JP2004243281A - Method for drying/carbonizing organic waste - Google Patents

Method for drying/carbonizing organic waste Download PDF

Info

Publication number
JP2004243281A
JP2004243281A JP2003038542A JP2003038542A JP2004243281A JP 2004243281 A JP2004243281 A JP 2004243281A JP 2003038542 A JP2003038542 A JP 2003038542A JP 2003038542 A JP2003038542 A JP 2003038542A JP 2004243281 A JP2004243281 A JP 2004243281A
Authority
JP
Japan
Prior art keywords
carbonization
water
gas
dry
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038542A
Other languages
Japanese (ja)
Inventor
Katsumi Iida
克己 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003038542A priority Critical patent/JP2004243281A/en
Priority to AU2003242309A priority patent/AU2003242309A1/en
Priority to PCT/JP2003/007469 priority patent/WO2003106063A1/en
Publication of JP2004243281A publication Critical patent/JP2004243281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment plant for a liquid-containing waste with which the liquid-containing waste can more efficiently be treated. <P>SOLUTION: The liquid-containing waste treatment plant is constituted by connecting a reduced pressure drying apparatus D which subjects the liquid-containing waste (object to be treated) 24 to reduced pressure drying by vacuum suction under agitation and a deodorization purification apparatus P which deodorizes and purified the vapor vacuum-sucked from the apparatus D substantially by using a hermetic system. The apparatus D uses a rotating horizontally placed tube 1 as a reduced pressure treating vessel. The apparatus P is equipped with an ejector 19 which cyclically uses a liquid in a septic tank 22 as first fluid in corporation with a counter-current contact bed 25. A second fluid inlet 19a of the ejector 19 is connected to a vacuum suction port 19a of the apparatus D. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は、各種汚泥、各種濃高廃液、人糞尿、牛、豚、鳥の糞尿、食品残渣、農産系廃棄物、木質系廃棄物、ゴム系廃棄物、紙質系廃棄物、医療廃棄物、廃プラスチック、一般都市ゴミ等の可燃性有機廃棄物を有用物化して、廃棄物ゼロ(ゼロエミッション)化するのに好適な有機廃棄物の乾燥炭化方法および乾燥炭化プラントに関する。
【0002】
【背景技術】
従来の乾燥炭化装置は、乾燥炉と炭化炉が分離されていたり、ガス冷却塔及び、バグフィルター等を必要としたりして、装置が複雑でトラブルも多く、処理品もよいものが得られなかった。
【0003】
また乾燥と炭化が同一炉内で行える装置においては、乾留ガスを燃焼させるバーナーも必要となり、焼却炉扱いとなり、ダイオキシン対策も必要となり、高価となる。
【0004】
一部原料を燃やして蒸し焼きにする方法もあるが、これは灰が多く出ることになり、よい炭が得られないものである。
【0005】
また、乾留ガスを捕集し、再利用を図るものもなく、油分も再利用できる装置は、本発明者らは、いまだ見聞きしたことがない。
【0006】
ガス化溶融システムは、高温にする必要があり高温になればなるほど、寿命も短く、メインテナンス(保守)がしばしば必要になり、集塵器及び脱硫装置等と付帯設備も多く、価格も非常に高価になり、一般の中小企業には高価になりすぎる。
【0007】
【発明の開示】
本発明は、ダイオキシンの発生はなく、臭気の問題もなく、低温処理で省エネのもとに良質の炭化物、油分及びガスが得られ、廃棄物から有用物を生み、ゼロエミッション化ないしクローズドシステム化が容易となる有機廃棄物の炭化処理方法を提供することを目的とする。
【0008】
本発明者は、上記課題を解決するために、鋭意開発に努力をした結果、下記構成の有機廃棄物の乾燥炭化方法に想到した。
【0009】
有機廃棄物を減圧乾留により炭化するとともに、該乾留に伴い発生する発生蒸気ないし乾留ガス(以下「乾留ガス等」という。)を水中に導入して生物学的処理の被処理水となし、
被処理水をエジェクタの第一流体(噴射流体)として循環使用することにより、前記減圧乾留の減圧とともに乾留ガスの水中への導入を行う有機廃棄物の乾燥炭化方法であって、
前記乾留ガス等含有水からスカム(油性物)分離を行って、該スカムを固液分離して油燃料として回収するとともに、前記水中へ導入させた乾留ガス等のうち非溶解性ガス(非凝縮性ガス)をガス燃料として回収することを特徴とする。
【0010】
乾留で発生する燃焼性ガス・油成分をそれぞれ燃料(有用物)として回収することができ、可及的にゼロエミッションに寄与する。また、燃料を乾留熱源として使用すれば、クローズドシステム化が可能となる。
【0011】
上記構成において、乾留ガスの水中への導入途中でサイクロン集塵を行ない、該サイクロン集塵で発生する含液固形物を、固液分離して発生した廃棄固形物を乾燥処理させて二次炭化物を得るとともに、発生した液状物を、必要により液分離して有用物として回収を行う構成とすることが望ましい。より、ゼロエミッション化への寄与度が増大する。
【0012】
上記構成において、前記被処理水中の溢流水及びドレン水を貯留させて、分離(デカント)させた沈殿物を、必要により、固液分離して、乾燥処理して塩含有物として回収することが望ましい。さらに、ゼロエミッション化への寄与度が増大するためである。
【0013】
上記各構成において、油燃料及びガス燃料の全部又は一部を、前記減圧乾留、さらには、乾燥処理の燃料として使用することが望ましい。クローズドシステム化に寄与するためである。
【0014】
上記において、有機廃棄物が廃棄タイヤである場合、その効果はより顕著となる。廃棄タイヤは、多量に発生し、その焼却処分は悪臭等が発生し不可能視化されているとともに、乾留物は同系ゴム配合物のカーボンブラックとして再使用可能となるとともに、非凝縮性(水不溶性)の乾留ガス中には、水素等も多量に含まれ高価値の有用物として回収可能となる。
【0015】
上記各構成の有機廃棄物の乾燥炭化方法に使用する乾燥炭化プラントは、下記構成となる。
【0016】
乾留装置と、前記被処理水を生物学的処理する生物学的処理装置とを備え、
前記乾留装置が、乾留ガス等を水中に軸方向に回転軸を有する櫂形攪拌機を備えた横置き筒体(炭化室)と、該炭化室を加熱する間接加熱手段とを備えた構成であり、
前記生物学的処理装置が、水槽と生物学的処理手段とエジェクタとを備え、該エジェクタの第一流体(噴出流体)流入口が前記水槽からのエジェクタ用循環配管と接続されているとともに、同第二流体(吸引流体)流入口が前記乾留装置からの乾留ガス等排出配管と接続され、さらに、スカム回収手段及び燃焼性ガス回収手段を備えており、
さらに、前記スカム回収手段からのスカムを遠心分離して、油燃料化する遠心分離器を備えていることを特徴とする。
【0017】
上記構成において、乾留装置における前記横置き筒体(炭化室)を複数段配設をし、上側の炭化室から下側の炭化室へ被処理物を移送可能とする構成としてもよい。当該構成年た場合は、有機廃棄物が高含水率であっても、上段側で水分を飛ばし、下段側で炭化を行うことができ、連続的に炭化処理が可能となる。
【0018】
上記構成において、乾留ガス等排出配管の途中にサイクロンが配されているとともに、該サイクロンの捕集粒子が遠心分離器へ移送可能とされていることが望ましい。サイクロン捕集することにより、生物学的処理が困難な無機系固形物の生物学的処理手段への流入が少なくなり、生物学的処理効率の向上に寄与する。
【0019】
また、乾留装置の炭化物排出口側に、内側に攪拌移送手段を備えるとともに冷却手段を備えた冷却移送装置が接続されていることが望ましい。乾留処理の連続化が容易となる。
【0020】
生物学的処理装置が、さらに、水槽内の水を循環冷却させる冷水塔を備え、該冷水塔用循環配管の途中にpH調整液の供給手段を備えていることを特徴とする。生物学的処理条件を最適化でき、生物学的処理効率の向上に寄与する。
【0021】
本発明をさらに概略的に説明すると、吸引されたガス状物中の油分は循環処理槽内に設置された、浮上油掻き取り機にて回収を行ない、槽上部には、密閉型にガスホルダーを設置し、乾留ガスの捕集を行ない、派生した油及びガスの再利用を行うとともに、循環処理槽の水は、生物学的処理手段にて浄化し、熱交換器及び冷却塔にて循環水の冷却を行ない、さらに、酸・アルカリ洗浄設備を有し、循環処理槽のブロー水及びオーバーフロー水は廃液蒸発散装置にて無公害処理を行ない、クローズトシステムを行う有機廃棄物の乾燥炭化方法と言える。
【0022】
【発明を実施するための最良の形態】
以下、本発明の一実施形態について、詳細に説明をする。
【0023】
本発明の乾燥炭化装置(乾留装置)は、室内側又は外側が断熱加工されたジャケット構造の乾燥炭化装置1内に乾燥炭化室2が設置され、乾燥炭化室2の内部には、自在回転可の櫂形攪拌機3が耐熱軸受4にて付設されている。軸受4はパッキンを介し、外気とは遮断された構造である。乾燥炭化室2の下部には、バーナー6又は熱風発生機により発生した熱風17が、乾燥炭化室2と装置外壁とで形成されたジャケット部7を通り、内部の被処理物8を間接加熱するもので、ジャケット部7の通路は、図3に示す如く、ショートパスを防ぐ熱風通路バッフル9が設けられ、熱風17は、乾燥炭化室2の外周を回り廻って排気筒10より排気11される。ここで、間接加熱手段としては、上記に限られず、抵抗加熱、誘導加熱さらには、誘電加熱等も使用でき、適宜、単独又は組み合わせて使用可能である。
【0024】
