を回収してしまうので、液体1は基板P上に残存せず、残存する液体1に起因する不都合の発生を抑えることができる。
そして再び、図6〜図8を参照して説明した手順により、図5に示すショット領域S7〜S12が順次露光される。
【0062】
以上説明したように、投影光学系PLの先端部の側面3を伝って基板P上に液体1を供給するようにしたので、液浸領域AR2を小さく設定することができる。したがって、フォーカス検出系60の検出光は非液浸領域を通過して投影領域AR1の近傍に投射されるので、フォーカス検出系60は液体1の温度変化の影響を受けずに精度良く面位置検出できる。
【0063】
そして、基板P上の複数のショット領域S1〜S12を順次露光する際、第1のショット領域を露光するときに使われ、基板(レジスト)表面の不純物が混在し温度上昇した液体1が次の第2のショット領域を露光するときに投影領域AR1に入らないように回収するようにしたので、第2のショット領域に対しても精度良い露光処理を行うことができる。
【0064】
なお、ショット領域の露光中に、露光光(ArFレーザパルス光:例えばパルス周波数4KHz、パルス幅50ns、パワー1.0W/cm)の照射により基板P(主に、レジスト、BARC(反射防止膜))が暖められ、その熱が液体1に伝わり、投影領域AR1内の液体1に温度上昇を引き起こすが、走査露光の場合には、基板の走査方向(−X方向)への移動に伴って液体1も走査方向に400mm/sec程度の速度で流れているので、基板P表面上の200nm以下程度の液体層に1℃以下程度の温度変化が生じるのみである。投影光学系PLと基板P表面との間の液体の厚さを1mm程度とすれば、温度変化を起こす液体の厚さ、及び温度変化量は非常にわずかである。したがって、投影領域AR1内における液体1の温度変化に伴う波面収差の変化も非常に小さく(0.1mλ以下程度、λ=193nm/1.47)、基板P上に投影されるパターン像に対してほとんど問題とならない。
【0065】
また、液体回収機構20の液体回収口33A、34Aのそれぞれを、投影領域AR1に対してY軸方向に離れた位置に配置し、しかもその形状をY軸方向に延びるように設けたので、フォーカス検出系60の検出光を投影領域AR1に対してX軸方向に離れたAF領域AF1、AF2に投射する際、液体回収機構20の回収部材33、34を検出光の光路を遮らない位置に配置することができ、これにより検出光による投影領域AR1の面位置情報検出を円滑且つ良好に行うことができる。
【0066】
また、基板Pの面位置情報を検出する際に用いるAF領域AF1、AF2は、投影領域AR1と液体回収口の設置位置である液体回収位置との間に設けられているので、投影領域AR1の近傍において投影領域AR1内に配置される基板Pの面位置情報を精度良く検出することができる。
【0067】
また、液体供給機構10は、第1、第2流路13、14を介して投影領域AR1の走査方向両側から液体1を供給するようにしたので、供給された液体1は走査方向に移動する基板Pに引っ張られるようにして投影領域AR1に濡れ拡がるため、液浸領域AR2を投影領域AR1を含むように円滑に形成できる。そして、本実施形態では、液体供給機構10は、走査方向に関して、投影領域AR1の手前から供給する液体量を、その反対側で供給する液体量よりも多くするので、基板P上に供給された液体1は、移動する基板Pに引っ張られるようにして基板Pの移動方向に沿って流れ、投影光学系PLと基板Pとの間の空間に引き込まれるようにして円滑に配置される。したがって、液体供給機構10から供給された液体1は、その供給エネルギーが小さくても投影光学系PLと基板Pとの間に円滑に配置され、液浸領域AR2を良好に形成することができる。そして、走査方向に応じて第1、第2流路13、14それぞれから供給する液体量を変更することで液体1の流れる方向を切り替えることができ、これにより+X方向、又は−X方向のどちらの方向に基板Pを走査する場合にも、投影光学系PLと基板Pとの間に液浸領域AR2を円滑に形成することができ、高い解像度及び広い焦点深度を得ることができる。
【0068】
なお、本実施形態において、液体供給機構10は基板Pのステッピング移動時に液体1の供給を停止しているが、ステッピング移動時を含む1枚の基板Pに関する一連の露光処理動作が終了するまで(基板Pが基板ステージPSTにロードされて全ショット領域S1〜S12に対する露光処理が終了して基板ステージPSTからアンロードされるまで)液体1を供給し続けてもよい。これにより、液体1の供給を開始してから液浸領域AR2が形成されるまでの待ち時間を短縮化でき、高スループット化を図れる。また、供給のON・OFFに伴う液体振動(所謂ウォーターハンマー現象)の発生を抑制できる。なお、ステッピング移動中において液体1が供給され続けても、液体回収機構20は常時駆動しているため、投影領域AR1の外側に流出しようとする液体1は円滑に回収可能である。ここで、1枚の基板Pに関する一連の露光処理が終了するまで液体1を供給し続ける際、液体供給機構10は、ショット領域に対する露光中における単位時間あたりの液体供給量に対して、基板Pのステッピング移動中における液体供給量を異ならせてもよい。具体的には、液体供給機構10は、基板Pのステッピング移動中での単位時間あたりの液体供給量を、ショット領域の走査露光中の液体供給量より低減する。これにより、露光処理に寄与しないステッピング移動中での基板Pに対する液体供給量が抑えられ、露光処理全体における液体使用量を抑えることができる。このように、液体供給機構10は基板Pの移動動作(ステッピング移動又は走査移動)に応じて第1、第2液体供給部11、12それぞれの単位時間あたりの液体供給量を変えるようにしてもよい。
【0069】
また、本実施形態においては、液体回収機構20により第1ショット領域の露光中に使われた液体が、次の第2ショット領域の露光中に投影領域AR1に入らないように液体回収を行っているが、液体回収機構20の液体回収をより円滑に行われるように、基板Pのステッピング移動中の移動経路を工夫するようにしてもよい。例えば、第1ショット領域の露光終了後に、液体回収機構20の液体回収口の位置に向かって基板Pを移動したり、基板Pのステッピング中の移動距離や移動時間を長くすればよい。また、第1ショット領域の露光終了後に液体供給機構10から液体の供給を続けて、第1ショット領域の露光中に使われた液体を投影領域AR1から押し出す(遠ざける)ようにしてもよい。このとき、液体の供給量や供給位置を調整するようにしてもよい。
【0070】
なお、本実施形態では投影領域AR1の走査方向両側から液体1を供給する際、走査方向に関して手前から供給する液体量をその反対側で供給する液体量よりも多くしているが、投影領域AR1の両側から同量の液体1を同時に供給するようにしてもよい。これにより、投影光学系PLの先端側面3、3に加わる力を均衡にすることができ、良好なパターン像の投影が期待できる。一方、液体1を供給し続けながら、走査方向に応じて投影領域AR1の走査方向両側から供給する液体量を変化させることにより、液体1の使用量を抑えることができる。
【0071】
なお、本実施形態では、液体供給機構10は第1、第2流路13、14のそそれぞれから液体1を同時に供給しているが、例えば、基板Pを+X側に走査移動する際には第2流路14からの液体供給を停止して第1流路13のみから液体1を供給し、基板Pを−X側に走査移動する際には第1流路13からの液体供給を停止して第2流路14のみから液体1を供給する構成であってもよい。
【0072】
なお、本実施形態では投影光学系PLの先端部の側面3に沿うようにガイド板4を設けているが、このガイド板4は無くてもよい。側面3を親液化処理することにより、液体供給部及び供給管から側面3に供給された液体1は側面3で保持され、この側面3を伝って基板P上の投影領域AR1の近傍に供給可能である。一方、ガイド板4を設けることにより、例えば用いる液体1を変更したことにより側面3の親液性が十分でなく、側面3が液体1を保持できない状態が生じても、側面3を伝っている途中の液体1が基板P上に落下するのを防止できる。したがって、落下した液体1に起因する露光ムラの発生や基板Pのレジストへの影響を抑制できる。また、ガイド板4を設けることにより側面3を親液化処理しなくても液体1を基板P上の投影領域AR1の近傍に円滑に供給することができる。
【0073】
なお、本実施形態では、第1、第2流路13、14を構成する側面3やガイド板4に対して親液化処理を施すように説明したが、液体回収機構20のうち液体1が流れる流路の表面に対しても親液化処理を施すことができる。特に、液体回収機構20の液体回収部材に親液化処理を施しておくことにより液体回収を円滑に行うことができる。あるいは、液体1が接触する投影光学系PLの先端面に対しても親液化処理を施すことができる。なお、投影光学系PLの先端面に薄膜を形成する場合、露光光ELの光路上に配置されるものであるため、露光光ELに対して透過性を有する材料で形成され、その膜厚も露光光ELを透過可能な程度に設定される。
【0074】
なお基板Pの表面にも液体1との親和性に合わせて表面処理を施してもよい。
【0075】
なお、表面処理のための薄膜は単層膜であってもよいし複数の層からなる膜であってもよい。また、その形成材料も、金属、金属化合物、及び有機物など、所望の性能を発揮できる材料であれば任意の材料を用いることができる。
【0076】
なお、本実施形態では、第1、第2流路13、14のそれぞれについて第1、第2液体供給部が設けられているように説明したが、液体供給部を1つとし、この1つの液体供給部に供給管11A、12Aを接続するようにしてもよい。この場合、供給管11A、12Aのそれぞれに弁を設け、弁の開度を調整することで第1、第2流路13、14から基板Pへの液体供給量を互いに異なる値に調整することができる。同様に、本実施形態では、液体回収部材31〜34のそれぞれについて液体回収部21〜24が設けられているが、液体回収部を1つとし、この1つの液体回収部と複数の液体回収部材とを回収管で接続する構成であってもよい。
【0077】
なお、本実施形態では、投影光学系PLの側面3(流路13、14)は走査方向両側に設けられているように説明したが非走査方向に設けられていてもよい。
【0078】
なお、液体供給部11、12や、液体回収部21、22は、投影光学系PL及びこの投影光学系PLを支持する支持部材以外の支持部材で支持されることが好ましい。これにより、液体の供給や回収に伴うポンプ等の動作によって発生した振動が投影光学系PLに伝達することを防ぐことができる。
【0079】
以下、本発明の他の実施形態について説明する。ここで、以下の説明において、上述した実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略もしくは省略する。
図10は液体回収機構の液体回収口の他の配置例を示す模式図である。図10に示すように、投影領域AR1に対してY軸方向両側には、Y軸に関して傾斜した液体回収口33B、33C、及び液体回収口34B、34Cがそれぞれ設けられている。ここで、液体回収口33B、33C、34B、34Cを有する液体回収部材はフォーカス検出系の検出光の光路を遮らない位置に設けられている。このように、投影領域AR1に対してY軸方向に設けられる液体回収口は、投影領域AR1と平行且つ並んで設けられる必要はなく、投影領域AR1に対してずれた位置に設けられていてもよい。液体回収口を投影領域AR1に対してずれた位置に設けたり傾斜して設けることにより、例えば、第1のショット領域の露光終了後の基板Pのステッピング移動中に、第1のショット領域の露光のときに使われた液体1の回収をより効率的に行うことができる。つまり、液体回収口33A(34A)がその長手方向をY軸方向に一致させ、且つ投影領域AR1に並んで配置されていると、図7等を参照して説明したように、ステッピング移動中に、基板P上の液体1を全部回収しきれない場合が生じるが、図10に示すように、液体回収口をY軸に関して傾斜するように設けることにより、ステッピング移動中において第1のショット領域の露光に使われた基板P上の液体1を全部回収することができる。
【0080】
図11及び図12は液体回収口の他の実施形態を示す図である。図11に示すように、複数の液体回収口(液体回収部材)31D…、32D…、33D…、34D…、を断続的に配置する構成であってもよい。また、図12に示すように、液体回収口(液体回収部材)は、投影領域AR1及びAF領域AF1、AF2を囲む形状であってもよい。図12に示す液体回収口31Kは投影領域AR1及びAF領域AF1、AF2を囲むように平面視矩形状に形成されているが、矩形状以外(例えば円形状)であってもよい。液体回収口を投影領域AR1及びAF領域AF1、AF2を囲むように設けることにより、液体回収を確実に行うことができる。なおこの場合、液体回収口を構成する液体回収部材はフォーカス検出系60の検出光の光路を妨げない位置に設けられている。
【0081】
上記実施形態では、投影光学系PLの側面3はフラット面(断面視直線状)であるように説明したが、図13に示すように、側面3に対して表面積拡大処理、具体的には粗面処理を施してもよい。粗面処理することにより側面3の表面積が拡大し、液体1をより一層良好に保持可能となるため、ガイド板4を設けなくても液体1を基板P上に円滑に供給することができる。
また、側面3は曲面状であってもよい。具体的には、図14に示すように、側面3は断面視例えば2次曲線状あるいは円弧状であってもよい。このような形状であっても、液体1を良好に流通可能となる。特に、側面3をサイクロイド曲線状にすることにより、入口部13A(14A)から出口部13B(14B)に流体1が到達する時間を短縮できる。ここで、側面3は投影光学系PLの中央部(光軸)に対して外側に膨らむ曲面であることが好ましい。
そして、図13や図14に示した側面3に対しても、親液化処理を施すことができる。
【0082】
また近年、基板Pを保持するステージを2つ搭載したツインステージ型露光装置が登場しているが、本発明はツインステージ型露光装置にも適用可能である。
図15はツインステージ型露光装置EX2の概略構成図である。ツインステージ型露光装置EX2は共通のベース71上をそれぞれ独立に移動可能な第1、第2基板ステージPST1、PST2を備えている。また、ツインステージ型露光装置EX2は露光ステーションAと計測・交換ステーションBとを有しており、露光ステーションAにはフォーカス検出系60を除いて図1のシステムが全て搭載されている。また、計測・交換ステーションBには、投射部60A及び受光部60Bを有するフォーカス検出系60が搭載されている。
【0083】
このようなツインステージ型露光装置EX2の基本的な動作としては、例えば露光ステーションAにおいて第2基板ステージPST2上の基板Pの露光処理中に、計測・交換ステーションBにおいて、第1基板ステージPST1上の基板Pの交換及び計測処理が行われる。そして、それぞれの作業が終了すると、第2基板ステージPST2が計測・交換ステーションBに移動し、それと並行して第1基板ステージPST1が露光ステーションAに移動し、今度は第2基板ステージPST2において計測及び交換処理が行われ、第1基板ステージPST1上の基板Pに対して露光処理が行われる。
【0084】
つまり、計測・交換ステーションBにおいてフォーカス検出系60により基板Pの面位置情報が検出され、この検出結果は制御装置CONTに記憶される。制御装置CONTは、面位置情報を検出された基板Pを露光ステーションAに移動し、前記記憶した面位置情報に基づいて投影光学系PLの像面と基板Pの表面との位置関係を調整しつつ露光処理する。
【0085】
このように、ツインステージ型露光装置EX2の場合には、露光ステーションAにフォーカス検出系60を設けない構成とすることが可能であるため、液体回収部材の設置位置の自由度を増すことができる。そのため、図16に示すように、露光ステーションAにおいては、液体回収部材(液体回収口)を投影領域AR1のより近傍に設けることができ、液体回収動作を円滑に行うことができる。図16に示す液体回収口31E、32Eはそれぞれ平面視コ字状に形成され投影領域AR1の走査方向両側に配置されており、投影領域AR1を囲むように設けられている。これにより、液体回収機構はこれら液体回収口31E、32Eを介して走査露光中及びステッピング移動中のそれぞれにおいて液体回収を良好に行うことができる。
【0086】
なお、露光ステーションAにもフォーカス検出系を設ける場合、図17に示すように、投影領域AR1に対して液体回収口31E、32Eの外側にAF領域AF1、AF2を設定することができる。
【0087】
上述したように、本実施形態における液体1は純水により構成されている。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.47であるため、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約131nmに短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.47倍に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。
【0088】
本実施形態では、投影光学系PLの先端に光学素子2としてレンズが取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。
【0089】
なお、液体1の流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。
【0090】
なお、本実施形態の液体1は水であるが、水以外の液体であってもよい、例えば、露光光ELの光源がFレーザである場合、このFレーザ光は水を透過しないので、液体1としてはFレーザ光を透過可能な例えばフッ素系オイル等のフッ素系流体であってもよい。この場合、側面3をはじめとする液体1と接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体1としては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表面処理は用いる液体1の極性に応じて行われる。
【0091】
なお、上記各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
【0092】
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。
【0093】
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
【0094】
基板ステージPSTやマスクステージMSTにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。
【0095】
各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。
【0096】
基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−166475号公報(USP5,528,118)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−330224号公報(US S/N 08/416,558)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
【0097】
以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0098】
半導体デバイス等のマイクロデバイスは、図18に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
【0099】
【発明の効果】
本発明によれば、投影光学系と基板との間に液浸領域を形成した状態で露光処理する際、基板の面位置情報を検出するための検出光の光路を非液浸領域に設けることができる。したがって、基板の面位置情報を精度良く検出することができ、高精度なパターン転写精度を得ることができる。また、基板上の複数のショット領域を順次露光する際、第1ショット領域を露光するときに使われた液体が第2ショット領域を露光するときに投影領域に入らないように回収するようにしたので、第2ショット領域を露光するときに使われる液体は、第1ショット領域を露光したときに使われ露光光の照射により温度上昇している液体の影響を受けずに精度良い露光処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の露光装置の一実施形態を示す概略構成図である。
【図2】図1の要部拡大図であって本発明の特徴的部分である液体供給機構及び液体回収機構の概略構成を示す図である。
【図3】本発明の特徴的部分である液体供給機構及び液体回収機構の概略構成を示す斜視図である。
【図4】投影領域及びAF領域と液体回収口との位置関係を模式的に示す平面図である。
【図5】基板上に設定されたショット領域を示す図である。
【図6】露光動作中の液体の挙動を示す模式図である。
【図7】露光動作中の液体の挙動を示す模式図である。
【図8】露光動作中の液体の挙動を示す模式図である。
【図9】露光動作中の液体の挙動を示す模式図である。
【図10】液体回収機構の液体回収口の他の実施形態を示す図である。
【図11】液体回収機構の液体回収口の他の実施形態を示す図である。
【図12】液体回収機構の液体回収口の他の実施形態を示す図である。
【図13】投影光学系の側面の他の実施形態を示す側断面図である。
【図14】投影光学系の側面の他の実施形態を示す側断面図である。
【図15】本発明の露光装置の他の実施形態を示す図である。
【図16】液体回収口の他の実施形態を示す図である。
【図17】液体回収口の他の実施形態を示す図である。
【図18】半導体デバイスの製造工程の一例を示すフローチャート図である。
【符号の説明】
1…液体、3…側面、4…ガイド板、10…液体供給機構、
11、12…液体供給部、13…第1流路、14…第2流路、
20…液体回収機構、21〜24…液体回収部、31〜34…液体回収部材、
31A〜34A…液体回収口、60…フォーカス検出系、AR1…投影領域、
AR2…液浸領域、CONT…制御装置、EX…露光装置、M…マスク、
P…基板、PL…投影光学系、S1〜S12…ショット領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exposure apparatus and a device manufacturing method for exposing a pattern to a substrate in a state where an immersion area is formed between a projection optical system and the substrate.
[0002]
[Prior art]
A semiconductor device and a liquid crystal display device are manufactured by a so-called photolithography technique of transferring a pattern formed on a mask onto a photosensitive substrate. The exposure apparatus used in this photolithography process has a mask stage that supports a mask and a substrate stage that supports a substrate, and sequentially moves the mask stage and the substrate stage to project a pattern of the mask through a projection optical system. This is to be transferred to a substrate. In recent years, further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns. The resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. For this reason, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing. The exposure wavelength that is currently mainstream is 248 nm of KrF excimer laser, but 193 nm of ArF excimer laser of shorter wavelength is also being put to practical use. When performing exposure, the depth of focus (DOF) becomes important as well as the resolution. The resolution R and the depth of focus δ are respectively represented by the following equations.
R = k 1 ・ Λ / NA (1)
δ = ± k 2 ・ Λ / NA 2 … (2)
Here, λ is the exposure wavelength, NA is the numerical aperture of the projection optical system, k 1 , K 2 Is a process coefficient. From the expressions (1) and (2), it can be seen that when the exposure wavelength λ is shortened and the numerical aperture NA is increased in order to increase the resolution R, the depth of focus δ becomes narrower.
[0003]
