JP2004241374A - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
JP2004241374A
JP2004241374A JP2003374400A JP2003374400A JP2004241374A JP 2004241374 A JP2004241374 A JP 2004241374A JP 2003374400 A JP2003374400 A JP 2003374400A JP 2003374400 A JP2003374400 A JP 2003374400A JP 2004241374 A JP2004241374 A JP 2004241374A
Authority
JP
Japan
Prior art keywords
group
compound
organic
fluorescence
delayed fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003374400A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
敦史 高橋
Toshio Igarashi
淑郎 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Pharmaceutical Co Ltd
Original Assignee
Sogo Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Pharmaceutical Co Ltd filed Critical Sogo Pharmaceutical Co Ltd
Priority to JP2003374400A priority Critical patent/JP2004241374A/en
Publication of JP2004241374A publication Critical patent/JP2004241374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emission-efficient and energy-efficient organic electroluminescent element (organic EL element). <P>SOLUTION: The organic EL element comprises an organic compound that radiates fluorescence and delayed fluorescence at less than 100°C. The above organic compound is a compound that radiates phosphorescence, or a porfyrin compound. The above porfyrin compound is a tin complex or a zinc complex. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、発光効率が極めて高く、エネルギー効率の高い有機エレクトロルミネッセンス素子(以下、有機EL素子という)に関する。   The present invention relates to an organic electroluminescence device (hereinafter, referred to as an organic EL device) having extremely high luminous efficiency and high energy efficiency.

有機EL素子は、基本的に蛍光性有機化合物に電場を与えることにより励起し、発光させる素子であり、表示素子、ディスプレイ、バックライト、電子写真、照明光源、露光光源、読み取り光源、標識、看板、インテリア等の分野に応用が図られている。
当該有機EL素子材料として用いられる蛍光性有機化合物としては、ポリ(p−フェニレンビニレン)、スターバースト分子、銅フタロシアニン、ポリアニリン、カルバゾール系ポリマー(特許文献1及び2)、種々のアリール環又はヘテロアリール環を有するイリジウム錯体(特許文献3)等が知られている。
特開2000−344777号公報 特開2000−344873号公報 特開2001−247859号公報
An organic EL element is basically an element that excites and emits light by applying an electric field to a fluorescent organic compound, and is a display element, a display, a backlight, an electrophotograph, an illumination light source, an exposure light source, a reading light source, a sign, a signboard. It is applied to fields such as interior and interior.
Examples of the fluorescent organic compound used as the organic EL device material include poly (p-phenylenevinylene), starburst molecule, copper phthalocyanine, polyaniline, carbazole-based polymers (Patent Documents 1 and 2), various aryl rings or heteroaryls. An iridium complex having a ring (Patent Document 3) is known.
JP 2000-344777 A JP-A-2000-344873 JP 2001-247859 A

しかしながら、これら従来の蛍光性有機化合物では、化合物の励起効率に関する原理的な問題から、発光効率が十分ではないという問題があった。
従って、本発明の目的は、従来の蛍光性有機化合物とは異なる全く新しい機能を有する、発光効率の高い有機EL素子を提供することにある。
However, these conventional fluorescent organic compounds have a problem that the luminous efficiency is not sufficient due to a fundamental problem concerning the excitation efficiency of the compound.
Accordingly, it is an object of the present invention to provide an organic EL device having a completely new function different from conventional fluorescent organic compounds and having high luminous efficiency.

そこで本発明者らは、有機EL素子の発光メカニズムから再検討した。すなわち、有機ELにおいては、正負の両電極より発光物質にキャリア(電子及び正孔)を注入し、励起状態の発光物質(励起子)を生成し、発光させる。
本件が問題とするのは、この励起子の励起状態である。通常、発光物質が光照射により励起された場合、理論的には、生成した励起子はその100%が励起一重項状態となる。しかし、キャリア注入型エレクトロルミネッセンスの場合、生成した励起子のうち、励起一重項状態に励起されるのは僅か25%であり、残り75%の励起子は励起三重項状態に励起されると言われている。従って、単純に励起効率だけを考えれば、励起一重項からの発光である蛍光を利用するよりは、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高いことが考えられる。実際に、リン光化合物であるイリジウム錯体を利用する緑色発光素子において、外部量子効率19.5%が報告されており、リン光材料の優位性が示唆されている。
しかしながら、禁制遷移であるリン光は、一般に量子収率がそれほど高くない場合が多い。励起三重項状態の寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用(三重項−三重項消滅)によるエネルギーの失活が起こるためであると言われている。このため、特に赤色材料においては、これまでに報告されている外部量子効率は最大でも7%程度と、蛍光材料における理論値である5%を僅かに上回っているにすぎない。
また、化合物によっては熱によりリン光の発光強度が低下してしまうものがある。このような材料を利用した場合、デバイスの発熱が避けられない有機EL素子では、発光効率の更なる低下を招くことになる。
Therefore, the present inventors reexamined the light emission mechanism of the organic EL element. That is, in the organic EL, carriers (electrons and holes) are injected into the luminescent material from both the positive and negative electrodes to generate an excited luminescent material (exciton) and emit light.
What matters in this case is the excited state of this exciton. Normally, when a luminescent substance is excited by light irradiation, 100% of the generated excitons are theoretically in an excited singlet state. However, in the case of carrier injection type electroluminescence, only 25% of the generated excitons are excited to an excited singlet state, and the remaining 75% of excitons are excited to an excited triplet state. Has been done. Therefore, simply considering the excitation efficiency alone, it can be seen that using phosphorescence, which is light emission from an excited triplet state, is more efficient in using energy than using fluorescence, which is light emission from an excited singlet. Conceivable. In fact, an external quantum efficiency of 19.5% has been reported for a green light emitting device using an iridium complex which is a phosphorescent compound, suggesting the superiority of the phosphorescent material.
However, phosphorescence, which is a forbidden transition, generally has a quantum yield that is often not so high. It is said that this is because the excited triplet state has a long lifetime, and energy is deactivated due to saturation of the excited state or interaction with an exciton in the excited triplet state (triplet-triplet annihilation). For this reason, in particular, in the case of a red material, the external quantum efficiency reported so far is at most about 7%, slightly exceeding the theoretical value of 5% for a fluorescent material.
In addition, depending on the compound, the emission intensity of phosphorescence is reduced by heat. When such a material is used, in an organic EL element in which heat generation of the device cannot be avoided, the luminous efficiency is further reduced.