被処理物(有機廃棄物)8は、装入ホッパー12よりスクリューフィーダー13を経てロータリバルブ14を経て乾燥炭化室2内に投入され、攪拌パドル3と攪拌モーター16にて攪拌される。ここで、ロータリバルブ14とするのは、乾燥炭化室2と外気と遮断して、外気の流入及び乾留ガスの漏出を可及的に阻止するためである。このとき、乾燥炭化室2の外気遮断のために、ロータリバルブの替りに、ダブルダンパー又は上下2段のダブルバルブの二重構造としてよい。こうして、バッチ式運転、連続的運転のどちらの運転方法も可能である。
【0025】
熱風17にて炭化室2が熱せられ、被処理物(有機廃棄物)8の炭化に伴い発生した水分やガスは炭化室ガス出口18から、ガスより生物学的処理槽(循環処理槽)19へエジェクタ(真空吸引機)20を介して噴射される。
【0026】
炭化室出口18と真空吸引機20は、連結配管(吸気配管)21にて連結されており、その途中には必然的ではないが、サイクロン(遠心型集塵機)22が付設されている。
【0027】
炭化生成ガス処理装置は、向流接触床(生物学的処理手段)26を備えた生物学的処理槽(循環処理槽)19と、水位を一定に保つための水位調節管23を有した水位調節槽(水位調節部)24とを備え、そして、該生物学的処理槽19は、水位調節部24の底部から水を吸い込み、循環ポンプ25を備えたエジェクタ用循環配管28を経て、エジェクタ(真空吸引機)20を介して生物学的処理槽(本体部)19に戻す処理水循環機構を備えている。
【0028】
このエジェクタ(真空吸引機)20は、循環ポンプ25の動力により生物学的処理槽19の液中に噴射させることによって被処理物8より出た水分やガスを真空吸引して乾燥炭化室2内部を減圧させる。
【0029】
生物学的処理槽(循環処理槽)19の内部には、上記の如く、生物学的処理手段(向流接触床)26を備えているとともに、該生物学的処理槽19は、循環ポンプ25の吸引口27より吸引された水は、循環配管28を通り、真空吸引機20を経て生物学的処理槽19へ戻り、水位調節管23より水位調製槽24へ戻る構造である。水位調節管23の上げ下げによって生物学的処理槽19の水位は設定の一定水位を保つことができる。
【0030】
循環ポンプ25にてエジェクタ20に水を噴射させると、乾燥炭化室2の内部が負圧(真空状態)になり、水分とガスが吸気配管(連結配管)21を通り、生物学的処理槽19の水面下に噴射される。
【0031】
乾燥炭化室2は減圧され、低温でも蒸発が起き、被処理物8の乾燥炭化が短時間で低温のうちに進行する。
【0032】
エジェクタ20で吸引された発生蒸気や乾留ガス(乾留ガス等という。)は、生物学的処理槽19の水面下に入れられることにより凝縮され、乾留された水蒸気に含む有機物は向流接触床26に接触されて浄化されるのである。
【0033】
ガス中に含まれる油分は、生物学的処理槽19の水にて液化され、生物学的処理槽19上にスカム(油分)として浮上するのである。
【0034】
浮上した油分は、浮上油分掻き取り機(スカム回収手段)29の掻き寄せバーにて掻き寄せられ、外気を遮断可能とされたチューブ管30を経て油分受槽31に排出される(図は省略したが、ドラム式油分掻き取り機でもよい。)。生物学的処理槽19の水位は、水位調節管23を調節(アジャスト)することによって油分のみを掻き寄せる水位に調節できるのである。
【0035】
ガス中の非凝縮性ガスは、生物学的処理槽19上に密閉型に設置されたガスホルダー32に回収される。
【0036】
ガスホルダー32で回収されたガスは、ブロワ−又は真空ポンプ又は送風機33等にてガスタンク34に貯槽し、燃料配管49を通して熱風発生用のバーナ6の燃料等として再利用することができる。
【0037】
乾燥炭化室2より出た蒸気やガスの熱が生物学的処理槽19へ移行するため、生物学的処理槽19の水温上昇が起きる。この水温上昇を抑制するために、生物学的処理槽19内の水を冷却循環配管で循環させながら冷却塔35及び熱交換器36を設置することが望ましい。
【0038】
熱交換器36の熱交換パイプ36aの両端と、冷却塔35との間には、冷却塔循環ポンプ37を備えた循環配管43を介して冷却水(冷却媒体)が循環可能とされている。そして、冷却塔35は、蒸発により減少した水を補給するための新水補給管38を備えている。
【0039】
熱交換器36の胴部36bへの被冷却水(被冷却液)は、水位調整槽24の吸引口39より吸引され、熱交換器循環ポンプ40にて熱交換器36を経てシャワー管41にて冷却塔充填材42にシャワーされて循環されるようになっている。
【0040】
このとき、廃棄物が、ポリ塩化ビニル(PVC)等が混入したゴミや、塩分を含む場合、乾燥炭化室(炭化炉)2で、塩化水素が発生し、水に吸収されて塩酸となる。このため、本実施形態では、アルカリ洗浄を行うために、熱交換器36の冷却循環配管44の途中に、アルカリタンク(通常、苛性ソーダタンク)47と元部が接続されアルカリ供給ポンプ45備えたアルカリ供給配管46が接続されている。即ち、該アルカリ供給配管46を介して、被冷却液循環配管44にて注入されてシャワー管41でシャワーリングされて中和される。このとき、pHセンサー(pH検知器)48で生物学的処理槽19内のpHを検知し、該検知信号をアルカリ供給ポンプ45に入力させて、アルカリ供給量を調節可能となっている。
【0041】
逆に、アンモニア、アミン類等の窒素化合物等が流入してくる場合は、同様に、硫酸等の酸を冷却配管44の途中に供給して、中和すればよい。
【0042】
水分が非常に多い廃棄物や、濃高廃液を処理した場合、水位調製槽24に設けられたオーバーフロー管50より出たオーバーフロー水51及び生物学的処理槽19の塩濃度が高まった場合のドレン(ブロー)水は、廃液貯槽53へ送液して貯留する(図1−(B)参照)。該貯留物は、図1(B)に示す如く、乾燥装置67に移送ポンプ65を備えた移送配管66を介して導き、炭化処理を行う。
【0043】
サイクロン22にて捕集したスラッジは、バルブ54をスラッジ受槽55へ導き、スラッジ移送ポンプ56にて移送配管57を介して遠心分離機58へ送り込む。また、油分受槽31の油分は移送ポンプ59にて配管60を経て遠心分離機(三相分離型)58へ送られる。
【0044】
遠心分離機58へ送られてきた油含有スラッジは、三相分離されて、廃液91とスラッジ92と油分61に分離され、廃液91は廃液貯槽53へ貯槽され、スラッジ92は遠心分離機スラッジ受槽62に貯められ、油分61はオイルポンプ63にてオイルタンク64へ貯槽される。
【0045】
廃液貯槽53へ貯槽された廃液は廃液移送ポンプ65にて配管66を経て廃液蒸発散スラッジ乾燥装置67の投入口68へ投入され処理される。
【0046】
遠心分離機スラッジ69は、同じく投入口68から投入され、処理される。
【0047】
図3〜4に示す廃液蒸発散とスラッジ乾燥を兼ねた乾燥装置67の下部には、熱風17を発生させるための、ヒーター又はバーナー6が設置されている。ここで、バーナー燃料としては廃棄物より発生した余剰ガス34及び/又は廃棄物より出たオイルタンク64に貯留した油分を利用することもできる。
【0048】
オイル(油分)を利用する場合、オイルポンプ70を備えたオイル供給配管71を介してバーナー6にオイルを供給する。
【0049】
廃液51、52、91及びスラッジ69は、攪拌機3A及び攪拌モーター16Aにて攪拌され、熱風17にて間接加熱され、水分蒸発が発生する。
【0050】
蒸発水分は乾燥炭化室18の出口18aから、配管72にて真空吸引機20Aを通り、熱風発生炉73へ戻るのである。真空吸引機20Aには、熱風発生機5の風圧を与えることによって、より蒸気を引き込み、加熱蒸気を生み、より乾燥機への加熱を加えるものである。排熱・排気11Aは排気筒10aより排出される。
【0051】
乾燥処理品は塩分と乾燥スラッジが得られ出口74より排出される。装置自体の基本的構造は、乾燥炭化装置1とほぼ同様である。また、この炭化装置1にて、塩分を多く含む有機廃棄物、例えば、しょう油粕等の炭化品を、水洗・脱塩して、この装置にて乾燥してやれば、非常に価値がある炭化物を得られる。
【0052】
炭化装置1の炭化処理品は、出口管75よりロータリバルブ14A又は二重バルブにて冷却排出コンベア(冷却移送装置)76に排出される。排出コンベア内には攪拌排出羽根77が設置され、本体はジャケット構造78でジャケット内には、水冷又は空冷の入口管79、出口管80を有し、内部に投入された炭化処理品を冷却するものである。
【0053】
冷却された処理品は、攪拌排出羽根77の回転により処理品コンテナ81に排出されるのである。
【0054】
調味廃液や糞尿等の水分の多い廃液(被処理物)の炭化は、図2に示す如く、廃液貯槽53Aに貯留しておき、図2に示すような、乾燥炭化室2を複数段積み重ねることによって上段で水分を飛ばし、下段で炭化を行えば廃液であっても連続炭化処理ができる。
【0055】
廃液貯槽53Aより吸引された廃液は、廃液移送ポンプ82及び配管83にて乾燥炭化装置1の上段炭化室1Aの投入口84より供給され、攪拌機3にて攪拌され、バーナー6にて間接加熱の熱を受けて蒸発が起きガス出口18aより生物学的処理槽19のエジェクタ(真空吸引機)20へ吸引される。
【0056】
あらかた水分が飛んだ被処理物8Aは、上段炭化室1Aの攪拌機3の排出機能によって押し出され連結管85にて下段炭化室1Bへ導かれ下段にて炭化が進み、ガスは出口管18Aよりエジェクタ(真空吸引機)20へ吸引され生物学的処理槽19の槽内へたたき込まれる。
【0057】
炭化処理品は出口管75より冷却排出コンベア76を経て処理品コンテナ81へ排出される。
【0058】
乾燥炭化室2の攪拌機3の回転数は、1〜15rpm(平均周速3〜45m/min)程度でよく、従って低動力、高トルクモーターでよい。
【0059】
冷却塔35は、一般に市販されているものでもよいが、本発明者が先に提案した特許第1931319号の冷却塔35や冷却塔充填材42を使用することが、冷却効率が良好で望ましい。
【0060】
生物学的処理槽19の向流接触床26は、本発明者が先に提案した特許第1908323・1979590号等に記載されているものを適用することが望ましい。
【0061】
乾燥炭化装置1の材質は耐熱性ステンレス鋼がよく、装置の断熱材は、耐火レンガや耐火キャスターでも良いが、重量が増加するため、セラミックファイバー耐火材や、けい酸カルシウム保温材、ロックウール保温材等が軽くて施工がしやすいため適用されるものである。
【0062】
エジェクタ(真空吸引機)20による減圧は、循環ポンプ25の選定に高揚程ポンプ(20〜40mH)を使用すればゲージ圧:−80〜−90kPa(−600〜−700mmHg)が達成され、沸点は60〜40℃となり、蒸発乾燥工程が短縮される。
【0063】
また配管21の途中に逆止弁86を設置すれば万一循環ポンプが停止しても水の逆流や空気の混入が防止でき、安全弁87も設置すれば爆発も防止できる。
【0064】
熱風17発生用のバーナーの燃料は、灯油、重油、都市ガス、LPG等で良く、廃棄物より発生した分解ガス34、油61を燃料にしてもよい。
【0065】
本発明の有機廃棄物の乾燥炭化方法は、廃棄加硫ゴム、特に、廃棄タイヤに適用した場合、その効果は顕著となる。廃棄タイヤは、多量に発生するとともに、焼却処分は悪臭が発生するため困難されているためである。さらに、本発明の方法で廃棄タイヤを乾燥炭化処理した場合は、本発明装置は、攪拌機を有するため、炭化物とスチールが回転によって完全に分離され、サラサラの全く固まりのない良質なカーボンが低温での乾留が可能な為できるものであって、タイヤへの再利用が充分可能なものが得られ、Hガスも得られ、利用用途が多岐にわたるものが得られる。
【0066】
図5に、本発明の有機廃棄物の炭化処理方法を廃棄タイヤに適用した場合の、図1(A)に対応するシステム図を示す。
【0067】
ここで、同一部分については、同一図符号を付してそれらの説明を省略する。以下、異なる部分についてのみ説明をする。なお、廃棄タイヤにはタイヤチューブも含まれる。