If the depth of focus δ becomes too narrow, it becomes difficult to match the substrate surface with the image plane of the projection optical system, and there is a possibility that the margin during the exposure operation becomes insufficient. Therefore, as a method of substantially shortening the exposure wavelength and increasing the depth of focus, for example, a liquid immersion method disclosed in Patent Document 1 below has been proposed. In this immersion method, a liquid such as water or an organic solvent is filled between the lower surface of the projection optical system and the substrate surface to form an immersion area, and the wavelength of the exposure light in the liquid is 1 / n of that in air. (N is the refractive index of the liquid, which is usually about 1.2 to 1.6), thereby improving the resolution and expanding the depth of focus to about n times.
[0004]
[Patent Document 1]
WO 99/49504 pamphlet
[0005]
[Problems to be solved by the invention]
2. Description of the Related Art In an exposure apparatus, detection light is generally projected onto a substrate surface from a focus detection system during exposure of the substrate, and the reflected light is received to detect the substrate surface position. In an immersion exposure apparatus based on the immersion method, an immersion area is formed between the projection optical system and the substrate, but the liquid has a large specific heat compared to a gas such as air, and the temperature easily changes. Therefore, when the detection light passes through the liquid in the liquid immersion area where the temperature easily changes, there is a possibility that the surface position of the substrate surface cannot be accurately detected due to the influence of the refractive index change based on the temperature change of the liquid. Although it is conceivable to project the detection light on the surface of the substrate outside the liquid immersion area, it is preferable to project the detection light near the projection area in order to accurately detect the surface position information of the projection area. By strictly controlling the temperature of the liquid, it is possible to accurately detect the position of the substrate surface even when the detection light passes through the liquid, but the configuration of the apparatus is complicated due to the temperature control.
[0006]
Further, the temperature of the liquid in the liquid immersion area changes (increases in temperature) due to the irradiation of the exposure light. For example, when a plurality of shot areas are set on the substrate and each of the plurality of shot areas is sequentially exposed, one shot When the liquid whose temperature has been raised and used for exposure is left on the substrate, the liquid used when exposing the next shot area is affected by the liquid whose temperature has increased, and the refractive index of the liquid fluctuates, The pattern image may be adversely affected. In this case, accurate pattern transfer cannot be performed in the next shot area.
[0007]
The present invention has been made in view of such circumstances, and when performing exposure processing in a state where a liquid immersion area is formed between a projection optical system and a substrate, the pattern transfer accuracy due to a temperature change of the liquid is reduced. An object of the present invention is to provide an exposure apparatus and a device manufacturing method capable of suppressing the reduction. Another object of the present invention is to provide an exposure apparatus and a device manufacturing method capable of projecting detection light in the vicinity of a projection area and accurately detecting a substrate surface position even when performing liquid immersion exposure.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention employs the following configuration corresponding to FIGS.
An exposure apparatus (EX) of the present invention forms an immersion area (AR2) on a part of a substrate (P) including a projection area (AR1) of a projection optical system (PL), and A pattern image is projected on the substrate (P) via the liquid (1) between the substrate (P) and the projection optical system (PL), and a plurality of shot areas (S1 to S12) of the substrate (P) are sequentially arranged. In an exposure apparatus that performs exposure, a liquid that supplies a liquid (1) onto a substrate (P) through at least a side surface (3) near a tip of a projection optical system (PL) in order to form a liquid immersion area (AR2). A supply mechanism (10) is provided.
[0009]
According to the present invention, since the liquid is supplied onto the substrate along the side surface near the tip of the projection optical system, the liquid immersion area can be reduced. Therefore, the detection light for detecting the surface position information of the substrate can be projected near the projection area while passing through a space (for example, in the air) other than the liquid immersion area. As described above, since the detection light is projected near the projection area on the substrate without passing through the liquid that is likely to change in temperature, the surface position information of the substrate can be accurately determined without being affected by the temperature change of the liquid. Detection can be performed well, and high pattern transfer accuracy can be obtained. In addition, since the liquid immersion area can be reduced, the amount of liquid disposed on the substrate can be reduced, whereby the amount of liquid used can be reduced, and the influence of the liquid on the substrate (resist) surface ( Resist dissolution, etc.) can be minimized. In addition, by reducing the amount of liquid disposed on the substrate, vaporization of the liquid is also suppressed, and fluctuations in the environment (humidity, etc.) in which the substrate is placed can be suppressed, thereby detecting various optical detection devices. A desired pattern transfer accuracy can be obtained by suppressing the possibility of a change in the refractive index on the optical path of light.
[0010]
An exposure apparatus (EX) of the present invention forms an immersion area (AR2) on a part of a substrate (P) including a projection area (AR1) of a projection optical system (PL), and A pattern image is projected on the substrate (P) via the liquid (1) between the substrate (P) and the projection optical system (PL), and a plurality of shot areas (S1 to S12) of the substrate (P) are sequentially arranged. In an exposure apparatus for exposure, a liquid supply mechanism (10) for supplying a liquid (1) onto a substrate (P) to form a liquid immersion area (AR2), and a first shot area on the substrate (P) are exposed. A liquid recovery mechanism (20) for recovering the liquid (1) on the substrate (P) so that the liquid (1) used for the exposure does not enter the projection area (AR1) when exposing the second shot area. It is characterized by having.
[0011]
According to the present invention, when sequentially exposing a plurality of shot areas on a substrate, the liquid used for exposing the first shot area is collected so as not to enter the projection area when exposing the second shot area. Therefore, the liquid used when exposing the second shot area is not affected by the liquid which is used when exposing the first shot area and whose temperature is increased by the exposure light, or Liquid effects are reduced. Therefore, it is possible to suppress the occurrence of the change in the refractive index of the liquid due to the change in the temperature of the liquid, and perform the pattern transfer with high accuracy. Although the liquid used for exposure may contain impurities on the surface of the substrate (resist), the liquid used for exposing the first shot area is collected and the second shot area is exposed. Since the shot area does not enter the projection area, the exposure processing can be performed using a clean liquid for each of the shot areas. Further, by immediately recovering the liquid used for one shot area, it is possible to suppress the occurrence of thermal fluctuation of the substrate due to the vaporization of the remaining liquid.
Here, the first shot area and the second shot area refer to any two consecutive shot areas. Further, the liquid used during the exposure of the first shot area includes at least the liquid that was present in the projection area during the exposure of the first shot area or that has passed through the projection area.
[0012]
An exposure apparatus (EX) of the present invention forms an immersion area (AR2) on a part of a substrate (P) including a projection area (AR1) of a projection optical system (PL), and The pattern image is projected into the projection area (AR1) via the liquid (1) between the substrate (P) and the projection optical system (PL), and the substrate (P) is positioned with respect to the projection area (AR1). In the exposure apparatus that sequentially exposes each of the plurality of shot areas (S1 to S12) on the substrate (P) by moving in the scanning direction (X), the substrate (P) is formed to form the liquid immersion area (AR2). A) a liquid supply mechanism (10) for supplying the liquid (1) onto the substrate, and a liquid recovery mechanism (20) for collecting the liquid (1) on the substrate (P) in parallel with the supply of the liquid (1). The liquid recovery mechanism (20) includes a scanning direction (X) with respect to the projection area (AR1). And they are spaced apart in the non-scanning direction (Y) intersecting, characterized in that it has a liquid recovery port which extends in the non-scanning direction (Y) (33A, 34A).
[0013]
According to the present invention, the liquid used during the exposure of the previous shot area can be efficiently collected after the exposure, and when sequentially exposing each of the plurality of shot areas, a state in which the liquid remains on the substrate occurs. Can be suppressed. The detection light for detecting the surface position information of the substrate is often projected onto a predetermined area (AF area) on the substrate along the scanning direction with respect to the projection area. Is disposed in the non-scanning direction with respect to the projection area, and is provided so as to extend in the non-scanning direction, so that the liquid recovery mechanism can be disposed at a position that does not block the optical path of the detection light. Detection of surface position information of the projection area by the detection light can be performed smoothly and with high accuracy.
[0014]
An exposure apparatus (EX) of the present invention forms an immersion area (AR2) on a part of a substrate (P) including a projection area (AR1) of a projection optical system (PL), and The pattern image is projected into the projection area (AR1) via the liquid (1) between the substrate (P) and the projection optical system (PL), and the substrate (P) is positioned with respect to the projection area (AR1). In the exposure apparatus that sequentially exposes each of the plurality of shot areas (S1 to S12) on the substrate (P) by moving in the scanning direction (X), the substrate (P) is formed to form the liquid immersion area (AR2). A) a liquid supply mechanism (10) for supplying the liquid (1) onto the substrate, and a substrate at a collection position separated from the projection area (AR1) in the scanning direction (X) in parallel with the supply of the liquid (1). (P) A liquid recovery mechanism (20, 31A, 3) for recovering the liquid (1) A) and a detection system (60) for detecting surface position information on the substrate (P) surface in order to adjust the positional relationship between the image plane on which the pattern image is formed and the substrate (P) surface. The system (60) is characterized in that surface position information is detected between the projection area (AR1) and the collection position (31A, 32A).