発光材料における発光メカニズムをさらに検証した結果、本発明者らは、遅延蛍光を示す材料を利用する有機EL素子を着想した。ある種の蛍光物質は、系間交差等により励起三重項状態へとエネルギーが遷移した後、三重項−三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆系間交差され蛍光を放射する。有機ELにおいては、後者の熱活性化型の遅延蛍光を示す材料が特に有用であると考えられる。
前述した通り、有機EL素子において生成する励起子の励起一重項状態と励起三重項状態の存在比率は、それぞれ25%と75%と言われている。ここで、有機EL素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ系間交差され蛍光を放射する。すなわち、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。しかし、これまでに報告されている多くの遅延蛍光材料は、100℃を超える熱を加えなければ強い遅延蛍光を得ることができず、発光材料としての利用は困難であった。
さらに検討した結果、100℃未満の低い温度でも強い蛍光及び遅延蛍光を発する化合物が存在することが明らかになった。この化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への系間交差が生じ、遅延蛍光を放射することから、発光効率が飛躍的に向上した有機EL素子が得られることを見出し、本発明を完成するに至った。
As a result of further examining the light emission mechanism of the light emitting material, the present inventors conceived of an organic EL device using a material exhibiting delayed fluorescence. Certain types of fluorescent substances change their energy to the excited triplet state due to intersystem crossing, etc., and then intersect the excited singlet state due to triplet-triplet annihilation or thermal energy absorption, and emit fluorescence. I do. In organic EL, the latter material exhibiting heat-activated delayed fluorescence is considered to be particularly useful.
As described above, the abundance ratio of the excited singlet state and the excited triplet state of the exciton generated in the organic EL element is said to be 25% and 75%, respectively. Here, when a delayed fluorescent material is used for the organic EL element, the exciton in the excited singlet state emits fluorescence as usual. On the other hand, an exciton in an excited triplet state absorbs heat generated by the device, crosses the system to an excited singlet, and emits fluorescence. That is, through the absorption of thermal energy after carrier injection, it is possible to increase the ratio of the compound in the excited singlet state, which usually produces only 25%, to 25% or more. However, many delayed fluorescent materials reported so far cannot obtain strong delayed fluorescence unless heat exceeding 100 ° C. is applied, and it has been difficult to use them as luminescent materials.
As a result of further study, it has been clarified that there is a compound that emits strong fluorescence and delayed fluorescence even at a low temperature of less than 100 ° C. When this compound is used, the heat of the device sufficiently causes an intersystem crossing from the excited triplet state to the excited singlet state, and emits delayed fluorescence, so that an organic EL element with significantly improved luminous efficiency can be obtained. And found that the present invention was completed.

すなわち、本発明は、100℃未満の温度で蛍光及び遅延蛍光を放射する有機化合物を含有することを特徴とする有機EL素子を提供するものである。   That is, the present invention provides an organic EL device containing an organic compound that emits fluorescence and delayed fluorescence at a temperature lower than 100 ° C.

本発明の低温遅延蛍光物質を用いれば、発光効率が高い有機EL素子が得られる。   By using the low-temperature delayed fluorescent substance of the present invention, an organic EL device having high luminous efficiency can be obtained.

本発明において有機EL素子材料として用いられる化合物は、100℃未満の温度で蛍光及び遅延蛍光を放射する有機化合物である(以下、低温遅延蛍光物質ということがある)。遅延蛍光放射の温度条件は、有機EL素子デバイスの通常の発熱によって遅延蛍光が生じる必要があることから、90℃以下、さらに80℃以下、特に0〜80℃であるのが好ましい。また、当該低温遅延蛍光物質は、さらにリン光を放射するものであってもよい。   The compound used as an organic EL device material in the present invention is an organic compound that emits fluorescence and delayed fluorescence at a temperature lower than 100 ° C. (hereinafter, may be referred to as a low-temperature delayed fluorescent substance). The temperature condition of the delayed fluorescence emission is preferably 90 ° C. or less, more preferably 80 ° C. or less, and particularly preferably 0 to 80 ° C., since the delayed fluorescence needs to be generated by normal heat generation of the organic EL device. Further, the low-temperature delayed fluorescent substance may further emit phosphorescence.

当該低温遅延蛍光物質としては、ポルフィリン化合物が挙げられる。ポルフィリン化合物としては、前記低温遅延蛍光を発するものであれば特に制限されないが、スズ錯体又は亜鉛錯体であるのが好ましい。また、スズ錯体の場合は電荷を中和するための対イオンとしてフッ化物イオン、硫酸イオン、シアン化物イオン、アルキルアニオン、アリールアニオンを有するものが好ましい。   The low-temperature delayed fluorescent substance includes a porphyrin compound. The porphyrin compound is not particularly limited as long as it emits the low-temperature delayed fluorescence described above, but is preferably a tin complex or a zinc complex. In the case of a tin complex, those having a fluoride ion, a sulfate ion, a cyanide ion, an alkyl anion or an aryl anion as a counter ion for neutralizing the electric charge are preferable.

さらに好ましいポルフィリン化合物としては、次の一般式(1)   More preferred porphyrin compounds include the following general formula (1)

Figure 2004241374
Figure 2004241374

(式中、R1〜R8はそれぞれ、水素原子、アルキル基、アルケニル基、カルボキシル基、カルボキシアルキル基、カルボキシアルケニル基、アルコキシカルボニルアルキル基、アルコキシカルボニルアルケニル基、ヒドロキシ基、ヒドロキシアルキル基、ヒドロキシアルケニル基、ホルミル基、ホルミルアルキル基、ホルミルアルケニル基、アルカノイル基、アルカノイルアルキル基、アルカノイルアルケニル基、ハロゲン原子、ハロゲノアルキル基、ハロゲノアルケニル基を示すか、R1とR2、R3とR4、R5とR6又はR7とR8が一緒になって芳香環を形成してもよい;
9〜R12はそれぞれ、水素原子、フェニル基、ハロゲノフェニル基、シアノフェニル基、アルキルフェニル基、スルホナトフェニル基、カルボキシフェニル基、アルキルアミノフェニル基、ピリジル基、又はN−アルキルピリジル基を示し;
MはSn4+又はZn2+を示し;
Xは一価又は二価のアニオン示し;
nは0〜2の数を示す)
で表される化合物が好ましい。
(Wherein, R 1 to R 8 each represent a hydrogen atom, an alkyl group, an alkenyl group, a carboxyl group, a carboxyalkyl group, a carboxyalkenyl group, an alkoxycarbonylalkyl group, an alkoxycarbonylalkenyl group, a hydroxy group, a hydroxyalkyl group, An alkenyl group, a formyl group, a formylalkyl group, a formylalkenyl group, an alkanoyl group, an alkanoylalkyl group, an alkanoylalkenyl group, a halogen atom, a halogenoalkyl group, a halogenoalkenyl group, or R 1 and R 2 , R 3 and R 4 , R 5 and R 6 or R 7 and R 8 may together form an aromatic ring;
R 9 to R 12 each represent a hydrogen atom, a phenyl group, a halogenophenyl group, a cyanophenyl group, an alkylphenyl group, a sulfonatophenyl group, a carboxyphenyl group, an alkylaminophenyl group, a pyridyl group, or an N-alkylpyridyl group. Show;
M represents Sn 4+ or Zn 2+ ;
X represents a monovalent or divalent anion;
n shows the number of 0-2)
The compound represented by is preferred.

