JP2004249206A - Heat treatment apparatus of powder - Google Patents

Heat treatment apparatus of powder Download PDF

Info

Publication number
JP2004249206A
JP2004249206A JP2003041929A JP2003041929A JP2004249206A JP 2004249206 A JP2004249206 A JP 2004249206A JP 2003041929 A JP2003041929 A JP 2003041929A JP 2003041929 A JP2003041929 A JP 2003041929A JP 2004249206 A JP2004249206 A JP 2004249206A
Authority
JP
Japan
Prior art keywords
powder
hot air
hopper
heat treatment
supply header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003041929A
Other languages
Japanese (ja)
Other versions
JP4227816B2 (en
Inventor
Akira Yamamoto
晃 山本
Sukekazu Nakamura
祐計 中村
Masahiro Okumoto
昌宏 奥本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pneumatic Manufacturing Co Ltd
Original Assignee
Nippon Pneumatic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co Ltd filed Critical Nippon Pneumatic Manufacturing Co Ltd
Priority to JP2003041929A priority Critical patent/JP4227816B2/en
Publication of JP2004249206A publication Critical patent/JP2004249206A/en
Application granted granted Critical
Publication of JP4227816B2 publication Critical patent/JP4227816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glanulating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment apparatus of a powder which can prevent melt bonding and agglomeration of the powder after heat treatment and can give a treated powder with even particle size. <P>SOLUTION: The heat treatment apparatus of a powder comprises a hot air supply nozzle 4, a circular powder supply header 5 installed around the nozzle 4 at a circular gap 6 for supplying a powder to the hot air blown out of the nozzle 4, and a hopper 2 installed under the supply header 5 at a gap from the supply header 5. Apertures 22, 23 are opened respectively in the center and the circumferential rim part of a ceiling board 21 for closing the top end opening of the hopper 2 and the hot air containing the powder is introduced into the hopper through the aperture 22 in the center of the ceiling board and cold air is introduced into the inside of the hopper 2 through the circular gap 6 between the hot air supply nozzle 4 and the powder supply header 5, a gap between the powder supply header 5 and the hopper 2, and the apertures 23 in the circumferential rim part of the ceiling board 21. A swirling current generation means 7 for swirling the introduced cold air is installed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、粉体熱処理装置に関する。例えば、母粒子の表面に子粒子が付着した複合粉体を加熱溶融処理して母粒子表面に膜を生成する、または熱可塑性粒子を加熱溶融処理して球形化処理する粉体熱処理装置に関する。