[0015]
According to the present invention, since the surface position information detection by the detection system is performed between the projection region and the liquid recovery position, the surface position information of the projection region can be accurately detected near the projection region. Here, since the substrate is exposed while moving in the predetermined scanning direction, the liquid supplied onto the substrate from the liquid supply mechanism does not spread to the near side in the moving direction on the substrate and does not form a liquid immersion area. Therefore, since the detection light can be projected near the projection area on the substrate without passing through the liquid, the surface position information of the projection area can be accurately detected.
[0016]
A device manufacturing method according to the present invention uses the above-described exposure apparatus (EX). According to the present invention, it is possible to provide a device having a pattern formed with good pattern accuracy and exhibiting desired performance.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an exposure apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the exposure apparatus of the present invention.
1, an exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and an illumination optical system IL that illuminates the mask M supported by the mask stage MST with exposure light EL. A projection optical system PL for projecting and exposing the pattern image of the mask M illuminated by the exposure light EL onto a substrate P supported on a substrate stage PST, and a control device CONT for controlling the overall operation of the exposure apparatus EX. Have.
[0018]
Further, the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and to substantially widen the depth of focus. A liquid supply mechanism 10 for supplying the liquid 1 onto the P and a liquid recovery mechanism 20 for collecting the liquid 1 on the substrate P in parallel with the supply of the liquid 1 by the liquid supply mechanism 10 are provided. The exposure apparatus EX uses the liquid 1 supplied from the liquid supply mechanism 10 to transfer the liquid onto a part of the substrate P including the projection area AR1 of the projection optical system PL while transferring at least the pattern image of the mask M onto the substrate P. An immersion area AR2 is formed. Specifically, the exposure apparatus EX fills the space between the optical element 2 at the distal end of the projection optical system PL and the surface of the substrate P with the liquid 1, and the liquid 1 and the liquid 1 between the projection optical system PL and the substrate P. The pattern image of the mask M is projected onto the substrate P via the projection optical system PL, and the substrate P is exposed.
[0019]
Here, in the present embodiment, the exposure apparatus EX scans the mask M and the substrate P synchronously in directions different from each other in the scanning direction (opposite directions) while exposing the pattern formed on the mask M to the substrate P. An example in which an apparatus (a so-called scanning stepper) is used will be described. In the following description, the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction, the synchronous movement direction (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction, A direction perpendicular to the Z-axis direction and the Y-axis direction (non-scanning direction) is defined as a Y-axis direction. In addition, directions around the X axis, the Y axis, and the Z axis are defined as θX, θY, and θZ directions, respectively. Here, the “substrate” includes a semiconductor wafer coated with a photoresist as a photosensitive material, and the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.
[0020]
The illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light EL. The illumination optical system IL includes an exposure light source, an optical integrator for equalizing the illuminance of a light beam emitted from the exposure light source, and an optical integrator. , A condenser lens for condensing the exposure light EL, a relay lens system, a variable field stop for setting an illumination area on the mask M by the exposure light EL in a slit shape, and the like. A predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution. The exposure light EL emitted from the illumination optical system IL includes, for example, ultraviolet bright lines (g-line, h-line, i-line) emitted from a mercury lamp and far ultraviolet light (KrF excimer laser light (wavelength: 248 nm)). DUV light), ArF excimer laser light (wavelength 193 nm) and F 2 Vacuum ultraviolet light (VUV light) such as laser light (wavelength 157 nm) is used. In the present embodiment, ArF excimer laser light is used.
[0021]
The mask stage MST supports the mask M, and is two-dimensionally movable in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in an XY plane, and is capable of minute rotation in the θZ direction. The mask stage MST is driven by a mask stage driving device MSTD such as a linear motor. The mask stage driving device MSTD is controlled by the control device CONT. The movable mirror 50 is provided on the mask stage MST. A laser interferometer 51 is provided at a position facing the movable mirror 50. The two-dimensional position and rotation angle of the mask M on the mask stage MST are measured in real time by the laser interferometer 51, and the measurement result is output to the control device CONT. The control device CONT drives the mask stage driving device MSTD based on the measurement result of the laser interferometer 51 to position the mask M supported by the mask stage MST.
[0022]
The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification β. The projection optical system PL includes a plurality of optical elements including an optical element (lens) 2 provided at the tip of the substrate P. These optical elements are supported by a lens barrel PK. In the present embodiment, the projection optical system PL is a reduction system in which the projection magnification β is, for example, 4 or 5. Note that the projection optical system PL may be either a unity magnification system or an enlargement system. Further, the optical element 2 at the distal end of the projection optical system PL of the present embodiment is provided so as to be detachable (replaceable) from the lens barrel PK, and the liquid 1 in the liquid immersion area AR2 comes into contact with the optical element 2. .
[0023]
Further, the vicinity of the front end of the projection optical system PL including the optical element 2 is formed in a tapered shape, and the inclined side surfaces 3 and 3 are provided on both sides in the X-axis direction (scanning direction) near the front end of the projection optical system PL. Is formed. In the present embodiment, the optical element 2 provided at the distal end of the projection optical system PL is formed in a tapered shape, and the optical element 2 is formed with inclined side surfaces 3 and 3. The inclined side surfaces 3 and 3 may be formed in the lens barrel PK, or may be formed over the lens barrel PK and the optical element 2. In addition, guide plates 4 and 4 are arranged along each of the side surfaces 3 and 3. The guide plates 4, 4 are provided so as to be slightly apart (for example, about 1 mm) at positions facing the side surfaces 3, 3, and the fluid 1 can flow between the side surface 3 and the guide plate 4.
[0024]
The substrate stage PST supports the substrate P, and includes a Z stage 52 that holds the substrate P via a substrate holder, an XY stage 53 that supports the Z stage 52, and a base 54 that supports the XY stage 53. Have. The substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor. The substrate stage driving device PSTD is controlled by the control device CONT. By driving the Z stage 52, the position of the substrate P held on the Z stage 52 in the Z-axis direction (focus position) and the positions in the θX and θY directions are controlled. By driving the XY stage 53, the position of the substrate P in the XY directions (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 52 controls the focus position and the tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by the autofocus method and the autoleveling method, and the XY stage 53 controls the substrate P Are performed in the X-axis direction and the Y-axis direction. It goes without saying that the Z stage and the XY stage may be provided integrally.
[0025]
A movable mirror 55 is provided on the substrate stage PST (Z stage 52). A laser interferometer 56 is provided at a position facing the moving mirror 55. The position of the substrate P on the substrate stage PST in the two-dimensional direction and the rotation angle in the θZ direction are measured in real time by the laser interferometer 56, and the measurement result is output to the control device CONT. The control device CONT drives the substrate stage driving device PSTD based on the measurement result of the laser interferometer 56 to perform positioning of the substrate P supported by the substrate stage PST. The exposure apparatus EX also includes a focus detection system 60 (see FIG. 3) for detecting surface position information on the surface of the substrate P supported on the substrate stage PST. The position information of the substrate P on the substrate stage PST in the Z-axis direction and the position information in the θX and θY directions are detected in real time by the focus detection system 60, and the detection result is output to the control device CONT. The control device CONT controls the position (posture control) of the substrate P supported by the substrate stage PST by driving the substrate stage driving device PSTD based on the detection result of the focus detection system 60.
[0026]
An auxiliary plate 57 is provided on the substrate stage PST (Z stage 52) so as to surround the substrate P. The auxiliary plate 57 has a flat surface at substantially the same height as the surface of the substrate P held by the substrate holder. Here, there is a gap of about 1 to 2 mm between the edge of the substrate P and the auxiliary plate 57, but the liquid 1 hardly flows into the gap due to the surface tension of the liquid 1. Also in the case of exposure, the liquid 1 can be held under the projection optical system PL by the auxiliary plate 57.
[0027]
FIG. 2 is a schematic configuration diagram showing the liquid supply mechanism 10 and the liquid recovery mechanism 20. In FIG. 2, a liquid supply mechanism 10 supplies a predetermined liquid 1 onto a substrate P in order to form a liquid immersion area AR2, and includes a first liquid supply unit 11 capable of supplying the liquid 1 and a second liquid supply unit 11. A supply pipe 12A having a flow path having one end connected to the first liquid supply section 11; a supply pipe 12A having a flow path having one end connected to the second liquid supply section 12; A first flow path 13 formed between one side (−X side) 3 near the tip of the optical system PL and the guide plate 4 and through which the liquid 1 can flow, and the other side (+ X side) 3 A second flow path 14 formed between the guide plate 4 and the liquid 1 is provided. The first and second flow paths 13 and 14 have inlet portions 13A and 14A as upper end openings and outlet portions 13B and 14B as lower end openings, respectively. The other end of the supply pipe 11A is connected to the inlet 13A of the first flow path 13, and the other end of the supply pipe 12A is connected to the inlet 14A of the second flow path 14. The outlets 13B and 14B of the first and second flow paths 13 and 14 are arranged close to the surface of the substrate P. The first and second flow paths 13 and 14 receive the liquid 1 sent from each of the first and second liquid supply units 11 and 12 and passed through the supply pipes 11A and 12A from the inlets 13A and 14B, and the outlet. The liquid 1 is supplied onto the substrate P by taking it out of 13B and 14B. That is, the liquid supply mechanism 10 supplies the liquid 1 onto the substrate P along the side surface 3 at the tip of the projection optical system PL, and more specifically, between the side surfaces 3, 3 and the guide plates 4, 4. The liquid 1 is supplied to the substrate P by flowing the liquid 1 through the first and second flow paths 13 and 14 formed in the substrate 1. Here, the outlets 13B and 14B of the first and second flow paths 13 and 14 are provided at different positions in the plane direction of the substrate P. Specifically, the outlet 13B is provided on one side (−X side) in the scanning direction with respect to the projection area AR1, and the outlet 14B is provided on the other side (+ X side). The liquid supply mechanism 10 drives the first and second liquid supply units 11 and 12 to move in the direction parallel to the scanning direction via the outlets 13B and 14B of the first and second flow paths 13 and 14. With respect to a certain X-axis direction, the supply of the liquid 1 can be simultaneously performed on both sides of the projection area AR1.
[0028]
Each of the first and second liquid supply units 11 and 12 includes a tank for storing the liquid 1, a pressure pump, and the like. The liquid supply operation of the first and second liquid supply units 11 and 12 is controlled by the control unit CONT, and the control unit CONT controls the amount of liquid supply to the substrate P by the first and second liquid supply units 11 and 12 per unit time. Can be independently controlled.
[0029]
In the present embodiment, pure water is used as the liquid 1. Pure water is not only ArF excimer laser light but also far ultraviolet light (DUV light) such as ultraviolet bright lines (g-line, h-line, i-line) emitted from a mercury lamp and KrF excimer laser light (wavelength 248 nm). Can also be transmitted.
[0030]
In the liquid supply mechanism 10, the side surface 3 of the projection optical system PL constituting the flow paths 13 and 14 is subjected to a lyophilic treatment (hydrophilic treatment) for increasing the affinity with the liquid 1. In this embodiment, since the liquid 1 is water, the side surface 3 is subjected to a surface treatment according to the affinity with water. The fluid 1 is smoothly circulated by performing the lyophilic treatment on the side surfaces 3 constituting the flow paths 13 and 14.
[0031]
The surface treatment on the side surface 3 is performed according to the polarity of the liquid 1. Since the liquid 1 in the present embodiment is water having a large polarity, as a hydrophilic treatment for the side surface 3, for example, a thin film is formed with a substance having a molecular structure having a large polarity such as alcohol to thereby make the side surface 3 hydrophilic. Give. Alternatively, for the side surface 3, for example, oxygen (O 2 O) plasma treatment using 2 Hydrophilicity can also be imparted by performing a plasma treatment. As described above, when water is used as the liquid 1, it is preferable to arrange a surface having a highly polar molecular structure such as an OH group on the side surface 3. Here, the thin film for surface treatment is formed of a material that is insoluble in the liquid 1. In addition, the lyophilic processing is performed by appropriately changing the processing conditions according to the material characteristics of the liquid 1 to be used.
[0032]
Note that the lyophilic processing can be performed not only on the side surface 3 of the projection optical system PL but also on the guide plate 4 that forms the flow paths 13 and 14.
[0033]
FIG. 3 is a perspective view showing a schematic configuration of the liquid supply mechanism 10 and the liquid recovery mechanism 20. As shown in FIG. 3, the guide plate 4 is formed in a U-shape in cross section, and is connected to the side surface 3. Further, slit-shaped flow paths 13 and 14 are provided between the side surface 3 and the guide plate 4. Both ends of the flow paths 13 and 14 in the Y-axis direction are closed by side surfaces of the guide plate 4 formed in a U-shape in cross section. The liquid 1 flowing through the channels 13 and 14 is supplied onto the substrate P from outlets 13B and 14B extending in the Y-axis direction. The distance between the outlet 13B and the outlet 14B in the X-axis direction is set to substantially the same value as the size of the distal end of the projection optical system PL in the X-axis direction, and thus the size of the projection area AR1 in the X-axis direction. ing. In FIG. 3, the upper surface of the optical element 2 is formed into a spherical shape. In FIG. 3, for simplicity, the optical element 2 has a shape having two side surfaces parallel to the XZ plane, but these two side surfaces are actually planes inclined with respect to the XZ plane, or It is a curved surface.
[0034]
As shown in FIG. 3, the exposure apparatus EX includes a focus detection system 60 for detecting surface position information on the surface of the substrate P. The focus detection system 60 detects surface position information in a predetermined area (hereinafter, appropriately referred to as “first AF area”) AF1 on one side (−X side) in the scanning direction with respect to the projection area AR1 on the substrate P. A detection system 61 and a second detection system 62 for detecting surface position information in a predetermined area (hereinafter, appropriately referred to as “second AF area”) AF2 on the other side (+ X side) are provided. The focus detection system 60 (61, 62) of the present embodiment is a so-called oblique incidence type focus detection system, and the first detection system 61 includes a projection unit 61A that projects detection light onto the first AF area AF1 from an oblique direction, A light receiving unit 61B that receives the light reflected by the first AF area AF1. On the other hand, the second detection system 62 includes a projection unit 62A that projects detection light onto the second AF area AF2 from an oblique direction, and a light receiving unit 62B that receives light reflected by the second AF area AF2. Here, the projecting unit 61A and the light receiving unit 61B are arranged along the Y-axis direction, and the detection light and its reflected light have an optical path along the Y-axis direction that is the non-scanning direction of the substrate P. Similarly, both the projection unit 62A and the light receiving unit 62B are arranged along the Y-axis direction, and the detection light and its reflected light have an optical path along the Y-axis direction that is the non-scanning direction of the substrate P.
