JP2004239192A - Double-cylinder rotary compressor - Google Patents

Double-cylinder rotary compressor Download PDF

Info

Publication number
JP2004239192A
JP2004239192A JP2003030267A JP2003030267A JP2004239192A JP 2004239192 A JP2004239192 A JP 2004239192A JP 2003030267 A JP2003030267 A JP 2003030267A JP 2003030267 A JP2003030267 A JP 2003030267A JP 2004239192 A JP2004239192 A JP 2004239192A
Authority
JP
Japan
Prior art keywords
holes
overhang
rotary compressor
cylindrical
cylinder rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030267A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kishi
康弘 岸
Kazunori Tsukui
和則 津久井
Yukichi Nakada
裕吉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003030267A priority Critical patent/JP2004239192A/en
Priority to CNB2004100048596A priority patent/CN1325800C/en
Priority to MYPI20040372 priority patent/MY134655A/en
Publication of JP2004239192A publication Critical patent/JP2004239192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-cylinder rotary compressor having yield strength to a high-pressure gas. <P>SOLUTION: In the double-cylinder compressor, a compression mechanism provided with a first and second cylinders successively disposed along the axial direction of a crankshaft and an electric motor connected to the crankshaft are provided in a cylindrical sealed container. Two lateral holes are made in the axial direction of the crankshaft so as to pass pipes for connecting gas-suction holes of the 1st and 2nd cylinders in the compression mechanism and the external part of the sealed vessel. A bulged part is provided on both sides in the peripheral direction with respect to the surface between the holes in the cylindrical part of the sealed container. The distance between the bulged part and the center of the cylindrical part is different from that in other cylindrical part. Tensile stress produced between the holes due to expansion of a case is loaded radially on the sealed vessel. Since the bulged part is plastically deformed in different distance from the center of the cylindrical part, the expansion of the case is not directly transmitted to the cylindrical parts between the holes, and this makes small the tensile stress exerted on the part between the lateral holes. The lateral holes made in the cylindrical part of the sealed vessel may be provided in the bulged part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、上下に近接して第1及び第2シリンダを配設し、そのシリンダの少なくとも一方から高圧の吐出ガスを密閉容器内に吐出する高圧容器形2シリンダロータリ圧縮機に関する。
【0002】
【従来の技術】
一般的な2シリンダロータリ圧縮機の一例として図9によってその構成を説明する。2シリンダロータリ圧縮機(以下、圧縮機)21の密閉容器22は、円筒状のケース2aの上、下に、蓋チャンバ22bと底チャンバ22cを圧入した後、円周溶接し形成されている。密閉容器22内部に、上部に電動機部23、下部に圧縮機構部24が収納配設されている。
【0003】
電動機部23は、ステータ23aが密閉容器22の内周面に、焼嵌めなどで嵌合して取り付けられている。ステータ23aの内側にはロータ23bが回転自在に配設され、ロータ23bはクランクシャフト26に、圧入などにより固接されている。
【0004】
一方、圧縮機構部24は以下のように構成されている。まず、フレーム25は、密閉容器22の円筒状のケース2aの内径寸法と近似した最外径寸法のフランジ部25aと、ベアリング25bとを有している。クランクシャフト26は、そのベアリング25bに貫通して支持されており、このフレーム25の下側に突き出したクランクシャフト26には2つの偏心部26a、26bが設けられている。この偏心部26a、26bに対応する位置には第1シリンダ27、第2シリンダ28が仕切り板29を介して配設されている。そして、これらシリンダ27、28内に位置する偏心部26a、26bには第1ローラ30、第2ローラ31が設けられている。第2シリンダ28の下には下部ベアリング34が設けられている。
【0005】
ローラ30、31には、シリンダ27、28の夫々の内面から弾性的に突設されたブレード(図示せず)が当接している。このブレードで、偏心して回転するローラ30、31とシリンダ27、28と仕切り板29、下部ベアリング34で形成される空間を仕切ることで圧縮室35を形成する。
【0006】
以上の部材を主構成要素として備えるこの圧縮機構部24は、電動機部23のステータ23aとロータ23bとの間のエアギャップと、シリンダ27、28の吸込み穴27a、28aと密閉容器22の横穴22dとの位置とがそれぞれ適切な位置で、フレーム25の外径25bと密閉容器22とがスポット溶接(図示せず)され、密閉容器22に固定される。
【0007】
この圧縮機構部24で圧縮された冷媒は、図示されていない各シリンダ27、28の吐出口より密閉容器22内に吐き出され、密閉容器22内を高圧(吐出圧力)にして吐出パイプ37から圧縮機外部の冷凍サイクルへ吐き出される。
【0008】
上下夫々に位置するシリンダ27、28の吸込み穴27a、28aと、アキュームレータ32の吸入管32a、32bの接続方法について、図10を用いて説明する。密閉容器22のケース2aには、シリンダ27、28の吸込み穴27a、28aに対応する部分に、2個の横穴22dが、例えばその中心間距離Aを横穴22dの直径Dの2倍を最大寸法として、夫々独立して近接した位置に設けられている。この横穴22d内には継パイプ22eが予めロウ付けされている。
【0009】
密閉容器22と圧縮機構部24をスポット溶接により接合した後、段付形状のシールサクションパイプ33はその先端33aを継パイプ22eに圧入される。この圧入は、シールサクションパイプ33の後端面33bと継パイプ22eの後端面との関係が、各シリンダに対して同等位置になるように行う。
【0010】
次に、シリンダ27、28に圧入したシールサクションパイプ33の拡管部33cに、アキュームレータ32の吸入管32a、32bが挿入された後、継パイプ22eとシールサクションパイプ33とアキュームレータ32の吸入管32a、32bとが、気密性を備えるようにロウ付けされる。これによって密閉容器22内部の圧縮機構部24と密閉容器22外部のアキュームレータ32が機能的に連係、即ちアキュームレータ32からの冷媒ガスは外気が混入されること無く圧縮機構部24に導かれることになる。
【0011】
他の圧縮機の例として、特開平7−243382号公報(特許文献1と称す。)がある。
【0012】
【特許文献1】
特開平7−243382号公報
【0013】
【発明が解決しようとする課題】
しかし、以上述べた従来公知の圧縮機は、図11に示すように、密閉容器22内部に負荷される高圧ガスによって、矢印のように密閉容器22が膨張し、これによって生じる引張応力が、円筒状のケース2aの側面に設けた2個の横穴22dに白抜き矢印のように集中し、その結果、図12に示すように強度的に脆弱な横穴22d間の円筒状のケース2aに割れ36が発生し、高圧容器としてその強度が低下する課題を有していた。
【0014】
密閉容器22の耐圧強度の増加を図るために、例えば従来は、密閉容器22を形成するケース2aの板厚を厚くすることが試みられた。その結果、ケース2aの塑性成形性が低下し、鉄板からの丸め成形機の大型化による加工費の増加や、材料費の増加などの不具合が生じることとなった。また、特許文献1のように、横穴の配置を工夫したものもあるが、根本的な応力の発生要因は残ったままである。
【0015】
本発明の目的は、上述の課題を解決して、高圧ガスに対する強度を備えた2シリンダ圧縮機を提供することにある。
【0016】
【課題を解決するための手段】
上述の目的を達成するために本発明の2シリンダロータリ圧縮機は、クランクシャフトの軸方向に沿って順次配設された第1及び第2のシリンダを備えた圧縮機構部と、クランクシャフトと接続する電動機部とが、円筒状の密閉容器内に設けられ、圧縮機構部の第1及び第2シリンダのガス吸入穴と密閉容器の外部とを連係するパイプを貫通する2個の横穴が前記クランクシャフトの軸方向に設けられ、密閉容器の円筒部であって横穴間の表面部に対して周方向の両側に他の円筒部とは円筒部中心からの距離が異なる張出し部を備えた。
【0017】
密閉容器の密閉容器の内径に全体的に負荷され、ケースが膨張することによって横穴間に生じる引張応力に対して、本発明の張出し部は円筒部中心からの距離が異なる塑性変形をしているためケースの膨張をそのまま横穴間の円筒部に伝えず、横穴間にかかる引張応力を小さくする。密閉容器の円筒部に設けられた横穴は、本発明の張出し部に設けられてもよい。
【0018】
また、張出し部は外郭を規定する縁部とその縁部の間の表面部とを備え、表面部は平面であってもよい。また、その表面部は密閉容器の円筒部の内側に凹状であってもよい。
【0019】
また、張出し部の縁部は横穴間の容器表面を挟んでその距離を変えてもよく、特に、その距離を短く設けるとさらによい。
【0020】
【発明の実施の形態】
図1は本発明の一実施例の2シリンダロータリ圧縮機の全体構造を示す。この圧縮機1の密閉容器2は、円筒状のケース2aの上、下に、圧入した後で円周溶接された蓋チャンバ2bと底チャンバ2cを備える。
【0021】
密閉容器2の内部には、上部に電動機部3、下部に圧縮機構部4が収納配設されている。電動機部3は、ステータ3aが密閉容器2の内周面に焼嵌めなどで嵌合して取り付けられており、ステータ3aの内側にロータ3bが回転自在に配設されている。ステータ3aには、クランクシャフト5が圧入などによって固定されている。
【0022】
一方、圧縮機構部4は以下のように構成されている。まずフレーム6は、密閉容器2の内径寸法と近似した最外径寸法を持つフランジ部6aと、ベアリング6bとを有する。クランクシャフト5はそのベアリング6bに貫通して支持されており、このフレーム6の下側に突き出たクランクシャフト5には2つの偏心部5a、5bが形成されている。
【0023】
この偏心部5a、5bに対応する位置に、第1シリンダ7、第2シリンダ8が仕切り板9を介して配設している。これらシリンダ7、8内に位置するクランクシャフト5の偏心部5a、5bには、第1ローラ10、第2ローラ11が設けられている。第2シリンダ8の下部には下部ベアリング12が配設されている。
【0024】
前記のローラ10、11には、シリンダ7、8の夫々の内面から弾性的に突設されたブレード(図示せず)が当接している。このブレードで偏心して回転するローラ10、11とシリンダ7、8と仕切り板9とベアリング12で形成される空間を仕切ることで圧縮室13をが形成される。
【0025】
以上の部材を主構成要素とするこの圧縮機構部4は、電動機部3のステータ3aとロータ3b間のエアギャップと、シリンダ7,8の吸込み穴7a、8aと密閉容器2の横穴2dの位置とがそれぞれ適切な位置で、フレーム6のフランジ部6aの外径と密閉容器2とがスポット溶接(図示せず)され、密閉容器2に固定される。
【0026】
この圧縮機構部4で圧縮された冷媒は、図示されていない各シリンダ7、8の吐出口より密閉容器2内に吐き出され、密閉容器2内を高圧(吐出圧力)にして吐出パイプ16から圧縮機外部の冷凍サイクルへ吐き出される。
【0027】
次に前述のように上下に位置するシリンダ7、8の吸込み穴7a、8aと、アキュームレータ15の吸入管15a、15bの接続部とその接続方法について、図2で説明する。
【0028】
密閉容器2のケース2aには、シリンダ7、8の吸込み穴7a、8aに対応する部分に、2個の横穴2dが、その中心間距離Aを横穴2dの直径Dの2倍を最大寸法として夫々独立して近接した位置に設けられており、この横穴2d内には予め継パイプ2eがロウ付けされている。
【0029】
前述したように、密閉容器2と圧縮機構部4をスポット溶接で接合した後、段付形状のシールサクションパイプ14は、その先端4aを継パイプ2eに圧入させる。この圧入は、シールサクションパイプ14の後端面14bと継パイプ2eの端面とが同位置となるように行う。
【0030】
更に、シリンダ7、8に圧入したシールサクションパイプ14の拡管部14cにアキュームレータ15の吸入管15a、15bを挿入した後、継パイプ2eとシールサクションパイプ14とアキュームレータ15の吸入管15a、15bとが、気密性を備えるようにロウ付けされる。これによって密閉容器2内部の圧縮機構部4と密閉容器2の外部のアキュームレータ15が機能的に連係、すなわちアキュームレータ15からの冷媒が外気に触れることなく圧縮機構部4に導かれることになる。
【0031】
ここで、本発明の一実施例では、第1シリンダ7と第2シリンダ8の吸込み穴7a、8aと対応するケース2aの2個の横穴2dの開口部を結ぶケース2aの表面部の周囲に、塑性加工によって他の円筒部とは円筒部中心からの距離が異なる張出し部2fを設けた。
【0032】
張出し部2fの大きさ或いは形状は、塑性加工によるケース2a全体へ及ぼす変形の範囲を極力小さくすること、また、横穴2dをプレス抜きで形成するに充分なものとし、以下に述べる範囲が好ましい。
【0033】
すなわち、図3に示すようにこの張出し部2fの外周に沿って設けられる周辺部である縁部2gの高さHが、ケース2aの板厚Tの30〜100%の範囲内にあるのが好ましい。また、張出し部2fの大きさは、図4(a)に示すように夫々の横穴2dの中心から、横穴2dの直径D寸法を最大寸法とする半径Rの半円の範囲と、半円の接線を結ぶトラック形状をその範囲とするのが好ましい。
【0034】
図5に示すように、横穴2dが張出し部2fに設けられることにより、張出し部2fと縁部2gとからなる塑性成形部が補強構造となって、高圧ガスによる白抜き矢印で表した引張応力が縁部2gの部分で区切られるため、横穴2d間の円筒状ケース部の内側表面部にかかる引張応力が低減される。この引張応力は、ケースの内側表面に全体的に負荷される膨張圧力で生じる。この実施例では引張圧力による横穴2d間の円筒状ケース部の内側表面部における変形を小さくすることが可能になり、よって、横穴間の円筒状ケース2aの割れを防止することが可能になる。
【0035】
図5に示す張出し部2fは、ケース2aの内径と同心円の円弧形状をなしていることから、従来公知の圧縮機同様、密閉容器の内部圧力はケース2aの中心から放射状に張出し部2f面に負荷され、太線矢印に示すように小さいながらも引張応力が横穴2d間のケース2a表面部に集中することが考えられる。
【0036】
そこで、更なる強度アップを図る改善案を呈示する。
【0037】
図6に示す他の実施例は、張出し部2fの張出し面の形状を平面とした。すなわち、ケース2aの円筒面に対して張出し面を異なる表面形状とした。
【0038】
その結果、密閉容器2への高圧ガスによる変形応力は張出し面に垂直に負荷されることから、図5に示す円弧形状の張出し面に比較し、横穴2d間にかかる引張応力は小さくなる。
【0039】
図7に示す他の実施例では、張出し部2fの張出し面の形状をケース2a内側から見て凸レンズ状とした。言い換えると、張出し面の断面形状を、円筒状のケース2aの内径側に凹んだ形状とした。
【0040】
その結果、張出し部2fに掛る変形応力は白抜き矢印に示すように、張出し面の長さを縮める方向、即ち、圧縮応力となって張出し部2fに加わることとなる。したがって、二つの横穴2d間のケース2a部分に、従来の課題で説明した割れ36(図12参照)を引起す力とは異なる方向に変形応力を作用させることができ、最も強度的に弱い横穴間のケース割れの発生を防止することができる。
【0041】
凹んだ形状は横穴2dを中心として凹ませるが、横穴2d間の張出し面は平らにしても凹ませてもよい。
【0042】
更に、図8に他の実施例を示す。ここでは縁部2gの形状を改良して、高圧のガス圧力による変形応力が作用する張出し部2fの幅を小さくした。具体的には、図8に示された張出し部2fの平面形状を、夫々の横穴2dの同心円の交点を結んだ、言うなればトラック状の外縁における直線部が絞られ接近した形とした。図8には、夫々の横穴2dと同心円の交点を、任意の小さな円弧で結んだ略8の字状の縁部2gが示されている。図8は密閉容器2のケース2aの内径側から見た形状を示している。横穴2dの同心円の直径Cは、横穴2dの直径Dの2倍を最大寸法とするのが好ましい。また、その縁部2gの高さHは、ケース2aの板厚Tの30〜100%の範囲内にあるのが望ましい。
【0043】
従って、内部から負荷される応力が二つの横穴2d間に作用しても、張出し部2fの幅が狭くなっていて縁部2g間の距離が狭くなっていることから、結果的に剛性が向上して割れが発生しにくくなる。
【0044】
また、この略8の字の張出し部2fの上面の状態を、前述のように平面状或いは凹状とすることにより、更に張出し部の剛性が向上し、益々、横穴2d間に割れが発生しにくくなり、密閉容器2の耐圧強度が向上し、2シリンダロータリ圧縮機の信頼性の向上が図れる。
【0045】
上述のように、本発明の実施例の縁部2gや張出し部2fを、ケース2aの円筒面に設けた横穴2dの周囲に適宜形成することで、ケース2aの横穴2d間の割れが発生しにくくなる。また、本発明の実施例の張出し部2fと共に縁部2gを含む形状が横穴2d間の剛性向上に効果がある。そのためケース2aの板厚を薄くすることが可能となり、材料費の低減と塑性加工効率が上がり、比較的小型の成形機によるケースの丸め加工も可能になり、加工費の低減も図れる。
【0046】
また、圧縮機の全体重量の相当範囲を占める密閉容器の重量を軽減することが可能であり、圧縮機の取扱い性の向上も出来、本発明の各実施例の効果はきわめて大きい。
【0047】
【発明の効果】
本発明によれば、密閉容器の二つの横穴間の強度が上がり耐圧強度が向上した2シリンダロータリ圧縮機を実現できる。
【図面の簡単な説明】
【図1】本発明の一実施例の2シリンダロータリ圧縮機の構造の一例を示す側断面図。
【図2】図1のシリンダ吸込み穴とアキュームレータの連繋部の構造の一例を示す即断面図。
【図3】本発明の一実施例のケースの張出し形状の一例を示す側断面図。
【図4】(a)は図3のA矢視図。(b)は図4(a)のB−B線に沿う断面図。
【図5】本発明の一実施例のケースの円弧状張出し部に掛る応力の一例を示す平断面図。
【図6】本発明の一実施例のケースの平面状張出し部に掛る応力の一例を示す平断面図。
【図7】本発明の一実施例のケースのレンズ状張出し部に掛る応力の一例を示す平断面図。
【図8】本発明の一実施例のケースの8の字状張出し部の形状の一例を示す側面図。
【図9】従来公知2シリンダロータリ圧縮機の構造の一例を示す側断面図。
【図10】図9のシリンダ吸込み穴とアキュームレータの連繋部の構造の一例を示す側断面図。
【図11】従来のケースに掛る高圧ガスによる内部応力の一例を示す平断面図。
【図12】従来の圧縮機でケースの横穴間に発生する割れの一例を示す斜視図。
【符号の説明】
1…2シリンダロータリ圧縮機、2…密閉容器、2a…ケース、2b…蓋チャンバ、2c…底チャンバ、2d…横穴、2e…継パイプ、2f…張出し部、2g…縁部、3…電動機部、3a…ステータ、3b…ロータ、4…圧縮機構部、5…クランクシャフト、5a…偏心部、5b…偏心部、6…フレーム、6a…フランジ部、6b…ベアリング、7…第1シリンダ、7a……吸込み穴、8…第2シリンダ、8a…吸込み穴、9…仕切り板、10…第1ローラ、11…第2ローラ、12…下部ベアリング、13…圧縮室、14…シールサクションパイプ、14a…先端、14b…後端、14c…拡管部、15…アキュームレータ、15a…吸入管、15b…吸入管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-pressure container type two-cylinder rotary compressor in which first and second cylinders are arranged vertically close to each other, and high-pressure discharge gas is discharged from at least one of the cylinders into a closed container.
[0002]
[Prior art]
The configuration of an example of a general two-cylinder rotary compressor will be described with reference to FIG. The sealed container 22 of the two-cylinder rotary compressor (hereinafter, compressor) 21 is formed by press-fitting a lid chamber 22b and a bottom chamber 22c above and below a cylindrical case 2a, and then performing circumferential welding. Inside the hermetically sealed container 22, an electric motor portion 23 is accommodated at an upper portion, and a compression mechanism portion 24 is accommodated and arranged at a lower portion.
[0003]
The motor unit 23 has a stator 23a fitted and attached to the inner peripheral surface of the closed casing 22 by shrink fitting or the like. A rotor 23b is rotatably disposed inside the stator 23a, and the rotor 23b is firmly connected to the crankshaft 26 by press fitting or the like.
[0004]
On the other hand, the compression mechanism 24 is configured as follows. First, the frame 25 has a flange portion 25a having an outermost diameter approximating the inner diameter of the cylindrical case 2a of the closed container 22, and a bearing 25b. The crankshaft 26 is supported by being penetrated by its bearing 25b. The crankshaft 26 protruding below the frame 25 is provided with two eccentric portions 26a and 26b. At positions corresponding to the eccentric portions 26a and 26b, a first cylinder 27 and a second cylinder 28 are disposed via a partition plate 29. A first roller 30 and a second roller 31 are provided on the eccentric portions 26a and 26b located in the cylinders 27 and 28, respectively. Below the second cylinder 28, a lower bearing 34 is provided.
[0005]
Blades (not shown) elastically projecting from the inner surfaces of the cylinders 27 and 28 abut against the rollers 30 and 31. The compression chamber 35 is formed by partitioning a space formed by the rollers 30 and 31 eccentrically rotating, the cylinders 27 and 28, the partition plate 29, and the lower bearing 34 with the blade.
[0006]
The compression mechanism 24 having the above members as main components includes an air gap between the stator 23 a and the rotor 23 b of the electric motor 23, suction holes 27 a and 28 a of the cylinders 27 and 28, and a lateral hole 22 d of the closed casing 22. The outer diameter 25b of the frame 25 and the closed container 22 are spot-welded (not shown) and fixed to the closed container 22 at appropriate positions.
[0007]
The refrigerant compressed by the compression mechanism 24 is discharged from the discharge ports of the cylinders 27 and 28 (not shown) into the closed container 22, and the inside of the closed container 22 is set to a high pressure (discharge pressure) and compressed from the discharge pipe 37. Exhaled into the refrigeration cycle outside the machine.
[0008]
A method of connecting the suction holes 27a, 28a of the cylinders 27, 28 located at the upper and lower sides and the suction pipes 32a, 32b of the accumulator 32 will be described with reference to FIG. In the case 2a of the closed container 22, two lateral holes 22d are formed at portions corresponding to the suction holes 27a and 28a of the cylinders 27 and 28, for example, by setting the distance A between the centers to twice the diameter D of the lateral hole 22d to the maximum dimension. , Are independently provided at close positions. A connecting pipe 22e is previously brazed in the side hole 22d.
[0009]
After joining the hermetically sealed container 22 and the compression mechanism 24 by spot welding, the stepped seal suction pipe 33 is press-fitted at its distal end 33a into the connecting pipe 22e. This press-fitting is performed so that the relationship between the rear end face 33b of the seal suction pipe 33 and the rear end face of the connecting pipe 22e is at the same position with respect to each cylinder.
[0010]
Next, after the suction pipes 32a and 32b of the accumulator 32 are inserted into the expansion section 33c of the seal suction pipe 33 press-fitted into the cylinders 27 and 28, the connecting pipe 22e, the seal suction pipe 33, and the suction pipe 32a of the accumulator 32, 32b is brazed so as to have airtightness. As a result, the compression mechanism 24 inside the closed container 22 and the accumulator 32 outside the closed container 22 are functionally linked, that is, the refrigerant gas from the accumulator 32 is guided to the compression mechanism 24 without mixing the outside air. .
[0011]
As another example of the compressor, there is JP-A-7-243382 (referred to as Patent Document 1).
[0012]
[Patent Document 1]
JP-A-7-243382
[Problems to be solved by the invention]
However, in the conventional compressor described above, as shown in FIG. 11, the closed container 22 expands as shown by the arrow due to the high-pressure gas loaded inside the closed container 22, and the tensile stress generated by this increases the cylindrical stress. As shown in FIG. 12, the two lateral holes 22d provided on the side surfaces of the case 2a are concentrated as indicated by the white arrows, and as a result, as shown in FIG. And the strength of the high-pressure container is reduced.
[0014]
In order to increase the pressure resistance of the sealed container 22, for example, conventionally, an attempt has been made to increase the plate thickness of the case 2 a forming the sealed container 22. As a result, the plastic formability of the case 2a is reduced, and problems such as an increase in processing cost due to an increase in the size of the rounding machine for forming an iron plate and an increase in material cost are caused. Further, as in Patent Document 1, there is a device in which the arrangement of the lateral holes is devised, but the fundamental factor of the occurrence of stress remains.
[0015]
An object of the present invention is to solve the above-mentioned problems and to provide a two-cylinder compressor having high pressure gas strength.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a two-cylinder rotary compressor according to the present invention includes a compression mechanism having first and second cylinders sequentially arranged along an axial direction of a crankshaft, and a compression mechanism connected to the crankshaft. An electric motor section is provided in a cylindrical hermetic container, and two lateral holes penetrating a pipe that connects gas suction holes of first and second cylinders of a compression mechanism section and the outside of the hermetic container are formed by the crank. An overhang provided in the axial direction of the shaft and having a distance from the center of the cylindrical portion different from that of the other cylindrical portions is provided on both sides in the circumferential direction with respect to the surface portion between the horizontal holes.
[0017]
The overhang of the present invention is plastically deformed at different distances from the center of the cylindrical portion, against the tensile stress generated between the lateral holes due to the overall load applied to the inner diameter of the closed container and the expansion of the case. Therefore, the expansion of the case is not directly transmitted to the cylindrical portion between the side holes, and the tensile stress applied between the side holes is reduced. The lateral hole provided in the cylindrical portion of the closed container may be provided in the overhang portion of the present invention.
[0018]
Further, the overhang portion may include an edge defining an outer shell and a surface portion between the edges, and the surface portion may be flat. Further, the surface portion may be concave inside the cylindrical portion of the closed container.
[0019]
Further, the distance between the edges of the overhanging portion may be changed with the container surface between the lateral holes interposed therebetween. In particular, it is more preferable that the distance be short.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the overall structure of a two-cylinder rotary compressor according to one embodiment of the present invention. The sealed container 2 of the compressor 1 includes a lid chamber 2b and a bottom chamber 2c which are press-fitted and then circumferentially welded above and below a cylindrical case 2a.
[0021]
Inside the closed container 2, an electric motor unit 3 is housed and arranged at an upper part, and a compression mechanism part 4 is housed and arranged at a lower part. The electric motor unit 3 has a stator 3a fitted and attached to the inner peripheral surface of the closed casing 2 by shrink fitting or the like, and a rotor 3b is rotatably disposed inside the stator 3a. The crankshaft 5 is fixed to the stator 3a by press fitting or the like.
[0022]
On the other hand, the compression mechanism 4 is configured as follows. First, the frame 6 has a flange portion 6a having an outermost diameter approximating the inner diameter of the sealed container 2, and a bearing 6b. The crankshaft 5 is supported by being penetrated by its bearing 6b. The crankshaft 5 protruding below the frame 6 is formed with two eccentric portions 5a and 5b.
[0023]
A first cylinder 7 and a second cylinder 8 are disposed at positions corresponding to the eccentric portions 5a and 5b via a partition plate 9. A first roller 10 and a second roller 11 are provided on the eccentric portions 5a and 5b of the crankshaft 5 located in the cylinders 7 and 8, respectively. A lower bearing 12 is provided below the second cylinder 8.
[0024]
Blades (not shown) elastically projecting from the respective inner surfaces of the cylinders 7 and 8 are in contact with the rollers 10 and 11. The compression chamber 13 is formed by partitioning a space formed by the rollers 10 and 11 eccentrically rotating, the cylinders 7 and 8, the partition plate 9, and the bearing 12 with the blades.
[0025]
The compression mechanism 4 having the above-mentioned members as main components is provided with an air gap between the stator 3a and the rotor 3b of the electric motor 3, and positions of the suction holes 7a and 8a of the cylinders 7 and 8 and the lateral hole 2d of the closed casing 2. At the appropriate positions, the outer diameter of the flange portion 6a of the frame 6 and the closed container 2 are spot-welded (not shown) and fixed to the closed container 2.
[0026]
The refrigerant compressed by the compression mechanism 4 is discharged from the discharge ports of the cylinders 7 and 8 (not shown) into the closed container 2, and the inside of the closed container 2 is set to a high pressure (discharge pressure) and compressed from the discharge pipe 16. Exhaled into the refrigeration cycle outside the machine.
[0027]
Next, the connection between the suction holes 7a and 8a of the upper and lower cylinders 7 and 8 and the suction pipes 15a and 15b of the accumulator 15 and the connection method thereof will be described with reference to FIG.
[0028]
In the case 2a of the closed container 2, two lateral holes 2d are formed at portions corresponding to the suction holes 7a and 8a of the cylinders 7 and 8, with the distance A between the centers being the maximum dimension of twice the diameter D of the lateral hole 2d. The pipes 2e are independently provided at close positions, and a connecting pipe 2e is previously brazed in the lateral hole 2d.
[0029]
As described above, after the hermetically sealed container 2 and the compression mechanism 4 are joined by spot welding, the stepped seal suction pipe 14 has its tip 4a pressed into the joint pipe 2e. This press fitting is performed so that the rear end face 14b of the seal suction pipe 14 and the end face of the joint pipe 2e are located at the same position.
[0030]
Further, after the suction pipes 15a, 15b of the accumulator 15 are inserted into the expanded portion 14c of the seal suction pipe 14 press-fitted into the cylinders 7, 8, the connecting pipe 2e, the seal suction pipe 14, and the suction pipes 15a, 15b of the accumulator 15 are connected. , And are brazed so as to be airtight. Thus, the compression mechanism 4 inside the closed container 2 and the accumulator 15 outside the closed container 2 are functionally linked, that is, the refrigerant from the accumulator 15 is guided to the compression mechanism 4 without contacting the outside air.
[0031]
Here, in one embodiment of the present invention, around the surface of the case 2a connecting the openings of the two side holes 2d of the case 2a corresponding to the suction holes 7a, 8a of the first cylinder 7 and the second cylinder 8, respectively. An overhang portion 2f having a distance from the center of the cylindrical portion different from that of the other cylindrical portion was formed by plastic working.
[0032]
The size or shape of the overhang portion 2f is preferably such that the range of deformation exerted on the entire case 2a by plastic working is made as small as possible, and that the side hole 2d is formed sufficiently by press punching.
[0033]
That is, as shown in FIG. 3, the height H of the edge portion 2g, which is a peripheral portion provided along the outer periphery of the overhang portion 2f, is within the range of 30 to 100% of the plate thickness T of the case 2a. preferable. Also, as shown in FIG. 4 (a), the size of the overhang portion 2f ranges from the center of each lateral hole 2d to a range of a semicircle having a radius R having the maximum dimension of the diameter D of the lateral hole 2d, and It is preferable that the shape of the track connecting the tangents is set as the range.
[0034]
As shown in FIG. 5, by providing the side hole 2d in the overhang portion 2f, the plastic forming portion composed of the overhang portion 2f and the edge portion 2g has a reinforcing structure, and the tensile stress represented by a white arrow due to the high-pressure gas. Is separated by the edge 2g, so that the tensile stress applied to the inner surface of the cylindrical case between the lateral holes 2d is reduced. This tensile stress occurs at the inflation pressure that is entirely applied to the inner surface of the case. In this embodiment, it is possible to reduce the deformation of the inner surface of the cylindrical case portion between the horizontal holes 2d due to the tensile pressure, thereby preventing the cylindrical case 2a from being cracked between the horizontal holes.
[0035]
Since the overhang portion 2f shown in FIG. 5 has an arc shape concentric with the inner diameter of the case 2a, the internal pressure of the sealed container is radially applied from the center of the case 2a to the surface of the overhang portion 2f as in a conventionally known compressor. It is conceivable that the tensile stress is concentrated on the surface of the case 2a between the lateral holes 2d while being loaded, as shown by the thick arrow.
[0036]
Therefore, an improvement plan for further increasing the strength is presented.
[0037]
In another embodiment shown in FIG. 6, the shape of the overhang surface of the overhang portion 2f is a flat surface. That is, the projecting surface has a different surface shape from the cylindrical surface of the case 2a.
[0038]
As a result, the deformation stress due to the high-pressure gas applied to the closed container 2 is applied perpendicularly to the overhang surface, so that the tensile stress applied between the lateral holes 2d is smaller than that of the arc-shaped overhang surface shown in FIG.
[0039]
In another embodiment shown in FIG. 7, the shape of the overhang surface of the overhang portion 2f is a convex lens shape when viewed from inside the case 2a. In other words, the cross-sectional shape of the overhanging surface is formed to be concave toward the inner diameter side of the cylindrical case 2a.
[0040]
As a result, the deformation stress applied to the overhang portion 2f is applied to the overhang portion 2f in a direction of reducing the length of the overhang surface, that is, a compressive stress, as indicated by a white arrow. Therefore, a deformation stress can be applied to the case 2a between the two lateral holes 2d in a direction different from the force causing the cracks 36 (see FIG. 12) described in the conventional problem, and the lateral hole having the weakest strength can be applied. It is possible to prevent occurrence of a case crack between them.
[0041]
The concave shape is recessed around the horizontal hole 2d, but the overhang surface between the horizontal holes 2d may be flat or concave.
[0042]
FIG. 8 shows another embodiment. Here, the shape of the edge 2g is improved, and the width of the overhang 2f on which the deformation stress due to the high gas pressure acts is reduced. More specifically, the planar shape of the overhang portion 2f shown in FIG. 8 is a shape in which the intersections of the concentric circles of the respective lateral holes 2d are connected, in other words, the linear portion at the outer edge of the track is narrowed and approached. FIG. 8 shows an approximately figure-shaped edge 2g in which the intersections of the respective horizontal holes 2d and the concentric circles are connected by an arbitrary small arc. FIG. 8 shows the shape of the closed container 2 as viewed from the inner diameter side of the case 2a. It is preferable that the maximum dimension of the diameter C of the concentric circle of the side hole 2d be twice the diameter D of the side hole 2d. The height H of the edge 2g is preferably in the range of 30 to 100% of the plate thickness T of the case 2a.
[0043]
Therefore, even if a stress applied from the inside acts between the two lateral holes 2d, the width of the overhang portion 2f is reduced and the distance between the edge portions 2g is reduced, resulting in an improvement in rigidity. Cracks are less likely to occur.
[0044]
Also, by making the state of the upper surface of the overhang portion 2f having a figure of eight into a flat or concave shape as described above, the rigidity of the overhang portion is further improved, and cracks are less likely to occur between the side holes 2d. Thus, the pressure resistance of the sealed container 2 is improved, and the reliability of the two-cylinder rotary compressor can be improved.
[0045]
As described above, by appropriately forming the edge portion 2g and the overhang portion 2f of the embodiment of the present invention around the horizontal hole 2d provided on the cylindrical surface of the case 2a, cracks between the horizontal holes 2d of the case 2a occur. It becomes difficult. Further, the shape including the edge 2g together with the overhang 2f of the embodiment of the present invention is effective in improving the rigidity between the lateral holes 2d. Therefore, the thickness of the case 2a can be reduced, the material cost can be reduced and the plastic working efficiency can be increased, the case can be rounded by a relatively small molding machine, and the working cost can be reduced.
[0046]
Further, it is possible to reduce the weight of the closed container, which occupies a considerable range of the entire weight of the compressor, and it is possible to improve the handleability of the compressor, and the effects of each embodiment of the present invention are extremely large.
[0047]
【The invention's effect】
According to the present invention, it is possible to realize a two-cylinder rotary compressor in which the strength between two side holes of a closed container is increased and the pressure resistance is improved.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an example of the structure of a two-cylinder rotary compressor according to one embodiment of the present invention.
FIG. 2 is an immediate sectional view showing an example of a structure of a connecting portion between a cylinder suction hole and an accumulator in FIG. 1;
FIG. 3 is a side sectional view showing an example of an overhang shape of a case according to an embodiment of the present invention.
FIG. 4A is a view taken in the direction of arrow A in FIG. (B) is sectional drawing which follows the BB line | wire of FIG.4 (a).
FIG. 5 is a plan sectional view showing an example of a stress applied to an arc-shaped overhang portion of the case according to the embodiment of the present invention.
FIG. 6 is a plan sectional view showing an example of a stress applied to a planar overhang portion of the case according to the embodiment of the present invention.
FIG. 7 is a plan sectional view showing an example of a stress applied to a lens-shaped overhang portion of the case according to the embodiment of the present invention.
FIG. 8 is a side view showing an example of the shape of the figure-eight protruding portion of the case according to the embodiment of the present invention.
FIG. 9 is a side sectional view showing an example of the structure of a conventionally known two-cylinder rotary compressor.
FIG. 10 is a side sectional view showing an example of the structure of a connecting portion between the cylinder suction hole and the accumulator in FIG. 9;
FIG. 11 is a cross-sectional plan view showing an example of internal stress caused by high-pressure gas applied to a conventional case.
FIG. 12 is a perspective view showing an example of a crack generated between side holes of a case in a conventional compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 2 cylinder rotary compressor, 2 ... airtight container, 2a ... case, 2b ... lid chamber, 2c ... bottom chamber, 2d ... side hole, 2e ... joint pipe, 2f ... overhang part, 2g ... edge part, 3 ... electric motor part , 3a ... stator, 3b ... rotor, 4 ... compression mechanism, 5 ... crankshaft, 5a ... eccentric part, 5b ... eccentric part, 6 ... frame, 6a ... flange part, 6b ... bearing, 7 ... first cylinder, 7a ... suction hole, 8 ... second cylinder, 8a ... suction hole, 9 ... partition plate, 10 ... first roller, 11 ... second roller, 12 ... lower bearing, 13 ... compression chamber, 14 ... seal suction pipe, 14a ... Top end, 14b Back end, 14c Expanding section, 15 Accumulator, 15a Suction pipe, 15b Suction pipe.

Claims (6)

クランクシャフトの軸方向に沿って順次配設された第1及び第2のシリンダを備えた圧縮機構部と、前記クランクシャフトと接続する電動機部とが、円筒状の密閉容器内に設けられ、前記圧縮機構部の第1及び第2シリンダのガス吸入穴と前記密閉容器の外部とを連係するパイプが貫通する2個の横穴を前記密閉容器の円筒部に備え、前記密閉容器の円筒部であって前記横穴間の表面部に対して周方向の両側に他の円筒部とは円筒部中心からの距離が異なる張出し部を備えた2シリンダロータリ圧縮機。A compression mechanism unit having first and second cylinders sequentially arranged along the axial direction of the crankshaft, and an electric motor unit connected to the crankshaft are provided in a cylindrical hermetic container, The cylindrical portion of the hermetic container is provided with two lateral holes through which a pipe that connects the gas suction holes of the first and second cylinders of the compression mechanism portion and the outside of the hermetic container penetrates. A two-cylinder rotary compressor comprising a projection portion on both sides in a circumferential direction with respect to a surface portion between the lateral holes, the projection portion having a different distance from the center of the cylindrical portion with respect to the other cylindrical portion. 請求項1記載の2シリンダロータリ圧縮機において、前記張出し部はトラック状の外縁部を有し、前記横穴は前記張出し部に設けられた2シリンダロータリ圧縮機。2. The two-cylinder rotary compressor according to claim 1, wherein the overhang portion has a track-shaped outer edge, and the lateral hole is provided in the overhang portion. 3. 請求項2記載の2シリンダロータリ圧縮機において、前記張出し部に設けられる横穴間の距離は、前記横穴の直径の2倍の中心間距離を最大として、前記張出し部の縁部の高さを前記密閉容器の板厚の30%〜100%とする2シリンダロータリ圧縮機。3. The two-cylinder rotary compressor according to claim 2, wherein the distance between the side holes provided in the overhang portion is a maximum of a center-to-center distance of twice the diameter of the side hole, and the height of the edge of the overhang portion is A two-cylinder rotary compressor in which the thickness of the closed container is 30% to 100%. 請求項2記載の2シリンダロータリ圧縮機において、前記張出し部の張出し面が、張出し範囲内で前記密閉容器の内側に凹状の表面を備えた2シリンダロータリ圧縮機。3. The two-cylinder rotary compressor according to claim 2, wherein the overhang surface of the overhang portion has a concave surface inside the closed container within an overhang area. 請求項2記載の2シリンダロータリ圧縮機において、前記縁部の形状を略8の字形状とした2シリンダロータリ圧縮機。3. The two-cylinder rotary compressor according to claim 2, wherein the shape of the edge is substantially eight-shaped. 請求項5記載の2シリンダロータリ圧縮機において、前記張出し部の張出し面が平面或いは前記密閉容器の内側に凹んだ形状を備えた2シリンダロータリ圧縮機。6. The two-cylinder rotary compressor according to claim 5, wherein the overhang surface of the overhang portion has a flat shape or a concave shape inside the closed container.
JP2003030267A 2003-02-07 2003-02-07 Double-cylinder rotary compressor Pending JP2004239192A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003030267A JP2004239192A (en) 2003-02-07 2003-02-07 Double-cylinder rotary compressor
CNB2004100048596A CN1325800C (en) 2003-02-07 2004-02-06 Double-cylinder rotary compressor
MYPI20040372 MY134655A (en) 2003-02-07 2004-02-07 2-cylinders rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030267A JP2004239192A (en) 2003-02-07 2003-02-07 Double-cylinder rotary compressor

Publications (1)

Publication Number Publication Date
JP2004239192A true JP2004239192A (en) 2004-08-26

Family

ID=32957202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030267A Pending JP2004239192A (en) 2003-02-07 2003-02-07 Double-cylinder rotary compressor

Country Status (3)

Country Link
JP (1) JP2004239192A (en)
CN (1) CN1325800C (en)
MY (1) MY134655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004961A1 (en) * 2007-07-03 2009-01-08 Daikin Industries, Ltd. Sealed compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476552B (en) * 2009-01-06 2011-09-07 浙江鸿友压缩机制造有限公司 Multi-cylinder translation compression device
CN102477984B (en) * 2010-11-26 2015-05-27 上海日立电器有限公司 Rotary compressor structure with uniform stator and rotor clearance
JP5528379B2 (en) * 2011-03-10 2014-06-25 三菱電機株式会社 Rotary compressor
CN114382675B (en) * 2022-03-24 2022-06-10 河北晖普采暖设备有限公司 Continuous heating air source heat pump hot water unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101290A (en) * 1982-11-30 1984-06-11 Toshiba Corp Connecting method of piping for hermetic type compressor
JPH01247776A (en) * 1988-03-29 1989-10-03 Toshiba Corp Piping structure of multi-cylinder type compressor and gas-liquid separator
JPH01301967A (en) * 1988-05-30 1989-12-06 Matsushita Refrig Co Ltd Hermetically sealed type direct absorptive compressor
JPH07243382A (en) * 1994-03-02 1995-09-19 Toshiba Corp Closed type compressor
JP3418470B2 (en) * 1994-12-20 2003-06-23 東芝キヤリア株式会社 Rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004961A1 (en) * 2007-07-03 2009-01-08 Daikin Industries, Ltd. Sealed compressor

Also Published As

Publication number Publication date
MY134655A (en) 2007-12-31
CN1521403A (en) 2004-08-18
CN1325800C (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP4750551B2 (en) Method for manufacturing two-cylinder rotary hermetic compressor
AU2006329388B2 (en) Rotary compressor
EP2385255A2 (en) Hermetic compressor and manufacturing method thereof
US20090079291A1 (en) Interphase insulating sheet of rotating electric machine, method for manufacturing interphase insulating sheet, and electric compressor
JP2004239192A (en) Double-cylinder rotary compressor
JP2007162641A (en) Compressor
JP2009257206A (en) Rotary compressor
JP6727300B2 (en) Rotary compressor
US20100172756A1 (en) Rotary compressor
JP3843917B2 (en) Compressor and manufacturing method thereof
JP4752812B2 (en) Pressure vessel
US8974204B2 (en) Scroll compressor
JP2001182681A (en) Hermetically sealed motor-driven compressor
KR20090012842A (en) Two stage rotary compressor
WO2018138772A1 (en) Closed-type compressor
JP6426645B2 (en) Rotary compressor
KR100248706B1 (en) Compression part combination device of a rotary compressor
JPH10103277A (en) Rotary compressor
JPH11230044A (en) Hermetic electric compressor
JPH0821390A (en) Two-air cylinder rotary compressor
JP2005214109A (en) Compressor
KR100400475B1 (en) a scroll compressor
JP2003155978A (en) Hermetic compressor and manufacturing method therefor
JPH0396691A (en) Two-cylinder rotary type compressor
JP2020029801A (en) Hermetic type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20060203

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20060511

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20060511

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20090107

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090213

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090306