1〜R8で示されるアルキル基としては、炭素数1〜6のアルキル基、特に炭素数1〜4のアルキル基が好ましい。その具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基等が挙げられる。アルケニル基としては炭素数2〜6のアルケニル基、特に炭素数2〜4のアルケニル基が好ましい。その具体例としては、ビニル基、アリル基等が挙げられる。カルボキシアルキル基としては、カルボキシC1-6アルキル基、特にカルボキシC1-4アルキル基が好ましい。その具体例としては、カルボキシメチル基、カルボキシエチル基、カルボキシプロピル基等が挙げられる。カルボキシアルケニル基としては、カルボキシC2-6アルケニル基、特にカルボキシC2-4アルケニル基が好ましい。その具体例としては、カルボキシビニル基、カルボキシアリル基等が挙げられる。アルコキシカルボニルアルキル基としては、C1-6アルコキシカルボニルC1-6アルキル基、特にC1-4アルコキシカルボニルC2-4アルキル基が好ましい。その具体例としては、メトキシカルボニルメチル基、メトキシカルボニルエチル基、エトキシカルボニルエチル基等が挙げられる。アルコキシカルボニルアルケニル基としては、C1-6アルコキシカルボニルC2-6アルケニル基、特にC1-4アルコキシカルボニルC2-4アルケニル基が好ましい。 The alkyl group represented by R 1 to R 8 is preferably an alkyl group having 1 to 6 carbon atoms, particularly preferably an alkyl group having 1 to 4 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. The alkenyl group is preferably an alkenyl group having 2 to 6 carbon atoms, particularly preferably an alkenyl group having 2 to 4 carbon atoms. Specific examples thereof include a vinyl group and an allyl group. As the carboxyalkyl group, a carboxy C 1-6 alkyl group, particularly a carboxy C 1-4 alkyl group, is preferred. Specific examples thereof include a carboxymethyl group, a carboxyethyl group, and a carboxypropyl group. As the carboxyalkenyl group, a carboxy C 2-6 alkenyl group, particularly a carboxy C 2-4 alkenyl group is preferred. Specific examples thereof include a carboxyvinyl group and a carboxyallyl group. The alkoxycarbonyl group, C 1-6 alkoxycarbonyl C 1-6 alkyl group, especially C 1-4 alkoxycarbonyl C 2-4 alkyl group. Specific examples thereof include a methoxycarbonylmethyl group, a methoxycarbonylethyl group, and an ethoxycarbonylethyl group. As the alkoxycarbonylalkenyl group, a C 1-6 alkoxycarbonyl C 2-6 alkenyl group, particularly a C 1-4 alkoxycarbonyl C 2-4 alkenyl group is preferred.

ヒドロキシアルキル基としては、ヒドロキシC1-6アルキル基、特にヒドロキシC2-4アルキル基が好ましい。その具体例としては、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基等が挙げられる。ヒドロキシアルケニル基としては、ヒドロキシC2-6アルケニル基、特にヒドロキシC2-4アルケニル基が好ましい。ホルミルアルキル基としては、ホルミルC2-6アルキル基、特にホルミルC2-4アルキル基が好ましい。アルカノイル基としてはC2-6アルカノイル基、例えばアセチル基、プロピオニル基が好ましい。アルカノイルアルキル基としては、C2-6アルカノイルC1-6アルキル基が好ましい。アルカノイルアルケニル基としては、C2-6アルカノイルC2-6アルケニル基が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。ハロゲノアルキル基としては、ハロゲノC1-6アルキル基が挙げられる。ハロゲノアルケニル基としては、ハロゲノC2-6アルケニル基が挙げられる。 As the hydroxyalkyl group, a hydroxy C 1-6 alkyl group, particularly a hydroxy C 2-4 alkyl group, is preferred. Specific examples thereof include a hydroxyethyl group, a hydroxypropyl group, and a hydroxybutyl group. As the hydroxyalkenyl group, a hydroxy C 2-6 alkenyl group, particularly a hydroxy C 2-4 alkenyl group, is preferred. As the formylalkyl group, a formyl C 2-6 alkyl group, particularly a formyl C 2-4 alkyl group, is preferred. As the alkanoyl group, a C 2-6 alkanoyl group such as an acetyl group and a propionyl group is preferable. As the alkanoylalkyl group, a C 2-6 alkanoyl C 1-6 alkyl group is preferable. As the alkanoylalkenyl group, a C 2-6 alkanoyl C 2-6 alkenyl group is preferable. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Examples of the halogenoalkyl group include a halogeno C 1-6 alkyl group. Examples of the halogenoalkenyl group include a halogeno C 2-6 alkenyl group.

1とR2、R3とR4、R5とR6又はR7とR8が一緒になって形成する芳香環としては、ベンゼン環が挙げられる。これらの基がベンゼン環を形成するとき、ピロール環はインドール環になる。 The aromatic ring formed by R 1 and R 2 , R 3 and R 4 , R 5 and R 6 or R 7 and R 8 together includes a benzene ring. When these groups form a benzene ring, the pyrrole ring becomes an indole ring.

9〜R12で示されるアルキルフェニル基としては、C1-6アルキルフェニル基が好ましい。アルキルアミノフェニル基としては、C1-6アルキルアミノフェニル基が好ましい。またN−アルキルピリジル基としては、N−C1-6アルキルピリジル基が好ましい。 As the alkylphenyl group represented by R 9 to R 12 , a C 1-6 alkylphenyl group is preferable. As the alkylaminophenyl group, a C 1-6 alkylaminophenyl group is preferable. As the N- alkylpyridyl group, N-C 1-6 alkyl pyridyl group are preferable.

特に好ましいR1〜R8としては、水素原子、アルキル基、アルケニル基、カルボキシアルキル基、カルボキシアルケニル基、アルコキシカルボニルアルキル基、アルコキシカルボニルアルケニル基が挙げられる。またR9〜R12としては、水素原子が特に好ましい。 Particularly preferred R 1 to R 8 include a hydrogen atom, an alkyl group, an alkenyl group, a carboxyalkyl group, a carboxyalkenyl group, an alkoxycarbonylalkyl group, and an alkoxycarbonylalkenyl group. As R 9 to R 12 , a hydrogen atom is particularly preferable.

スズ錯体の場合の対イオンとしては、フッ化物イオン;硫酸イオン;シアン化物イオン;メチルアニオン、エチルアニオン等の炭素数1〜4のアルキルアニオン;フェニルアニオン等のアリールアニオンが挙げられる。   Examples of the counter ion in the case of the tin complex include a fluoride ion; a sulfate ion; a cyanide ion; an alkyl anion having 1 to 4 carbon atoms such as a methyl anion and an ethyl anion; and an aryl anion such as a phenyl anion.

これらのポルフィリン化合物錯体は、対応するポルフィリン化合物にフッ化スズ、フッ化亜鉛、硫酸スズ、硫酸亜鉛等を反応させることにより製造することができる。
これらのポルフィリン化合物錯体(1)は、波長550nm〜700nm領域において蛍光及び遅延蛍光を放射する。また、波長650〜900nmの領域においてリン光を放射する。
These porphyrin compound complexes can be produced by reacting the corresponding porphyrin compound with tin fluoride, zinc fluoride, tin sulfate, zinc sulfate, or the like.
These porphyrin compound complexes (1) emit fluorescence and delayed fluorescence in a wavelength region of 550 nm to 700 nm. Further, phosphorescent light is emitted in a wavelength region of 650 to 900 nm.