[0035]
In FIG. 3, the detection light from the projection unit 61A of the focus detection system 60 is projected at three places along the scanning direction (X direction) in the first AF area AF1, but in the non-scanning direction ( The projection may be performed at a plurality of locations along the (Y direction), or may be performed at a plurality of two-dimensional locations. Further, the projection may be performed at one point. Further, the positions of the projection unit and the light receiving unit are not limited to the positions shown in FIG.
[0036]
The detection result of the surface position information of the substrate P by the focus detection system 60 is output to the control device CONT, and the control device CONT outputs the information on the substrate stage PST via the substrate stage driving device PSTD based on the detection result of the focus detection system 60. By controlling the position and orientation of the substrate P, the positional relationship between the image plane on which the pattern image of the projection optical system PL is formed and the surface of the substrate P is adjusted.
[0037]
As shown in FIGS. 2 and 3, the liquid recovery mechanism 20 for recovering the liquid 1 on the substrate P includes first to fourth liquid recovery units 21 to 24 (however, FIG. 2 does not show the fourth liquid recovery unit). Not connected), and first to fourth liquid recovery members connected to these liquid recovery units 21 to 24 via recovery pipes 21A to 24A each having a flow path and arranged close to the surface of the substrate P. 31 to 34 are provided. Each of the first to fourth liquid recovery members 31 to 34 has first to fourth liquid recovery ports 31A to 34A facing the substrate P side. The liquid recovery units 21 to 24 include, for example, a suction device such as a vacuum pump, a tank for storing the recovered liquid 1, and the like. The liquid 1 on the substrate P is collected by the liquid recovery members 31 to 34 and the recovery pipes 21A to 24A. To collect through. The liquid recovery operation of the first to fourth liquid recovery units 21 to 24 is independently controlled by the control unit CONT, and the control unit CONT controls the liquid recovery amount per unit time by the first to fourth liquid recovery units 21 to 24. Can be independently controlled.
[0038]
FIG. 4 schematically shows the positional relationship between the first to fourth liquid recovery ports 31A to 34A of the first to fourth liquid recovery members 31 to 34, the projection area AR1, and the first and second AF areas AF1 and AF2. It is a top view. As shown in FIG. 4, the projection area AR1 of the projection optical system PL is set in a rectangular shape whose longitudinal direction is in the Y-axis direction (non-scanning direction). Although not shown in FIG. 4, as described above, each of the outlets 13B and 14B of the liquid supply mechanism 10 has a slit shape extending in the Y-axis direction, and the gap between the outlets 13B and 14B in the X-axis direction. Is set to substantially the same size as the projection area AR1, so that the liquid immersion area AR2 filled with the liquid 1 is formed on a part of the substrate P so as to include the projection area AR1.
[0039]
Each of the first to fourth liquid recovery ports 31A to 34A is provided in a rectangular shape so as to extend in the Y-axis direction (non-scanning direction), and has a predetermined length in the Y-axis direction. The length of each of the first to fourth liquid recovery ports 31A to 34A in the Y-axis direction is formed to be longer than the projection area AR1. More preferably, the length is formed longer than the length of the liquid immersion area AR2 in the Y-axis direction (the length of the outlets 13B and 14B in the Y-axis direction). The first and second liquid recovery ports 31A and 32A are arranged on both sides of the projection area AR1 in the X-axis direction (scanning direction), and are provided at positions away from the projection area AR1. The third and fourth liquid recovery ports 33A and 34A are arranged on both sides of the projection area AR1 in the Y-axis direction (non-scanning direction) intersecting the X-axis direction, and are provided at positions separated from the projection area AR1. I have. Specifically, the first liquid recovery port 31A is provided on one side (−X side) in the X-axis direction with respect to the projection area AR1, the second liquid recovery port 32A is provided on the other side (+ X side), The third liquid recovery port 33A is provided on one side (−Y side) in the Y-axis direction, and the fourth liquid recovery port 34A is provided on the other side (+ Y side).
[0040]
The liquid recovery mechanism 20 recovers the liquid 1 on the substrate P via the liquid recovery ports 31A to 34A by driving the liquid recovery units 21 to 24. That is, the installation positions of the liquid recovery ports 31A to 34A are the recovery positions where the liquid 1 on the substrate P is recovered. The liquid recovery mechanism 20 recovers the liquid 1 on the substrate P at a recovery position in the X-axis direction away from the projection area AR1 by driving the first and second liquid recovery units 21 and 22. Can be. Further, the liquid recovery mechanism 20 drives the third and fourth liquid recovery units 23 and 24 to recover the liquid 1 on the substrate P at a recovery position separated in the Y-axis direction with respect to the projection area AR1. It can be carried out.
[0041]
As shown in FIG. 4, the first AF area AF1 is set between the projection area AR1 and the first liquid recovery port 31A, and the second AF area AF2 is set between the projection area AR1 and the second liquid recovery port 32A. ing. That is, in the present embodiment, the focus detection system 60 (the first and second detection systems 61 and 62) operates between each of the liquid recovery positions by the first and second liquid recovery ports 31A and 32A and the projection area AR1. , And detects surface position information of the substrate P.
[0042]
The liquid 1 is not arranged in the first and second AF areas AF1 and AF2 used when detecting the surface position information. That is, one of the AF areas AF1 and AF2 used when detecting the surface position information of the substrate P is a non-immersion area.
[0043]
The third and fourth collection members 33 and 34 provided on both sides in the Y-axis direction with respect to the projection area AR1 are provided so as to be aligned with the projection area AR1 along the Y-axis direction with the Y-axis direction as a longitudinal direction. Moreover, since the width in the X-axis direction is provided to be substantially the same as the width of the projection area AR1, it has an optical path along the Y-axis direction, and the detection light projected to the first and second AF areas AF1 and AF2 and The reflected light is not blocked by the liquid recovery members 31 to 34 from its optical path.
[0044]
Here, among the members constituting the liquid supply mechanism 10 and the liquid recovery mechanism 20, at least a member through which the liquid 1 flows is formed of a synthetic resin such as polytetrafluoroethylene. Thereby, it is possible to suppress the liquid 1 from containing impurities.
[0045]
Next, a method of exposing the pattern image of the mask M to the substrate P using the above-described exposure apparatus EX will be described.
Here, the exposure apparatus EX in the present embodiment projects and exposes the pattern image of the mask M to the substrate P while moving the mask M and the substrate P in the X-axis direction (scanning direction). A part of the pattern image of the mask M is projected into the projection area AR1 via the liquid 1 in the liquid immersion area AR2 and the projection optical system PL, and the mask M moves at a speed V in the -X direction (or + X direction). In synchronization with this, the substrate P moves in the + X direction (or -X direction) at a speed β · V (β is a projection magnification) with respect to the projection area AR1. Then, as shown in the plan view of FIG. 5, a plurality of shot areas S1 to S12 are set on the substrate P, and after the exposure of one shot area is completed, the next shot area is moved by the stepping movement of the substrate P. Moves to the scanning start position, and thereafter, the scanning exposure processing for each shot area is sequentially performed while moving the substrate P by the step-and-scan method. In the present embodiment, the control device CONT moves the XY stage 53 while monitoring the output of the laser interferometer 56 so that the optical axis AX of the projection optical system PL advances along the dashed arrow 58 in FIG. And
[0046]
First, when the mask M is loaded on the mask stage MST and the substrate P is loaded on the substrate stage PST, when performing the scanning exposure process, the control device CONT drives the liquid supply mechanism 10 to supply the liquid onto the substrate P. Start operation. The liquid 1 supplied from each of the first and second liquid supply units 11 and 12 of the liquid supply mechanism 10 to form the liquid immersion area AR2 flows through the supply pipes 11A and 12A, and then flows through the first and second liquid supply units 11 and 12A. The liquid is supplied onto the substrate P via the flow paths 13 and 14, and forms a liquid immersion area AR2 between the projection optical system PL and the substrate P. Here, the liquid 1 flowing through the supply pipes 11A and 12A spreads in the width direction of the first and second flow paths 13 and 14 formed in a slit shape, and is supplied to a wide area on the substrate P from the outlets 13B and 14B. Is done. The liquid 1 supplied onto the substrate P from the outlets 13B and 14B of the first and second flow paths 13 and 14 is located between the lower end surface of the tip (optical element 2) of the projection optical system PL and the substrate P. The liquid immersion area AR2 is formed on a part of the substrate P including the projection area AR1 and supplied so as to spread out. At this time, the control device CONT controls the outlets 13B and 14B of the first and second flow paths 13 and 14 disposed on both sides of the liquid supply mechanism 10 in the X-axis direction (scanning direction) of the projection area AR1. The liquid 1 is supplied onto the substrate P from both sides of the projection area AR1 at the same time.
[0047]
In the present embodiment, when supplying the liquid 1 to the substrate P from both sides of the projection area AR1 in the scanning direction, the control device CONT controls the liquid supply operation of the first and second liquid supply units 11 and 12 of the liquid supply mechanism 10. During scanning exposure of one shot area on the substrate P, the amount of liquid supplied from one side of the projection area AR1 (the amount of liquid supplied per unit time) in the scanning direction is changed to the amount of liquid supplied from the other side. And make it different. Specifically, the control device CONT sets the liquid supply amount per unit time supplied before the projection area AR1 in the scanning direction to be larger than the liquid supply amount supplied on the opposite side.
[0048]
For example, when performing the exposure processing while moving the substrate P in the + X direction, the control device CONT sets the liquid amount from the −X side (that is, the first liquid supply unit 11) to the + X side (that is, the When performing the exposure processing while moving the substrate P in the −X direction while increasing the liquid amount from the two liquid supply unit 12), the liquid amount from the + X side to the projection area AR1 is changed from the −X side. Make more than liquid volume. As described above, the control device CONT changes the liquid supply amount per unit time of each of the first and second liquid supply units 11 and 12 according to the moving direction of the substrate P.
[0049]
Further, the control device CONT drives the first to fourth liquid recovery units 21 to 24 of the liquid recovery mechanism 20 in parallel with the driving of the liquid supply mechanism 10 to enable the liquid 1 on the substrate P to be recovered. And The control device CONT controls the substrate stage PST supporting the substrate P by X while collecting the liquid 1 on the substrate P in parallel with the supply of the liquid 1 to the surface of the substrate P by the liquid supply mechanism 10 and the liquid recovery mechanism 20. The pattern image of the mask M is projected and exposed on the substrate P via the liquid 1 between the projection optical system PL and the substrate P and the projection optical system PL while moving in the axial direction (scanning direction). At this time, since the liquid supply mechanism 10 simultaneously supplies the liquid 1 from both sides of the projection area AR1 through the first and second flow paths 13 and 14 in the scanning direction, the liquid immersion area AR2 is uniform and excellent. Is formed.
[0050]
FIG. 6 is a schematic diagram showing the behavior of the liquid 1 when performing exposure processing on a first shot area (for example, S2, S4, etc. in FIG. 5) set on the substrate P while moving the substrate P in the −X direction. It is. In FIG. 6, the liquid 1 is simultaneously supplied from the flow paths 13 and 14 to the space between the projection optical system PL and the substrate P, thereby forming a liquid immersion area AR2 so as to include the projection area AR1. Here, the amount of the liquid 1 per unit time supplied from the flow path 14 provided on the + X side with respect to the projection area AR1 is equal to the liquid 1 supplied from the flow path 13 provided on the -X side. Is set to be larger than the liquid amount per unit time, and the liquid 1 supplied from the flow path 14 is pulled by the substrate P moving in the −X direction, so that the liquid 1 is moved toward the −X side with respect to the projection area AR1. The immersion area AR2 expands.
[0051]
When exposing the first shot area while moving the substrate P in the −X direction, the second AF area AF2 on the + X side with respect to the projection area AR1 is used to detect surface position information of the substrate P. As a result, a predetermined area on the substrate P, which passes through the second AF area AF2 and for which the surface position information is detected, is arranged in the projection area AR1. The control device CONT projects detection light from the projection unit 62A of the second detection system 62 of the focus detection system 60 to the second AF area AF2, and based on the result of receiving the reflected light by the light receiving unit 62B, the substrate P Is detected, and the pattern image is projected into the projection area AR1 while controlling the position and orientation of the substrate P via the substrate stage PST based on the detection result of the surface position information.
[0052]
Here, the liquid 1 in the liquid immersion area AR2 is pulled toward the −X side as the substrate P moves in the −X direction, and flows so as to trail on the −X side as shown in FIG. At this time, the liquid 1 does not spread to the second AF area AF2, and the second AF area AF2 can be made a good non-immersion area. On the other hand, as shown in FIG. 6, the liquid immersion area AR2 may be formed in a part of the first AF area AF1, but in this case, the first AF area AF1 is not used for detecting the surface position information, and As described above, since the control device CONT performs the surface position information detection using the second AF area AF2, the surface position information of the substrate P can be detected satisfactorily.
[0053]
When the exposure for the first shot area is completed, the control device CONT stops the liquid supply operation by the liquid supply mechanism 10 and also performs a second shot area different from the first shot area (for example, S3 in FIG. 5). , S5, etc.), the substrate P is stepped. More specifically, for example, after the scanning exposure processing for the shot area S2 is completed, the control device CONT operates on the substrate P in order to perform the scanning exposure processing on the shot area S3 adjacent to the shot area S2 in the Y-axis direction. Stepping movement in the Y-axis direction between the two shot areas S2 and S3.
[0054]
FIG. 7 is a schematic diagram illustrating the behavior of the liquid 1 when the substrate P moves stepwise in the −Y direction. Here, during the exposure of the first shot area and during the stepping movement, a part of the liquid 1 on the substrate P is provided in the first liquid recovery port 31A provided at a position away from the projection area AR1 in the scanning direction. And the like, but the remaining part is not collected in the first liquid collection port 31A but remains on the substrate P. Therefore, during the stepping movement, a state where the liquid 1 is disposed on the substrate P occurs as shown in FIG.