【0002】
【従来の技術】
従来の熱処理装置として、熱風を下方向に吹き出す筒状の熱風供給ノズルと、熱風供給ノズル下端部と環状隙間をあけてかつ熱風供給ノズル下端部を囲うように配されて熱風供給ノズルから供給された熱風中に粉体を供給する環状粉体供給ヘッダと、粉体供給ヘッダの下方に、粉体供給ヘッダと隙間をおいて配されたホッパとを備え、ホッパにはホッパの上端開口を閉鎖する天板が設けられ、天板の中央および周縁部にそれぞれ開口があけられているものがある。(例えば特許文献参照)
【0003】
この装置では、以下のようにして熱処理が行なわれる。まず、熱風供給ノズルから下方に向けて熱風が供給される。次いで、熱風に向けて環状粉体供給ヘッダから処理前粉体が噴射される。熱風はほぼ真下に向かって流れ、この流れ内で粉体の熱処理が行なわれる。ノズルから吹き出された熱風および粉体は、天板中央の開口からホッパ内に導入される。熱処理中には、熱風供給ノズルと粉体供給ヘッダとの隙間、粉体供給ヘッダとホッパとの隙間およびホッパ天板周縁部の開口から冷風が装置内部に取り入れられる。
【0004】
【特許文献】
特開2000−52341号公報(第1図)
【0005】
【発明が解決しようとする課題】
熱風は、徐々に半径方向に広がってかつ冷風と混ざり合って温度を下げながら流れていく。しかしながら、ホッパ内での半径方向への広がりはわずかであり、熱風がほぼ真下に流れる時間は熱処理に要する時間より長くなる。また、熱風が冷風と混ざり合って温度が下がるまでの時間も熱処理に要する時間より長くなる。このため、粉体は熱処理後もほぼ真下に向かう高い温度の流れの中に存在することになり、隣り合う処理後粉体同士が融着凝結し、処理後粉体の粒径が所望の値より大きくなったり、処理前粉体の粒度分布と処理後粉体の粒度分布が著しく異なってしまうことがある。
【0006】
本発明は、上記問題を解決することを課題とし、熱処理後粉体の融着凝結を防止し、粒度の揃った処理後粉体を得られる粉体熱処理装置を提供することを目的とする。
【0007】
【課題を解決するための手段および発明の効果】
上記課題を解決するために本発明の粉体熱処理装置は、熱風を下向に吹き出す筒状熱風供給ノズルと、熱風供給ノズル下端部と環状隙間をあけてかつ熱風供給ノズル下端部と同心状に配され、熱風供給ノズルから吹き出された熱風中に粉体を供給する粉体供給ノズルを有する環状の粉体供給ヘッダと、粉体供給ヘッダの下方に、粉体供給ヘッダと隙間をおいて配されたホッパとを備え、ホッパには、ホッパの上端開口を閉鎖する天板が設けられ、天板中央および周縁部にそれぞれ開口があけられ、上記の粉体を含む熱風を、天板中央の開口からホッパ内に導入し、熱風供給ノズルと粉体供給ヘッダとの環状隙間、粉体供給ヘッダとホッパとの隙間およびホッパ天板周縁部の開口から冷風を内部に導入する粉体熱処理装置において、導入した冷風を旋回させる旋回流生成手段を有しているものである。
【0008】
上記の構成を有する粉体熱処理装置では、熱風供給ノズルから供給された熱風中に、粉体供給ヘッダから処理前粉体を供給する。粉体を熱処理した後の、粉体を含む熱風の流れは、旋回させられた冷風の影響を受けて旋回流となる。この旋回流は下流側になるほど旋回半径が大きくなる。したがって処理後粉体は旋回半径が大きくなった流れの中に分散して存在することになり、隣り合う処理後粉体同士の間隔が大きくなるので処理後粉体同士がぶつかって融着凝結することが防止、抑制される。また、熱風と冷風とは旋回しながら互いに混ざり合うため、熱風の温度が急速に下がり、より低い温度の気体中に処理後粉体が存在することになり、仮に処理後粉体同士がぶつかっても凝結する危険性は小さくなる。
【0009】
上記粉体熱処理装置において、粉体供給ヘッダとホッパ天板との間に配された複数の垂直状ガイドベーンを備え、ガイドベーン間から導入される冷風が旋回流となる、ことがある。このガイドベーンは傾きを可変とすることもある。
【0010】
また、粉体熱処理装置において、天板に複数の冷風導入口があけられ、冷風導入口に設けられた複数のガイドベーンが旋回冷風生成手段とされていることがある。
【0011】
さらに、熱風供給ノズルと粉体供給ヘッダとの間の隙間における熱風供給ノズルの外周に螺旋状のガイドが設けられ、このガイドが旋回冷風生成手段とされていることがある。
【0012】
【発明の実施の形態】
以下、図1〜2を参照して本発明の一実施形態の粉体熱処理装置について説明する。
【0013】
粉体熱処理装置1は、筒状の下向熱風供給ノズル4と、この熱風供給ノズル4下端部と環状隙間6をあけてかつ熱風供給ノズル4下端部と同心上に配された環状粉体供給ヘッダ5と、粉体供給ヘッダ5の下方に、粉体供給ヘッダ5と隙間をおいて配されたホッパ2とを備えている。
【0014】
ホッパ2は、これの上端開口を閉鎖する天板21を備えている。天板21の中央には開口22があけられている。また、天板21の周縁には、冷風をホッパ2内に導入するための冷風導入口23が周方向に間隔をおいて複数あけられている。図2に示すように冷風導入口23は円弧状をなしている。
【0015】