従って、前記低温遅延蛍光物質を有機EL素子の発光材料として用いれば、発光効率の極めて高い有機EL素子を形成することができる。   Therefore, when the low-temperature delayed fluorescent substance is used as a light emitting material of an organic EL device, an organic EL device having extremely high luminous efficiency can be formed.

本発明の有機EL素子は陽極、陰極の一対の電極間に低温遅延蛍光物質を含む発光層もしくは当該発光層を含む複数の有機化合物薄膜を形成した素子であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。   The organic EL device of the present invention is a device in which a light emitting layer containing a low-temperature delayed fluorescent substance or a plurality of organic compound thin films containing the light emitting layer is formed between a pair of anode and cathode electrodes. , A hole transport layer, an electron injection layer, an electron transport layer, a protective layer, and the like, and each of these layers may have another function. Various materials can be used for forming each layer.

陽極は正孔注入層、正孔輸送層、発光層などに正孔を供給するものであり、金属、合金、金属酸化物、電気伝導性化合物、又はこれらの混合物などを用いることができ、好ましくは仕事関数が4eV以上の材料である。   The anode supplies holes to the hole-injection layer, the hole-transport layer, the light-emitting layer, and the like, and can be a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof, and is preferably used. Is a material having a work function of 4 eV or more.

陽極は通常、ソーダライムガラス、無アルカリガラス、透明樹脂基板などの上に層形成したものが用いられる。   As the anode, a layer formed on a soda lime glass, a non-alkali glass, a transparent resin substrate or the like is usually used.

陰極は電子注入層、電子輸送層、発光層などに電子を供給するものであり、電子注入層、電子輸送層、発光層などの負極と隣接する層との密着性やイオン化ポテンシャル、安定性等を考慮して選ばれる。陰極の材料としては金属、合金、金属ハロゲン化物、金属酸化物、電気伝導性化合物、又はこれらの混合物を用いることができる。   The cathode supplies electrons to the electron injection layer, the electron transport layer, the light emitting layer, and the like. The cathode, the adhesion between the negative electrode such as the electron injection layer, the electron transport layer, and the light emitting layer, the ionization potential, and the stability. Is taken into consideration. As a material for the cathode, a metal, an alloy, a metal halide, a metal oxide, an electrically conductive compound, or a mixture thereof can be used.

正孔注入層、正孔輸送層の材料は、陽極から正孔を注入する機能、正孔を輸送する機能、陰極から注入された電子を障壁する機能のいずれか有しているものであればよい。電子注入層、電子輸送層の材料は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入された正孔を障壁する機能のいずれか有しているものであればよい。   If the material of the hole injection layer and the hole transport layer has any of a function of injecting holes from the anode, a function of transporting holes, and a function of blocking electrons injected from the cathode, Good. The material of the electron injecting layer and the electron transporting layer may be a material having any of a function of injecting electrons from a cathode, a function of transporting electrons, and a function of blocking holes injected from an anode.

保護層の材料としては水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。   As the material of the protective layer, any material may be used as long as it has a function of preventing a substance that promotes element deterioration such as moisture or oxygen from entering the element.

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明は何らこれらに限定されない。   Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1(プロトポルフィリン−フッ化スズ錯体(SnF2(Proto lX))の合成) Example 1 (protoporphyrin - Synthesis of tin fluoride complex (SnF 2 (Proto lX)) )

Figure 2004241374
Figure 2004241374

プロトポルフィリン二ナトリウム塩50mg及びフッ化スズ(II)65mgをジメチルスルホキシド5mLに溶解し、160℃で3時間錯形成反応を行う。反応液を50mLの1%フッ化水素酸に滴下し、1時間撹拌した。析出した結晶を濾別し、20mLの酢酸エチルに分散させて還流下1時間けん洗した。室温まで冷却した後、再び結晶を濾別・乾燥し、上記錯体25mgを得た。   50 mg of protoporphyrin disodium salt and 65 mg of tin (II) fluoride are dissolved in 5 mL of dimethyl sulfoxide, and a complex formation reaction is performed at 160 ° C. for 3 hours. The reaction solution was added dropwise to 50 mL of 1% hydrofluoric acid and stirred for 1 hour. The precipitated crystals were separated by filtration, dispersed in 20 mL of ethyl acetate, and washed under reflux for 1 hour. After cooling to room temperature, the crystals were filtered off and dried again to obtain 25 mg of the above complex.

実施例2(メソポルフィリン−フッ化スズ錯体(SnF2(Meso IX))の合成) Example 2 (Synthesis of mesoporphyrin-tin fluoride complex (SnF 2 (Meso IX)))

Figure 2004241374
Figure 2004241374

メソポルフィリンIX 二塩酸塩170mg及びフッ化スズ(II)208mgをジメチルスルホキシド15mLに溶解し、160℃で3時間錯形成反応を行った。反応液を150mLの1%フッ化水素酸に滴下し、1時間撹拌した。析出した結晶を濾別し、60mLの酢酸エチルに分散させて還流下1時間けん洗した。室温まで冷却した後、再び結晶を濾別・乾燥し、上記錯体160mgを得た。   170 mg of mesoporphyrin IX dihydrochloride and 208 mg of tin (II) fluoride were dissolved in 15 mL of dimethyl sulfoxide, and a complex formation reaction was performed at 160 ° C. for 3 hours. The reaction solution was added dropwise to 150 mL of 1% hydrofluoric acid and stirred for 1 hour. The precipitated crystals were separated by filtration, dispersed in 60 mL of ethyl acetate, and washed with reflux for 1 hour. After cooling to room temperature, the crystals were filtered off and dried again to obtain 160 mg of the above complex.

実施例3(ヘマトポルフィリン−フッ化スズ錯体(SnF2(Hemato IX))の合成) Example 3 (Synthesis of hematoporphyrin-tin fluoride complex (SnF 2 (Hemato IX)))

Figure 2004241374
Figure 2004241374

ヘマトポルフィリンIX 50mg及びフッ化スズ(II)65mgをジメチルスルホキシド5mLに溶解し、160℃で3時間錯形成反応を行った。反応液を50mLの1%フッ化水素酸に滴下し、1時間撹拌した。析出した結晶を濾別し、20mLの酢酸エチルに分散させて還流下1時間けん洗した。室温まで冷却した後、再び結晶を濾別・乾燥し、上記錯体38mgを得た。   50 mg of hematoporphyrin IX and 65 mg of tin (II) fluoride were dissolved in 5 mL of dimethyl sulfoxide, and a complex formation reaction was performed at 160 ° C. for 3 hours. The reaction solution was added dropwise to 50 mL of 1% hydrofluoric acid and stirred for 1 hour. The precipitated crystals were separated by filtration, dispersed in 20 mL of ethyl acetate, and washed under reflux for 1 hour. After cooling to room temperature, the crystals were filtered off and dried again to obtain 38 mg of the above complex.