[0055]
Then, the liquid 1 remaining on the substrate P reaches the third liquid recovery port 33A by the stepping movement of the substrate P in the −Y direction. As a result, the liquid recovery mechanism 20 allows the liquid 1 used during the exposure of the first shot area to be recovered during the stepping movement of the substrate P after the completion of the exposure of the first shot area. 33A. Here, the first shot area (for example, S2) and the second shot area (for example, S3) are close to each other in the Y-axis direction, and the liquid recovery mechanism 20 moves in the Y-axis direction with respect to the projection area AR1. The structure is such that the liquid 1 on the substrate P is collected at a collecting position by the distant third liquid collecting port 33A. Thereby, the liquid 1 remaining on the substrate P can be eliminated or reduced, and the occurrence of inconvenience such as temperature fluctuation of the substrate P due to vaporization of the remaining liquid 1 can be suppressed.
[0056]
FIG. 8 is a schematic diagram showing the behavior of the liquid 1 when performing exposure processing on a second shot area (for example, S3, S5, etc. in FIG. 5) set on the substrate P while moving the substrate P in the + X direction. is there. In FIG. 8, the liquid 1 is simultaneously supplied from the channels 13 and 14 to the space between the projection optical system PL and the substrate P, thereby forming the liquid immersion area AR2 so as to include the projection area AR1. Here, the liquid amount per unit time of the liquid 1 supplied from the flow path 13 provided on the −X side with respect to the projection area AR1 is the liquid 1 supplied from the flow path 14 provided on the + X side. Is set to be larger than the amount of liquid per unit time, so that the liquid 1 supplied from the flow path 13 is pulled by the substrate P moving in the + X direction so that the distance between the projection optical system PL and the substrate P It is arranged smoothly in space.
[0057]
When exposing the second shot area while moving the substrate P in the + X direction, the first AF area AF1 on the −X side with respect to the projection area AR1 is used to detect surface position information of the substrate P. As a result, a predetermined area on the substrate P, which has passed through the first AF area AF1 and has detected the surface position information, is arranged in the projection area AR1. The control device CONT projects detection light from the projection unit 61A of the first detection system 61 of the focus detection system 60 to the first AF area AF1, and based on the result of receiving the reflected light by the light receiving unit 61B, the substrate P Is detected, and the pattern image is projected into the projection area AR1 while controlling the position and orientation of the substrate P via the substrate stage PST based on the detection result of the surface position information.
[0058]
Here, the liquid 1 in the liquid immersion area AR2 is pulled toward the + X side as the substrate P moves in the + X direction, and flows so as to trail on the + X side as shown in FIG. At this time, the liquid 1 is not arranged in the first AF area AF1, and the first AF area AF1 can be made a good non-immersion area. On the other hand, as shown in FIG. 8, the liquid immersion area AR2 may be formed in a part of the second AF area AF2. In this case, the second AF area AF2 is not used for detecting the surface position information. As described above, since the control device CONT performs the surface position information detection using the first AF area AF1, it is possible to detect the surface position information of the substrate P satisfactorily.
[0059]
At this time, the liquid 1 used in the exposure of the first shot area may not be completely recovered during the stepping movement, but the remaining liquid is projected by the stepping movement of the substrate P in the −Y direction. Since it is sufficiently far from the area AR1, it does not affect the exposure of the second shot area. The remaining liquid 1 is collected in the third liquid collecting port 33A by moving the substrate P in the + X direction to expose the second shot area. This allows the liquid recovery mechanism 20 to recover the remaining liquid 1 used in the first shot area through the third liquid recovery port 33A during the exposure of the second shot area. it can. Here, since the size (length) of the liquid recovery port 33A in the Y-axis direction is set to be larger than the size of the liquid immersion area AR2 in the Y-axis direction, the liquid recovery mechanism 20 is used for exposure from the liquid recovery port. Thus, the liquid 1 on the substrate P can be smoothly collected.
[0060]
As described above, during the exposure of the first shot area, during the stepping movement of the substrate P, and during the exposure of the second shot area, the liquid 1 used in the exposure of the first shot area is collected. The liquid recovery mechanism 20 removes the liquid 1 on the substrate P so that the liquid 1 used when exposing the first shot area does not enter the projection area AR1 when exposing the next second shot area. We are collecting. As a result, the liquid 1 that is used in the exposure of the first shot area and that has increased in temperature can be prevented from entering the projection area AR1 when exposing the second shot area. Inconveniences such as a change in the refractive index of the liquid 1 in the projection area AR1 can be suppressed.
[0061]
The shot areas S1 to S6 shown in FIG. 5 are sequentially exposed according to the procedure described with reference to FIGS.
FIG. 9 shows that after exposing the shot area (first shot area) S6 shown in FIG. 5, the substrate P is moved in the −X direction in order to move the projection area AR1 to the shot area (second shot area) S7. It is a schematic diagram which shows the behavior of the liquid 1 at the time of line movement (stepping movement). As shown in FIG. 9, during the row movement of the substrate P after the exposure of the shot area S6, the liquid recovery mechanism 20 collects the liquid 1 used in the exposure of the shot area S6 through the first liquid recovery port. It can be recovered via 31A. In this case, the first shot area S6 and the second shot area S7 are close to each other in the X-axis direction, and the liquid recovery mechanism 20 is configured to separate the first liquid recovery area 20 from the projection area AR1 in the X-axis direction. The structure is such that the liquid 1 on the substrate P is collected at the collection position by the port 31A. Accordingly, when performing the stepping movement in the ± X direction that changes the row, the liquid supplied through the liquid recovery port 31A (or 32A) is recovered, so that the liquid 1 does not remain on the substrate P. The occurrence of inconvenience caused by the remaining liquid 1 can be suppressed.
Then, the shot areas S7 to S12 shown in FIG. 5 are sequentially exposed again by the procedure described with reference to FIGS.
[0062]
As described above, since the liquid 1 is supplied onto the substrate P along the side surface 3 of the distal end of the projection optical system PL, the liquid immersion area AR2 can be set small. Accordingly, since the detection light of the focus detection system 60 passes through the non-liquid immersion area and is projected near the projection area AR1, the focus detection system 60 can accurately detect the surface position without being affected by the temperature change of the liquid 1. it can.
[0063]
When sequentially exposing the plurality of shot areas S1 to S12 on the substrate P, the liquid 1 which is used when exposing the first shot area and which contains impurities on the surface of the substrate (resist) and rises in temperature is used for the next exposure. Since the second shot area is collected so as not to enter the projection area AR1 when exposing the second shot area, it is possible to perform the exposure processing with high accuracy also on the second shot area.
[0064]
During exposure of the shot area, exposure light (ArF laser pulse light: for example, a pulse frequency of 4 KHz, a pulse width of 50 ns, and a power of 1.0 W / cm. 2 ), The substrate P (mainly, resist, BARC (anti-reflection film)) is warmed, and the heat is transmitted to the liquid 1, causing the liquid 1 in the projection area AR1 to rise in temperature. Since the liquid 1 flows in the scanning direction at a speed of about 400 mm / sec as the substrate moves in the scanning direction (−X direction), the liquid layer of about 200 nm or less on the surface of the substrate P has a temperature of 1 ° C. or less. Only a slight temperature change occurs. If the thickness of the liquid between the projection optical system PL and the surface of the substrate P is about 1 mm, the thickness of the liquid causing a temperature change and the amount of the temperature change are very small. Therefore, the change of the wavefront aberration due to the temperature change of the liquid 1 in the projection area AR1 is also very small (about 0.1 mλ or less, λ = 193 nm / 1.47), and the pattern image projected on the substrate P Almost no problem.
[0065]
Further, since each of the liquid recovery ports 33A and 34A of the liquid recovery mechanism 20 is arranged at a position separated in the Y-axis direction with respect to the projection area AR1, and the shape thereof is provided so as to extend in the Y-axis direction. When projecting the detection light of the detection system 60 to the AF areas AF1 and AF2 which are separated from the projection area AR1 in the X-axis direction, the recovery members 33 and 34 of the liquid recovery mechanism 20 are arranged at positions not blocking the optical path of the detection light. This makes it possible to smoothly and satisfactorily detect the surface position information of the projection area AR1 using the detection light.
[0066]
Further, since the AF areas AF1 and AF2 used for detecting the surface position information of the substrate P are provided between the projection area AR1 and the liquid recovery position where the liquid recovery port is provided, the AF areas AF1 and AF2 are used. Surface position information of the substrate P disposed in the vicinity of the projection area AR1 can be accurately detected.
[0067]
Further, since the liquid supply mechanism 10 supplies the liquid 1 from both sides in the scanning direction of the projection area AR1 via the first and second flow paths 13 and 14, the supplied liquid 1 moves in the scanning direction. The liquid immersion area AR2 can be smoothly formed so as to include the projection area AR1 because the liquid immersion area AR2 includes the projection area AR1 because the liquid immersion area AR2 is wetted and spread in the projection area AR1 by being pulled by the substrate P. In the present embodiment, the liquid supply mechanism 10 supplies the liquid on the substrate P in the scanning direction because the amount of liquid supplied before the projection area AR1 is larger than the amount of liquid supplied on the opposite side. The liquid 1 flows along the moving direction of the substrate P while being pulled by the moving substrate P, and is smoothly disposed so as to be drawn into the space between the projection optical system PL and the substrate P. Therefore, the liquid 1 supplied from the liquid supply mechanism 10 is smoothly arranged between the projection optical system PL and the substrate P even if the supplied energy is small, and the liquid immersion area AR2 can be formed well. The direction in which the liquid 1 flows can be switched by changing the amount of liquid supplied from each of the first and second flow paths 13 and 14 in accordance with the scanning direction, whereby either the + X direction or the −X direction can be switched. , The liquid immersion area AR2 can be smoothly formed between the projection optical system PL and the substrate P, and a high resolution and a wide depth of focus can be obtained.
[0068]
In the present embodiment, the liquid supply mechanism 10 stops supplying the liquid 1 during the stepping movement of the substrate P. However, until a series of exposure processing operations on one substrate P including the stepping movement are completed ( The liquid 1 may be continuously supplied (until the substrate P is loaded on the substrate stage PST and the exposure processing for all the shot areas S1 to S12 is completed and unloaded from the substrate stage PST). Thereby, the waiting time from the start of the supply of the liquid 1 to the formation of the liquid immersion area AR2 can be shortened, and high throughput can be achieved. Further, it is possible to suppress the occurrence of liquid vibration (so-called water hammer phenomenon) accompanying the ON / OFF of the supply. In addition, even if the liquid 1 is continuously supplied during the stepping movement, the liquid 1 that is going to flow out of the projection area AR1 can be smoothly collected because the liquid recovery mechanism 20 is constantly driven. Here, when the supply of the liquid 1 is continued until the series of exposure processing for one substrate P is completed, the liquid supply mechanism 10 sets the substrate P to the liquid supply amount per unit time during the exposure of the shot area. The liquid supply amount during the stepping movement may be made different. Specifically, the liquid supply mechanism 10 reduces the liquid supply amount per unit time during the stepping movement of the substrate P than the liquid supply amount during scanning exposure of the shot area. Accordingly, the amount of liquid supply to the substrate P during the stepping movement that does not contribute to the exposure processing can be suppressed, and the amount of liquid used in the entire exposure processing can be suppressed. As described above, the liquid supply mechanism 10 may change the liquid supply amount per unit time of each of the first and second liquid supply units 11 and 12 according to the movement operation (stepping movement or scanning movement) of the substrate P. Good.
[0069]
Further, in the present embodiment, the liquid recovery mechanism 20 performs liquid recovery so that the liquid used during the exposure of the first shot area does not enter the projection area AR1 during the exposure of the next second shot area. However, the movement path during the stepping movement of the substrate P may be devised so that the liquid recovery of the liquid recovery mechanism 20 is performed more smoothly. For example, after the exposure of the first shot region is completed, the substrate P may be moved toward the position of the liquid recovery port of the liquid recovery mechanism 20, or the moving distance or the moving time during the stepping of the substrate P may be increased. Alternatively, the supply of the liquid from the liquid supply mechanism 10 may be continued after the exposure of the first shot area is completed, and the liquid used during the exposure of the first shot area may be pushed out (away) from the projection area AR1. At this time, the supply amount and the supply position of the liquid may be adjusted.
[0070]
In the present embodiment, when the liquid 1 is supplied from both sides of the projection area AR1 in the scanning direction, the amount of liquid supplied from the near side in the scanning direction is larger than the amount of liquid supplied from the opposite side in the scanning direction. The same amount of liquid 1 may be supplied simultaneously from both sides of the liquid. This makes it possible to balance the forces applied to the distal end side surfaces 3 and 3 of the projection optical system PL, and it is possible to expect good pattern image projection. On the other hand, while the supply of the liquid 1 is continued, the amount of the liquid 1 to be supplied can be reduced by changing the amount of the liquid supplied from both sides of the projection area AR1 in the scanning direction according to the scanning direction.
[0071]
In the present embodiment, the liquid supply mechanism 10 simultaneously supplies the liquid 1 from each of the first and second flow paths 13 and 14. However, for example, when the substrate P is scanned and moved to the + X side, When the liquid supply from the second flow path 14 is stopped and the liquid 1 is supplied only from the first flow path 13, the liquid supply from the first flow path 13 is stopped when the substrate P is scanned and moved to the −X side. The liquid 1 may be supplied only from the second flow path 14.
[0072]
In this embodiment, the guide plate 4 is provided along the side surface 3 of the distal end of the projection optical system PL, but the guide plate 4 may not be provided. By performing the lyophilic processing on the side surface 3, the liquid 1 supplied to the side surface 3 from the liquid supply unit and the supply pipe is held by the side surface 3, and can be supplied to the vicinity of the projection area AR1 on the substrate P along the side surface 3. It is. On the other hand, by providing the guide plate 4, for example, even when the liquid 1 to be used is changed, the lyophilicity of the side surface 3 is not sufficient, and a state in which the side surface 3 cannot hold the liquid 1 occurs. The liquid 1 in the middle can be prevented from dropping onto the substrate P. Therefore, it is possible to suppress the occurrence of exposure unevenness due to the dropped liquid 1 and the influence of the substrate P on the resist. Further, by providing the guide plate 4, the liquid 1 can be smoothly supplied to the vicinity of the projection area AR1 on the substrate P without performing the lyophilic treatment on the side surface 3.