粉体供給ヘッダ5内には、環状流路51が形成され、この環状流路51が図示しない公知の粉体供給源に接続されている。粉体供給ヘッダ5の内周面下部は、下方に行くにしたがって内径の大きくなる逆テーパー面となっている。この逆テーパ面には、周方向に間隔をおいてかつテーパ面に対してほぼ直角に複数の粉体供給ノズル52が設けられている。また、粉体供給ヘッダ5と熱風供給ノズル4との間の環状隙間6からは冷風が導入されるようになっている。
【0016】
粉体供給ヘッダ5の下端部には鍔53が形成され、この鍔53と天板21との間に、複数の垂直状ガイドベーン7が環状に配され、ガイドベーン7、鍔53および天板21により囲われた空間が粉体吹込部3となっている。この粉体吹込部3の中央部が熱処理部3aとなる。そして隣り合うガイドベーン7間の隙間が冷風導入口8とされている。
【0017】
ガイドベーン7は粉体吹込部3およびホッパ2内に冷風を旋回させて吸い込むため、図2に示すように、一方の端部が他方の端部に比して鋭くとがっているとともに、そのとがった端部が他方の端部より半径方向内側に位置している。冷風導入口8から取り入れられた冷風は、ガイドベーン7により、粉体吹込部3の軸心を中心としかつガイドベーン内側の先端を結ぶ円の接線方向よりやや内側方向に流され、冷風の流れが旋回流となる。なお、ガイドベーン7は、軸7a周りに回転でき、ガイドベーン7の傾きを調節できるようになっている。
【0018】
熱風供給ノズル4は、図示しない公知の熱風供給源に接続されており、粉体吹込部3内の中央部分に上方から下方へ向かって適当な温度の熱風を吹き出す。
【0019】
なお、図示は省略したが、ホッパ2の下流側には、公知の構成を有するブロワーおよび粉体回収装置が配され、ホッパ2内の処理後粉体を下流側へ気流とともに排出し、排出された粉体を回収するようになっている。
【0020】
上記のような構成を有する粉体処理装置においては、以下に述べるようにして粉体が処理される。
【0021】
まず、熱風供給ノズル4から熱処理部3aに熱風が吹き出される。熱風が吹き出されると熱処理部3a内を下向きに流れる熱風に向けて粉体供給ノズル52から処理前粉体が空気とともに噴射供給される。また、上述したブロワーの作動により、天板21の冷風導入口23、ガイドベーン7間の冷風導入口8および冷風導入用の環状隙間6から外気すなわち冷風がホッパ2内および粉体吹込部3内に取り入れられる。
【0022】
熱風供給ノズル4の出口近傍において、熱風供給ノズル4から吹き出された熱風および環状隙間6から取り入れられた冷風は、ともにほぼ真下に向かって流れている。処理前粉体は、真下に向かう熱風の流れの中に供給される。この流れはガイドベーン7間から取り入れられた冷風の影響をほとんど受けずに高温のままであり、この真下に向かう熱風の流れ中において粉体は処理温度以上まで熱せられて粉体の熱処理が完了する。
【0023】
ところで、熱風の流れは、熱風供給ノズル4近傍ではほぼ真下に向かう流れとなっているが、下流に行くにしたがって熱風の回りを流れる旋回冷風の影響を受けるため旋回流となる。この旋回流では下流に行くにしたがって旋回半径が大きくなる。このため、下流に行くにつれて処理後粉体が分散し、すなわち隣り合う処理後粉体間の間隔が大きくなり、処理後粉体同士がぶつかり合って凝結することが防止される。
【0024】
また、旋回流となった熱風は天板21の冷風導入口23および冷風導入用の環状隙間6から導入された冷風と混ざり合って急激に温度が低下して処理温度以下となり、処理後粉体は速やかに冷却される。なお、天板21の冷風導入口23からホッパ2内に取り入れられた冷風は、ホッパ2内周面にそって流れ、処理後粉体がホッパ2内周面に付着するのを防止する。
【0025】
なお、本発明の粉体熱処理装置は、上記実施形態の装置に限定されるものではなく、各部構成は適宜変更可能である。例えば、冷風導入口23にガイドベーンを設け、冷風導入口23から取り入れられる冷風が旋回流となるようにしてもよい。
【0026】
また、冷風導入環状隙間6内における熱風供給ノズル4の外周に螺旋状のガイドを設け、環状隙間6から取り入れられる冷風が旋回流となるようにしてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態の粉体熱処理装置の縦断面図である。
【図2】図1のII−II線に沿う断面図である。
【符号の説明】
1 粉体熱処理装置
2 ホッパ
21 天板
22 開口
23 冷風導入用開口(冷風導入部)
3 粉体吹込部
3a 熱処理部
4 熱風供給ノズル
5 環状粉体供給ヘッダ
51 環状流路
52 粉体供給ノズル
53 鍔
6 隙間(冷風導入部)
7 ガイドベーン
7a 軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a powder heat treatment apparatus. For example, the present invention relates to a powder heat treatment apparatus that heats and melts a composite powder having child particles adhered to the surface of a base particle to form a film on the surface of the base particle, or heats and melts thermoplastic particles to perform a spheroidizing process.