【0068】
図1(A)と異なる部分は、被処理物である廃棄タイヤ8Aを、粗破砕機12Aに投入し、乾燥炭化装置1の炭化室2に投入可能な大きさ(例えば、10〜30cm)に破砕して、スクリュウーフィーダ13及びダブルバルブ15を経て炭化室2に投入する。そして、粗破砕機12Aとして、剪断低速破砕機を選択すれば、トラックやバス等の大型タイヤでも、そのまま破砕することができ、所要で動力も小さいもので済む。
【0069】
なお、野積みされた廃棄タイヤ8Aを処理する場合、タイヤの内部に水が溜り、水がなかなかでにくいが、そのような場合は、乾燥炭化装置として図2に示すような、炭化室を複数段(図例では二段)を備えたものを使用することが望ましい。上段の炭化室2Aで水分蒸発(乾燥)が行なわれ、下段の炭化室2Bで炭化が円滑に行なわれる。
【0070】
そして、投入された破砕廃棄タイヤは、炭化室2内で、加硫ゴム及びカーカス等の有機成分は炭化されるとともに、補強ワイヤ(スチール)を櫂形攪拌器の回転によって分離回収できる。
【0071】
そして、乾留処理により発生した乾留ガスのうちの非凝縮性ガスは前記同様ガスホルダー32で捕集してガスタンク34に貯留し、ガス精製塔93により燃料ガス94と水素ガス95とに分離し、燃料ガス94及び水素ガス95は、前記と同様、乾留ないし乾燥用の燃料として利用するか、又は、水素ガスは燃料電池用等にも利用できる。そして、燃料電池として利用する場合は、本システムのモータ等の運転用電気としても利用できる。
【0072】
【発明の作用・効果】
本発明は、乾燥/乾留処理を一つの装置で効率よくできる有機廃棄物の炭化方法及び炭化装置を提供するものであり、炭化処理品は勿論のこと、炭化工程で発生する油分及び熱分解ガスも有効利用する装置である。
【0073】
有機廃棄物を乾留により炭化するに際して、乾留を強制減圧しながら行うことを特徴とし、強制減圧により、乾留のための加熱と相まって高含水率(高含液率)の有機廃棄物が含まれていても効率よく乾燥が可能であり、乾燥/乾留工程(処理)を同一容器内で連続的に可能ならしめたのである。従って、有機廃棄物が高含水率であっても、別の乾燥装置を設ける必要がない。
【0074】
また、有機廃棄物を乾燥後、有機物の乾留(熱分解/炭化)が開始するが、強制減圧しながら乾燥した後、連続的に乾留に移るため、酸素含有率が格段に小さい雰囲気で有機廃棄物の炭化が可能となり、従って灰分(燃焼による生成する酸化物が主体)の発生が少ない良質の炭化物が得られるのである。さらには強制減圧により臭気成分も排気されながら炭化されるため、無臭の多孔質の炭化物を得やすく、また通常の炭化装置の場合、良質な炭化物を得るには水蒸気又は二酸化炭素を用いて炭化物を高温熱処理する賦活(温度条件800〜1000℃)を行わねばならないが、本発明装置の場合、減圧するため、有機廃棄物が保持する水分を廃棄物の内部から真空で引っ張り出されることになり、常に賦活処理されている状態になり、低温(250〜350℃)でも良好な細孔を持った炭化物が得られる。
【0075】
そして強制減圧の減圧手段として真空ポンプやブロアーやコンプレッサーを使用しても良いが、エジェクタを使用することにより減圧ポンプ(真空ポンプ・ブロアー・コンプレッサー等)と異なり、機械的接触部を備えず構造が簡単であり、冷却せずに高温のままで減圧手段に導入でき、エジェクタの第一流体(水)と接触しながら水中へ導入するため乾留ガスが全量水中にたたき込まれ、ガス中の凝縮成分の油と水は凝縮し、油は浮上掻き取り機にて回収されるのである。
【0076】
凝縮した有機成分を持った水は、向流接触床により生物学的処理(微生物浄化処理)されることにより、再循環利用できるのである。通常の一般ゴミより排出される凝縮水のBOD濃度は200〜500mg/Lであり、充分浄化できる数値である。
【0077】
非凝縮性ガスは、ガスホルダー内に貯留され、可燃ガスとして、化学原料として、Hガスは燃料電池用として利用できる。
【0078】
掻き寄せられた油分は、遠心分離機58にて水と、スラッジと油に分離され、油は、タールピッチや、アスファルトに再利用でき、燃料としても利用できる。
【0079】
実験では、一般都市ゴミを処理した場合
熱分解最高温度350℃にて実験
▲1▼油分 40質量% 発熱量 約5000kcal/kg
▲2▼ガス 30質量% 発熱量 約2000kcal/kg
ガス組成(モル%)
:12%,CO:37%、CO:37%、CH:6%、C:3%
▲3▼炭化物 20質量% 発熱量 約4500kcal/kg
▲4▼水分 10質量%
廃タイヤ処理の場合
熱分解最高温度300℃で実験
▲1▼油分 53質量% 発熱量 約10500kcal/kg
▲2▼炭化物 34質量% 発熱量 約7500kcal/kg
(カーボンブラック)
▲3▼ガス 6質量% 発熱量 約10000kcal/Nm
ガス組成(モル%)
:40〜50%,CO:20〜30%、CO:10〜15%、CH:5〜8%
▲4▼屑鉄 5%
▲5▼水 1.5%
▲6▼カーボンスラッジ 0.5% が得られた。
【0080】
廃液貯槽53に流入してくる水位調整槽39のオーバーフロー水51、生物学的処理槽のブロー水52(被処理対象物によって異なるが1日当たり1割程度のブロー水量)及び遠心分離機58の分離水91の処理液、廃液蒸発散スラッジ乾燥装置67にて処理すれば、乾燥塩分と乾燥スラッジ89のみが廃棄の対象になり、原料有機廃棄物量の数百〜数千分の1になる。
【0081】
本発明装置は、有機廃棄物という嵩張った性状の不均一の物を、炭化物は燃料として、土壌改良材として、調湿材として、濾過材として、融雪材として、堆肥材として利用でき、ガスや油は燃料や工業原料に転換することができ、環境汚染の発生、揮散を抑制することに大きな利点がある。
【0082】
そして耐久性のある、操作が簡単で、運転技術者が不要で危険性が全くなく安全で、コンパクトで、二次汚染が発生せず、安価な装置である。
【0083】
また、有機廃棄物を加硫ゴム廃棄物、特に廃棄タイヤとした場合、下記のような顕著な効果を奏する。
【0084】
廃棄タイヤの炭化物は、前述の如く、賦活処理された状態で得られ、ゴム配合物の、特に同系のゴムタイヤ用のカーボンブラックとして、再利用できる。そして、相当量をバージンカーボンブラックと置換しても、ゴムとの馴染みが良好であり、加硫ゴム物性はほとんど低下しないことが期待できる。
【0085】
また、廃棄タイヤの乾留により発生し回収した油は、再度減圧蒸留を行って、低沸点油と高沸点油に分離させれば、低沸点油は燃料として、また、高沸点油は、ゴム配合物用のプロセス油として、ゴムに対する親和性が良好であるため、再利用が可能となる。
【0086】
また、廃棄タイヤの場合、ガス組成が水素リッチであり、ガス精製行なえば、燃料電池用水素として使用ができ、有用物化した場合の価値がより増大する。
【図面の簡単な説明】
【図1】図1(A)・(B)は本発明における有機廃棄物の乾燥炭化処理方法の一例を示す系統図
【図2】本発明の乾燥炭化処理システムに使用する乾燥炭化装置の他の例を示す概略断面図
【図3】同じくスラッジ乾燥装置の一例を示す概略側面断面図
【図4】図3の垂直断面図
【図5】本発明の有機廃棄物の炭化処理方法を廃棄タイヤに適用した場合の図1(A)に対応する系統図
【符号の説明】
11A…乾燥炭化装置
2、2A、2B…乾燥炭化室
19…生物学的処理槽
20…エジェクタ(真空吸引機)
22…サイクロン
29…油分掻き寄せ機(スカム回収手段)
36…熱交換器
41…シャワー管(冷水塔)
42…冷却媒充填材(冷水塔)
45…pH調整液供給ポンプ(pH調整液供給手段)
46…pH調整液供給配管(pH調整液供給配管)
51…オーバーフロー水(溢流水)
53、53A…廃液貯槽
58…遠心分離機(三相分離タイプ)
61…油分
67…乾燥装置(廃液蒸発散及びスラッジ乾燥用)
89…ガスの再利用
90…油の再利用
91…廃液
92…スラッジ
[0001]
【Technical field】
The present invention, various sludge, various concentrated waste liquid, human manure, cow, pig, bird manure, food residue, agricultural waste, woody waste, rubber waste, paper waste, medical waste, The present invention relates to a dry carbonization method and a dry carbonization plant suitable for converting combustible organic wastes such as waste plastics and general municipal waste into useful materials and reducing the wastes to zero (zero emission).
[0002]
[Background Art]
Conventional drying carbonization equipment has a drying oven and a carbonization furnace separated, or requires a gas cooling tower, a bag filter, etc., the equipment is complicated, there are many troubles, and good products cannot be obtained. Was.
[0003]
Further, in an apparatus capable of performing drying and carbonization in the same furnace, a burner for burning the carbonization gas is required, and the apparatus is treated as an incinerator.
[0004]
There is also a method of burning some raw materials and burning them, but this results in a large amount of ash and does not provide good charcoal.
[0005]
In addition, the present inventors have not yet seen or heard a device capable of collecting carbonized gas and reusing the oil without reusing the gas.
[0006]
The gasification and melting system needs to be heated to a higher temperature, and the higher the temperature, the shorter its life, often requires maintenance, and many dust collectors and desulfurization equipment and other auxiliary equipment, and the price is very high. It is too expensive for ordinary small and medium-sized enterprises.
[0007]
DISCLOSURE OF THE INVENTION