実施例4(コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(SnF2(Copro III-4Me))の合成) Example 4 (Synthesis of Coproporphyrin Tetramethyl Ester-Tin Fluoride Complex (SnF 2 (Copro III-4Me)))

Figure 2004241374
Figure 2004241374

コプロポルフィリンIII テトラメチルエステル50mg及びフッ化スズ(II)55mgをジメチルスルホキシド5mLに溶解し、160℃で3時間錯形成反応を行った。反応液を50mLの1%フッ化水素酸に滴下し、1時間撹拌した。析出した結晶を濾別し、20mLの酢酸エチルに分散させて還流下1時間けん洗した。室温まで冷却した後、再び結晶を濾別・乾燥し、上記錯体22mgを得た。   50 mg of coproporphyrin III tetramethyl ester and 55 mg of tin (II) fluoride were dissolved in 5 mL of dimethyl sulfoxide, and a complex formation reaction was carried out at 160 ° C. for 3 hours. The reaction solution was added dropwise to 50 mL of 1% hydrofluoric acid and stirred for 1 hour. The precipitated crystals were separated by filtration, dispersed in 20 mL of ethyl acetate, and washed under reflux for 1 hour. After cooling to room temperature, the crystals were filtered off and dried again to obtain 22 mg of the above complex.

実施例5(オクタエチルポルフィリン−フッ化スズ錯体(SnF2(OEP))の合成) Example 5 (Synthesis of octaethylporphyrin-tin fluoride complex (SnF 2 (OEP)))

Figure 2004241374
Figure 2004241374

オクタエチルポルフィリン50mg及びフッ化スズ(II)73mgをジメチルスルホキシド5mLに溶解し、160℃で3時間錯形成反応を行った。反応液を50mLの1%フッ化水素酸に滴下し、1時間撹拌した。析出した結晶を濾別し、20mLの酢酸エチルに分散させて還流下1時間けん洗した。室温まで冷却した後、再び結晶を濾別・乾燥し、上記錯体19mgを得た。   Octaethylporphyrin (50 mg) and tin (II) fluoride (73 mg) were dissolved in dimethyl sulfoxide (5 mL), and a complex formation reaction was performed at 160 ° C. for 3 hours. The reaction solution was added dropwise to 50 mL of 1% hydrofluoric acid and stirred for 1 hour. The precipitated crystals were separated by filtration, dispersed in 20 mL of ethyl acetate, and washed under reflux for 1 hour. After cooling to room temperature, the crystals were filtered off and dried again to obtain 19 mg of the above complex.

実施例6(エチオポルフィリン−フッ化スズ錯体(SnF2(Etio I))の合成) Example 6 (Synthesis of Ethioporphyrin-tin Fluoride Complex (SnF 2 (Etio I)))

Figure 2004241374
Figure 2004241374

エチオポルフィリンI 二臭化水素酸塩100mg及びフッ化スズ(II)122mgをジメチルスルホキシド10mLに溶解し、160℃で3時間錯形成反応を行った。反応液を100mLの1%フッ化水素酸に滴下し、1時間撹拌した。析出した結晶を濾別し、40mLの酢酸エチルに分散させて還流下1時間けん洗した。室温まで冷却した後、再び結晶を濾別・乾燥し、上記錯体55mgを得た。   Ethioporphyrin I 100 mg of dihydrobromide and 122 mg of tin (II) fluoride were dissolved in 10 mL of dimethyl sulfoxide, and a complex formation reaction was carried out at 160 ° C. for 3 hours. The reaction solution was added dropwise to 100 mL of 1% hydrofluoric acid and stirred for 1 hour. The precipitated crystals were separated by filtration, dispersed in 40 mL of ethyl acetate, and washed under reflux for 1 hour. After cooling to room temperature, the crystals were filtered off and dried again to obtain 55 mg of the above complex.

試験例1
実施例1〜6で得られたポルフィリン錯体の遅延蛍光スペクトルを測定した。
(1)測定用試料(濾紙)の調整
上記の各ポルフィリン錯体1mgをそれぞれ1mLのジメチルスルホキシドに溶解した。次いで、ハミルトン製10μLマイクロシリンジを使用して、前述の錯体溶液10μLをADVANTEC製No.5Cの濾紙に滴下し、その後160℃の温風により乾燥した。なお、滴下・乾燥後のスポットは円形であり、直径は何れも約1cmであった。この濾紙のスポット部分を切り取り、遅延蛍光スペクトルの測定に使用した。
(2)遅延蛍光の確認
上記の各測定試料に紫外線(波長365nm)を照射したところ、全ての試料からフッ化スズ−ポルフィリン錯体由来の赤色の強い蛍光が観測された。さらにこれらの試料に対して、紫外線照射下60℃の温風を吹き付けたところ、全ての試料において発光強度の明らかな増大(目視で2〜3倍前後)が観測された。この結果より、これら全てのフッ化スズ−ポルフィリン錯体が熱活性化型の遅延蛍光を放射することが明らかになった。
(3)装置及び測定条件
測定には、パーキンエルマー製LS55型ルミネッセンス分光光度計にR928光電子増倍管を装着し使用した。励起側スリット幅を15nm、検出側スリット幅を20nmとし、リン光測定モード(Delay=1ms, Gate=1ms)で全てのスペクトルを測定した。
(4)結果
図1〜図6に示すように、いずれのポルフィリン錯体にも室温(25℃)下で波長520〜750nmに強い遅延蛍光スペクトル及びリン光スペクトルが観測された。
Test example 1
The delayed fluorescence spectra of the porphyrin complexes obtained in Examples 1 to 6 were measured.
(1) Preparation of measurement sample (filter paper) 1 mg of each of the above porphyrin complexes was dissolved in 1 mL of dimethyl sulfoxide. Then, using a 10 μL micro syringe manufactured by Hamilton, 10 μL of the above-described complex solution was added to No. 1 manufactured by ADVANTEC. The solution was dropped on 5C filter paper, and then dried with hot air at 160 ° C. The spots after dropping and drying were circular, and each had a diameter of about 1 cm. A spot portion of the filter paper was cut out and used for measuring a delayed fluorescence spectrum.
(2) Confirmation of Delayed Fluorescence When the above-mentioned measurement samples were irradiated with ultraviolet rays (wavelength 365 nm), strong red fluorescence derived from the tin fluoride-porphyrin complex was observed from all the samples. Further, when a hot air at 60 ° C. was blown to these samples under ultraviolet irradiation, a clear increase in the luminescence intensity (approximately 2 to 3 times visually) was observed in all the samples. The results revealed that all of these tin fluoride-porphyrin complexes emit heat-activated delayed fluorescence.
(3) Apparatus and Measurement Conditions For the measurement, an R928 photomultiplier tube was attached to an LS55 luminescence spectrophotometer manufactured by Perkin Elmer. With the excitation-side slit width set to 15 nm and the detection-side slit width set to 20 nm, all spectra were measured in the phosphorescence measurement mode (Delay = 1 ms, Gate = 1 ms).
(4) Results As shown in FIGS. 1 to 6, a strong delayed fluorescence spectrum and a phosphorescent spectrum at a wavelength of 520 to 750 nm were observed at room temperature (25 ° C.) for all porphyrin complexes.

実施例7
インジウム・スズ酸化物(ITO)をおよそ1600Åの厚さで成膜したガラスに、ホール注入層としてポリ(エチレンジオキシ)チオフェン(PEDOT)及びポリスチレンスルホン酸(PSS)の混合物水溶液をスピンコートした。次いで、発光材料として、2重量%相当の前記化合物SnF2(OEP)とポリビニルカルバゾール(PVCz)の混合物のジクロロメタン溶液をスピンコートした。この高分子薄膜上に、ホールブロック層としてバソクプロイン(BCP)を100Å、電子輸送層としてアルミニウム−8−ヒドロキシキノリン錯体(Alq3)を400Åそれぞれ真空蒸着により成膜した。最後に金属電極として10重量%銀−マグネシウム合金を1000Å共蒸着し、次いで銀を200Åの厚さに蒸着した。以上の操作により得られた素子に12Vの直流電圧を印加したところ、0.1mA/cm2の電流が流れ、波長570nm及び623nmにピークを示すポルフィリン由来の強い赤色発光及び、400nm〜550nm付近に、BCPとPVCzとの間のエキサイプレックス生成に起因する弱い青色発光が観測された。
Example 7
Glass in which indium tin oxide (ITO) was deposited to a thickness of about 1600 ° was spin-coated with an aqueous solution of a mixture of poly (ethylenedioxy) thiophene (PEDOT) and polystyrenesulfonic acid (PSS) as a hole injection layer. Next, a dichloromethane solution of a mixture of the compound SnF 2 (OEP) and polyvinyl carbazole (PVCz) in an amount of 2% by weight was applied as a light emitting material by spin coating. On this polymer thin film, bathocuproine (BCP) was formed as a hole blocking layer by vacuum evaporation at 100 °, and as an electron transport layer, aluminum-8-hydroxyquinoline complex (Alq3) was formed at 400 ° by vacuum evaporation. Finally, a 10% by weight silver-magnesium alloy was co-deposited at 1000 ° as a metal electrode, and then silver was deposited to a thickness of 200 °. When a DC voltage of 12 V was applied to the device obtained by the above operation, a current of 0.1 mA / cm 2 flowed, strong red light emission derived from porphyrin having peaks at wavelengths of 570 nm and 623 nm, and a wavelength around 400 nm to 550 nm. , Weak blue emission due to exciplex formation between BCP and PVCz was observed.

SnF2(Proto lX)の遅延蛍光スペクトルを示す図である。点線:励起スペクトル、実線:励起波長407nmにおける遅延蛍光スペクトル(550〜650nm)及びリン光スペクトル(650〜750nm)。SnF is a diagram showing the delayed fluorescence spectra of 2 (Proto lX). Dotted line: excitation spectrum, solid line: delayed fluorescence spectrum (550-650 nm) and phosphorescence spectrum (650-750 nm) at an excitation wavelength of 407 nm. SnF2(Meso lX)の遅延蛍光スペクトルを示す図である。点線:励起スペクトル、実線:励起波長399nmにおける遅延蛍光スペクトル(520〜670nm)及びリン光スペクトル(670〜750nm)。FIG. 3 is a view showing a delayed fluorescence spectrum of SnF 2 (MesolX). Dotted line: excitation spectrum, solid line: delayed fluorescence spectrum (520-670 nm) and phosphorescence spectrum (670-750 nm) at an excitation wavelength of 399 nm. SnF2(Hemato IX)の遅延蛍光スペクトルを示す図である。点線:励起スペクトル、実線:励起波長404nmにおける遅延蛍光スペクトル(520〜670nm)及びリン光スペクトル(670〜750nm)。SnF is a diagram showing the delayed fluorescence spectra of 2 (Hemato IX). Dotted line: excitation spectrum, solid line: delayed fluorescence spectrum (520-670 nm) and phosphorescence spectrum (670-750 nm) at an excitation wavelength of 404 nm. SnF2(Copro III)の遅延蛍光スペクトルを示す図である。点線:励起スペクトル、実線:励起波長399nmにおける遅延蛍光スペクトル(500〜670nm)及びリン光スペクトル(670〜750nm)。FIG. 3 is a view showing a delayed fluorescence spectrum of SnF 2 (Copro III). Dotted line: excitation spectrum, solid line: delayed fluorescence spectrum (500-670 nm) and phosphorescence spectrum (670-750 nm) at an excitation wavelength of 399 nm. SnF2(OEP)の遅延蛍光スペクトルを示す図である。点線:励起スペクトル、実線:励起波長398nmにおける遅延蛍光スペクトル(500〜670nm)及びリン光スペクトル(670〜750nm)。FIG. 3 is a view showing a delayed fluorescence spectrum of SnF 2 (OEP). Dotted line: excitation spectrum, solid line: delayed fluorescence spectrum (500-670 nm) and phosphorescence spectrum (670-750 nm) at an excitation wavelength of 398 nm. SnF2(Etio I)の遅延蛍光スペクトルを示す図である。点線:励起スペクトル、実線:励起波長398nmにおける遅延蛍光スペクトル(500〜670nm)及びリン光スペクトル(670〜750nm)。FIG. 3 is a view showing a delayed fluorescence spectrum of SnF 2 (Etio I). Dotted line: excitation spectrum, solid line: delayed fluorescence spectrum (500-670 nm) and phosphorescence spectrum (670-750 nm) at an excitation wavelength of 398 nm.

Claims (5)

100℃未満の温度で蛍光及び遅延蛍光を放射する有機化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescence device comprising an organic compound that emits fluorescence and delayed fluorescence at a temperature of less than 100 ° C. 100℃未満の温度で蛍光及び遅延蛍光を放射する有機化合物が、さらにリン光を放射する化合物である請求項1記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent device according to claim 1, wherein the organic compound emitting fluorescence and delayed fluorescence at a temperature lower than 100 ° C is a compound emitting phosphorescence. 100℃未満の温度で蛍光及び遅延蛍光を放射する有機化合物が、ポルフィリン化合物である請求項1又は2記載の有機エレクトロルミネッセンス素子。   3. The organic electroluminescent device according to claim 1, wherein the organic compound that emits fluorescence and delayed fluorescence at a temperature lower than 100 ° C. is a porphyrin compound. ポルフィリン化合物が、スズ錯体又は亜鉛錯体である請求項3記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent device according to claim 3, wherein the porphyrin compound is a tin complex or a zinc complex. ポルフィリン化合物が、次の一般式(1)
Figure 2004241374
(式中、R1〜R8はそれぞれ、水素原子、アルキル基、アルケニル基、カルボキシル基、カルボキシアルキル基、カルボキシアルケニル基、アルコキシカルボニルアルキル基、アルコキシカルボニルアルケニル基、ヒドロキシ基、ヒドロキシアルキル基、ヒドロキシアルケニル基、ホルミル基、ホルミルアルキル基、ホルミルアルケニル基、アルカノイル基、アルカノイルアルキル基、アルカノイルアルケニル基、ハロゲン原子、ハロゲノアルキル基、ハロゲノアルケニル基を示すか、R1とR2、R3とR4、R5とR6又はR7とR8が一緒になって芳香環を形成してもよい;
9〜R12はそれぞれ、水素原子、フェニル基、ハロゲノフェニル基、シアノフェニル基、アルキルフェニル基、スルホナトフェニル基、カルボキシフェニル基、アルキルアミノフェニル基、ピリジル基、又はN−アルキルピリジル基を示し;
MはSn4+又はZn2+を示し;
Xは一価又は二価のアニオンを示し;
nは0〜2の数を示す)
で表される化合物である請求項3又は4記載の有機エレクトロルミネッセンス素子。
The porphyrin compound has the following general formula (1)
Figure 2004241374
(Wherein, R 1 to R 8 each represent a hydrogen atom, an alkyl group, an alkenyl group, a carboxyl group, a carboxyalkyl group, a carboxyalkenyl group, an alkoxycarbonylalkyl group, an alkoxycarbonylalkenyl group, a hydroxy group, a hydroxyalkyl group, An alkenyl group, a formyl group, a formylalkyl group, a formylalkenyl group, an alkanoyl group, an alkanoylalkyl group, an alkanoylalkenyl group, a halogen atom, a halogenoalkyl group, a halogenoalkenyl group, or R 1 and R 2 , R 3 and R 4 , R 5 and R 6 or R 7 and R 8 may together form an aromatic ring;
R 9 to R 12 each represent a hydrogen atom, a phenyl group, a halogenophenyl group, a cyanophenyl group, an alkylphenyl group, a sulfonatophenyl group, a carboxyphenyl group, an alkylaminophenyl group, a pyridyl group, or an N-alkylpyridyl group. Show;
M represents Sn 4+ or Zn 2+ ;
X represents a monovalent or divalent anion;
n shows the number of 0-2)
The organic electroluminescent device according to claim 3, which is a compound represented by the formula:
JP2003374400A 2003-01-17 2003-11-04 Organic electroluminescent element Pending JP2004241374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374400A JP2004241374A (en) 2003-01-17 2003-11-04 Organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003009130 2003-01-17
JP2003374400A JP2004241374A (en) 2003-01-17 2003-11-04 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2004241374A true JP2004241374A (en) 2004-08-26