[0073]
In the present embodiment, the lyophilic treatment is performed on the side surface 3 and the guide plate 4 constituting the first and second flow paths 13 and 14, but the liquid 1 flows out of the liquid recovery mechanism 20. The lyophilic treatment can also be performed on the surface of the channel. In particular, by performing lyophilic processing on the liquid recovery member of the liquid recovery mechanism 20, liquid recovery can be performed smoothly. Alternatively, the lyophilic treatment can be performed on the tip end surface of the projection optical system PL with which the liquid 1 comes into contact. When a thin film is formed on the distal end surface of the projection optical system PL, the thin film is disposed on the optical path of the exposure light EL. Therefore, the thin film is formed of a material having transparency to the exposure light EL. The exposure light EL is set to such a degree that it can be transmitted.
[0074]
The surface of the substrate P may be subjected to a surface treatment in accordance with the affinity with the liquid 1.
[0075]
Note that the thin film for the surface treatment may be a single-layer film or a film including a plurality of layers. Further, as a material for forming the material, any material such as a metal, a metal compound, and an organic material can be used as long as the material can exhibit desired performance.
[0076]
In the present embodiment, the first and second flow paths 13 and 14 have been described as being provided with the first and second liquid supply units. However, one liquid supply unit is provided and this one The supply pipes 11A and 12A may be connected to the liquid supply unit. In this case, a valve is provided in each of the supply pipes 11A and 12A, and the amounts of liquid supply from the first and second flow paths 13 and 14 to the substrate P are adjusted to different values by adjusting the opening degree of the valves. Can be. Similarly, in the present embodiment, the liquid recovery units 21 to 24 are provided for each of the liquid recovery members 31 to 34. However, one liquid recovery unit is provided, and this one liquid recovery unit and a plurality of liquid recovery members are provided. May be connected by a collection pipe.
[0077]
In the present embodiment, the side surface 3 (the flow paths 13 and 14) of the projection optical system PL has been described as being provided on both sides in the scanning direction, but may be provided in the non-scanning direction.
[0078]
The liquid supply units 11 and 12 and the liquid recovery units 21 and 22 are preferably supported by a support member other than the projection optical system PL and a support member that supports the projection optical system PL. Thereby, it is possible to prevent the vibration generated by the operation of the pump and the like accompanying the supply and recovery of the liquid from being transmitted to the projection optical system PL.
[0079]
Hereinafter, another embodiment of the present invention will be described. Here, in the following description, the same reference numerals are given to the same or equivalent components as those in the above-described embodiment, and the description thereof will be simplified or omitted.
FIG. 10 is a schematic view showing another example of the arrangement of the liquid recovery ports of the liquid recovery mechanism. As shown in FIG. 10, liquid recovery ports 33B and 33C and liquid recovery ports 34B and 34C that are inclined with respect to the Y axis are provided on both sides of the projection area AR1 in the Y axis direction. Here, the liquid recovery member having the liquid recovery ports 33B, 33C, 34B, and 34C is provided at a position that does not block the optical path of the detection light of the focus detection system. As described above, the liquid recovery port provided in the Y-axis direction with respect to the projection area AR1 does not need to be provided in parallel and side by side with the projection area AR1, and may be provided at a position shifted from the projection area AR1. Good. By providing the liquid recovery port at a position shifted or inclined with respect to the projection area AR1, for example, the exposure of the first shot area during the stepping movement of the substrate P after the exposure of the first shot area is completed. The liquid 1 used at the time of (1) can be more efficiently collected. That is, if the liquid recovery ports 33A (34A) are arranged so that their longitudinal directions coincide with the Y-axis direction and are arranged side by side in the projection area AR1, as described with reference to FIG. In some cases, the liquid 1 on the substrate P cannot be completely recovered. However, as shown in FIG. 10, by providing the liquid recovery port so as to be inclined with respect to the Y axis, the first shot area during the stepping movement can be reduced. The entire liquid 1 on the substrate P used for exposure can be collected.
[0080]
11 and 12 are views showing another embodiment of the liquid recovery port. As shown in FIG. 11, a plurality of liquid recovery ports (liquid recovery members) 31D, 32D, 33D, 34D, etc. may be arranged intermittently. As shown in FIG. 12, the liquid recovery port (liquid recovery member) may have a shape surrounding the projection area AR1 and the AF areas AF1 and AF2. The liquid recovery port 31K shown in FIG. 12 is formed in a rectangular shape in plan view so as to surround the projection area AR1 and the AF areas AF1 and AF2, but may be formed in a shape other than a rectangle (for example, a circle). By providing the liquid recovery port so as to surround the projection area AR1 and the AF areas AF1 and AF2, the liquid recovery can be reliably performed. In this case, the liquid recovery member constituting the liquid recovery port is provided at a position that does not interfere with the optical path of the detection light of the focus detection system 60.
[0081]
In the above embodiment, the side surface 3 of the projection optical system PL has been described as a flat surface (linear in cross section). However, as shown in FIG. Surface treatment may be performed. By performing the rough surface treatment, the surface area of the side surface 3 is increased, and the liquid 1 can be held more favorably. Therefore, the liquid 1 can be smoothly supplied onto the substrate P without providing the guide plate 4.
Further, the side surface 3 may be curved. Specifically, as shown in FIG. 14, the side surface 3 may be in a cross-sectional view, for example, a quadratic curve or an arc. Even with such a shape, the liquid 1 can be satisfactorily circulated. In particular, by making the side surface 3 a cycloidal curve, the time required for the fluid 1 to reach the outlet 13B (14B) from the inlet 13A (14A) can be reduced. Here, it is preferable that the side surface 3 is a curved surface that bulges outward with respect to the central portion (optical axis) of the projection optical system PL.
The lyophilic treatment can also be performed on the side surface 3 shown in FIGS.
[0082]
In recent years, a twin-stage type exposure apparatus equipped with two stages for holding the substrate P has appeared, but the present invention is also applicable to a twin-stage type exposure apparatus.
FIG. 15 is a schematic configuration diagram of a twin-stage type exposure apparatus EX2. The twin-stage type exposure apparatus EX2 includes first and second substrate stages PST1 and PST2 that can move independently on a common base 71, respectively. The twin-stage type exposure apparatus EX2 has an exposure station A and a measurement / exchange station B. The exposure station A is equipped with all the systems shown in FIG. Further, the measurement / exchange station B is equipped with a focus detection system 60 having a projection unit 60A and a light receiving unit 60B.
[0083]
As a basic operation of such a twin-stage type exposure apparatus EX2, for example, during the exposure processing of the substrate P on the second substrate stage PST2 at the exposure station A, at the measurement / exchange station B, on the first substrate stage PST1 The substrate P is replaced and the measurement process is performed. When the respective operations are completed, the second substrate stage PST2 moves to the measurement / exchange station B, and in parallel, the first substrate stage PST1 moves to the exposure station A, and this time, the measurement is performed at the second substrate stage PST2. Then, the exchanging process is performed, and the exposing process is performed on the substrate P on the first substrate stage PST1.
[0084]
That is, in the measurement / exchange station B, the surface position information of the substrate P is detected by the focus detection system 60, and the detection result is stored in the control device CONT. The control device CONT moves the substrate P whose surface position information has been detected to the exposure station A, and adjusts the positional relationship between the image plane of the projection optical system PL and the surface of the substrate P based on the stored surface position information. Exposure processing is performed.
[0085]
As described above, in the case of the twin-stage type exposure apparatus EX2, it is possible to adopt a configuration in which the focus detection system 60 is not provided in the exposure station A, so that the degree of freedom of the installation position of the liquid recovery member can be increased. . Therefore, as shown in FIG. 16, in the exposure station A, the liquid recovery member (liquid recovery port) can be provided closer to the projection area AR1, and the liquid recovery operation can be performed smoothly. The liquid recovery ports 31E and 32E shown in FIG. 16 are each formed in a U-shape in plan view, arranged on both sides of the projection area AR1 in the scanning direction, and provided so as to surround the projection area AR1. Thus, the liquid recovery mechanism can perform the liquid recovery through the liquid recovery ports 31E and 32E satisfactorily during the scanning exposure and during the stepping movement.
[0086]
When the exposure station A is also provided with a focus detection system, as shown in FIG. 17, AF regions AF1 and AF2 can be set outside the liquid recovery ports 31E and 32E with respect to the projection region AR1.
[0087]
As described above, the liquid 1 in the present embodiment is composed of pure water. Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that there is no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like. In addition, since pure water has no adverse effect on the environment and has a very low impurity content, an effect of cleaning the surface of the substrate P and the surface of the optical element provided on the tip end surface of the projection optical system PL can be expected. . Since the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is approximately 1.47, when the ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL, the substrate P Above, the wavelength is shortened to 1 / n, that is, about 131 nm, and a high resolution is obtained. Further, since the depth of focus is expanded to about n times, that is, about 1.47 times as compared with that in the air, if it is sufficient to secure the same depth of focus as that used in the air, the projection optical system PL Can be further increased, and also in this respect, the resolution is improved.
[0088]
In the present embodiment, a lens is attached as the optical element 2 to the tip of the projection optical system PL, and this lens can be used to adjust the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma aberration, etc.). it can.
[0089]
When the pressure between the optical element at the tip of the projection optical system PL and the substrate P generated by the flow of the liquid 1 is large, the optical element is not replaced but the optical element is moved by the pressure. It may be fixed firmly so that it does not occur.
[0090]
The liquid 1 of the present embodiment is water, but may be a liquid other than water. For example, the light source of the exposure light EL is F 2 If it is a laser, this F 2 Since the laser light does not pass through water, the liquid 1 is F 2 It may be a fluorine-based fluid such as a fluorine-based oil that can transmit laser light. In this case, the portion in contact with the liquid 1 including the side surface 3 is subjected to lyophilic treatment by forming a thin film with a substance having a molecular structure having a small polarity including fluorine, for example. In addition, as the liquid 1, a liquid that is transparent to the exposure light EL, has a refractive index as high as possible, and is stable with respect to the photoresist applied to the projection optical system PL and the surface of the substrate P (for example, Cedar) Oil) can also be used. Also in this case, the surface treatment is performed according to the polarity of the liquid 1 to be used.
[0091]
The substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus. (Synthetic quartz, silicon wafer) and the like are applied.
[0092]
The exposure apparatus EX includes a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by synchronously moving the mask M and the substrate P. Can be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate is stationary, and the substrate P is sequentially moved stepwise. The present invention is also applicable to a step-and-stitch type exposure apparatus that transfers at least two patterns on the substrate P while partially overlapping each other.
[0093]
The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto the substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging element (CCD). ) Or an exposure apparatus for manufacturing a reticle or a mask.
[0094]
When a linear motor (see US Pat. No. 5,623,853 or US Pat. No. 5,528,118) is used for the substrate stage PST and the mask stage MST, an air levitation type using an air bearing and a magnetic levitation type using Lorentz force or reactance force are used. Either may be used. Further, each of the stages PST and MST may be of a type that moves along a guide, or may be a guideless type without a guide.
[0095]
As a driving mechanism of each stage PST, MST, a planar motor that drives each stage PST, MST by electromagnetic force by facing a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil. May be used. In this case, one of the magnet unit and the armature unit may be connected to the stages PST and MST, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stages PST and MST.
[0096]
As described in JP-A-8-166475 (US Pat. No. 5,528,118), a reaction force generated by the movement of the substrate stage PST is not transmitted to the projection optical system PL. You may escape to the floor (ground).
As described in JP-A-8-330224 (US S / N 08 / 416,558), a reaction force generated by the movement of the mask stage MST is not transmitted to the projection optical system PL. May be used to mechanically escape to the floor (ground).
[0097]
As described above, the exposure apparatus EX according to the embodiment of the present invention controls various subsystems including the respective components listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electric systems to ensure these various accuracy Are adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from the various subsystems includes mechanical connection, wiring connection of an electric circuit, and piping connection of a pneumatic circuit among the various subsystems. It goes without saying that there is an assembling process for each subsystem before the assembling process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable that the manufacture of the exposure apparatus be performed in a clean room in which the temperature, cleanliness, and the like are controlled.
[0098]
As shown in FIG. 18, for a microdevice such as a semiconductor device, a step 201 for designing the function and performance of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, a substrate which is a base material of the device, as shown in FIG. 203, an exposure processing step 204 of exposing a mask pattern to a substrate by the exposure apparatus EX of the above-described embodiment, a device assembling step (including a dicing step, a bonding step, and a packaging step) 205, an inspection step 206, and the like. Manufactured through
[0099]
【The invention's effect】
According to the present invention, when performing exposure processing in a state where an immersion area is formed between the projection optical system and the substrate, an optical path of detection light for detecting surface position information of the substrate is provided in the non-immersion area. Can be. Therefore, the surface position information of the substrate can be detected with high accuracy, and highly accurate pattern transfer accuracy can be obtained. Further, when sequentially exposing a plurality of shot areas on the substrate, the liquid used for exposing the first shot area is collected so as not to enter the projection area when exposing the second shot area. Therefore, the liquid used when exposing the second shot area performs accurate exposure processing without being affected by the liquid which is used when exposing the first shot area and whose temperature is increased by irradiation with the exposure light. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus of the present invention.
FIG. 2 is an enlarged view of a main part of FIG. 1, showing a schematic configuration of a liquid supply mechanism and a liquid recovery mechanism which are characteristic parts of the present invention.
FIG. 3 is a perspective view showing a schematic configuration of a liquid supply mechanism and a liquid recovery mechanism which are characteristic parts of the present invention.
FIG. 4 is a plan view schematically showing a positional relationship between a projection area, an AF area, and a liquid recovery port.
FIG. 5 is a diagram showing shot areas set on a substrate.
FIG. 6 is a schematic diagram illustrating a behavior of a liquid during an exposure operation.
FIG. 7 is a schematic view illustrating the behavior of a liquid during an exposure operation.
FIG. 8 is a schematic view illustrating the behavior of a liquid during an exposure operation.
FIG. 9 is a schematic diagram illustrating the behavior of a liquid during an exposure operation.
FIG. 10 is a view showing another embodiment of the liquid recovery port of the liquid recovery mechanism.
FIG. 11 is a view showing another embodiment of the liquid recovery port of the liquid recovery mechanism.
FIG. 12 is a view showing another embodiment of the liquid recovery port of the liquid recovery mechanism.
FIG. 13 is a side sectional view showing another embodiment of the side surface of the projection optical system.
FIG. 14 is a side sectional view showing another embodiment of the side surface of the projection optical system.
FIG. 15 is a view showing another embodiment of the exposure apparatus of the present invention.
FIG. 16 is a view showing another embodiment of the liquid recovery port.
FIG. 17 is a view showing another embodiment of the liquid recovery port.