The present invention does not generate dioxin, has no problem of odor, obtains high-quality carbides, oils, and gases under energy saving by low-temperature treatment, produces useful materials from waste, and realizes zero emission or closed system It is an object of the present invention to provide a method for carbonizing organic waste, which facilitates carbonization.
[0008]
The present inventors have made intensive efforts to solve the above-mentioned problems, and as a result, have arrived at a method of drying and carbonizing organic waste having the following structure.
[0009]
The organic waste is carbonized by vacuum distillation, and steam generated from the carbonization or carbonization gas (hereinafter referred to as "carbonization gas") is introduced into water to form water to be subjected to biological treatment.
A method of drying and carbonizing organic waste, wherein the treated water is circulated and used as a first fluid (ejection fluid) of an ejector to introduce a carbonized gas into water together with the reduced pressure of the reduced pressure carbonization,
The scum (oil-based substance) is separated from the water containing the carbonized gas and the like, and the scum is solid-liquid separated and recovered as an oil fuel, and the insoluble gas (non-condensed) of the carbonized gas and the like introduced into the water is separated. (Reactive gas) is recovered as a gaseous fuel.
[0010]
Combustible gas and oil components generated by carbonization can be recovered as fuels (useful substances), respectively, and contribute to zero emission as much as possible. If a fuel is used as a carbonization heat source, a closed system can be realized.
[0011]
In the above configuration, cyclone dust collection is performed during the introduction of the dry distillation gas into the water, and the liquid solids generated in the cyclone dust are separated into solids and liquids. In addition, it is preferable that the liquid material generated is separated as necessary and collected as a useful material. Thus, the contribution to zero emission increases.
[0012]
In the above configuration, it is possible to store the overflow water and the drain water in the water to be treated and separate (decant) the precipitate, if necessary, to perform solid-liquid separation, dry treatment, and collect as a salt-containing substance. desirable. Further, the contribution to zero emission is increased.
[0013]
In each of the above configurations, it is desirable to use all or a part of the oil fuel and the gas fuel as the fuel for the vacuum distillation and further the drying treatment. This is for contributing to the closed system.
[0014]
In the above, when the organic waste is a waste tire, the effect becomes more remarkable. Waste tires are generated in large quantities, and their incineration disposal is regarded as impossible due to the generation of offensive odors, and the dry distillate can be reused as carbon black of the same rubber compound, and the non-condensable (water) Hydrogen and the like are contained in a large amount in the (insoluble) dry distillation gas, and can be recovered as valuable valuable substances.
[0015]
The dry carbonization plant used in the organic waste dry carbonization method of each of the above configurations has the following configuration.
[0016]
Comprising a carbonization device and a biological treatment device for biologically treating the water to be treated,
The carbonization apparatus has a configuration in which a carbonization chamber is provided with a paddle-type stirrer having a rotary shaft in the axial direction of carbonization gas or the like in water, and an indirect heating means for heating the carbonization chamber. ,
The biological treatment apparatus includes a water tank, biological treatment means, and an ejector, and a first fluid (ejection fluid) inlet of the ejector is connected to a circulation pipe for ejector from the water tank. A second fluid (suction fluid) inflow port is connected to a discharge pipe such as a carbonization gas from the carbonization apparatus, and further includes a scum recovery unit and a combustible gas recovery unit,
Further, a centrifugal separator for centrifuging scum from the scum collecting means and converting the scum into oil fuel is provided.
[0017]
In the above configuration, the horizontal cylinder (carbonization chamber) in the carbonization apparatus may be arranged in a plurality of stages so that the workpiece can be transferred from the upper carbonization chamber to the lower carbonization chamber. In the case of the constituent year, even if the organic waste has a high water content, water can be skipped on the upper side and carbonization can be performed on the lower side, so that carbonization can be continuously performed.
[0018]
In the above configuration, it is desirable that the cyclone is disposed in the middle of the discharge pipe for the carbonization gas and the like, and that the collected particles of the cyclone can be transferred to the centrifugal separator. By collecting the cyclone, the flow of the inorganic solid which is difficult to biologically process into the biological processing means is reduced, which contributes to the improvement of the biological processing efficiency.