Family

ID=32964809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374400A Pending JP2004241374A (en) 2003-01-17 2003-11-04 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2004241374A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175491A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha Organic EL display apparatus
EP2175505A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha Organic electroluminescent display apparatus
EP2175490A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha Organic el display apparatus
EP2175503A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha White organic electroluminescent device
WO2011070963A1 (en) 2009-12-07 2011-06-16 新日鐵化学株式会社 Organic light-emitting material and organic light-emitting element
JP2013258402A (en) * 2012-05-18 2013-12-26 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, display, electronic apparatus, and lighting device
US8643268B2 (en) 2011-03-25 2014-02-04 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR20140018133A (en) 2012-08-03 2014-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20140018146A (en) * 2012-08-03 2014-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
JP2015037138A (en) * 2013-08-14 2015-02-23 コニカミノルタ株式会社 Organic electroluminescence element, metal complex for organic electroluminescence element, display device, and illumination device
US8981355B2 (en) 2012-02-09 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
CN104885249A (en) * 2012-12-28 2015-09-02 出光兴产株式会社 Organic electroluminescent element
US9252372B2 (en) 2008-07-17 2016-02-02 Merck Patent Gmbh Complexes for use in optoelectronic components
KR20160042788A (en) 2014-10-10 2016-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US9362517B2 (en) 2013-12-02 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US9431615B2 (en) 2014-09-19 2016-08-30 Samsung Display Co., Ltd. Organic light-emitting device emitting delayed fluorescence
US9515279B2 (en) 2013-08-26 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US9548468B2 (en) 2014-05-30 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR20170062457A (en) 2014-09-30 2017-06-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US9783734B2 (en) 2011-02-28 2017-10-10 Kyulux, Inc. Delayed fluorescence material and organic electroluminescence device
WO2018033820A1 (en) * 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9954177B2 (en) 2015-03-09 2018-04-24 Semiconductor Enery Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
WO2018074529A1 (en) 2016-10-19 2018-04-26 保土谷化学工業株式会社 Indenocarbazole compound and organic electroluminescent element
KR20180048758A (en) 2015-09-04 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Compound, light-emitting device, display device, electronic device, and lighting device
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10586931B2 (en) 2015-12-25 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US12004359B2 (en) 2014-10-10 2024-06-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252372B2 (en) 2008-07-17 2016-02-02 Merck Patent Gmbh Complexes for use in optoelectronic components
EP2175505A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha Organic electroluminescent display apparatus
EP2175490A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha Organic el display apparatus
EP2175503A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha White organic electroluminescent device
JP2010114428A (en) * 2008-10-10 2010-05-20 Canon Inc Organic electroluminescent display device
JP2010114429A (en) * 2008-10-10 2010-05-20 Canon Inc Display apparatus
US7928650B2 (en) 2008-10-10 2011-04-19 Canon Kabushiki Kaisha Organic EL display apparatus
EP2175491A2 (en) 2008-10-10 2010-04-14 Canon Kabushiki Kaisha Organic EL display apparatus
US8076841B2 (en) 2008-10-10 2011-12-13 Canon Kabushiki Kaisha Organic electroluminescent display apparatus
US8076681B2 (en) 2008-10-10 2011-12-13 Canon Kabushiki Kaisha White organic electroluminescent device
EP2175491A3 (en) * 2008-10-10 2013-12-18 Canon Kabushiki Kaisha Organic EL display apparatus
US8993129B2 (en) 2009-12-07 2015-03-31 Nippon Steel & Sumikin Chemical Co., Ltd. Fluorescence and delayed fluorescence-type organic light-emitting material and element
WO2011070963A1 (en) 2009-12-07 2011-06-16 新日鐵化学株式会社 Organic light-emitting material and organic light-emitting element
EP3176241A1 (en) 2009-12-07 2017-06-07 Nippon Steel & Sumikin Chemical Co., Ltd. Organic light-emitting material and organic light-emitting element
US9783734B2 (en) 2011-02-28 2017-10-10 Kyulux, Inc. Delayed fluorescence material and organic electroluminescence device
US10879482B2 (en) 2011-03-25 2020-12-29 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US8643268B2 (en) 2011-03-25 2014-02-04 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US11495763B2 (en) 2012-02-09 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9673404B2 (en) 2012-02-09 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10326093B2 (en) 2012-02-09 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11997860B2 (en) 2012-02-09 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US8981355B2 (en) 2012-02-09 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10693093B2 (en) 2012-02-09 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9478764B2 (en) 2012-02-09 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2013258402A (en) * 2012-05-18 2013-12-26 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, display, electronic apparatus, and lighting device
US8994013B2 (en) 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR102124983B1 (en) 2012-08-03 2020-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device and electronic appliance
KR20210010626A (en) 2012-08-03 2021-01-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US9559313B2 (en) 2012-08-03 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR20220124673A (en) 2012-08-03 2022-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US11355722B2 (en) 2012-08-03 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR20230005088A (en) 2012-08-03 2023-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20140018133A (en) 2012-08-03 2014-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR102190275B1 (en) 2012-08-03 2020-12-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device and electronic appliance
US10734594B2 (en) 2012-08-03 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9947885B2 (en) 2012-08-03 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11730007B2 (en) 2012-08-03 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR20140018146A (en) * 2012-08-03 2014-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
KR20200073188A (en) * 2012-08-03 2020-06-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device and electronic appliance
US10644254B2 (en) 2012-08-03 2020-05-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR20200022421A (en) * 2012-08-03 2020-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device and electronic appliance
KR102083663B1 (en) * 2012-08-03 2020-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
JP2018160468A (en) * 2012-08-03 2018-10-11 株式会社半導体エネルギー研究所 Light-emitting element, illuminating device, light-emitting device, display device, and electronic equipment
KR20180121852A (en) 2012-08-03 2018-11-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US10505132B2 (en) 2012-08-03 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR20180133352A (en) 2012-08-03 2018-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US9276228B2 (en) 2012-08-03 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
CN104885249A (en) * 2012-12-28 2015-09-02 出光兴产株式会社 Organic electroluminescent element
US10186665B2 (en) 2012-12-28 2019-01-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
CN104885249B (en) * 2012-12-28 2017-08-08 出光兴产株式会社 Organic electroluminescent element
US10833279B2 (en) 2013-04-26 2020-11-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP2015037138A (en) * 2013-08-14 2015-02-23 コニカミノルタ株式会社 Organic electroluminescence element, metal complex for organic electroluminescence element, display device, and illumination device
US11825718B2 (en) 2013-08-26 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10439005B2 (en) 2013-08-26 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US11049908B2 (en) 2013-08-26 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US9515279B2 (en) 2013-08-26 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10374186B2 (en) 2013-12-02 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US11672136B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10026917B2 (en) 2013-12-02 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10930873B2 (en) 2013-12-02 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US9362517B2 (en) 2013-12-02 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
US10468619B2 (en) 2014-05-30 2019-11-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11387422B2 (en) 2014-05-30 2022-07-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10686152B2 (en) 2014-05-30 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9978971B2 (en) 2014-05-30 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11832465B2 (en) 2014-05-30 2023-11-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9548468B2 (en) 2014-05-30 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9431615B2 (en) 2014-09-19 2016-08-30 Samsung Display Co., Ltd. Organic light-emitting device emitting delayed fluorescence
US11133482B2 (en) 2014-09-30 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20170062457A (en) 2014-09-30 2017-06-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
KR20220066998A (en) 2014-09-30 2022-05-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
KR20230051628A (en) 2014-09-30 2023-04-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US11557742B2 (en) 2014-09-30 2023-01-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and display device including compound having function of emitting TADF at room temperature
KR20220088390A (en) 2014-10-10 2022-06-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US12004359B2 (en) 2014-10-10 2024-06-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20160042788A (en) 2014-10-10 2016-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US11508926B2 (en) 2014-10-10 2022-11-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20230158448A (en) 2014-10-10 2023-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
US9954177B2 (en) 2015-03-09 2018-04-24 Semiconductor Enery Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11322689B2 (en) 2015-03-09 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10811611B2 (en) 2015-03-09 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11895908B2 (en) 2015-03-09 2024-02-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10230055B2 (en) 2015-09-04 2019-03-12 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
KR20180048758A (en) 2015-09-04 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Compound, light-emitting device, display device, electronic device, and lighting device
US11276824B2 (en) 2015-09-04 2022-03-15 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US11088332B2 (en) 2015-12-25 2021-08-10 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US10586931B2 (en) 2015-12-25 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US10734589B2 (en) 2016-08-17 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US20200358003A1 (en) 2016-08-17 2020-11-12 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device
JP7358552B2 (en) 2016-08-17 2023-10-10 株式会社半導体エネルギー研究所 Organic compounds, light emitting elements, light emitting devices, electronic equipment and lighting devices
US11121326B2 (en) 2016-08-17 2021-09-14 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device and lighting device
JP2018188418A (en) * 2016-08-17 2018-11-29 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic apparatus and lighting device
JP2022110006A (en) * 2016-08-17 2022-07-28 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2018033820A1 (en) * 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
KR20190065407A (en) 2016-10-19 2019-06-11 호도가야 가가쿠 고교 가부시키가이샤 An indenocarbazole compound and an organic electroluminescence element
US11925114B2 (en) 2016-10-19 2024-03-05 Hodogaya Chemical Co., Ltd. Indenocarbazole compound and organic electroluminescence device
WO2018074529A1 (en) 2016-10-19 2018-04-26 保土谷化学工業株式会社 Indenocarbazole compound and organic electroluminescent element
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Similar Documents

Publication Publication Date Title
JP2004241374A (en) Organic electroluminescent element
JP4435990B2 (en) Organometallic complex molecule and organic electroluminescent device using the same
JP4858169B2 (en) Organic electroluminescence device
JP4546203B2 (en) Light emitting element
WO2007029403A1 (en) Organic electroluminescence device
Zeng et al. A new class of non-conjugated bipolar hybrid hosts for phosphorescent organic light-emitting diodes
TW201343651A (en) Luminescence material and organic luminescence device
JP2006303527A (en) Highly transparent non-metallic cathode
KR20110048838A (en) Composition for organic photoelectric device, organic photoelectric device using the same and display device comprising the same
KR20100131745A (en) Composition for organic photoelectric device and organic photoelectric device using the same
JP2024028704A (en) organic electroluminescent device
JP6567504B2 (en) Organic light emitting device
JP2003264086A (en) Organic electroluminescence element
JP2007291013A (en) Compound and organic el element
JP2006024830A (en) Organic electroluminescent device
JP2003031368A (en) Organic electroluminescent element and display device
JP6869509B2 (en) Organic electroluminescence device and biometric device
WO2019039174A1 (en) Host material, film and organic light-emitting element
JP5321710B2 (en) Organic electroluminescence element and display device
US9972795B2 (en) Organic light-emitting diode materials
JP7022528B2 (en) Organic electroluminescence element
US20050118454A1 (en) Luminescent compound emitting white light, illuminator and organic el element emitting white light
JPH09296166A (en) Organic electroluminescet element containing porphyrin derivative
JPH10231479A (en) Red-luminescent organic el element
JPH10231476A (en) Organic el element