FIG. 18 is a flowchart illustrating an example of a semiconductor device manufacturing process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... liquid, 3 ... side surface, 4 ... guide plate, 10 ... liquid supply mechanism,
11, 12: liquid supply unit, 13: first flow path, 14: second flow path,
20 liquid recovery mechanism, 21-24 liquid recovery section, 31-34 liquid recovery member,
31A to 34A: liquid recovery port, 60: focus detection system, AR1: projection area,
AR2: liquid immersion area, CONT: control device, EX: exposure device, M: mask,
P: substrate, PL: projection optical system, S1 to S12: shot area

Claims (21)

投影光学系の投影領域を含む基板上の一部に液浸領域を形成し、前記投影光学系と前記基板との間の液体及び前記投影光学系を介してパターン像を前記基板上に投影し、前記基板の複数のショット領域を順次露光する露光装置において、
前記液浸領域を形成するために、前記投影光学系の少なくとも先端付近の側面を伝って前記基板上に液体を供給する液体供給機構を備えたことを特徴とする露光装置。
A liquid immersion area is formed on a portion of the substrate including the projection area of the projection optical system, and a pattern image is projected onto the substrate via the liquid and the projection optical system between the projection optical system and the substrate. An exposure apparatus for sequentially exposing a plurality of shot areas of the substrate,
An exposure apparatus, comprising: a liquid supply mechanism that supplies a liquid onto the substrate through at least a side surface near a front end of the projection optical system to form the liquid immersion area.
前記液体供給機構は、前記側面に沿うように配置されたガイド板を有し、前記側面と前記ガイド板との間に前記液体を流して前記基板上に液体を供給することを特徴とする請求項1記載の露光装置。The liquid supply mechanism has a guide plate arranged along the side surface, and supplies the liquid onto the substrate by flowing the liquid between the side surface and the guide plate. Item 2. An exposure apparatus according to Item 1. 前記液体の供給と並行して前記基板上の液体の回収を行う液体回収機構を更に備えたことを特徴とする請求項1又は2記載の露光装置。3. The exposure apparatus according to claim 1, further comprising a liquid recovery mechanism that recovers the liquid on the substrate in parallel with the supply of the liquid. 前記液体回収機構は、第1ショット領域を露光したときに使われた液体が次の第2ショット領域を露光するときに前記投影領域に入らないように前記基板上の液体を回収することを特徴とする請求項3記載の露光装置。The liquid recovery mechanism recovers the liquid on the substrate so that the liquid used when exposing the first shot area does not enter the projection area when exposing the next second shot area. The exposure apparatus according to claim 3, wherein 投影光学系の投影領域を含む基板上の一部に液浸領域を形成し、前記投影光学系と前記基板との間の液体及び前記投影光学系を介してパターン像を前記基板上に投影し、前記基板の複数のショット領域を順次露光する露光装置において、
前記液浸領域を形成するために前記基板上に液体を供給する液体供給機構と、
前記基板上の第1ショット領域を露光するときに使われた液体が第2ショット領域を露光するときに前記投影領域に入らないように前記基板上の液体を回収する液体回収機構とを備えたことを特徴とする露光装置。
A liquid immersion area is formed on a portion of the substrate including the projection area of the projection optical system, and a pattern image is projected onto the substrate via the liquid and the projection optical system between the projection optical system and the substrate. An exposure apparatus for sequentially exposing a plurality of shot areas of the substrate,
A liquid supply mechanism for supplying liquid onto the substrate to form the liquid immersion area,
A liquid collecting mechanism for collecting the liquid on the substrate so that the liquid used when exposing the first shot area on the substrate does not enter the projection area when exposing the second shot area. Exposure apparatus characterized by the above-mentioned.
前記第2ショット領域は前記第1ショット領域の所定方向に近接しており、前記液体回収機構は、前記投影領域に対して所定方向に離れた位置で前記基板上の液体回収を行うことを特徴とする請求項4又は5記載の露光装置。The second shot area is adjacent to the first shot area in a predetermined direction, and the liquid recovery mechanism performs liquid recovery on the substrate at a position away from the projection area in a predetermined direction. The exposure apparatus according to claim 4 or 5, wherein 前記液体回収機構は、前記投影領域に対して前記所定方向と直交する方向に離れた位置で前記基板上の液体回収を行うことを特徴とする請求項6記載の露光装置。7. The exposure apparatus according to claim 6, wherein the liquid recovery mechanism performs liquid recovery on the substrate at a position separated from the projection area in a direction orthogonal to the predetermined direction. 前記液体回収機構は、前記第1ショット領域の露光終了後の前記基板のステッピング移動中に、前記第1ショット領域の露光のときに使われた液体の回収を行うことを特徴とする請求項4又は5記載の露光装置。5. The liquid recovery mechanism according to claim 4, wherein during the stepping movement of the substrate after the exposure of the first shot area is completed, the liquid used in the exposure of the first shot area is recovered. Or the exposure apparatus according to 5. 前記液体回収機構は、前記第2ショット領域の露光中に、前記第1ショット領域の露光のときに使われた液体の回収を行うことを特徴とする請求項8記載の露光装置。9. The exposure apparatus according to claim 8, wherein the liquid recovery mechanism recovers the liquid used during the exposure of the first shot area during the exposure of the second shot area. 前記液体供給機構は、前記第1ショット領域の露光終了後も、前記第1ショット領域に露光中と同じ液体供給口からの液体供給を続けることを特徴とする請求項4〜9のいずれか一項記載の露光装置。10. The liquid supply mechanism according to claim 4, wherein the liquid supply mechanism continues to supply the liquid from the same liquid supply port as during the exposure to the first shot area even after the exposure of the first shot area is completed. An exposure apparatus according to any one of the preceding claims. 前記液体供給機構は、前記投影領域の両側で前記液体供給を続けることを特徴とする請求項10記載の露光装置。The exposure apparatus according to claim 10, wherein the liquid supply mechanism continues the liquid supply on both sides of the projection area. 前記基板上の複数のショット領域のそれぞれは、前記パターン像が投影される前記投影領域に対して前記基板を所定の走査方向に移動しながら露光され、
前記液体供給機構は、前記走査方向に関して、前記投影領域の両側で前記液体供給を続けることを特徴とする請求項11記載の露光装置。
Each of the plurality of shot areas on the substrate is exposed while moving the substrate in a predetermined scanning direction with respect to the projection area where the pattern image is projected,
The exposure apparatus according to claim 11, wherein the liquid supply mechanism continues to supply the liquid on both sides of the projection area in the scanning direction.
前記基板上の複数のショット領域のそれぞれは、前記パターン像が投影される前記投影領域に対して前記基板を所定の走査方向に移動しながら露光され、
前記液体回収機構は、前記投影領域に対して前記走査方向と交差する非走査方向に離れて配置された、前記非走査方向に延びる液体回収口を有することを特徴とする請求項3〜12のいずれか一項記載の露光装置。
Each of the plurality of shot areas on the substrate is exposed while moving the substrate in a predetermined scanning direction with respect to the projection area where the pattern image is projected,
13. The liquid collecting mechanism according to claim 3, wherein the liquid collecting mechanism includes a liquid collecting port extending in the non-scanning direction and separated from the projection area in a non-scanning direction intersecting with the scanning direction. The exposure apparatus according to claim 1.
投影光学系の投影領域を含む基板上の一部に液浸領域を形成し、前記投影光学系と前記基板との間の液体及び前記投影光学系を介してパターン像を前記投影領域内に投影するとともに、前記投影領域に対して前記基板を所定の走査方向に移動することによって前記基板上の複数のショット領域のそれぞれを順次露光する露光装置において、
前記液浸領域を形成するために前記基板上に液体を供給する液体供給機構と、
前記液体の供給と並行して前記基板上の液体の回収を行う液体回収機構とを備え、
前記液体回収機構は、前記投影領域に対して前記走査方向と交差する非走査方向に離れて配置された、前記非走査方向に延びる液体回収口を有することを特徴とする露光装置。
A liquid immersion area is formed on a part of the substrate including the projection area of the projection optical system, and a pattern image is projected into the projection area via the liquid between the projection optical system and the substrate and the projection optical system. And an exposure apparatus for sequentially exposing each of a plurality of shot areas on the substrate by moving the substrate in a predetermined scanning direction with respect to the projection area,
A liquid supply mechanism for supplying liquid onto the substrate to form the liquid immersion area,
A liquid recovery mechanism that recovers the liquid on the substrate in parallel with the supply of the liquid,
The exposure apparatus according to claim 1, wherein the liquid recovery mechanism has a liquid recovery port extending in the non-scanning direction and separated from the projection area in a non-scanning direction intersecting with the scanning direction.
前記パターン像が形成される像面と前記基板表面との位置関係を調整するために前記基板表面の面位置情報を検出する検出系を更に備え、
前記基板上の複数のショット領域のそれぞれは、前記パターン像が投影される前記投影領域に対して前記基板を所定の走査方向に移動しながら露光され、
前記液体回収機構は、前記投影領域に対して走査方向に離れた回収位置で前記基板上の液体の回収を行い、
前記検出系は、前記投影領域と前記回収位置との間で前記面位置情報の検出を行うことを特徴とする請求項3〜14のいずれか一項記載の露光装置。
Further comprising a detection system for detecting surface position information of the substrate surface to adjust the positional relationship between the image surface on which the pattern image is formed and the substrate surface,
Each of the plurality of shot areas on the substrate is exposed while moving the substrate in a predetermined scanning direction with respect to the projection area where the pattern image is projected,
The liquid recovery mechanism recovers the liquid on the substrate at a recovery position separated in the scanning direction with respect to the projection area,
The exposure apparatus according to claim 3, wherein the detection system detects the surface position information between the projection area and the collection position.
投影光学系の投影領域を含む基板上の一部に液浸領域を形成し、前記投影光学系と前記基板との間の液体及び前記投影光学系を介してパターン像を前記投影領域内に投影するとともに、前記投影領域に対して前記基板を所定の走査方向に移動することによって前記基板上の複数のショット領域のそれぞれを順次露光する露光装置において、
前記液浸領域を形成するために前記基板上に液体を供給する液体供給機構と、
前記液体の供給と並行して、前記投影領域に対して前記走査方向に離れた回収位置で、前記基板上の液体の回収を行う液体回収機構と、
前記パターン像が形成される像面と前記基板表面との位置関係を調整するために、前記基板表面の面位置情報を検出する検出系とを備え、
前記検出系は、前記投影領域と前記回収位置との間で前記面位置情報の検出を行うことを特徴とする露光装置。
A liquid immersion area is formed on a part of the substrate including the projection area of the projection optical system, and a pattern image is projected into the projection area via the liquid between the projection optical system and the substrate and the projection optical system. And an exposure apparatus for sequentially exposing each of a plurality of shot areas on the substrate by moving the substrate in a predetermined scanning direction with respect to the projection area,
A liquid supply mechanism for supplying liquid onto the substrate to form the liquid immersion area,
In parallel with the supply of the liquid, at a collection position separated in the scanning direction with respect to the projection area, a liquid collection mechanism for collecting the liquid on the substrate,
In order to adjust the positional relationship between the image surface on which the pattern image is formed and the substrate surface, a detection system that detects surface position information of the substrate surface,
An exposure apparatus, wherein the detection system detects the surface position information between the projection area and the collection position.
前記液体回収機構は、前記走査方向と交差する非走査方向に所定の長さを有する液体回収口を備え、
前記液体回収口は、前記走査方向に関して前記投影領域の両側に配置されていることを特徴とする請求項15又は16記載の露光装置。
The liquid recovery mechanism includes a liquid recovery port having a predetermined length in a non-scanning direction that intersects the scanning direction,
17. The exposure apparatus according to claim 15, wherein the liquid recovery ports are arranged on both sides of the projection area in the scanning direction.
前記基板上の複数のショット領域のそれぞれは、前記パターン像が投影される前記投影領域に対して前記基板を所定の走査方向に移動しながら露光され、
前記液体供給機構は、前記走査方向と平行な方向に関して、前記投影領域の両側で液体の供給を同時に行うことを特徴とする請求項1〜17のいずれか一項記載の露光装置。
Each of the plurality of shot areas on the substrate is exposed while moving the substrate in a predetermined scanning direction with respect to the projection area where the pattern image is projected,
18. The exposure apparatus according to claim 1, wherein the liquid supply mechanism simultaneously supplies liquid on both sides of the projection area in a direction parallel to the scanning direction.
前記液体供給機構は、前記投影領域の両側から同量の液体を同時に供給することを特徴とするとする請求項18記載の露光装置。19. The exposure apparatus according to claim 18, wherein the liquid supply mechanism simultaneously supplies the same amount of liquid from both sides of the projection area. 前記基板上の一つのショット領域の走査露光中に、前記投影領域の一方側から供給される液体量が、他方側から供給される液体量と異なることを特徴とする請求項18記載の露光装置。19. The exposure apparatus according to claim 18, wherein during scanning exposure of one shot area on the substrate, the amount of liquid supplied from one side of the projection area is different from the amount of liquid supplied from the other side. . 請求項1〜請求項20のいずれか一項記載の露光装置を用いることを特徴とするデバイス製造方法。A device manufacturing method using the exposure apparatus according to any one of claims 1 to 20.