[0002]
[Prior art]
As a conventional heat treatment apparatus, a cylindrical hot air supply nozzle that blows out hot air in a downward direction, and a lower end of the hot air supply nozzle are arranged so as to leave an annular gap and surround the lower end of the hot air supply nozzle, and are supplied from the hot air supply nozzle. An annular powder supply header for supplying powder into hot air, and a hopper below the powder supply header and spaced from the powder supply header, with the hopper closing the upper end opening of the hopper In some cases, an opening is provided in the center and the peripheral edge of the top plate. (For example, refer to patent documents)
[0003]
In this apparatus, heat treatment is performed as follows. First, hot air is supplied downward from the hot air supply nozzle. Next, the unprocessed powder is injected from the annular powder supply header toward the hot air. The hot air flows almost directly below, in which heat treatment of the powder is performed. Hot air and powder blown out from the nozzle are introduced into the hopper through an opening at the center of the top plate. During the heat treatment, cool air is introduced into the apparatus from the gap between the hot air supply nozzle and the powder supply header, the gap between the powder supply header and the hopper, and the opening at the periphery of the hopper top plate.
[0004]
[Patent Document]
JP 2000-52341 A (FIG. 1)
[0005]
[Problems to be solved by the invention]
The hot air gradually spreads in the radial direction, mixes with the cold air, and flows while lowering the temperature. However, the radial spread in the hopper is slight, and the time during which the hot air flows almost directly below is longer than the time required for the heat treatment. Further, the time required for the hot air to be mixed with the cold air to lower the temperature is longer than the time required for the heat treatment. For this reason, the powder remains in a high temperature flow almost directly below even after the heat treatment, and the adjacent processed powders fuse and coagulate, and the particle diameter of the processed powder becomes a desired value. In some cases, the particle size distribution of the powder before treatment may be significantly different from the particle size distribution of the powder after treatment.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a powder heat treatment apparatus capable of preventing coagulation of powder after heat treatment and obtaining powder after treatment with uniform particle size.
[0007]
Means for Solving the Problems and Effects of the Invention
In order to solve the above problem, the powder heat treatment apparatus of the present invention is a cylindrical hot air supply nozzle that blows out hot air downward, a hot air supply nozzle lower end portion and an annular gap are formed and concentrically with the hot air supply nozzle lower end portion. An annular powder supply header having a powder supply nozzle for supplying powder into hot air blown from the hot air supply nozzle, and a powder supply header and a gap below the powder supply header. The hopper is provided with a top plate that closes the upper end opening of the hopper, and openings are opened in the center and the peripheral edge of the top plate, respectively. In a powder heat treatment apparatus that introduces cold air into the hopper through an opening, and introduces cool air into the inside through the annular gap between the hot air supply nozzle and the powder supply header, the gap between the powder supply header and the hopper, and the opening at the peripheral edge of the hopper top plate. Cold introduced Those having a swirl flow generating means for swirling the.
[0008]
In the powder heat treatment apparatus having the above configuration, the unprocessed powder is supplied from the powder supply header into the hot air supplied from the hot air supply nozzle. After the powder is heat-treated, the flow of the hot air containing the powder becomes a swirling flow under the influence of the swirled cold air. The turning radius of the swirling flow increases toward the downstream side. Therefore, the powder after treatment is present in a dispersed manner in the flow having a large turning radius, and the distance between adjacent powders after treatment increases, so that the powders after treatment collide with each other and fuse and coagulate. This is prevented and suppressed. In addition, since the hot air and the cold air are mixed with each other while swirling, the temperature of the hot air drops rapidly, and the powder after processing is present in a gas at a lower temperature. The risk of condensation is also reduced.
[0009]
In the above powder heat treatment apparatus, a plurality of vertical guide vanes disposed between the powder supply header and the hopper top plate may be provided, and cool air introduced between the guide vanes may be swirling. The guide vane may have a variable inclination.