[0019]
In addition, it is desirable that a cooling and transferring device provided with stirring and transferring means on the inside and a cooling means be connected to the carbide discharge port side of the carbonization device. It becomes easy to make the carbonization treatment continuous.
[0020]
The biological treatment apparatus further includes a cooling water tower that circulates and cools the water in the water tank, and further includes a pH adjusting liquid supply unit in the middle of the cooling water tower circulation pipe. Biological processing conditions can be optimized, which contributes to improvement of biological processing efficiency.
[0021]
The present invention will be described more schematically. The oil component in the sucked gaseous matter is collected by a floating oil scraper installed in a circulation treatment tank, and a gas holder is hermetically sealed at the top of the tank. To collect the carbonized gas, reuse the derived oil and gas, purify the water in the circulation treatment tank by biological treatment means, and circulate it in the heat exchanger and cooling tower. Water is cooled, and acid and alkali cleaning equipment is provided.Blow water and overflow water in the circulation treatment tank are subjected to non-polluting treatment by a waste liquid evaporator, and a closed system is used for dry carbonization of organic waste. A way to say.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail.
[0023]
In the dry carbonization apparatus (dry distillation apparatus) of the present invention, a dry carbonization chamber 2 is installed in a dry carbonization apparatus 1 having a jacket structure in which the inside or outside is thermally insulated, and the inside of the dry carbonization chamber 2 is freely rotatable. A paddle-type stirrer 3 is provided with a heat-resistant bearing 4. The bearing 4 has a structure that is isolated from outside air via a packing. A hot air 17 generated by a burner 6 or a hot air generator passes through a jacket portion 7 formed by the dry carbonizing chamber 2 and the outer wall of the apparatus at a lower portion of the dry carbonizing chamber 2 and indirectly heats an object 8 to be treated inside. As shown in FIG. 3, a hot air passage baffle 9 for preventing a short path is provided in the passage of the jacket portion 7, and the hot air 17 is exhausted from the exhaust pipe 10 around the outer periphery of the dry carbonization chamber 2. . Here, the indirect heating means is not limited to the above, and resistance heating, induction heating, and dielectric heating can also be used, and can be used alone or in combination as appropriate.
[0024]
The material to be treated (organic waste) 8 is charged from the charging hopper 12 through the screw feeder 13 through the rotary valve 14 into the dry carbonization chamber 2, and is stirred by the stirring paddle 3 and the stirring motor 16. Here, the reason why the rotary valve 14 is used is to shut off the dry carbonization chamber 2 from the outside air and to prevent the inflow of the outside air and the leakage of the carbonization gas as much as possible. At this time, in order to shut off the outside air of the dry carbonization chamber 2, a double damper or a double structure of two upper and lower double valves may be used instead of the rotary valve. In this manner, both the batch-type operation and the continuous operation are possible.
[0025]
When the carbonization chamber 2 is heated by the hot air 17, moisture and gas generated due to carbonization of the material to be treated (organic waste) 8 are supplied to the biological treatment tank (circulation treatment tank) 19 from the gas through the carbonization chamber gas outlet 18. The air is ejected through an ejector (vacuum suction machine) 20.
[0026]
The carbonization chamber outlet 18 and the vacuum suction device 20 are connected by a connection pipe (suction pipe) 21, and a cyclone (centrifugal dust collector) 22 is provided in the middle of the connection pipe, though it is not indispensable.
[0027]
The carbonized product gas treatment apparatus has a biological treatment tank (circulation treatment tank) 19 provided with a countercurrent contact bed (biological treatment means) 26 and a water level having a water level adjusting pipe 23 for keeping the water level constant. The biological treatment tank 19 sucks water from the bottom of the water level adjusting unit 24, passes through an ejector circulation pipe 28 having a circulation pump 25, and receives an ejector (water level adjustment unit) 24. A treatment water circulation mechanism for returning the biological treatment tank (main body) 19 to the treatment tank 19 via a vacuum suction machine 20 is provided.
[0028]
The ejector (vacuum suction machine) 20 suctions the water and gas from the processing object 8 in vacuum by injecting into the liquid in the biological treatment tank 19 by the power of the circulation pump 25 to vacuum the inside of the dry carbonization chamber 2. Is reduced in pressure.
[0029]
As described above, the biological treatment tank (countercurrent contact bed) 26 is provided inside the biological treatment tank (circulation treatment tank) 19, and the biological treatment tank 19 includes a circulation pump 25. The water sucked from the suction port 27 of FIG. 1 passes through the circulation pipe 28, returns to the biological treatment tank 19 via the vacuum suction machine 20, and returns to the water level adjusting tank 24 from the water level adjusting pipe 23. By raising and lowering the water level control pipe 23, the water level of the biological treatment tank 19 can be maintained at a set constant water level.
[0030]
When water is injected into the ejector 20 by the circulation pump 25, the inside of the dry carbonization chamber 2 becomes negative pressure (vacuum state), and moisture and gas pass through the suction pipe (connection pipe) 21 and pass through the biological treatment tank 19. It is jetted under water.
[0031]
The pressure in the dry carbonization chamber 2 is reduced, and evaporation occurs even at a low temperature, and the dry carbonization of the treatment object 8 proceeds in a short time at a low temperature.
[0032]
The generated steam and the carbonization gas (referred to as carbonization gas or the like) sucked by the ejector 20 are condensed by being placed below the surface of the biological treatment tank 19, and the organic matter contained in the carbonized water vapor is converted into a countercurrent contact bed 26. It is contacted and purified.
[0033]
The oil contained in the gas is liquefied in the water of the biological treatment tank 19 and floats on the biological treatment tank 19 as scum (oil).
[0034]
The floating oil is scraped by a scraping bar of a floating oil scraper (scum collecting means) 29, and is discharged to an oil receiving tank 31 through a tube tube 30 capable of shutting off outside air (not shown). However, a drum type oil scraper may be used.) The water level of the biological treatment tank 19 can be adjusted to a level at which only the oil is raked by adjusting (adjusting) the water level adjusting tube 23.
[0035]
The non-condensable gas in the gas is collected by a gas holder 32 installed in a closed manner on the biological treatment tank 19.
[0036]
The gas collected by the gas holder 32 is stored in a gas tank 34 by a blower, a vacuum pump, a blower 33 or the like, and can be reused as a fuel for the burner 6 for generating hot air through a fuel pipe 49.
[0037]
Since the heat of the steam or gas from the dry carbonization chamber 2 is transferred to the biological treatment tank 19, the water temperature of the biological treatment tank 19 rises. In order to suppress the rise in water temperature, it is desirable to install the cooling tower 35 and the heat exchanger 36 while circulating the water in the biological treatment tank 19 through the cooling circulation pipe.
[0038]
Between both ends of the heat exchange pipe 36a of the heat exchanger 36 and the cooling tower 35, cooling water (cooling medium) can be circulated through a circulation pipe 43 provided with a cooling tower circulation pump 37. The cooling tower 35 includes a fresh water supply pipe 38 for supplying water reduced by evaporation.
[0039]
Water to be cooled (liquid to be cooled) to the body 36b of the heat exchanger 36 is sucked from the suction port 39 of the water level adjusting tank 24, and is passed through the heat exchanger 36 by the heat exchanger circulation pump 40 to the shower pipe 41. Then, it is showered and circulated to the cooling tower filler 42.
[0040]
At this time, if the waste contains garbage or salt mixed with polyvinyl chloride (PVC) or the like, hydrogen chloride is generated in the dry carbonization chamber (carbonization furnace) 2 and is absorbed by water to form hydrochloric acid. For this reason, in this embodiment, in order to perform alkali cleaning, an alkali tank (usually a caustic soda tank) 47 and an alkali supply pump 45 provided with an alkali supply pump 45 are provided in the middle of the cooling circulation pipe 44 of the heat exchanger 36. The supply pipe 46 is connected. That is, it is injected through the alkali supply pipe 46 in the cooling liquid circulation pipe 44, showered by the shower pipe 41 and neutralized. At this time, the pH in the biological treatment tank 19 is detected by a pH sensor (pH detector) 48, and the detection signal is input to the alkali supply pump 45, so that the alkali supply amount can be adjusted.
[0041]
Conversely, when nitrogen compounds such as ammonia and amines flow in, similarly, an acid such as sulfuric acid may be supplied in the middle of the cooling pipe 44 to neutralize the same.
[0042]
In the case of treating waste having extremely high moisture content or highly concentrated waste liquid, the overflow water 51 flowing out of the overflow pipe 50 provided in the water level adjusting tank 24 and the drainage when the salt concentration in the biological treatment tank 19 is increased. (Blow) water is sent to and stored in the waste liquid storage tank 53 (see FIG. 1- (B)). As shown in FIG. 1B, the stored material is guided to a drying device 67 via a transfer pipe 66 provided with a transfer pump 65, and carbonized.
[0043]
The sludge collected by the cyclone 22 is guided to a sludge receiving tank 55 by a valve 54 and sent to a centrifuge 58 by a sludge transfer pump 56 via a transfer pipe 57. The oil in the oil receiving tank 31 is sent to a centrifugal separator (three-phase separation type) 58 via a pipe 60 by a transfer pump 59.
[0044]
The oil-containing sludge sent to the centrifugal separator 58 is separated into three phases and separated into a waste liquid 91, a sludge 92, and an oil component 61, the waste liquid 91 is stored in a waste liquid storage tank 53, and the sludge 92 is a centrifuge sludge receiving tank. The oil component 61 is stored in an oil tank 64 by an oil pump 63.
[0045]
The waste liquid stored in the waste liquid storage tank 53 is supplied to the inlet 68 of the waste liquid evaporative sludge drying device 67 via the pipe 66 by the waste liquid transfer pump 65 for processing.
[0046]
The centrifuge sludge 69 is also charged from the charging port 68 and processed.
[0047]
A heater or a burner 6 for generating hot air 17 is installed below the drying device 67 that combines waste liquid evaporation and sludge drying shown in FIGS. Here, the surplus gas 34 generated from the waste and / or the oil stored in the oil tank 64 discharged from the waste may be used as the burner fuel.
[0048]
When using oil (oil component), the oil is supplied to the burner 6 through an oil supply pipe 71 provided with an oil pump 70.
[0049]
The waste liquids 51, 52, 91 and the sludge 69 are stirred by the stirrer 3A and the stirring motor 16A, indirectly heated by the hot air 17, and water is evaporated.
[0050]
The evaporated water returns from the outlet 18a of the dry carbonization chamber 18 to the hot air generating furnace 73 through the vacuum suction device 20A via the pipe 72. By applying the wind pressure of the hot air generator 5 to the vacuum suction device 20A, steam is drawn in more, heat steam is generated, and the dryer is heated more. The exhaust heat / exhaust 11A is exhausted from the exhaust tube 10a.
[0051]
The dried product is obtained as salt and dried sludge and discharged from the outlet 74. The basic structure of the apparatus itself is almost the same as that of the dry carbonizing apparatus 1. In addition, organic waste containing a large amount of salt, for example, carbonized products such as soy sauce cake is washed and desalted in this carbonizing device 1 and dried with this device to obtain a very valuable carbonized material. Can be
[0052]
The carbonized product of the carbonizing device 1 is discharged from the outlet pipe 75 to the cooling discharge conveyor (cooling transfer device) 76 by the rotary valve 14A or the double valve. A stirring discharge blade 77 is installed in the discharge conveyor, and the main body has a jacket structure 78. The jacket has a water-cooled or air-cooled inlet pipe 79 and an outlet pipe 80, and cools the carbonized product put in the inside. Things.
[0053]
The cooled processed product is discharged to the processed product container 81 by the rotation of the stirring discharge blade 77.
[0054]
As shown in FIG. 2, carbonization of a seasoning waste liquid or waste liquid having a large amount of water such as manure (processed material) is stored in a waste liquid storage tank 53 </ b> A, and a plurality of dry carbonization chambers 2 are stacked as shown in FIG. 2. If water is removed in the upper stage and carbonization is performed in the lower stage, continuous carbonization can be performed even with waste liquid.
[0055]
The waste liquid sucked from the waste liquid storage tank 53A is supplied from the inlet 84 of the upper carbonization chamber 1A of the dry carbonization apparatus 1 by the waste liquid transfer pump 82 and the pipe 83, is stirred by the stirrer 3, and is indirectly heated by the burner 6. Upon receiving heat, evaporation occurs, and the gas is sucked from the gas outlet 18a to the ejector (vacuum suction machine) 20 of the biological treatment tank 19.
[0056]
The target object 8A from which the water content has flown out is pushed out by the discharge function of the stirrer 3 in the upper carbonization chamber 1A, is guided to the lower carbonization chamber 1B by the connecting pipe 85, and the carbonization proceeds in the lower row. (Vacuum suction machine) The liquid is sucked into 20 and beaten into the biological treatment tank 19.
[0057]
The carbonized product is discharged from the outlet pipe 75 to the processed product container 81 via the cooling discharge conveyor 76.
[0058]
The rotation speed of the stirrer 3 in the dry carbonization chamber 2 may be about 1 to 15 rpm (average peripheral speed of 3 to 45 m / min), and therefore a low power and high torque motor may be used.
[0059]
Although the cooling tower 35 may be a commercially available one, it is desirable to use the cooling tower 35 and the cooling tower filler 42 of Patent No. 1931319 previously proposed by the present inventor because of good cooling efficiency.
[0060]
As the countercurrent contact bed 26 of the biological treatment tank 19, it is desirable to apply the countercurrent contact bed 26 described in Japanese Patent No. 1908323/1797590 previously proposed by the present inventors.
[0061]
The material of the dry carbonizing device 1 is preferably heat-resistant stainless steel, and the heat insulating material of the device may be a fire-resistant brick or a fire-resistant caster. However, since the weight increases, ceramic fiber refractory, calcium silicate heat insulating material, and rock wool heat insulating material are used. It is applied because the material is light and easy to construct.
[0062]
The pressure reduction by the ejector (vacuum suction device) 20 is achieved by using a high-lift pump (20 to 40 mH) for selection of the circulation pump 25 to achieve a gauge pressure of −80 to −90 kPa (−600 to −700 mmHg) and a boiling point of 60 ° C. to 40 ° C., and the evaporative drying step is shortened.
[0063]
If a check valve 86 is provided in the middle of the pipe 21, even if the circulation pump stops, backflow of water and mixing of air can be prevented. If a safety valve 87 is also provided, an explosion can be prevented.
[0064]
The fuel for the burner for generating the hot air 17 may be kerosene, heavy oil, city gas, LPG, or the like, and may use the decomposed gas 34 and oil 61 generated from waste as fuel.
[0065]
The effect of the method for drying and carbonizing organic waste of the present invention is remarkable when applied to waste vulcanized rubber, particularly to waste tire. This is because a large amount of waste tires are generated, and incineration is difficult because of bad odor. Furthermore, when the waste tire is dried and carbonized by the method of the present invention, the device of the present invention has a stirrer, so that the carbide and the steel are completely separated by rotation, and high-quality carbon without any solidification of smooth is produced at a low temperature. Which can be carbonized and can be sufficiently reused for tires.2Gas can also be obtained, resulting in a wide variety of applications.
[0066]
FIG. 5 shows a system diagram corresponding to FIG. 1 (A) when the method for carbonizing organic waste of the present invention is applied to a waste tire.
[0067]
Here, the same portions are denoted by the same reference numerals and description thereof will be omitted. Hereinafter, only different parts will be described. In addition, a tire tube also includes a tire tube.
[0068]
The part different from FIG. 1 (A) is a size (for example, 10 to 30 cm) in which the waste tire 8A, which is an object to be treated, can be introduced into the coarse crusher 12A and introduced into the carbonization chamber 2 of the dry carbonization apparatus 1. It is crushed and put into the carbonization chamber 2 via the screw feeder 13 and the double valve 15. If a low-speed shearing crusher is selected as the coarse crusher 12A, even large tires such as trucks and buses can be crushed as they are, and only a small amount of power is required.
[0069]
In addition, when the discarded tire 8A piled in the field is treated, water accumulates inside the tire and it is difficult to get water. In such a case, a plurality of carbonization chambers as shown in FIG. It is desirable to use one having a step (two steps in the illustrated example). Moisture evaporation (drying) is performed in the upper carbonization chamber 2A, and carbonization is smoothly performed in the lower carbonization chamber 2B.
[0070]
Then, the introduced crushed waste tires can carbonize the organic components such as vulcanized rubber and carcass in the carbonization chamber 2 and separate and collect the reinforcing wire (steel) by rotating the paddle-type stirrer.
[0071]
Then, the non-condensable gas of the carbonized gas generated by the carbonization treatment is collected by the gas holder 32 and stored in the gas tank 34 in the same manner as described above, and is separated into the fuel gas 94 and the hydrogen gas 95 by the gas purification tower 93. The fuel gas 94 and the hydrogen gas 95 can be used as fuel for dry distillation or drying, as described above, or the hydrogen gas can be used for a fuel cell or the like. When used as a fuel cell, it can also be used as operating electricity for a motor or the like of the present system.
[0072]
[Action and Effect of the Invention]
The present invention provides a carbonization method and a carbonization apparatus for organic wastes, which can efficiently perform drying / distillation treatment with a single apparatus. Not only carbonized products, but also oil and pyrolysis gas generated in the carbonization step. Is also a device that can be used effectively.
[0073]
When carbonizing organic waste by dry distillation, the dry distillation is performed while forcibly reducing the pressure, and the organic waste having a high water content (high liquid content) is contained by the forced decompression in combination with the heating for the dry distillation. However, efficient drying is possible, and the drying / distilling step (treatment) can be continuously performed in the same container. Therefore, even if the organic waste has a high water content, there is no need to provide a separate drying device.
[0074]
In addition, after the organic waste is dried, the dry distillation (pyrolysis / carbonization) of the organic matter starts, but after drying while forcibly reducing the pressure, the process is continuously shifted to dry distillation, so that the organic waste is discharged in an atmosphere with a much smaller oxygen content. This makes it possible to carbonize the material, thereby obtaining a high-quality carbide with less generation of ash (mainly oxides generated by combustion). Furthermore, since the odor components are carbonized while the odor components are also exhausted by the forced decompression, it is easy to obtain odorless porous carbides, and in the case of a normal carbonization device, in order to obtain good quality carbides, the carbides are vaporized using steam or carbon dioxide. Although activation (temperature conditions of 800 to 1000 ° C.) for high-temperature heat treatment must be performed, in the case of the apparatus of the present invention, in order to reduce the pressure, the moisture held by the organic waste is pulled out from the waste by vacuum. The activated state is always obtained, and a carbide having good pores can be obtained even at a low temperature (250 to 350 ° C.).
[0075]
A vacuum pump, a blower, or a compressor may be used as a decompression means for forced decompression. However, unlike an evacuation pump (vacuum pump, blower, compressor, etc.) by using an ejector, the structure is not provided with a mechanical contact portion. It is simple, can be introduced into the decompression means at high temperature without cooling, and is introduced into the water while being in contact with the first fluid (water) of the ejector. The oil and water are condensed, and the oil is collected by a floating scraper.
[0076]
Water having condensed organic components can be recycled by being subjected to biological treatment (microbial purification treatment) by a countercurrent contact bed. The BOD concentration of condensed water discharged from ordinary garbage is 200 to 500 mg / L, which is a value that can be sufficiently purified.
[0077]
The non-condensable gas is stored in a gas holder, and as a combustible gas, as a chemical raw material, H2The gas can be used for fuel cells.
[0078]
The scraped oil is separated into water, sludge and oil by the centrifugal separator 58, and the oil can be reused as tar pitch or asphalt and used as fuel.
[0079]
In the experiment, when treating general urban waste
Experiment at the maximum pyrolysis temperature of 350 ° C
{Circle around (1)} Oil content 40% by mass Heat value about 5000kcal / kg
(2) Gas 30% by mass Heat value about 2000kcal / kg
Gas composition (mol%)
H2: 12%, CO: 37%, CO2: 37%, CH4: 6%, C2H4: 3%
(3) Carbide 20% by mass Heat value about 4500kcal / kg
4) Water content 10% by mass
For waste tire processing
Experiment at the highest temperature of pyrolysis 300 ℃
(1) Oil content 53% by mass Heat value about 10500kcal / kg
(2) Carbide 34% by mass Calorific value about 7500 kcal / kg
(Carbon black)
(3) Gas 6% by mass Heat value about 10,000 kcal / Nm3
Gas composition (mol%)
H2: 40-50%, CO: 20-30%, CO2: 10 to 15%, CH4: 5-8%
4) Scrap iron 5%
▲ 5 ▼ Water 1.5%
(6) 0.5% of carbon sludge was obtained.
[0080]
Separation of the overflow water 51 of the water level adjusting tank 39 flowing into the waste liquid storage tank 53, the blow water 52 of the biological treatment tank (the amount of blow water varies depending on the object to be treated, but about 10% per day), and the centrifugal separator 58. If the treatment liquid of the water 91 and the waste liquid are treated by the evaporative sludge drying apparatus 67, only the dried salt and the dried sludge 89 are to be discarded, and the amount of the raw material organic waste becomes several hundred to several thousandths.
[0081]
The device of the present invention can be used as an organic waste, which is a bulky and non-uniform material having a property such as a charcoal as a fuel, a soil improvement material, a humidity control material, a filtering material, a snow melting material, a compost material, and a gas. Oil and oil can be converted into fuels and industrial raw materials, which has a great advantage in suppressing the generation and volatilization of environmental pollution.
[0082]
The device is durable, easy to operate, requires no driving technicians, has no danger, is safe, is compact, does not cause cross-contamination, and is inexpensive.
[0083]
Also, when the organic waste is vulcanized rubber waste, in particular, waste tire, the following remarkable effects are exhibited.
[0084]
As described above, the carbide of the waste tire is obtained in an activated state, and can be reused as a carbon black for a rubber compound, particularly for a similar rubber tire. And even if a considerable amount is replaced with virgin carbon black, it is expected that the compatibility with the rubber is good and the physical properties of the vulcanized rubber hardly decrease.
[0085]
Also, the oil generated and collected by dry distillation of waste tires is subjected to vacuum distillation again to separate it into low-boiling oil and high-boiling oil, so that low-boiling oil is used as fuel and high-boiling oil is mixed with rubber. Since it has good affinity for rubber as a process oil for goods, it can be reused.
[0086]
Further, in the case of a waste tire, the gas composition is hydrogen-rich, and if gas purification is performed, it can be used as hydrogen for a fuel cell, and the value of the waste tire when it is made into a useful material is further increased.
[Brief description of the drawings]
1 (A) and 1 (B) are system diagrams showing one example of a method for dry carbonizing organic waste according to the present invention.
FIG. 2 is a schematic cross-sectional view showing another example of a dry carbonization device used in the dry carbonization treatment system of the present invention.
FIG. 3 is a schematic side sectional view showing one example of a sludge drying apparatus.
FIG. 4 is a vertical sectional view of FIG. 3;
FIG. 5 is a system diagram corresponding to FIG. 1 (A) when the method for carbonizing organic waste of the present invention is applied to a waste tire.
[Explanation of symbols]
11A: Dry carbonization equipment
2, 2A, 2B ... dry carbonization room
19. Biological treatment tank
20 ... Ejector (vacuum suction machine)
22 ... cyclone
29 ... oil scraper (scum collecting means)
36 ... Heat exchanger
41 ... shower pipe (cold water tower)
42 ... Cooling medium filler (cold water tower)
45 ... pH adjustment liquid supply pump (pH adjustment liquid supply means)
46 ... pH adjustment liquid supply pipe (pH adjustment liquid supply pipe)
51 ... overflow water (overflow water)
53, 53A ... waste liquid storage tank
58 ... Centrifuge (three-phase separation type)
61 ... oil
67 ... Drying equipment (for waste liquid evaporation and sludge drying)
89… Reuse of gas
90 ... Reuse of oil
91 ... waste liquid
92 ... Sludge

Claims (11)

有機廃棄物を減圧乾留により炭化するとともに、該乾留に伴い発生する発生蒸気ないし乾留ガス(以下「乾留ガス等」という。)を水中に導入して生物学的処理の被処理水となし、
前記被処理水をエジェクタの第一流体(噴射流体)として循環使用することにより、前記減圧乾留の減圧とともに乾留ガス等の水中への導入を行なう有機廃棄物の乾燥炭化方法であって、
前記被処理水からスカム(油性物)分離を行って、該スカムを固液分離して油燃料として回収するとともに、前記水中へ導入させた乾留ガス等の内の非溶解ガス(非凝縮性ガス)をガス燃料として回収することを特徴とする有機廃棄物の乾燥炭化方法。
The organic waste is carbonized by vacuum distillation, and steam generated from the carbonization or carbonization gas (hereinafter referred to as "carbonization gas") is introduced into water to form water to be subjected to biological treatment.
A method for drying and carbonizing organic waste, wherein the treated water is circulated and used as a first fluid (ejection fluid) of an ejector, and the pressure of the vacuum distillation is reduced and the carbonized gas is introduced into water,
The scum (oil-based material) is separated from the water to be treated, and the scum is separated into solid and liquid to be recovered as an oil fuel. In addition, non-dissolved gas (non-condensable gas) such as dry distillation gas introduced into the water is used. ) As a gaseous fuel.
前記乾留ガスの水中への導入途中でサイクロン集塵を行ない、該サイクロン集塵で発生する含液固形物を、固液分離して発生した廃棄固形物を乾燥処理させて二次炭化物を得るとともに、発生した液状物を、必要により液液分離して有用物として回収を行うことを特徴とする請求項1記載の有機廃棄物の乾燥炭化方法。Cyclone dust collection is performed during the introduction of the carbonized gas into water, and the liquid-containing solids generated in the cyclone dust collection are solid-liquid separated, and the waste solids generated are dried to obtain secondary carbides. 2. The method for drying and carbonizing organic waste according to claim 1, wherein the generated liquid is separated as a liquid if necessary and collected as a useful substance. 前記被処理水中の溢流水及びドレン水を貯留させて、分離(デカント)させた沈殿物を、必要により、固液分離して、乾燥処理して塩含有物として回収することを特徴とする請求項1記載の有機廃棄物の乾燥炭化方法。The overflowed water and drain water in the water to be treated are stored, and the separated (decanted) precipitate is, if necessary, separated into solid and liquid, dried, and recovered as a salt-containing substance. Item 4. The method for drying and carbonizing organic waste according to Item 1. 前記油燃料及びガス燃料の全部又は一部を、前記減圧乾留、さらには、前記乾燥処理の燃料として使用することを特徴とする請求項1〜3のいずれかに記載の有機廃棄物の乾燥炭化方法。The dry carbonization of the organic waste according to any one of claims 1 to 3, wherein all or a part of the oil fuel and the gas fuel is used as the fuel for the vacuum distillation and further the drying treatment. Method. 前記有機廃棄物が廃棄加硫ゴムであることを特徴とする請求項4記載の有機廃棄物の乾燥炭化方法。The method according to claim 4, wherein the organic waste is waste vulcanized rubber. 前記廃棄加硫ゴムが廃棄タイヤであることを特徴とする請求項5記載の有機廃棄物の乾燥炭化方法。The method according to claim 5, wherein the waste vulcanized rubber is a waste tire. 請求項1に記載の有機廃棄物の乾燥炭化方法に使用する乾燥炭化プラントであって、
乾留装置と、前記被処理水を生物学的処理する生物学的処理装置とを備え、
前記乾留装置が、乾留ガス等を水中に軸方向に回転軸を有する櫂形攪拌機を備えた横置き筒体(炭化室)と該炭化室の間接加熱手段を備えたものであり、
前記生物学的処理装置が、水槽と生物学的処理手段とエジェクタとを備え、該エジェクタの第一流体(噴出流体)流入口が前記水槽からのエジェクタ用循環配管と接続されているとともに、同第二流体(吸引流体)流入口が前記乾留装置からの乾留ガス等排出配管と接続され、さらに、スカム回収手段及び燃焼性ガス回収手段を備えており、
さらに、前記スカム回収手段からのスカムを遠心分離して、油燃料化する遠心分離器を備えていることを特徴とする乾燥炭化プラント。
A dry carbonization plant used in the method for dry carbonizing organic waste according to claim 1,
Comprising a carbonization device and a biological treatment device for biologically treating the water to be treated,
The carbonization apparatus comprises a horizontal cylinder (carbonization chamber) provided with a paddle-type stirrer having a rotation axis in the axial direction of the carbonization gas or the like in water, and indirect heating means for the carbonization chamber.
The biological treatment apparatus includes a water tank, biological treatment means, and an ejector, and a first fluid (ejection fluid) inlet of the ejector is connected to a circulation pipe for ejector from the water tank. A second fluid (suction fluid) inflow port is connected to a discharge pipe such as a carbonization gas from the carbonization apparatus, and further includes a scum recovery unit and a combustible gas recovery unit,
The dry carbonization plant further comprises a centrifugal separator for centrifuging the scum from the scum recovery means to convert the scum into oil fuel.
前記乾留装置における前記横置き筒体(炭化室)が複数段配設され、前記上側の炭化室から下側の炭化室へ被処理物が移送可能とされていることを特徴とする請求項7記載の乾燥炭化プラント。8. The apparatus according to claim 7, wherein the horizontal cylinder (carbonization chamber) in the carbonization apparatus is arranged in a plurality of stages, and the workpiece can be transferred from the upper carbonization chamber to the lower carbonization chamber. Dry carbonization plant as described. 前記乾留ガス等排出配管の途中にサイクロンが配されているとともに、該サイクロンの捕集粒子が前記遠心分離器へ移送可能とされていることを特徴とする請求項7又は8記載の乾燥炭化プラント。9. The dry carbonization plant according to claim 7, wherein a cyclone is disposed in the middle of the discharge pipe for the dry distillation gas and the like, and the collected particles of the cyclone can be transferred to the centrifugal separator. 10. . 前記乾留装置の炭化物排出口側に、内側に攪拌移送手段を備えるとともに冷却手段を備えた冷却移送装置が接続されていることを特徴とする請求項7又は8記載の乾燥炭化プラント。9. The dry carbonization plant according to claim 7, wherein a cooling transfer device including a stirring transfer device inside and a cooling device is connected to the carbide discharge port side of the carbonization device. 10. 前記生物学的処理装置が、さらに、水槽内の水を循環冷却させる冷水塔を備え、該冷水塔用循環配管の途中にpH調整液の供給手段を備えていることを特徴とする請求項7又は8記載の乾燥炭化プラント。8. The biological treatment apparatus according to claim 7, further comprising a cooling water tower for circulating and cooling the water in the water tank, and further comprising a pH adjusting liquid supply means in the middle of the cooling water tower circulation pipe. Or a dry carbonization plant according to 8.
JP2003038542A 2002-06-14 2003-02-17 Method for drying/carbonizing organic waste Pending JP2004243281A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003038542A JP2004243281A (en) 2003-02-17 2003-02-17 Method for drying/carbonizing organic waste
AU2003242309A AU2003242309A1 (en) 2002-06-14 2003-06-12 Organic waste carbonizing method and carbonizing device
PCT/JP2003/007469 WO2003106063A1 (en) 2002-06-14 2003-06-12 Organic waste carbonizing method and carbonizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038542A JP2004243281A (en) 2003-02-17 2003-02-17 Method for drying/carbonizing organic waste

Publications (1)

Publication Number Publication Date
JP2004243281A true JP2004243281A (en) 2004-09-02

Family

ID=33023048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038542A Pending JP2004243281A (en) 2002-06-14 2003-02-17 Method for drying/carbonizing organic waste

Country Status (1)

Country Link
JP (1) JP2004243281A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
JP2011529116A (en) * 2008-07-23 2011-12-01 マージューブ,エー,ラティフ Solid-to-fuel conversion system and method
KR101129316B1 (en) 2011-03-18 2012-03-27 주식회사 조원산업 Waste water treatment apparatus using kinetic energy and hydrogen energy
JP2012136672A (en) * 2010-12-28 2012-07-19 Kassui Plant Kk Vacuum pyrolysis processing apparatus and continuous liquefaction carbonization equipment
CN105921489A (en) * 2016-05-23 2016-09-07 刘西叶 Animal harmless treatment equipment and method
CN106938871A (en) * 2017-04-24 2017-07-11 西南交通大学 Porta Potti equipment for separating liquid from solid based on sustainable theory
KR20180078369A (en) * 2016-12-29 2018-07-10 한국건설기술연구원 Saline-containing food waste disposal apparatus and disposal method
KR20190015954A (en) * 2017-08-07 2019-02-15 주식회사 피엠알 Electrical treatment system of exhaust gas using wetted-wall gas absorption column

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
JP2011529116A (en) * 2008-07-23 2011-12-01 マージューブ,エー,ラティフ Solid-to-fuel conversion system and method
JP2012136672A (en) * 2010-12-28 2012-07-19 Kassui Plant Kk Vacuum pyrolysis processing apparatus and continuous liquefaction carbonization equipment
KR101129316B1 (en) 2011-03-18 2012-03-27 주식회사 조원산업 Waste water treatment apparatus using kinetic energy and hydrogen energy
CN105921489A (en) * 2016-05-23 2016-09-07 刘西叶 Animal harmless treatment equipment and method
KR20180078369A (en) * 2016-12-29 2018-07-10 한국건설기술연구원 Saline-containing food waste disposal apparatus and disposal method
KR102092693B1 (en) * 2016-12-29 2020-03-25 한국건설기술연구원 Saline-containing food waste disposal apparatus and disposal method
CN106938871A (en) * 2017-04-24 2017-07-11 西南交通大学 Porta Potti equipment for separating liquid from solid based on sustainable theory
KR20190015954A (en) * 2017-08-07 2019-02-15 주식회사 피엠알 Electrical treatment system of exhaust gas using wetted-wall gas absorption column
KR101964795B1 (en) 2017-08-07 2019-08-07 주식회사 피엠알 Electrical treatment system of exhaust gas using wetted-wall gas absorption column

Similar Documents

Publication Publication Date Title
US10435638B2 (en) Pyrolysis processing of solid waste from a water treatment plant
CN1863606B (en) Thermolysis of organic waste in a ball furnace
CN103449701B (en) Method and device for refinery sludge carbonization treatment and carbon recovery
CA1313591C (en) Method for obtaining utilizable gas from garbage
CN101759344B (en) Oil field oil sludge drying treatment combined device and oil sludge drying treatment technique
KR100557676B1 (en) Method for carbonizing organic waste and the apparatus therefor
JP4510782B2 (en) Sludge recycling method and apparatus.
WO2001051587A1 (en) Dry-distilling/volume reducing device for wastes
JP2006274201A (en) Continuous reduced-pressure drying/carbonizing apparatus
JP2012136672A (en) Vacuum pyrolysis processing apparatus and continuous liquefaction carbonization equipment
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
JP4404867B2 (en) Waste treatment equipment
JP2004243281A (en) Method for drying/carbonizing organic waste
KR101051093B1 (en) High Function Organic Sludge Dryer Using Water-In-oil Evaporation Technology at Normal Pressure
KR100759795B1 (en) System for drying/treating food waste in vacuum
CN201648205U (en) Oil field oil sludge drying treatment combined device
KR20050003162A (en) Sluge Carbonization Fiting
US4975195A (en) Apparatus and method for processing trap wastes and the like
WO2015087568A1 (en) Poultry manure treatment method and poultry manure treatment system
KR102307107B1 (en) Dry-Processing Apparatus of Livestock Manure
CN102021061B (en) Method for preparing fuel from organic sludge
KR101227687B1 (en) Carbonized-marerials recycling system of sludge and epr waste
KR102235341B1 (en) Complex system for resource recovery from organic waste water and separation of organic acids
KR100473583B1 (en) Equipments and method for Manufacturing active carbon using food wastes
WO2003106063A1 (en) Organic waste carbonizing method and carbonizing device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050704