JP2003049366A 2003-02-26 2003-02-26 Exposure apparatus, exposure method, and device manufacturing method Expired - Lifetime JP4604452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049366A JP4604452B2 (en) 2003-02-26 2003-02-26 Exposure apparatus, exposure method, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049366A JP4604452B2 (en) 2003-02-26 2003-02-26 Exposure apparatus, exposure method, and device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010058138A Division JP2010135853A (en) 2010-03-15 2010-03-15 Exposure apparatus, exposure method, and method for manufacturing device

Publications (2)

Publication Number Publication Date
JP2004259966A true JP2004259966A (en) 2004-09-16
JP4604452B2 JP4604452B2 (en) 2011-01-05

Family

ID=33115102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049366A Expired - Lifetime JP4604452B2 (en) 2003-02-26 2003-02-26 Exposure apparatus, exposure method, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP4604452B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019864A (en) * 2003-06-27 2005-01-20 Canon Inc Exposure device and method
WO2005020298A1 (en) * 2003-08-26 2005-03-03 Nikon Corporation Optical element and exposure device
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
WO2006041091A1 (en) * 2004-10-12 2006-04-20 Nikon Corporation Exposure apparatus maintenance method, exposure apparatus, device manufacturing method and liquid recovering member for immersion exposure apparatus maintenance
WO2006054682A1 (en) * 2004-11-18 2006-05-26 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method, exoposure apparatus, and device production method
JP2006165550A (en) * 2004-12-02 2006-06-22 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2006186112A (en) * 2004-12-27 2006-07-13 Toshiba Corp Immersion exposing method, immersion type exposing device and method for manufacturing semiconductor device
JP2006190971A (en) * 2004-10-13 2006-07-20 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method
WO2006080212A1 (en) * 2005-01-28 2006-08-03 Nikon Corporation Projection optical system, exposure system, and exposure method
KR100659451B1 (en) 2005-11-18 2006-12-19 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Improved immersion lithography system with wafer sealing mechanisms
JP2007515798A (en) * 2003-12-23 2007-06-14 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
WO2007147304A1 (en) * 2006-06-13 2007-12-27 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for immersion lithography machine
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
WO2008037131A1 (en) * 2006-09-22 2008-04-03 Shanghai Micro Electronics Equipment Co., Ltd. Dual stage positioning and switching system
JPWO2006030910A1 (en) * 2004-09-17 2008-05-15 株式会社ニコン Exposure substrate, exposure method and device manufacturing method
JP2009117879A (en) * 2004-11-12 2009-05-28 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
JP2009141359A (en) * 2007-12-10 2009-06-25 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009182337A (en) * 2004-11-12 2009-08-13 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009212539A (en) * 2004-02-18 2009-09-17 Nikon Corp Optical element and exposure apparatus
JP2009272636A (en) * 2008-05-08 2009-11-19 Asml Netherlands Bv Liquid immersion lithographic device, drying device, liquid immersion metro logy device and method for manufacturing device
JP2010098332A (en) * 2004-02-02 2010-04-30 Nikon Corp Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7710653B2 (en) 2005-01-28 2010-05-04 Nikon Corporation Projection optical system, exposure system, and exposure method
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
JP2011254089A (en) * 2004-12-20 2011-12-15 Asml Netherlands Bv Lithographic apparatus
KR101119813B1 (en) 2003-12-15 2012-03-06 가부시키가이샤 니콘 Stage system, exposure apparatus and exposure method
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012124539A (en) * 2005-06-21 2012-06-28 Asml Netherlands Bv Lithographic apparatus
JP2012151513A (en) * 2003-08-29 2012-08-09 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US8272544B2 (en) * 2003-10-28 2012-09-25 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
JP2013016865A (en) * 2008-09-17 2013-01-24 Asml Netherlands Bv Lithographic apparatus and method of operating lithographic apparatus
KR101236120B1 (en) * 2004-10-26 2013-02-28 가부시키가이샤 니콘 Substrate processing method, exposure apparatus and method for manufacturing device
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8767171B2 (en) 2003-12-23 2014-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8928857B2 (en) 2009-05-01 2015-01-06 Asml Netherlands B.V. Lithographic apparatus and method of operating the apparatus
JP2015135524A (en) * 2004-01-20 2015-07-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithographic projection exposure apparatus and measuring device for projection lens
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2017520792A (en) * 2014-07-01 2017-07-27 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method for manufacturing a lithographic apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265326A (en) * 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPH04340242A (en) * 1991-04-03 1992-11-26 Hitachi Ltd Microscope
JPH11176727A (en) * 1997-12-11 1999-07-02 Nikon Corp Projection aligner
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
WO2004055803A1 (en) * 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265326A (en) * 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPH04340242A (en) * 1991-04-03 1992-11-26 Hitachi Ltd Microscope
JPH11176727A (en) * 1997-12-11 1999-07-02 Nikon Corp Projection aligner
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
WO2004055803A1 (en) * 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767173B2 (en) 2002-12-10 2014-07-01 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP2005019864A (en) * 2003-06-27 2005-01-20 Canon Inc Exposure device and method
WO2005020298A1 (en) * 2003-08-26 2005-03-03 Nikon Corporation Optical element and exposure device
JP2010118678A (en) * 2003-08-26 2010-05-27 Nikon Corp Optical element and exposure apparatus
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US10175584B2 (en) 2003-08-26 2019-01-08 Nikon Corporation Optical element and exposure apparatus
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8804097B2 (en) 2003-08-29 2014-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9606448B2 (en) 2003-08-29 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9442388B2 (en) 2003-08-29 2016-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012151513A (en) * 2003-08-29 2012-08-09 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US10146142B2 (en) 2003-08-29 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
US8797506B2 (en) 2003-10-28 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8272544B2 (en) * 2003-10-28 2012-09-25 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
KR101119813B1 (en) 2003-12-15 2012-03-06 가부시키가이샤 니콘 Stage system, exposure apparatus and exposure method
US10768538B2 (en) 2003-12-23 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007515798A (en) * 2003-12-23 2007-06-14 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US10613447B2 (en) 2003-12-23 2020-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710541B2 (en) 2003-12-23 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9465301B2 (en) 2003-12-23 2016-10-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8767171B2 (en) 2003-12-23 2014-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2015135524A (en) * 2004-01-20 2015-07-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithographic projection exposure apparatus and measuring device for projection lens
JP2010098332A (en) * 2004-02-02 2010-04-30 Nikon Corp Stage drive method and stage unit, exposure apparatus, and device manufacturing method
JP2010098333A (en) * 2004-02-02 2010-04-30 Nikon Corp Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2009212539A (en) * 2004-02-18 2009-09-17 Nikon Corp Optical element and exposure apparatus
JPWO2006030910A1 (en) * 2004-09-17 2008-05-15 株式会社ニコン Exposure substrate, exposure method and device manufacturing method
WO2006041091A1 (en) * 2004-10-12 2006-04-20 Nikon Corporation Exposure apparatus maintenance method, exposure apparatus, device manufacturing method and liquid recovering member for immersion exposure apparatus maintenance
JPWO2006041091A1 (en) * 2004-10-12 2008-05-15 株式会社ニコン Exposure apparatus maintenance method, exposure apparatus, device manufacturing method, and liquid exposure member for immersion exposure apparatus maintenance
JP2006190971A (en) * 2004-10-13 2006-07-20 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
KR101236120B1 (en) * 2004-10-26 2013-02-28 가부시키가이샤 니콘 Substrate processing method, exposure apparatus and method for manufacturing device
US7710537B2 (en) 2004-11-12 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009182337A (en) * 2004-11-12 2009-08-13 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9261797B2 (en) 2004-11-12 2016-02-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US8817231B2 (en) 2004-11-12 2014-08-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US9964861B2 (en) 2004-11-12 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
JP2009117879A (en) * 2004-11-12 2009-05-28 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
US9645507B2 (en) 2004-11-12 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012039137A (en) * 2004-11-12 2012-02-23 Asml Netherlands Bv Lithographic projection apparatus, and device manufacturing method
US10274832B2 (en) 2004-11-12 2019-04-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US9798247B2 (en) 2004-11-12 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US10620546B2 (en) 2004-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
JP2012015549A (en) * 2004-11-12 2012-01-19 Asml Netherlands Bv Lithographic projection apparatus and device manufacturing method
US8054465B2 (en) 2004-11-18 2011-11-08 Nikon Corporation Position measurement method
KR101493641B1 (en) 2004-11-18 2015-02-13 가부시키가이샤 니콘 Position measurement method, position control method, measurement method, loading method, exposure method, exoposure apparatus, and device production method
WO2006054682A1 (en) * 2004-11-18 2006-05-26 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method, exoposure apparatus, and device production method
US9298108B2 (en) 2004-11-18 2016-03-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9223230B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9223231B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8576379B2 (en) 2004-11-18 2013-11-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US10222708B2 (en) 2004-11-18 2019-03-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
JPWO2006054682A1 (en) * 2004-11-18 2008-06-05 株式会社ニコン Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9857692B2 (en) 2004-11-18 2018-01-02 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
JP2010118684A (en) * 2004-11-18 2010-05-27 Nikon Corp Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
JP2014131082A (en) * 2004-11-18 2014-07-10 Nikon Corp Exposure device
KR101421849B1 (en) 2004-11-18 2014-07-24 가부시키가이샤 니콘 Position measurement method, position control method, measurement method, loading method, exposure method, exoposure apparatus, and device production method
KR101421850B1 (en) 2004-11-18 2014-07-24 가부시키가이샤 니콘 Position measurement method, position control method, measurement method, loading method, exposure method, exoposure apparatus, and device production method
US9348238B2 (en) 2004-11-18 2016-05-24 Niko Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
JP4877653B2 (en) * 2004-11-18 2012-02-15 株式会社ニコン Exposure apparatus and device manufacturing method
JP2012103269A (en) * 2004-11-18 2012-05-31 Nikon Corp Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
KR101437298B1 (en) 2004-11-18 2014-09-02 가부시키가이샤 니콘 Position measurement method, position control method, measurement method, loading method, exposure method, exoposure apparatus, and device production method
JP2011155285A (en) * 2004-11-18 2011-08-11 Nikon Corp Exposure device and method of manufacturing device
KR101452483B1 (en) 2004-11-18 2014-10-21 가부시키가이샤 니콘 Position measurement method, position control method, measurement method, loading method, exposure method, exoposure apparatus, and device production method
US8059260B2 (en) 2004-11-18 2011-11-15 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
JP2012094902A (en) * 2004-11-18 2012-05-17 Nikon Corp Measuring method, loading method, exposure method and device, and method of manufacturing device
JP2016040624A (en) * 2004-11-18 2016-03-24 株式会社ニコン Exposure equipment and exposure method and device manufacturing method
US8072578B2 (en) 2004-11-18 2011-12-06 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
JP2015111682A (en) * 2004-11-18 2015-06-18 株式会社ニコン Exposure device, exposure method and device manufacturing method
US7812924B2 (en) 2004-12-02 2010-10-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006165550A (en) * 2004-12-02 2006-06-22 Asml Netherlands Bv Lithography apparatus and device manufacturing method
US8077291B2 (en) 2004-12-10 2011-12-13 Asml Netherlands B.V. Substrate placement in immersion lithography
US9740106B2 (en) 2004-12-10 2017-08-22 Asml Netherlands B.V. Substrate placement in immersion lithography
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US10345711B2 (en) 2004-12-10 2019-07-09 Asml Netherlands B.V. Substrate placement in immersion lithography
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
JP2011254089A (en) * 2004-12-20 2011-12-15 Asml Netherlands Bv Lithographic apparatus
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
US8462312B2 (en) 2004-12-20 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2015039038A (en) * 2004-12-20 2015-02-26 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006186112A (en) * 2004-12-27 2006-07-13 Toshiba Corp Immersion exposing method, immersion type exposing device and method for manufacturing semiconductor device
JP4551758B2 (en) * 2004-12-27 2010-09-29 株式会社東芝 Immersion exposure method and semiconductor device manufacturing method
KR101236023B1 (en) 2005-01-28 2013-02-21 가부시키가이샤 니콘 Projection optical system, exposure system, and exposure method
US7978310B2 (en) 2005-01-28 2011-07-12 Nikon Corporation Projection optical system, exposure system, and exposure method
US7710653B2 (en) 2005-01-28 2010-05-04 Nikon Corporation Projection optical system, exposure system, and exposure method
WO2006080212A1 (en) * 2005-01-28 2006-08-03 Nikon Corporation Projection optical system, exposure system, and exposure method
JP4957970B2 (en) * 2005-01-28 2012-06-20 株式会社ニコン Projection optical system, exposure apparatus, and exposure method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9268236B2 (en) 2005-06-21 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having heat pipe with fluid to cool substrate and/or substrate holder
JP2012124539A (en) * 2005-06-21 2012-06-28 Asml Netherlands Bv Lithographic apparatus
KR100659451B1 (en) 2005-11-18 2006-12-19 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Improved immersion lithography system with wafer sealing mechanisms
CN100456138C (en) * 2006-06-13 2009-01-28 上海微电子装备有限公司 Submersible photoetching apparatus soaking liquid flow field maintaining system
US8130365B2 (en) 2006-06-13 2012-03-06 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for an immersion lithography machine
WO2007147304A1 (en) * 2006-06-13 2007-12-27 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for immersion lithography machine
US8134689B2 (en) 2006-09-22 2012-03-13 Shanghai Micro Electronics Equipment Co., Ltd. Dual stage positioning and switching system
WO2008037131A1 (en) * 2006-09-22 2008-04-03 Shanghai Micro Electronics Equipment Co., Ltd. Dual stage positioning and switching system
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8218126B2 (en) 2007-12-10 2012-07-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009141359A (en) * 2007-12-10 2009-06-25 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009272636A (en) * 2008-05-08 2009-11-19 Asml Netherlands Bv Liquid immersion lithographic device, drying device, liquid immersion metro logy device and method for manufacturing device
US8345218B2 (en) 2008-05-08 2013-01-01 Asml Netherlands B.V. Immersion lithographic apparatus, drying device, immersion metrology apparatus and device manufacturing method
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
JP2014099655A (en) * 2008-05-08 2014-05-29 Asml Netherlands Bv Fluid handling structure and method, and lithography device
US10429741B2 (en) 2008-09-17 2019-10-01 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US8730447B2 (en) 2008-09-17 2014-05-20 Asml Netherlands B.V. Lithographic apparatus and method of operating the apparatus with a humid gas space between a projection system and a liquid confinement structure
US9176371B2 (en) 2008-09-17 2015-11-03 Asml Netherlands B.V. Immersion lithographic apparatus with a barrier between a projection system and a liquid confinement structure
US10151984B2 (en) 2008-09-17 2018-12-11 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
JP2013016865A (en) * 2008-09-17 2013-01-24 Asml Netherlands Bv Lithographic apparatus and method of operating lithographic apparatus
US10146139B2 (en) 2009-05-01 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US9709901B2 (en) 2009-05-01 2017-07-18 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US8928857B2 (en) 2009-05-01 2015-01-06 Asml Netherlands B.V. Lithographic apparatus and method of operating the apparatus
US10324384B2 (en) 2014-07-01 2019-06-18 Asml Netherlands B.V. Lithographic apparatus and a method of manufacturing a lithographic apparatus
JP2017520792A (en) * 2014-07-01 2017-07-27 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method for manufacturing a lithographic apparatus

Also Published As

Publication number Publication date
JP4604452B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4604452B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP6195005B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5273135B2 (en) Exposure method and device manufacturing method
JP5949878B2 (en) Exposure apparatus, device manufacturing method, and exposure method
JP4645027B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JPWO2004053955A1 (en) Exposure apparatus and device manufacturing method
JP4770129B2 (en) Exposure apparatus and device manufacturing method
JP4729876B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4479269B2 (en) Exposure apparatus and device manufacturing method
JP4701606B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4720106B2 (en) Exposure method and device manufacturing method
JP2010135853A (en) Exposure apparatus, exposure method, and method for manufacturing device
JP2005072132A (en) Aligner and device manufacturing method
JP2005005507A (en) Aligner and method of manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term