[0010]
Further, in the powder heat treatment apparatus, a plurality of cool air introduction ports may be opened in the top plate, and a plurality of guide vanes provided in the cool air introduction port may serve as swirling cold air generation means.
[0011]
Further, a spiral guide may be provided on the outer periphery of the hot-air supply nozzle in a gap between the hot-air supply nozzle and the powder supply header, and this guide may serve as swirling cold air generation means.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a powder heat treatment apparatus according to an embodiment of the present invention will be described with reference to FIGS.
[0013]
The powder heat treatment apparatus 1 includes a cylindrical downward hot air supply nozzle 4, and an annular powder supply nozzle arranged with a lower end of the hot air supply nozzle 4 and an annular gap 6 and concentrically with the lower end of the hot air supply nozzle 4. A header 5 and a hopper 2 disposed below the powder supply header 5 with a gap between the header 5 and the powder supply header 5 are provided.
[0014]
The hopper 2 has a top plate 21 that closes an upper end opening of the hopper 2. An opening 22 is provided in the center of the top plate 21. In addition, a plurality of cool air inlets 23 for introducing cool air into the hopper 2 are provided on the periphery of the top plate 21 at intervals in the circumferential direction. As shown in FIG. 2, the cool air inlet 23 has an arc shape.
[0015]
An annular flow path 51 is formed in the powder supply header 5, and the annular flow path 51 is connected to a known powder supply source (not shown). The lower portion of the inner peripheral surface of the powder supply header 5 is an inverted tapered surface whose inner diameter increases as it goes downward. A plurality of powder supply nozzles 52 are provided on the reverse tapered surface at intervals in the circumferential direction and substantially perpendicular to the tapered surface. Cool air is introduced from an annular gap 6 between the powder supply header 5 and the hot air supply nozzle 4.
[0016]
A flange 53 is formed at the lower end of the powder supply header 5, and a plurality of vertical guide vanes 7 are annularly arranged between the flange 53 and the top plate 21. The space surrounded by 21 is the powder blowing section 3. The central portion of the powder blowing section 3 becomes the heat treatment section 3a. A gap between the adjacent guide vanes 7 is a cold air inlet 8.
[0017]
Since the guide vane 7 swirls and sucks the cold air into the powder blowing section 3 and the hopper 2, as shown in FIG. 2, one end is sharper than the other end, and the guide vane 7 is sharp. Is located radially inward of the other end. The cool air introduced from the cool air inlet 8 is caused to flow by the guide vanes 7 in a direction slightly inward from the tangential direction of a circle centering on the axis of the powder blowing unit 3 and connecting the tip inside the guide vanes. Becomes a swirling flow. The guide vane 7 can be rotated around an axis 7a, and the inclination of the guide vane 7 can be adjusted.
[0018]
The hot air supply nozzle 4 is connected to a known hot air supply source (not shown), and blows out hot air of an appropriate temperature from above to below at a central portion in the powder blowing section 3.
[0019]
Although not shown, a blower and a powder recovery device having a known configuration are disposed downstream of the hopper 2, and the powder after treatment in the hopper 2 is discharged together with an airflow to the downstream side, and the discharged powder is discharged. The powder that is collected is collected.
[0020]
In the powder processing apparatus having the above configuration, the powder is processed as described below.
[0021]
First, hot air is blown from the hot air supply nozzle 4 to the heat treatment section 3a. When the hot air is blown out, the powder before processing is injected and supplied from the powder supply nozzle 52 together with the air toward the hot air flowing downward in the heat treatment section 3a. Further, by the operation of the blower described above, the outside air, that is, the cool air flows into the hopper 2 and the powder blowing unit 3 from the cool air inlet 23 of the top plate 21, the cool air inlet 8 between the guide vanes 7, and the annular gap 6 for introducing the cool air. Incorporated in.
[0022]
In the vicinity of the outlet of the hot air supply nozzle 4, both the hot air blown out from the hot air supply nozzle 4 and the cool air taken in from the annular gap 6 flow almost directly below. The unprocessed powder is supplied in a flow of hot air flowing directly downward. This flow is hardly affected by the cool air introduced from between the guide vanes 7 and remains at a high temperature. In the flow of the hot air flowing directly below, the powder is heated to the processing temperature or more, and the heat treatment of the powder is completed. I do.
[0023]
By the way, the flow of the hot air is a flow going almost directly below in the vicinity of the hot air supply nozzle 4, but becomes a swirling flow due to the influence of the swirling cold air flowing around the hot air as going downstream. In this swirling flow, the swirling radius increases toward the downstream. For this reason, the processed powder is dispersed toward the downstream, that is, the interval between adjacent processed powders is increased, and it is possible to prevent the processed powders from colliding with each other and coagulating.
[0024]
Further, the hot air that has become the swirling flow mixes with the cool air introduced from the cool air inlet 23 of the top plate 21 and the annular gap 6 for introducing the cool air, and the temperature suddenly decreases to become lower than the processing temperature. Is quickly cooled. The cool air introduced into the hopper 2 from the cool air inlet 23 of the top plate 21 flows along the inner peripheral surface of the hopper 2 to prevent the powder after treatment from adhering to the inner peripheral surface of the hopper 2.
[0025]
Note that the powder heat treatment apparatus of the present invention is not limited to the apparatus of the above embodiment, and the configuration of each part can be appropriately changed. For example, a guide vane may be provided in the cool air inlet 23 so that the cool air taken in from the cool air inlet 23 forms a swirling flow.
[0026]
Further, a spiral guide may be provided on the outer periphery of the hot air supply nozzle 4 in the cool air introduction annular gap 6 so that the cool air taken in from the annular gap 6 forms a swirling flow.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a powder heat treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along the line II-II in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Powder heat treatment apparatus 2 Hopper 21 Top plate 22 Opening 23 Cooling air introduction opening (Cooling air introduction part)
3 powder blowing section 3a heat treatment section 4 hot air supply nozzle 5 annular powder supply header 51 annular flow path 52 powder supply nozzle 53 flange 6 gap (cold air introduction section)
7 Guide vane 7a Shaft

Claims (3)

熱風を下向に吹き出す筒状熱風供給ノズルと、熱風供給ノズル下端部と環状隙間をあけてかつ熱風供給ノズル下端部と同心上に配され、熱風供給ノズルから吹き出された熱風中に粉体を供給する粉体供給ノズルを有する環状の粉体供給ヘッダと、粉体供給ヘッダの下方に、粉体供給ヘッダと隙間をおいて配されたホッパとを備え、
ホッパには、ホッパの上端開口を閉鎖する天板が設けられ、
天板中央および周縁部にそれぞれ開口があけられ、
上記の粉体を含む熱風を、天板中央の開口からホッパ内に導入し、
熱風供給ノズルと粉体供給ヘッダとの環状隙間、粉体供給ヘッダとホッパとの隙間およびホッパ天板周縁部の開口から冷風を内部に導入する粉体熱処理装置において、
導入した冷風を旋回させる旋回流生成手段を有している、
粉体熱処理装置。
A cylindrical hot air supply nozzle that blows out hot air downwards, and is arranged concentrically with the lower end of the hot air supply nozzle with an annular gap formed between the lower end of the hot air supply nozzle and the lower end of the hot air supply nozzle. An annular powder supply header having a powder supply nozzle to be supplied, and a hopper arranged below the powder supply header and a gap below the powder supply header,
The hopper has a top plate that closes the top opening of the hopper,
Openings are opened at the center and the periphery of the top plate,
Hot air containing the above powder is introduced into the hopper through the opening in the center of the top plate,
An annular gap between the hot air supply nozzle and the powder supply header, a gap between the powder supply header and the hopper, and a powder heat treatment apparatus that introduces cool air into the inside from the opening of the peripheral edge of the hopper top plate,
Having a swirling flow generating means for swirling the introduced cool air,
Powder heat treatment equipment.
旋回流生成手段が、粉体供給ヘッダとホッパ天板との間に配された複数のガイドベーンを備え、ガイドベーン間から導入される冷風が旋回流となる、
請求項1記載の粉体熱処理装置。
The swirl flow generating means includes a plurality of guide vanes arranged between the powder supply header and the hopper top plate, and the cool air introduced from between the guide vanes becomes a swirl flow.
The powder heat treatment apparatus according to claim 1.
ガイドベーンの傾きを変えることにより導入される冷風の旋回速度を調節する、
請求項2記載の粉体熱処理装置。
Adjust the swirling speed of the cold air introduced by changing the inclination of the guide vane,
The powder heat treatment apparatus according to claim 2.
JP2003041929A 2003-02-20 2003-02-20 Powder heat treatment equipment Expired - Fee Related JP4227816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041929A JP4227816B2 (en) 2003-02-20 2003-02-20 Powder heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041929A JP4227816B2 (en) 2003-02-20 2003-02-20 Powder heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2004249206A true JP2004249206A (en) 2004-09-09
JP4227816B2 JP4227816B2 (en) 2009-02-18

Family

ID=33025339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041929A Expired - Fee Related JP4227816B2 (en) 2003-02-20 2003-02-20 Powder heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4227816B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526663A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Compression chamber, particle production system and adjustment method
US7776503B2 (en) 2005-03-31 2010-08-17 Ricoh Company, Ltd. Particles and manufacturing method thereof, toner and manufacturing method thereof, and developer, toner container, process cartridge, image forming method and image forming apparatus
JP2011128488A (en) * 2009-12-21 2011-06-30 Canon Inc Heat treatment apparatus for toner and method of producing toner
JP2011128487A (en) * 2009-12-21 2011-06-30 Canon Inc Heat treatment apparatus for toner and method of producing toner
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN114405394A (en) * 2022-02-14 2022-04-29 南京博纳能源环保科技有限公司 Granulating device and granulating method for discharging molten silicon

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776503B2 (en) 2005-03-31 2010-08-17 Ricoh Company, Ltd. Particles and manufacturing method thereof, toner and manufacturing method thereof, and developer, toner container, process cartridge, image forming method and image forming apparatus
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US8574408B2 (en) 2007-05-11 2013-11-05 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8524631B2 (en) 2007-05-11 2013-09-03 SDCmaterials, Inc. Nano-skeletal catalyst
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
JP2014240077A (en) * 2007-05-11 2014-12-25 エスディーシーマテリアルズ, インコーポレイテッド Compression chamber, particle production system and adjustment method
US8956574B2 (en) 2007-05-11 2015-02-17 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8604398B1 (en) 2007-05-11 2013-12-10 SDCmaterials, Inc. Microwave purification process
JP2010526663A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Compression chamber, particle production system and adjustment method
US8663571B2 (en) 2007-05-11 2014-03-04 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US8507402B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8759248B2 (en) 2007-10-15 2014-06-24 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8828328B1 (en) 2009-12-15 2014-09-09 SDCmaterails, Inc. Methods and apparatuses for nano-materials powder treatment and preservation
US8821786B1 (en) 2009-12-15 2014-09-02 SDCmaterials, Inc. Method of forming oxide dispersion strengthened alloys
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
JP2011128487A (en) * 2009-12-21 2011-06-30 Canon Inc Heat treatment apparatus for toner and method of producing toner
JP2011128488A (en) * 2009-12-21 2011-06-30 Canon Inc Heat treatment apparatus for toner and method of producing toner
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN114405394A (en) * 2022-02-14 2022-04-29 南京博纳能源环保科技有限公司 Granulating device and granulating method for discharging molten silicon

Also Published As

Publication number Publication date
JP4227816B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4227816B2 (en) Powder heat treatment equipment
JP5180122B2 (en) Drying equipment
JPH0748118A (en) Burner for producing inorganic spherical particle
US20100102150A1 (en) Pulverized material producing system
FI122961B (en) Supply Unit
US2071393A (en) Gas separator
KR20040045480A (en) Apparatus and method for evenly flowing processing gas onto a semiconductor wafer
JPH0792210B2 (en) Split flow burner assembly
US4451005A (en) Gas flow type crushing and classifying apparatus
WO2007145207A1 (en) Air flow classifier, and classifying plant
JPH0857424A (en) Raw material supply device in air classifier
JPS59127662A (en) Method and apparatus for treating powder or particles
JP2004097852A (en) Fluidized bed apparatus
JPH0780414A (en) Air separator
TW474120B (en) Improved plasma torch
JP2011033269A (en) Spray dryer and method of manufacturing granule
JPH0566173B2 (en)
JP2010201783A (en) Drier
JP4543495B2 (en) Heat treatment equipment for thermoplastic particles
JP2001294294A (en) Drying apparatus
JPS59125742A (en) Heat treating equipment of powder or granular
JPH0256667B2 (en)
JPS60161721A (en) Method and apparatus for mixing powders by air stream
JPH0548726B2 (en)
JPS59125745A (en) Heat treatment equipment of powder or granular

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees