JP2004238133A - Thin plate gripping device, thin plate conveying device, and thin plate inspecting device - Google Patents

Thin plate gripping device, thin plate conveying device, and thin plate inspecting device Download PDF

Info

Publication number
JP2004238133A
JP2004238133A JP2003028275A JP2003028275A JP2004238133A JP 2004238133 A JP2004238133 A JP 2004238133A JP 2003028275 A JP2003028275 A JP 2003028275A JP 2003028275 A JP2003028275 A JP 2003028275A JP 2004238133 A JP2004238133 A JP 2004238133A
Authority
JP
Japan
Prior art keywords
thin plate
support
force
height
pushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028275A
Other languages
Japanese (ja)
Inventor
Eiji Yamada
栄二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003028275A priority Critical patent/JP2004238133A/en
Publication of JP2004238133A publication Critical patent/JP2004238133A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin plate gripping device, a thin plate conveying device, and a thin plate inspecting device capable of stably holding a thin plate, with a simple structure, at a certain height, and at a high accuracy. <P>SOLUTION: A press up force is applied to the thin plate 22 by an air pressure suspending device 26, the support body 30 angularly displaced by a rotary shaft 31 supports the suspended thin plate 22 from the upside and holds the thin plate 22 in the suspended state. The rotary shaft 31 is angularly displaced by a driving device 32, which angularly displaces the support body 30 via the rotary shaft 31, and a control means 28 performs control so that the height of the held thin plate 22 is a constant. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フラットパネルディスプレイ(Flat Panel Display;略称FPD)などの薄板を把持する薄板把持装置、薄板を把持して搬送する薄板搬送装置および薄板の欠陥などを検査する薄板検査装置に関する。
【0002】
【従来の技術】
液晶ディスプレイ(Liquid Crystal Display;略称LCD)およびプラズマディスプレイパネル(Plasma Display Panel;略称PDP)などによって代表されるフラットパネルディスプレイ(Flat Panel Display;略称FPD)の製造ラインには、基板などの薄板の傷、気泡および異物などの有無を検査するための薄板検査装置が設けられている。この薄板検査装置は、検査に要する時間を短縮して検査の高速化を図るため、薄板をステージ上で浮上させた非接触状態で検査する非接触搬送ステージを用いた薄板検査装置が既に提案されている。
【0003】
図8は、従来の技術の薄板検査装置1を示す平面図である。この薄板検査装置1は、基台2、押上げ力発生手段である空気圧浮上装置3、搬入部4、搬出部5、位置決めピン6a,6b、押圧シリンダ7a,7b、薄板把持装置8、水平駆動装置9、および欠陥検査部10を備える。
【0004】
前記基台2には、空気圧浮上装置3が設けられる。この空気圧浮上装置3は、複数の空気吹出し孔12aを有する水平ステージ12を備え、各空気吹出し孔12aから上方へ向けて空気を吹出し、その吹出し空気圧によって薄板11を浮上させることができるように構成される。
【0005】
前記空気圧浮上装置3よりも前記薄板11の搬送方向A上流側(図8の左側)には、複数のローラ4aを有する搬入部4が設けられる。また空気圧浮上装置3よりも搬送方向A下流側(図8の右側)には、複数のローラ5aを有する搬出部5が設けられる。
【0006】
前記基台2よりも搬送方向A上流側から薄板検査装置1に供給された薄板11は、搬入部4の各ローラ4aによって搬送方向A下流側に駆動されて位置決めピン6a,6b付近まで搬送され、水平駆動装置9に設けられた2つの押圧シリンダ7a,7bによって、各位置決めピン6a,6bにそれぞれ押し当てられる。
【0007】
各位置決めピン6a,6bは、図8に示す平面視において、搬送方向Aに間隔をあけて基台2に設けられる複数の第1位置決めピン6aと、搬送方向Aに垂直な方向に間隔をあけて門形フレーム17に設けられる複数の第2位置決めピン6bとを有する。相互に直交する方向に配置された各複数の位置決めピン6a,6bによって、薄板11は欠陥検査開始位置において搬送方向Aおよび搬送方向Aに垂直な方向に、正確に位置決めされる。
【0008】
図9は、薄板把持装置8付近を簡略化して示す一部の拡大断面図である。前記薄板把持装置8は、水平駆動装置9の空気圧浮上装置3に臨む一側部に設けられ、押下げシリンダ13、押上げシリンダ14および取付け板15を含む。押下げシリンダ13および押上げシリンダ14は、取付け板15に固定され、この取付け板15は水平駆動装置9の前記空気圧浮上装置3に臨む一側部に固定される。押下げシリンダ13および押上げシリンダ14は、前述のように第1および第2位置決めピン6a,6bによって位置決めされた薄板11の水平駆動装置9寄りの一側部を、搬送方向A上流側および下流側の2個所で上下両側からそれぞれ挟持する。
【0009】
前記水平駆動装置9は、基台2上に前記空気圧浮上装置3の一側方で水平に設けられ、薄板把持装置8を搬入部4から搬出部5にわたって搬送方向Aに沿って往復移動することができるように構成される。前記薄板11は、薄板把持装置8によって前述のように上下両側から挟持された状態で、水平駆動装置9によって薄板把持装置8が搬送方向Aに駆動されることによって、搬入部4から空気圧浮上装置3および欠陥検査部10を通過して、搬出部5へ搬送される。この水平駆動装置9には、薄板把持装置8を搬送方向Aに移動するに際して、薄板11の把持位置の高さが一定に保たれ、高さ変動が生じないように、高い水平度が要求される。
【0010】
前記空気圧浮上装置3は、複数の空気吹出し孔12aから空気を吹出すことによって、空気圧浮上装置3上に供給された薄板11を浮上させる。この薄板11は、水平駆動装置9寄りの一側部が前記薄板把持装置8によって上下両側から挟持され、空気圧浮上装置3上を搬送されている途中で、欠陥検査部10を通過する。
【0011】
欠陥検査部10は、図8に示されるように、門形フレーム17に搬送方向Aに垂直な方向に間隔をあけて設けられる複数の検査用撮像装置16を備え、各検査用撮像装置16は、空気圧浮上装置3によって予め定める高さに浮上した薄板11に焦点が合うように、各焦点距離が予め設定されている。そのため、薄板11は、前記薄板把持装置8によって把持され、かつ空気圧浮上装置3からの空気圧が押上げ力として作用した状態で、全体が水平に保たれるように設定されている。
【0012】
各検査用撮像装置16は、通過する薄板11を上方から順次撮影し、この撮影画像に基づいて、薄板11の欠陥が検出される。欠陥検査部10において欠陥検査を終えた薄板11は、薄板把持装置8によって搬送方向A下流側に搬送されて搬出部5に供給され、搬出部5によって薄板検査装置1から搬出される。
【0013】
このようにして薄板検査装置1は、薄板11を、空気圧浮上装置3上で浮上させた状態で搬送し、欠陥検査部10によって欠陥検査を行うことができるように構成されている。
【0014】
このように前述の薄板検査装置1は、薄板11を空気圧浮上装置3上で浮上させることによって、薄板11を非接触でかつ高さを一定に保った状態で、高速で搬送することができる。また、薄板11を非接触状態で搬送するので、薄板11の搬送時に薄板11の損傷および汚染を防ぐことができる。さらに、薄板11の浮上高さが一定に保たれているので、各薄板撮像装置16は、薄板11に常に焦点が合った画像を撮像することができ、薄板11の正確かつ精密な欠陥検査が可能である。またこの薄板検査装置1によれば、薄板11を高速で搬送することができるので、検査時間を短縮して高速化を図ることができる(たとえば、特許文献1参照)。
【0015】
【特許文献1】
特開2000−9661号公報
【0016】
【発明が解決しようとする課題】
図8および図9に示される従来の技術では、薄板把持装置8は、薄板11を上下両側から挟持するために、上下一対のシリンダ13,14によって薄板11の一側部を搬送方向A上流側および下流側の2個所で把持するように構成されるので、薄板把持装置8を含む構造が複雑であるという問題がある。また、前記水平駆動装置9は、薄板把持装置8によって把持された薄板11の浮上高さが変動しないように、薄板把持装置8を高精度で搬送しなければならず、高い精密度が要求されるという問題がある。
【0017】
本発明の目的は、簡単な構成で、薄板を高精度で水平に保持することができるようにした薄板把持装置、薄板搬送装置および薄板検査装置を提供することである。
【0018】
【課題を解決するための手段】
本発明は、水平に配置されたステージを有し、このステージ上に配置された薄板に下方から押上げ力を作用させて、その薄板を浮上させる押上げ力発生手段と、
前記押上げ力発生手段の押上げ力によって浮上する薄板を上方から支持し、高さ方向に移動可能な支持体を有する支持手段と、
前記支持手段の支持体の前記高さ方向の位置を制御する制御手段とを含むことを特徴とする薄板把持装置である。
【0019】
本発明に従えば、押上げ力発生手段は、薄板に押上げ力を下方から作用させて、その薄板をステージ上で浮上させる。前記押上げ力発生手段からの押上げ力によってステージ上で浮上した薄板は、支持手段の支持体によって上方から支持され、このような下方からの押上げ力と上方からの支持力とによって、薄板は一定の高さに保持される。
【0020】
このように薄板に下方から押上げ力を作用させた状態で上方から支持して、その薄板を保持するように構成されるので、前記従来の技術のように、薄板を上下両側からシリンダによって挟持する構成に比べて、構造が簡素化される。
【0021】
さらに、前記支持手段の支持体は、制御手段によって高さ方向に位置が制御されるので、支持体によって薄板が支持される高さが一定に保たれるように、制御手段によって支持体の高さを希望する精度で正確に制御し、前記従来の技術のように、駆動手段に高い精度を要求せずに、簡単な構成で、薄板を正確に一定の高さに維持することができる。
【0022】
また本発明は、前記支持手段の支持体は、略水平な予め定める搬送方向に移動可能とされ、かつ薄板に上方から摩擦接触する支持面を有し、
前記制御手段は、支持手段の支持体の前記高さ方向の位置および前記予め定める搬送方向の位置を制御することを特徴とする。
【0023】
本発明に従えば、支持手段の支持体は、薄板に対して搬送方向に摩擦力を発生させる支持面を有するので、薄板を浮上させて一定の高さに維持した状態で、支持体に搬送方向への押圧力を確実に作用させて、制御手段による高さ方向および搬送方向の制御に支持体を変位させて、その支持体に支持された薄板を確実に移動させ、または静止させることができる。これによって薄板を前記従来の技術のようにシリンダによって機械的に挟持せずに、支持体によって上方だけから支持した状態で支持体の移動を薄板に伝達して、薄板を簡単な構成で搬送方向および高さ方向に正確かつ確実に移動させることができる。
【0024】
さらに本発明は、前記支持手段の支持体は、略水平な予め定める搬送方向に移動可能とされ、かつ薄板に上方から摩擦接触する上部支持面と、この上部支持面よりも下方に突出する側部支持面とを有し、
前記制御手段は、支持手段の支持体の前記高さ方向の位置および前記予め定める搬送方向の位置を制御することを特徴とする。
【0025】
本発明に従えば、前記支持手段は、薄板に予め定める搬送方向上流側に臨む端面に接触する端部支持片を有するので、支持手段の支持体が搬送方向へ高速で移動しても、その支持体の搬送方向への移動を薄板に確実に伝達して、薄板を高速で確実に搬送することができる。
【0026】
さらに本発明は、前記押上げ力発生手段は、薄板の前記支持体によって支持される支持領域への押上げ力が、薄板の前記支持体によって支持されていない非支持領域への押上げ力よりも大きく選ばれることを特徴とする。
【0027】
本発明に従えば、前記押上げ力発生手段は、薄板の下面全体のうち前記支持体によって支持される支持領域における下面への押上げ力が、非支持領域における下面への押上げ力よりも大きく設定される。これによって薄板の支持領域における下面には、非支持領域への押上げ力よりも大きな押上げ力が作用し、その結果、薄板の支持領域を強固に把持して、支持体の高さ方向および搬送方向の移動に薄板を確実に追従させて、薄板を高さ方向および搬送方向に移動させることができる。
【0028】
さらに本発明は、前記薄板の支持領域への押上げ力の前記非支持領域への押上げ力に対する増加分は、支持体による薄板への押下げ力に等しいことを特徴とする。
【0029】
本発明に従えば、前記押上げ力発生手段は、薄板の支持領域における下面への押上げ力の前記非支持領域における下面への押上げ力に対する増加分が、支持体による薄板の押下げ力と等しくなるように設定されるので、薄板の支持領域では確実に把持し、かつ非支持領域が支持領域に対して変形することを防ぎ、薄板全体を水平な一平面上に配置して平面性を維持することができる。
【0030】
さらに本発明は、前記制御手段は、支持体による薄板への押下げ力が一定に維持されるように、前記支持手段を制御することを特徴とする。
【0031】
本発明に従えば、前記支持手段は、制御手段によって薄板への押下げ力を一定に維持するように制御されるので、薄板は押上げ力と押下げ力とが釣り合う位置に保持される。このように支持体による薄板への押下げ力を一定に保つだけで、押上げ力の変動を薄板の高さ方向の変位によって吸収することができ、これによって薄板への押上げ力の変動に拘らず、薄板の変形を防止して、水平に維持することができる。
【0032】
さらに本発明は、前記薄板把持装置と、
略水平な予め定める搬送方向に駆動する水平駆動手段とを含むことを特徴とする薄板搬送装置である。
【0033】
本発明に従えば、前記押上げ力発生手段によって薄板を浮上させ、この浮上した薄板を支持手段の支持体によって上方から支持し、支持手段が水平駆動手段によって略水平な予め定める搬送方向に駆動されることによって、前記浮上した薄板は支持体によって支持される高さを維持しながら、前記予め定める搬送方向に搬送される。このようにして搬送される薄板は、制御手段によって支持体の高さが制御されながら搬送動作が制御されるので、水平駆動手段に対して高い水平度を要求せずに、薄板を精密に一定の高さで搬送方向に搬送することができる。したがって水平駆動手段の構成を簡素化することができる。
【0034】
さらに本発明は、前記薄板搬送装置と、
前記薄板の搬送経路に臨んで設けられ、薄板の欠陥を検出する欠陥検査手段とを含むことを特徴とする薄板検査装置である。
【0035】
本発明に従えば、前記薄板搬送装置と薄板の欠陥を検出する欠陥検査手段とを有するので、前記薄板搬送装置によって、浮上した薄板を一定の高さに保った状態で搬送しながら、前記欠陥検査手段によって、薄板の傷および気泡などの欠陥を検査することができる。特に、前記欠陥検査手段が撮像装置による撮像画像を用いて欠陥を検査するように構成される場合、薄板の高さの変化によって、撮像装置の焦点が薄板からずれることを防止することができるので、薄板を搬送しながら正確かつ精密な欠陥検査を行うことが可能となる。
【0036】
【発明の実施の形態】
図1は、本発明の実施の一形態の薄板検査装置20を示す平面図であり、図2は薄板検査装置20に備えられる薄板把持装置23および薄板搬送装置24を簡略化して示す一部の断面図である。本実施の形態の薄板検査装置20は、水平な床に設置される基台21と、薄板22を浮上させた状態で把持する薄板把持装置23と、薄板22を浮上させた状態で予め定める搬送方向Aに搬送する薄板搬送装置24と、欠陥検査手段25とを含んで構成される。
【0037】
前記薄板22は、たとえばフラットパネルディスプレイ(Flat Panel Display;略称FPD)によって実現される。なお、本実施の形態において、水平面上で搬送方向Aに垂直な方向(図1の上下方向)をX方向とし、X方向の搬送方向A上流側から下流側を見て左方である一方側をX1、搬送方向A上流側から下流側を見て右方である他方側をX2とする。
【0038】
薄板把持装置23は、水平なステージ26aを有する押上げ力発生手段である空気圧浮上装置26と、支持手段27と、制御手段28とを有する。空気圧浮上装置26の前記ステージ26aには、マトリクス状に相互に間隔をあけて複数の空気吹出し孔29が設けられる。空気圧浮上装置26は、各空気吹出し孔29から上方(図1の紙面に垂直手前側)へ向けて空気を吹出すことによって、空気圧浮上装置26のステージ26a上で薄板22に押上げ力を分散して作用させ、薄板22をステージ26aから上方に浮上させることができるように構成される。図2に示す矢印Cは、各空気吹出し孔29からの空気の吹出し方向を示している。
【0039】
前記支持手段27は、前記空気圧浮上装置26よりも一方側X1(図1では上側)に設けられ、支持体30、回転軸31、駆動装置32および回動量検出器40を有する。前記支持体30は、他方側X2に延びる遊端部に、空気圧浮上装置26の一方側X1の一側部と対向する支持部30aを有し、この支持部30aは、浮上した薄板22の一方側X1に配置される一側縁部の上面に接触する平坦な支持面30bを有する。また、空気圧浮上装置26は、支持体30が薄板22に接触して支持する支持領域において、薄板22の下面への押上げ力F1が前記支持体30が薄板22に接触しない非支持領域の下面への押上げ力F2よりも大きく設定されている。なお、図解の容易のため、前記支持領域は図1において斜線を付して示されている。
【0040】
前記回転軸31は、支持体30の一方側X1の部分を搬送方向Aに平行な軸線方向に貫通し、回転軸31の軸線まわりに矢符E1,E2方向に回動することによって、支持体30を同一方向に同一角度だけ角変位させる。前記駆動装置32は、回転軸31の軸線方向一端部に連結され、回転軸31をその軸線まわりに矢符E1,E2方向に回動させる。駆動装置32は、たとえばサーボモータを前記回転軸31の回転駆動源として備える。回転軸31の軸線は、搬送方向Aに平行である。回転軸31の軸線方向他端部には、回転軸31の回動量および回動方向を検出するための回動量検出器40が設けられる。この回動量検出器40は、たとえばロータリエンコーダによって実現されてもよく、あるいは角速度センサによって実現されてもよく、さらに角加速度センサによって実現されてもよい。
【0041】
前記回動量検出器40がロータリエンコーダによって実現される場合には、回転軸31が矢符E1方向または矢符E2方向に回動すると、その回動量に対応した単位角度あたり所定パルス数のパルス信号を出力する。このパルス信号は、前記制御手段28に入力される。前記パルス信号を入力した制御手段28は、薄板22が水平であるときの設定値に対する増加分が相殺されるように、制御信号を前記駆動装置32に出力し、上昇または下降した支持体30を水平に復帰させる。
【0042】
また前記回動量検出器40が角速度センサによって実現される場合には、前記ロータリエンコーダを用いる場合に比べて、高い応答性で駆動装置32を制御することができる。
【0043】
さらに前記回動量検出器40が角加速度センサによって実現される場合には、前述の角速度センサを用いる場合に比べて、さらに高い応答性で駆動装置32を制御することができる。
【0044】
このように制御される駆動装置32によって回転軸31が前記支持体30の支持部30aを下げる方向E2(図2においては反時計まわり)に回動すると、支持部30aは、浮上した薄板22に支持面30bを上方から接触させて支持し、押下げ力F3を作用させる。また支持体30は、水平方向の移動によって、支持面30bから薄板22に押圧力F4(図1参照)を発生させる。前記駆動装置32は、支持体30によって支持領域に作用させる前記押下げ力F3が、前記支持領域の下面への押上げ力F1と、前記非支持領域の下面への押上げ力F2との差に等しくなる(F3=F1−F2、ただし、F1>F2)ように、回転軸31を予め定める角度まで角変位させる。
【0045】
前記制御手段28は、コンピュータによって実現され、支持体30の高さ方向への変位量に応じて回転軸31を回動するように前記駆動装置32を制御する。なお、回転軸31の回動によって支持体30が角変位し、支持体30の角度に応じて支持面30bが傾く。しかしながら、前記支持面30bの両端の高低差Δhは十分小さいため、薄板22の傾きに大きな影響を与えることはない。
【0046】
図3は、支持体30が水平な状態から上方へ角変位した状態を説明するための正面図である。なお、同図において、支持体30が水平な状態は実線で示され、上方へ角変位した状態は仮想線で示される。前記支持体30が水平であるとき、支持面30bのX方向の長さをd、支持部30aの最も回転軸31寄りの段差部の下方の角部41から回転軸31の軸線42までのX方向の長さをrとし、支持体30が水平な状態から上方へ角度Δθ[rad]だけ傾いたとき、支持面30bの最も回転軸31寄りの前記段差部の下方の角部41の上昇量をh、支持面30bの回転軸31から最も離れた遊端側の下方の角部43と、最も回転軸31寄りの前記段差部の下方の角部41との高低差をΔhとすれば、
Δh=d・Δθ …(1)
h=(d+r)・Δθ …(2)
式(1)および式(2)からΔh/hは、
Δh/h=d/(d+r) …(3)
によって示される。
【0047】
前記支持面30bの上昇による各角部41,43間の高低差Δhは、角度Δθが微小であるとき、ほぼ零とみなすことができるため、上昇した薄板22を水平に復帰させるためには、前記制御手段28は前述の回動量検出器40によって検出された回動量、角速度または角加速度に基づいて支持体30の回動量を制御すればよいことが解る。なお、説明の便宜上、上昇した支持体30を水平に復帰させるための制御について述べたが、支持体30が下降した場合もまた、同様である。
【0048】
このような薄板把持装置23によって、薄板22は、空気圧浮上装置26の各空気吹出し孔29から噴出される空気によって、分散した押上げ力F1,F2を下方から受けて浮上し、支持手段27の支持部30aによって上方から支持され、垂れ下がることなく全体を水平に維持した状態に保たれる。このように薄板22を空気の噴射圧によって浮上させた状態で上方から支持して一定の高さに保持することができるので、前記従来の技術のように、押上げシリンダおよび押下げシリンダによって薄板22を機械的に挟持して保持する構成に比べて、薄板把持装置23の構造を簡素化することができる。
【0049】
前記支持手段27は、制御手段28によって、支持体30を高さ方向に関して上方および下方に角変位させ、支持体30の薄板22を支持する位置を、薄板22の搬送時における高さ変動が打ち消されるように、制御される。したがって、薄板22の高さが微小量だけ下降したとき、その変位が打消されるように薄板22を上昇させ、また薄板22の高さが微小量だけ上昇したとき、その変位が打消されるように薄板22を下降させればよいので、前記従来の技術のように、高い水平度が要求される水平ステージを用いることなしに、簡単な構成で、薄板22を正確に一定の高さで安定して維持することができる。
【0050】
さらに、支持手段27は、支持体30の水平な搬送方向Aへの移動によって、支持面30bから薄板22に押圧力F4を作用させるために、前記支持面30bは薄板22に対して大きな摩擦力を発生しかつ薄板22に表面を傷つけない材料、たとえばシリコン樹脂からなる被膜50が形成される。このような被膜50によって支持体30の支持面30bから薄板22に搬送方向Aに押圧力F4を作用させ、薄板22を浮上させたままで、支持体30の移動を確実に薄板22に伝達し、その薄板22を支持体30に追従させて、同一方向に移動させ、かつ静止させることができる。これによって薄板22が支持体30からずれてしまうことを確実に防ぎ、制御手段28によって制御される駆動装置32の動作を、支持体30を介して確実に薄板22に反映させ、薄板22を制御手段の制御に応答して高精度で動作させることができる。
【0051】
さらに、空気圧浮上装置26は、支持領域の下面への押上げ力F1が、非支持領域の下面への押上げ力F2よりも大きく設定されている。さらに具体的に述べると、薄板22の支持領域には、支持体30によって押下げ力F3が作用する。これによって支持領域は、非支持領域よりもステージ26aから垂直な上方への浮上高さが小さくなり、支持領域に作用する押上げ力F1が増加する。前記支持領域は、押上げ力F1が増加することによって、高さ方向に関して薄板22の自重との均衡が保たれた高さで静止するが、支持領域は、非支持領域よりも下方へ反りを生じて僅かに変形し、薄板22には支持領域と非支持領域との境界部分に歪みが生じる。
【0052】
したがって薄板22の支持領域の裏側である下面への押上げ力F1が、非支持領域の裏側である下面への押上げ力F2よりも大きく設定されることによって、支持体30から薄板22の上面の支持領域が支持された状態で、前記薄板22の支持領域における下面に前記非支持領域よりも大きな押上げ力F1を作用させることによって、薄板22の非支持領域が上方に反りを生じない程度の非支持領域への押上げ力F2で薄板22全体を一平面上に保持し、これによって前記境界部分の歪みを減少させ、あるいは無くすことができる。
【0053】
またさらに、前述のように薄板22の支持領域における下面への押上げ力F1を大きくし、支持領域の下面への押上げ力F1に応じて押下げ力F3を大きくすることによって、薄板22の支持領域と非支持領域との境界部分の歪みを増加させることなく堅固にかつ確実に、支持体30の押下げ力F3とその支持領域の下面に作用する空気圧による押上げ力F1とによって把持し、薄板22を支持体30の支持面30bとの間に大きな摩擦力を発生させて、薄板22の支持面30bに対するずれを抑制して、薄板22全体を確実に保持し、高速で搬送することが可能となる。
【0054】
さらに、前記薄板22の支持領域の下面への押上げ力F1の前記非支持領域の下面への押上げ力F2に対する増加分(F1−F2)を、支持体30が薄板22を押し下げる押下げ力F3と等しくすることによって、薄板22の支持領域の高さを非支持領域の高さと一致させ、装置の構成を複雑化せずに、薄板22の押上げ力F1,F2の不均一による歪みの発生を防止することができる。
【0055】
再び図1および図2を参照して、前記薄板搬送装置24は、水平駆動手段33と前述の薄板把持装置23とを含む。水平駆動手段33は、基台21上において、前記空気圧浮上装置26よりも一方側X1に、前記空気圧浮上装置26に沿って設けられ、搬送方向A下流側および上流側(図1の左右方向)に移動する。前記水平駆動手段33には、前記薄板把持装置23の駆動装置32および回動量検出器40が取付けられ、水平駆動手段33によって支持手段27を回動量検出器40とともに、搬送方向A下流側および上流側に移動可能である。前記水平駆動手段33は、たとえばボールねじ機構やリニアモータによって実現されてもよい。
【0056】
このような薄板搬送装置24は、前述のような薄板把持装置23と、前記薄板把持装置23を搬送方向A下流側および上流側に移動させる水平駆動手段33とを有するので、薄板把持装置23によって、薄板22を浮上させた状態で搬送方向A下流側および上流側に搬送することができ、また水平駆動手段33の搬送動作を停止することによって、薄板22を浮上させた状態で静止させることができる。
【0057】
また、前記薄板把持装置23によって、薄板22は搬送中に精密に一定の高さに保たれるので、駆動装置32および回動量検出器40を精密に一定の高さで移動させるように、水平駆動手段33自体を高精度に構成する必要がなく、水平駆動手段33を簡素化することができる。
【0058】
前記欠陥検査手段25は、空気圧浮上装置26の上方で前記基台21に固定された門形フレーム51に設けられる複数の検査用撮像装置34によって実現される。各検査用撮像装置34は、搬送方向Aに垂直なX方向に相互に間隔をあけて設けられ、浮上した薄板22に焦点が合うように、予め焦点距離が調整されている。これらの検査用撮像装置34は、浮上した状態で通過する薄板22を順次撮像し、この撮像画像に基づいて、図示しない画像解析システムによって薄板22の欠陥を検出することができるように構成されている。各検査用撮像装置34は、たとえばCCD(Charge Coupled Device)カメラによって実現されてもよい。
【0059】
また、前記薄板検査装置20は、基台21、薄板把持装置23、薄板搬送装置24および欠陥検査手段25に加えて、図1に示す位置決めピン35a,35b(総称する場合には、添字a,bは省略する)、押圧シリンダ36、搬入部37および搬出部38を含む。位置決めピン35は、搬送方向Aに並んだ位置決めピン列35aと、X方向に並んだ位置決めピン列35bとを有する。搬入部37は、空気圧浮上装置26よりも搬送方向A上流側で基台21上に設けられ、基台21よりも搬送方向A上流側から搬送されてきた薄板22を位置決めピン35付近まで搬送する。
【0060】
押圧シリンダ36は、搬入部37によって搬送されてきた薄板22を、前述の各位置決めピン35a,35bに押し当てるために、空気圧浮上装置26の搬送方向A上流側の側部と、空気圧浮上装置26の他方側X2に臨む側部との2箇所に設けられる。前記搬出部38は、空気圧浮上装置26よりも搬送方向A下流側で基台21上に設けられ、欠陥検査が終了した薄板22を空気圧浮上装置26から搬送方向A下流側に搬出する。前記搬入部37および搬出部38は、搬送方向Aに垂直な水平軸線まわりに回転駆動される複数のローラを含んで構成される。
【0061】
このように構成される薄板検査装置20は、薄板検査装置20よりも搬送方向A上流側から薄板検査装置20に搬送されてきた薄板22を、搬入部37によって位置決めピン35b付近まで搬送し、その後、上流側および側方の各押圧シリンダ36によって、直交する位置決めピン列35a,35bに押し当て、薄板22の位置決めを正確に行う。
【0062】
空気圧浮上装置26は、複数の吹出し孔29から空気を上方へ向けて吹出すことによって、薄板22を浮上させる。支持手段27は、駆動装置32によって回転軸31を角変位させて、支持体30を所定の高さに配置して、前記浮上した薄板22を上方から支持し、薄板22を保持する。
【0063】
このようにして空気圧浮上装置26からの空気圧と支持体30からの反力とによって薄板22がいわば把持された状態になると、制御手段28からの制御指令によって、水平駆動手段33は駆動装置32および回動量検出器40を、搬送方向A下流側に予め設定された搬送速度で移動させる。このとき、薄板把持装置23によって浮上した状態で保持されている薄板22は、搬送方向A下流側へ高さ変動が抑制された状態で高精度で一定の高さを保ちながら水平に搬送され、搬送途中に設けられる欠陥検査手段25によって欠陥検査が行われた後、搬出部38から搬出される。
【0064】
前記欠陥検査手段25は、各検査用撮像装置34によって通過する薄板22を順次撮像し、薄板22の欠陥を検出する。欠陥検査を終えたとき、すなわち、薄板22の最も搬送方向A上流側部分が欠陥検査手段25より搬送方向A下流側に搬送されたとき、薄板把持装置23は、駆動装置32によって回転軸31を支持体30の支持部30aが持ち上がるように角変位させ、位置決めされた薄板22の保持を解除する。その後、搬出部38によって、薄板検査装置20から薄板22を搬出する。
【0065】
以上のような本実施の形態の薄板検査装置20によれば、薄板搬送装置24と欠陥検査手段25と有しているので、浮上した薄板22を一定の高さに維持した状態で搬送しながら薄板22の欠陥検査をすることができる。したがって、搬送中に薄板22の高さが変化し、検査用撮像装置34の焦点が、薄板22からずれることを防止でき、正確かつ精密な欠陥検査を行うことができる。
【0066】
図4は、本発明の実施の他の形態の薄板検査装置120を示す平面図であり、図5は薄板把持装置123および薄板搬送装置124を示す断面図であり、図6は図5の切断面線VI−VIから見た断面図である。本実施の形態の薄板検査装置120は、前述の図1〜図3に示される実施の形態の薄板検査装置20に類似し、対応する部分には、同一の参照符を付して説明を省略する。図5に示す矢印Eは、前記空気吹出し孔29からの空気の吹出し方向を示している。
【0067】
本実施の形態の薄板検査装置120は、薄板把持装置123を備え、この薄板把持装置123は、支持体130、変位軸131および駆動装置132を含んで支持手段127を構成している。支持体130は、他方側X2に延び、空気圧浮上装置26の搬送方向A上流側の部分と対向する支持部130aを有している。前記支持部130aは、浮上した薄板22の搬送方向A上流側の一方側X1の角隅部から他方側X2の角隅部にわたって上方から接触する支持面130bと、前記支持部130aの搬送方向A上流側の下部に突出して設けられ、薄板22の搬送方向A上流側に臨む端面に接触する端部支持片39とを有する。
【0068】
前記変位軸131は、支持体130の一方側X1の部分を高さ方向に貫通して設けられる。前記駆動装置132は、支持体130の一方側X1の端部近傍に設けられ、前記変位軸131に沿って支持体130を高さ方向に変位させる。前記制御手段128は、駆動装置132の高さ方向への変位量に応じて、支持体130を変位軸131の軸線に沿って高さ方向に変位させるように、前記駆動装置132を制御する。
【0069】
このような構成によれば、前記支持手段127は、薄板22に搬送方向A上流側に臨む端面に接触する端部支持片39を有するので、前記薄板把持装置123を備えた薄板搬送装置124は、支持手段127の搬送方向A下流側への移動によって薄板22の端面に端部支持片39を押し当て、薄板22を浮上させた状態で確実に搬送方向A下流側に搬送することができる。
【0070】
図7は、本発明の実施のさらに他の形態の薄板検査装置220を示す平面図である。本実施の形態の薄板検査装置220は、前述の図4〜図6に示される実施の形態の薄板検査装置120に類似し、対応する部分には、同一の参照符を付して説明を省略する。
【0071】
本実施の形態の薄板検査装置220では、水平駆動手段33が空気圧浮上装置26のX方向両側に設けられ、各水平駆動手段33は、一対の薄板搬送装置224と、各薄板搬送装置224に設けられる一対の薄板把持装置223とを備えている。各薄板搬送装置224は、前述の薄板搬送装置24と同様に構成される。また各薄板把持装置223は、支持手段227をそれぞれ備え、各支持手段227は支持体230を有する。各支持体230は、空気圧浮上装置26の上流側部分にそれぞれ取付けられた水平駆動手段33側の角隅部分のみに対向する支持部230a1,230a2を有している。
【0072】
このような構成によれば、各支持体230を有する薄板把持装置223が水平駆動手段33にそれぞれ取付けられるので、各支持体230によって変位軸131に作用するモーメント力を減少させ、変位軸131の耐久性を向上させることができる。
【0073】
本発明の実施のさらに他の形態では、前述の図1〜図3の実施の形態において、制御手段28は、駆動装置32の高さ方向への変位量に応じて回転軸31を角変位させるように駆動装置32を制御するのではなく、回転軸31に作用するトルクが一定に維持されるように駆動装置32を制御する。その他の構成は前述の図1〜図3の実施の形態と同様である。
【0074】
このような構成によれば、駆動装置32が高さ方向へ変位したとき、空気圧浮上装置26と薄板22との隙間が変化することによって押上げ力に変動が生じるが、回転軸31に作用するトルクが一定に維持されることによって、支持体30は、一定の押下げ力F3を維持するので、支持体30は、薄板22を押下げ力F3と釣合う押上げ力が作用する高さ、すなわち駆動装置32が高さ方向へ変位する以前の高さまで高さ方向に変位させる。
【0075】
このように支持体30の薄板22への押下げ力F3を一定に保つだけで、押上げ力F3の変動が生じても、その押上げ力F3の変動に応じて薄板22を押上げ力F1,F2に釣り合う位置にほぼ同時に移動させ、薄板22全体を一定の高さに安定して保持することができるので、薄板22を一定の高さに維持する制御を簡素化できる。
【0076】
本発明の実施のさらに他の形態では、前述の図4〜図6の実施の形態において、制御手段128は、駆動装置132の高さ方向への変位量に応じて支持体130を変位軸131に沿って高さ方向に変位させるように駆動装置132を制御するのではなく、支持体130を押し下げる駆動力が一定に維持されるように駆動装置132を制御してもよい。
【0077】
本発明の実施のさらに他の形態では、前述の図7の実施の形態において、制御手段128は、駆動装置132の高さ方向への変位量に応じて支持体230を変位軸131に沿って高さ方向に変位させるように駆動装置132を制御するのではなく、支持体230を押し下げる駆動力が一定に維持されるように駆動装置132を制御してもよい。
【0078】
本発明の実施のさらに他の形態では、前述した実施の各形態において、押上げ力発生手段として、空気吹出し孔29を有し、前記空気吹出し孔29から上方に空気を吹出すことによって薄板22を浮上させる空気圧浮上装置26を用いたが、たとえば空気を吹出す空気吹出し孔と、空気を吸込む空気吸込み孔とを有する空気圧浮上装置を用いてもよく、また静電力または磁力によって薄板を浮上させる浮上ステージを用いてもよい。
【0079】
【発明の効果】
以上のように本発明によれば、薄板は、押上げ力発生手段によって分散した押上げ力を下方から受けて浮上し、支持手段によって上方から支持され、垂れ下がることなく全体を水平に維持して浮上した状態で保持される。このように薄板を浮上させた状態で保持することができるので、前記従来の技術のように、押上げシリンダおよび押下げシリンダによって薄板を挟持して保持する構成に比べて、薄板把持装置の構造を簡素化することができる。
【0080】
さらに、前記支持手段は制御手段の制御によって薄板を高さ方向に変位させることができるので、支持手段の薄板を支持する位置を所定の高さに設定することによって、薄板の高さが下降したとき、薄板を上昇させ、また薄板の高さが上昇したとき、薄板を下降させて、前記従来の技術のように、高い水平度が要求される水平駆動装置9を用いることなしに、簡単な構成で、薄板を正確に一定の高さで安定して維持することができる。
【0081】
また本発明によれば、支持手段は、支持体の水平な搬送方向への移動によって、支持面から薄板に摩擦力を作用させるので、薄板を浮上させたままで、前記支持手段の移動と同一方向に移動させ、かつ静止させることができる。
【0082】
さらに本発明によれば、前記支持手段は、薄板に予め定める搬送方向上流側に臨む端面に接触する端部支持片を有するので、支持手段の搬送方向への移動によって薄板の端面に端部支持片を接触させて、薄板を確実に前記支持体の移動方向に移動させることができる。
【0083】
さらに本発明によれば、押上げ力発生手段は、薄板の支持領域の下面への押上げ力が非支持領域の下面への押上げ力よりも大きく設定されることによって、予め定める押下げ力を作用させたとき、支持領域の高さが、薄板全体に一様な押上げ力を作用したときの支持領域の高さに比べて低くなることを防止できるので、薄板の境界部分に生じる歪みを減少させることができる。
【0084】
また支持領域の下面への押上げ力を大きくし、支持領域の下面への押上げ力に応じて支持領域に作用させる押下げ力を大きくすることによって、境界部分の歪みを増加させることなく堅固にかつ確実に薄板を保持することができ、また支持面から薄板に作用させる摩擦力を大きくすることができる。
【0085】
さらに本発明によれば、前記支持領域の下面への押上げ力と、前記非支持領域の下面への押上げ力との差を、支持手段が薄板を押し下げる押下げ力と等しくすることによって、支持領域の高さを、非支持領域の高さと一致させることができ、これによって薄板の境界部分に生じる歪みを解消することができる。
【0086】
さらに本発明によれば、前記支持手段は、制御手段によって薄板を押し下げる力を一定に維持するように制御されるので、押上げ力発生手段から薄板が受ける押上げ力と前記支持手段による押下げ力とが釣り合う位置に薄板が保持される。このように支持手段の薄板への押下げ力を一定に保つだけで、押上げ力の変動が生じても、その押上げ力の変動に応じて薄板を押上げ力に釣り合う位置にほぼ同時に移動させ、薄板全体を一定の高さに安定して保持することができるので、薄板を一定の高さに維持する制御を簡素化できる。
【0087】
さらに本発明によれば、前記薄板把持装置と、前記薄板把持装置の支持手段を水平方向に移動させる水平駆動手段とを有しているので、薄板を一定の高さに浮上させた状態で移動することができ、また水平駆動手段を静止させることによって薄板を浮上させた状態で静止させることができる。
【0088】
また、前記薄板把持装置を有していることによって、薄板を精密に一定の高さで移動するために、支持手段を精密に一定の高さで移動させる水平駆動手段を用いること必要がなく、さらに支持手段の移動中に高さが一定となるように水平駆動手段を制御する必要がないので、水平駆動手段を簡素化することができる。
【0089】
さらに本発明によれば、前記薄板搬送装置と薄板の欠陥を検出する欠陥検査手段とを有しているので、浮上した薄板を一定の高さに保った状態で搬送しながら欠陥検査することができる。したがって、たとえば撮像装置などを有する欠陥検査手段によって欠陥検査を行う場合、薄板の高さが変化し、撮像装置の焦点が薄板からずれることを防止でき、これによって正確かつ精密な欠陥検査をすることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の薄板検査装置20を示す平面図である。
【図2】薄板把持装置23および薄板搬送装置24を簡略化して示す一部の断面図である。
【図3】支持体30が水平な状態から角変位した状態を示す正面図である。
【図4】本発明の実施の他の形態の薄板検査装置120を示す平面図である。
【図5】薄板把持装置123および薄板搬送装置124を示す断面図である。
【図6】図5の切断面線VI−VIから見た断面図である。
【図7】本発明の実施のさらに他の形態の薄板検査装置220を示す平面図である。
【図8】従来の技術の薄板検査装置1を示す平面図である。
【図9】薄板把持装置8付近を簡略化して示す一部の拡大断面図である。
【符号の説明】
20,120,220 薄板検査装置
21 基台
22 薄板
23,123,223 薄板把持装置
24,124,224 薄板搬送装置
25 欠陥検査手段
26 空気圧浮上装置
27,127,227 支持手段
28,128 制御手段
29 空気吹出し孔
30,130,230 支持体
30a;130a;230a1,230a2 支持部
30b,130b 支持面
31 回転軸
32,132 駆動装置
33 水平駆動手段
34 検査用撮像装置
35 位置決めピン
36 押圧シリンダ
37 搬入部
38 搬出部
39 端部支持片
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin plate gripping device that grips a thin plate such as a flat panel display (Flat Panel Display; abbreviated as FPD), a thin plate transport device that grips and transports a thin plate, and a thin plate inspection device that inspects a thin plate for defects.
[0002]
[Prior art]
A flat panel display (Flat Panel Display; FPD) typified by a liquid crystal display (LCD) and a plasma display panel (PDP) is a manufacturing line of a thin plate such as a substrate. There is provided a thin plate inspection device for inspecting the presence or absence of bubbles, foreign matter, and the like. In order to shorten the time required for the inspection and speed up the inspection, a thin plate inspection apparatus using a non-contact transport stage for inspecting the thin plate in a non-contact state by floating the thin plate on the stage has already been proposed. ing.
[0003]
FIG. 8 is a plan view showing a conventional thin plate inspection apparatus 1. The thin plate inspection apparatus 1 includes a base 2, a pneumatic levitation device 3, which is a push-up force generating means, a carry-in section 4, a carry-out section 5, positioning pins 6a and 6b, pressing cylinders 7a and 7b, a thin plate gripping apparatus 8, and a horizontal drive. An apparatus 9 and a defect inspection unit 10 are provided.
[0004]
The base 2 is provided with a pneumatic levitation device 3. The pneumatic levitation device 3 includes a horizontal stage 12 having a plurality of air blow holes 12a, blows air upward from each of the air blow holes 12a, and allows the thin plate 11 to float by the blow air pressure. Is done.
[0005]
On the upstream side (left side in FIG. 8) of the thin plate 11 in the transport direction A with respect to the pneumatic levitation device 3, a carry-in section 4 having a plurality of rollers 4a is provided. Further, an unloading section 5 having a plurality of rollers 5a is provided downstream of the pneumatic levitation device 3 in the transport direction A (the right side in FIG. 8).
[0006]
The thin plate 11 supplied to the thin plate inspection apparatus 1 from the upstream side in the transport direction A with respect to the base 2 is driven downstream in the transport direction A by the rollers 4a of the loading unit 4 and transported to near the positioning pins 6a and 6b. Are pressed against the respective positioning pins 6a, 6b by two pressing cylinders 7a, 7b provided in the horizontal driving device 9, respectively.
[0007]
Each of the positioning pins 6a, 6b is spaced apart from the plurality of first positioning pins 6a provided on the base 2 at intervals in the transport direction A in a plan view shown in FIG. And a plurality of second positioning pins 6 b provided on the portal frame 17. The thin plate 11 is accurately positioned in the transport direction A and the direction perpendicular to the transport direction A at the defect inspection start position by the plurality of positioning pins 6a and 6b arranged in directions orthogonal to each other.
[0008]
FIG. 9 is a partially enlarged cross-sectional view showing the vicinity of the thin plate gripping device 8 in a simplified manner. The thin plate gripping device 8 is provided on one side of the horizontal driving device 9 facing the pneumatic levitation device 3, and includes a push-down cylinder 13, a push-up cylinder 14, and a mounting plate 15. The push-down cylinder 13 and the push-up cylinder 14 are fixed to a mounting plate 15, which is fixed to one side of the horizontal driving device 9 facing the pneumatic levitation device 3. The push-down cylinder 13 and the push-up cylinder 14 move one side of the thin plate 11 positioned by the first and second positioning pins 6a and 6b near the horizontal driving device 9 to the upstream and downstream in the transport direction A. It is sandwiched from both upper and lower sides at two places on the side.
[0009]
The horizontal driving device 9 is provided horizontally on one side of the pneumatic levitation device 3 on the base 2, and reciprocates the thin plate gripping device 8 along the transport direction A from the loading portion 4 to the loading portion 5. It is configured to be able to. The thin plate 11 is sandwiched from both upper and lower sides by the thin plate holding device 8 as described above, and the thin plate holding device 8 is driven in the transport direction A by the horizontal driving device 9, so that the pneumatic levitation device is moved from the loading unit 4. 3 and the defect inspection unit 10, and conveyed to the unloading unit 5. When the thin plate holding device 8 is moved in the transport direction A, the horizontal driving device 9 is required to have a high degree of horizontality so that the height of the holding position of the thin plate 11 is kept constant and the height does not fluctuate. You.
[0010]
The pneumatic levitation device 3 floats the thin plate 11 supplied onto the pneumatic levitation device 3 by blowing air from the plurality of air blowing holes 12a. One side of the thin plate 11 near the horizontal drive unit 9 is sandwiched from both upper and lower sides by the thin plate holding device 8, and passes through the defect inspection unit 10 while being conveyed on the pneumatic levitation device 3.
[0011]
As illustrated in FIG. 8, the defect inspection unit 10 includes a plurality of inspection imaging devices 16 provided on a portal frame 17 at intervals in a direction perpendicular to the transport direction A, and each inspection imaging device 16 Each focal length is set in advance so that the thin plate 11 floated at a predetermined height by the pneumatic levitation device 3 is focused. For this reason, the thin plate 11 is set so as to be held horizontally by the thin plate holding device 8 while the air pressure from the pneumatic levitation device 3 acts as a lifting force.
[0012]
Each inspection imaging device 16 sequentially photographs the passing thin plate 11 from above, and detects a defect of the thin plate 11 based on the photographed image. The thin plate 11 that has been subjected to the defect inspection in the defect inspection unit 10 is transported downstream in the transport direction A by the thin plate gripping device 8, supplied to the unloading unit 5, and unloaded from the thin plate inspection device 1 by the unloading unit 5.
[0013]
In this way, the thin plate inspection apparatus 1 is configured so that the thin plate 11 is conveyed while being floated on the pneumatic levitation device 3, and the defect inspection unit 10 can perform a defect inspection.
[0014]
In this way, the above-described thin plate inspection apparatus 1 can convey the thin plate 11 at a high speed in a state where the thin plate 11 is kept in a non-contact state and a constant height by floating the thin plate 11 on the pneumatic floating device 3. Further, since the thin plate 11 is transported in a non-contact state, damage and contamination of the thin plate 11 can be prevented when the thin plate 11 is transported. Furthermore, since the flying height of the thin plate 11 is kept constant, each thin-plate imaging device 16 can capture an image in which the thin plate 11 is always in focus, and an accurate and precise defect inspection of the thin plate 11 can be performed. It is possible. Further, according to the thin plate inspection apparatus 1, since the thin plate 11 can be transported at a high speed, the inspection time can be shortened and the speed can be increased (for example, see Patent Document 1).
[0015]
[Patent Document 1]
JP-A-2000-9661
[0016]
[Problems to be solved by the invention]
In the prior art shown in FIGS. 8 and 9, the thin plate gripping device 8 uses a pair of upper and lower cylinders 13 and 14 to move one side of the thin plate 11 upstream in the transport direction A in order to clamp the thin plate 11 from both upper and lower sides. In addition, there is a problem that the structure including the thin plate gripping device 8 is complicated because it is configured to grip at two locations on the downstream side. In addition, the horizontal driving device 9 must transport the thin plate gripping device 8 with high precision so that the floating height of the thin plate 11 gripped by the thin plate gripping device 8 does not fluctuate, and high precision is required. Problem.
[0017]
An object of the present invention is to provide a thin plate gripping device, a thin plate transport device, and a thin plate inspection device capable of holding a thin plate horizontally with high accuracy with a simple configuration.
[0018]
[Means for Solving the Problems]
The present invention has a horizontally arranged stage, and applies a pushing force to a thin plate disposed on the stage from below, thereby causing the thin plate to float,
Supporting means having a support capable of supporting a thin plate that floats by the pushing-up force of the pushing-up force generating means from above, and movable in a height direction,
Control means for controlling a position of the support of the support means in the height direction.
[0019]
According to the present invention, the push-up force generating means applies the push-up force to the thin plate from below, and floats the thin plate on the stage. The thin plate floating on the stage by the pushing force from the pushing force generating means is supported from above by the support of the supporting means, and the thin plate is raised by the pushing force from below and the supporting force from above. Is kept at a constant height.
[0020]
As described above, the thin plate is configured to be supported from above with a lifting force applied thereto from below and to hold the thin plate, so that the thin plate is held by the cylinder from both upper and lower sides as in the above-described conventional technique. The structure is simplified as compared with the configuration of FIG.
[0021]
Further, since the position of the support of the support means is controlled in the height direction by the control means, the height of the support is controlled by the control means so that the height at which the thin plate is supported by the support is kept constant. The thin plate can be accurately controlled with a desired accuracy, and the thin plate can be accurately maintained at a constant height with a simple configuration without requiring high accuracy of the driving means as in the above-described conventional technology.
[0022]
Further, according to the present invention, the support of the support means is movable in a substantially horizontal predetermined transport direction, and has a support surface that comes into frictional contact with the thin plate from above,
The control means controls the position of the support of the support means in the height direction and the position in the predetermined transport direction.
[0023]
According to the present invention, since the support of the support means has a support surface that generates a frictional force in the transport direction with respect to the thin plate, the thin plate is transported to the support while being maintained at a constant height by floating. The pressing force in the direction is reliably applied, the support is displaced in the control of the height direction and the transport direction by the control means, and the thin plate supported by the support is reliably moved or stopped. it can. Thus, the movement of the support is transmitted to the thin plate in a state where the thin plate is supported only from above by the support without mechanically sandwiching the thin plate by the cylinder as in the above-described conventional technology, and the thin plate is transported with a simple configuration in the transport direction. And it can be moved accurately and reliably in the height direction.
[0024]
Further, according to the present invention, the support means of the support means is capable of moving in a substantially horizontal predetermined transport direction, and has an upper support surface that comes into frictional contact with the thin plate from above, and a side projecting below the upper support surface. Part support surface,
The control means controls the position of the support of the support means in the height direction and the position in the predetermined transport direction.
[0025]
According to the present invention, since the supporting means has an end support piece that comes into contact with an end face facing the upstream in the predetermined conveying direction on the thin plate, even if the support of the supporting means moves at high speed in the conveying direction, The movement of the support in the transport direction is reliably transmitted to the thin plate, and the thin plate can be transported reliably at high speed.
[0026]
Further, in the present invention, the push-up force generating means is configured such that a push-up force to a support area of the thin plate supported by the support is smaller than a push-up force to a non-support area not supported by the support of the thin plate. Is also largely selected.
[0027]
According to the present invention, the push-up force generating means is configured such that the push-up force to the lower surface in the support region supported by the support is lower than the push-up force to the lower surface in the non-support region. Set to a large value. As a result, a push-up force larger than a push-up force to the non-support area acts on the lower surface in the support area of the thin plate. As a result, the support area of the thin plate is firmly gripped, and the height direction of the support body and The thin plate can surely follow the movement in the transport direction, and can be moved in the height direction and the transport direction.
[0028]
Further, the present invention is characterized in that an increase in the pushing force of the thin plate to the support region with respect to the pushing force to the non-support region is equal to the pushing force of the thin plate by the support.
[0029]
According to the present invention, the push-up force generating means is configured such that an increase in the push-up force to the lower surface in the support region of the thin plate with respect to the push-up force to the lower surface in the non-support region is the pushing force of the thin plate by the support. It is set to be equal to, so that the thin plate is securely gripped in the support area, and the non-support area is prevented from being deformed with respect to the support area, and the entire thin plate is arranged on a horizontal plane to achieve flatness Can be maintained.
[0030]
Further, the present invention is characterized in that the control means controls the support means so that the pressing force of the support against the thin plate is kept constant.
[0031]
According to the present invention, the supporting means is controlled by the control means so as to keep the pressing force on the thin plate constant, so that the thin plate is held at a position where the pushing up force and the pushing down force are balanced. In this way, by simply keeping the pressing force of the support against the thin plate constant, the fluctuation of the lifting force can be absorbed by the displacement of the thin plate in the height direction. Regardless, the thin plate is prevented from being deformed and can be kept horizontal.
[0032]
Further, the present invention, the thin plate gripping device,
And a horizontal driving means for driving in a substantially horizontal predetermined conveying direction.
[0033]
According to the present invention, the thin plate is levitated by the push-up force generating means, the levitated thin plate is supported from above by the support of the supporting means, and the supporting means is driven in a substantially horizontal predetermined conveying direction by the horizontal driving means. Thereby, the floating thin plate is transported in the predetermined transport direction while maintaining the height supported by the support. Since the transport operation of the thin plate conveyed in this manner is controlled while the height of the support is controlled by the control means, the thin plate can be precisely fixed without requiring a high level of horizontal driving means. Can be transported in the transport direction at a height of. Therefore, the configuration of the horizontal driving means can be simplified.
[0034]
Further, the present invention, the thin plate transport device,
And a defect inspection unit provided facing the transport path of the thin plate and detecting a defect of the thin plate.
[0035]
According to the present invention, since the apparatus has the thin-plate transport device and defect inspection means for detecting a defect of the thin plate, the thin-plate transport device transports the floated thin plate while maintaining it at a constant height, thereby removing the defect. The inspection means can inspect the thin plate for defects such as scratches and air bubbles. In particular, when the defect inspection unit is configured to inspect a defect using an image captured by an imaging device, it is possible to prevent the focus of the imaging device from being shifted from the thin plate due to a change in the height of the thin plate. In addition, accurate and precise defect inspection can be performed while transporting a thin plate.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a plan view showing a thin plate inspection apparatus 20 according to an embodiment of the present invention, and FIG. 2 is a partial view schematically showing a thin plate holding device 23 and a thin plate transport device 24 provided in the thin plate inspection device 20. It is sectional drawing. The thin plate inspection apparatus 20 of the present embodiment includes a base 21 installed on a horizontal floor, a thin plate holding device 23 for holding the thin plate 22 in a floating state, and a predetermined conveyance in a state in which the thin plate 22 is raised. It is configured to include a thin plate transport device 24 that transports in the direction A and a defect inspection unit 25.
[0037]
The thin plate 22 is realized by, for example, a flat panel display (abbreviated as FPD). In this embodiment, the direction perpendicular to the transport direction A on the horizontal plane (the vertical direction in FIG. 1) is defined as the X direction, and the one side which is the left side when viewed from the upstream to the downstream in the transport direction A in the X direction. X1 and the other right side as viewed from the upstream side in the transport direction A to the downstream side is X2.
[0038]
The thin plate gripping device 23 has a pneumatic levitation device 26 as a pushing force generating means having a horizontal stage 26a, a supporting means 27, and a control means 28. The stage 26a of the pneumatic levitation device 26 is provided with a plurality of air outlet holes 29 spaced apart from each other in a matrix. The pneumatic levitation device 26 distributes the pushing force to the thin plate 22 on the stage 26a of the pneumatic levitation device 26 by blowing air upward from each of the air blowing holes 29 (on the near side perpendicular to the plane of FIG. 1). So that the thin plate 22 can be lifted upward from the stage 26a. An arrow C shown in FIG. 2 indicates a direction in which air is blown out from each air blowing hole 29.
[0039]
The support means 27 is provided on one side X1 (the upper side in FIG. 1) of the pneumatic levitation device 26 and includes a support 30, a rotating shaft 31, a driving device 32, and a rotation amount detector 40. The support 30 has, at its free end extending to the other side X2, a support 30a facing one side of the one side X1 of the pneumatic levitation device 26, and this support 30a is provided on one side of the thin plate 22 that floats. It has a flat support surface 30b that contacts the upper surface of one side edge disposed on the side X1. The pneumatic levitation device 26 is configured such that, in the support region where the support 30 contacts and supports the thin plate 22, the pushing force F1 to the lower surface of the thin plate 22 is lower than the lower surface of the non-support region where the support 30 does not contact the thin plate 22. Is set larger than the pushing force F2. In addition, the support area is hatched in FIG. 1 for ease of illustration.
[0040]
The rotation shaft 31 penetrates a portion on one side X1 of the support 30 in an axial direction parallel to the transport direction A, and rotates around the axis of the rotation shaft 31 in the directions indicated by the arrows E1 and E2. 30 are angularly displaced by the same angle in the same direction. The driving device 32 is connected to one end of the rotating shaft 31 in the axial direction, and rotates the rotating shaft 31 around the axis in the directions of arrows E1 and E2. The drive device 32 includes, for example, a servomotor as a rotation drive source of the rotation shaft 31. The axis of the rotating shaft 31 is parallel to the transport direction A. A rotation amount detector 40 for detecting the rotation amount and the rotation direction of the rotation shaft 31 is provided at the other end in the axial direction of the rotation shaft 31. The rotation amount detector 40 may be realized by, for example, a rotary encoder, or may be realized by an angular velocity sensor, and may be realized by an angular acceleration sensor.
[0041]
When the rotation amount detector 40 is realized by a rotary encoder, when the rotation shaft 31 rotates in the arrow E1 direction or the arrow E2 direction, a pulse signal of a predetermined number of pulses per unit angle corresponding to the rotation amount is provided. Is output. This pulse signal is input to the control means 28. The control unit 28 that has received the pulse signal outputs a control signal to the driving device 32 so that the increase in the set value when the thin plate 22 is horizontal is canceled, and the raised or lowered support 30 is moved. Return to horizontal.
[0042]
Also, when the rotation amount detector 40 is realized by an angular velocity sensor, the drive device 32 can be controlled with higher responsiveness than when the rotary encoder is used.
[0043]
Further, when the rotation amount detector 40 is realized by an angular acceleration sensor, the driving device 32 can be controlled with higher responsiveness than in the case of using the above-described angular velocity sensor.
[0044]
When the rotating shaft 31 rotates in the direction E2 (counterclockwise in FIG. 2) to lower the support portion 30a of the support 30 by the driving device 32 controlled in this manner, the support portion 30a The support surface 30b is brought into contact with and supported from above, and a pressing force F3 is applied. Further, the support 30 generates a pressing force F4 (see FIG. 1) from the support surface 30b to the thin plate 22 by moving in the horizontal direction. The driving device 32 is configured such that the pressing force F3 applied to the supporting area by the support 30 is different from the pushing force F1 to the lower surface of the supporting area and the pushing force F2 to the lower surface of the non-supporting area. (F3 = F1−F2, where F1> F2) so that the rotating shaft 31 is angularly displaced to a predetermined angle.
[0045]
The control means 28 is realized by a computer, and controls the driving device 32 to rotate the rotating shaft 31 according to the amount of displacement of the support 30 in the height direction. The support 30 is angularly displaced by the rotation of the rotation shaft 31, and the support surface 30 b is inclined according to the angle of the support 30. However, since the height difference Δh at both ends of the support surface 30b is sufficiently small, it does not significantly affect the inclination of the thin plate 22.
[0046]
FIG. 3 is a front view for explaining a state in which the support 30 is angularly displaced upward from a horizontal state. Note that, in the figure, the horizontal state of the support 30 is indicated by a solid line, and the state where the support 30 is angularly displaced upward is indicated by a virtual line. When the support 30 is horizontal, the length of the support surface 30b in the X direction is d, and the X from the lower corner 41 of the stepped portion of the support 30a closest to the rotation axis 31 to the axis 42 of the rotation shaft 31 is X. When the support 30 is inclined upward by an angle Δθ [rad] from the horizontal state, the amount of rise of the corner 41 below the step portion of the support surface 30 b closest to the rotation axis 31 is defined as r. If the height difference between the lower corner 43 of the free end side of the support surface 30b farthest from the rotation axis 31 of the support surface 30b and the lower corner 41 of the step near the rotation axis 31 is Δh,
Δh = d · Δθ (1)
h = (d + r) · Δθ (2)
From equation (1) and equation (2), Δh / h is
Δh / h = d / (d + r) (3)
Indicated by
[0047]
The height difference Δh between the corners 41 and 43 due to the elevation of the support surface 30b can be considered to be almost zero when the angle Δθ is small, so that the raised thin plate 22 needs to be returned to a horizontal state. It is understood that the control means 28 may control the amount of rotation of the support 30 based on the amount of rotation, angular velocity, or angular acceleration detected by the above-described amount-of-rotation detector 40. Although the control for returning the raised support 30 to the horizontal position has been described for the sake of convenience, the same applies to the case where the support 30 is lowered.
[0048]
With the thin plate gripping device 23, the thin plate 22 floats by receiving the dispersed lifting forces F1 and F2 from below by the air blown out from the respective air blowing holes 29 of the pneumatic levitation device 26, and It is supported from above by the support portion 30a, and is kept in a horizontal state without drooping. As described above, the thin plate 22 can be supported from above and held at a constant height while being floated by the injection pressure of air. The structure of the thin plate gripping device 23 can be simplified as compared with a configuration in which the thin plate holding device 22 is mechanically held and held.
[0049]
The support means 27 causes the control means 28 to angularly displace the support 30 upward and downward with respect to the height direction, so that the position of the support 30 supporting the thin plate 22 is compensated for by the height fluctuation during the transfer of the thin plate 22. Is controlled so that Therefore, when the height of the thin plate 22 is lowered by a very small amount, the thin plate 22 is raised so as to cancel the displacement, and when the height of the thin plate 22 is raised by a very small amount, the displacement is canceled. The thin plate 22 can be accurately and stably maintained at a constant height with a simple configuration without using a horizontal stage that requires a high level of flatness as in the prior art described above. Can be maintained.
[0050]
Further, the support means 27 applies a pressing force F4 from the support surface 30b to the thin plate 22 by moving the support 30 in the horizontal transport direction A, so that the support surface 30b exerts a large frictional force on the thin plate 22. And a coating 50 made of a material that does not damage the surface of the thin plate 22, for example, silicon resin. With such a coating 50, a pressing force F4 is applied to the thin plate 22 from the support surface 30b of the support 30 in the transport direction A, and the movement of the support 30 is reliably transmitted to the thin plate 22 while the thin plate 22 is floating. The thin plate 22 can move in the same direction and stand still by following the support 30. This reliably prevents the thin plate 22 from being displaced from the support 30, and ensures that the operation of the driving device 32 controlled by the control means 28 is reflected on the thin plate 22 via the support 30, thereby controlling the thin plate 22. It can be operated with high accuracy in response to control of the means.
[0051]
Further, in the pneumatic levitation device 26, the pushing force F1 to the lower surface of the support region is set to be larger than the pushing force F2 to the lower surface of the non-support region. More specifically, a pressing force F3 acts on the support region of the thin plate 22 by the support 30. As a result, the floating height of the supporting area in the vertical upward direction from the stage 26a becomes smaller than that of the non-supporting area, and the pushing force F1 acting on the supporting area increases. The support region is stationary at a height that is balanced with the own weight of the thin plate 22 in the height direction due to the increase of the push-up force F1, but the support region warps downward from the non-support region. As a result, the thin plate 22 is distorted at the boundary between the support region and the non-support region.
[0052]
Therefore, the pushing force F1 to the lower surface, which is the back side of the supporting region of the thin plate 22, is set to be larger than the pushing force F2 to the lower surface, the back side of the non-supporting region. In a state where the support region of the thin plate 22 is supported, a pushing force F1 larger than that of the non-support region is applied to the lower surface of the support region of the thin plate 22 so that the non-support region of the thin plate 22 does not warp upward. The lifting force F2 to the non-supporting region holds the entire thin plate 22 on one plane, thereby reducing or eliminating distortion at the boundary.
[0053]
Further, as described above, the pushing force F1 to the lower surface in the support region of the thin plate 22 is increased, and the pushing force F3 is increased in accordance with the pushing force F1 to the lower surface of the support region. The holding force is firmly and securely held by the pressing force F3 of the support 30 and the lifting force F1 of the pneumatic force acting on the lower surface of the support region without increasing the distortion at the boundary between the support region and the non-support region. A large frictional force is generated between the thin plate 22 and the support surface 30b of the support body 30 to suppress the shift of the thin plate 22 with respect to the support surface 30b, to securely hold the entire thin plate 22, and to convey at high speed. Becomes possible.
[0054]
Further, the pressing force by which the support 30 pushes down the thin plate 22 is determined by the increase (F1-F2) of the pushing force F1 to the lower surface of the supporting region of the thin plate 22 with respect to the pushing force F2 to the lower surface of the non-supporting region. By making the height equal to F3, the height of the supporting region of the thin plate 22 is made equal to the height of the non-supporting region, and the distortion of the thin plate 22 due to the non-uniformity of the pushing forces F1 and F2 is reduced without complicating the structure of the apparatus. Occurrence can be prevented.
[0055]
Referring again to FIGS. 1 and 2, the thin plate transporting device 24 includes a horizontal driving unit 33 and the above-described thin plate gripping device 23. The horizontal drive unit 33 is provided on the base 21 on one side X1 of the pneumatic levitation device 26 and along the pneumatic levitation device 26, and is located on the downstream side and the upstream side in the transport direction A (the left-right direction in FIG. 1). Go to The driving device 32 of the thin plate gripping device 23 and the rotation amount detector 40 are attached to the horizontal driving unit 33, and the horizontal driving unit 33 moves the support unit 27 together with the rotation amount detector 40 together with the downstream and upstream in the transport direction A. It is movable to the side. The horizontal driving unit 33 may be realized by, for example, a ball screw mechanism or a linear motor.
[0056]
Since such a thin plate conveying device 24 has the thin plate gripping device 23 as described above and the horizontal driving means 33 for moving the thin plate gripping device 23 downstream and upstream in the conveying direction A, the thin plate gripping device 23 The thin plate 22 can be transported downstream and upstream in the transport direction A in a state where the thin plate 22 is levitated, and the transport operation of the horizontal drive unit 33 is stopped, so that the thin plate 22 can be stopped in a floating state. it can.
[0057]
In addition, since the thin plate 22 is precisely maintained at a constant height during conveyance by the thin plate gripping device 23, the driving device 32 and the rotation amount detector 40 are horizontally moved so as to precisely move at a constant height. There is no need to configure the driving means 33 itself with high precision, and the horizontal driving means 33 can be simplified.
[0058]
The defect inspection means 25 is realized by a plurality of inspection imaging devices 34 provided on a portal frame 51 fixed to the base 21 above the pneumatic levitation device 26. The inspection imaging devices 34 are provided at intervals in the X direction perpendicular to the transport direction A, and the focal length is adjusted in advance so that the floating thin plate 22 is focused. These inspection imaging devices 34 are configured to sequentially capture images of the thin plate 22 passing therethrough in a floating state, and to be able to detect a defect in the thin plate 22 by an image analysis system (not shown) based on the captured image. I have. Each inspection imaging device 34 may be realized by, for example, a CCD (Charge Coupled Device) camera.
[0059]
Further, in addition to the base 21, the thin plate gripping device 23, the thin plate conveying device 24 and the defect inspection means 25, the thin plate inspection device 20 includes positioning pins 35a and 35b (subscripts a and b is omitted), a pressing cylinder 36, a carry-in section 37, and a carry-out section 38. The positioning pins 35 include a positioning pin array 35a arranged in the transport direction A and a positioning pin array 35b arranged in the X direction. The carry-in section 37 is provided on the base 21 on the upstream side of the pneumatic levitation device 26 in the transport direction A, and transports the thin plate 22 transported from the upstream side in the transport direction A of the base 21 to the vicinity of the positioning pin 35. .
[0060]
The pressing cylinder 36 presses the thin plate 22 conveyed by the carry-in section 37 against each of the positioning pins 35a and 35b described above, and the side of the pneumatic levitation device 26 on the upstream side in the conveyance direction A and the pneumatic levitation device 26. And the side facing the other side X2. The unloading section 38 is provided on the base 21 downstream of the pneumatic levitation device 26 in the transport direction A, and unloads the thin plate 22 on which the defect inspection has been completed from the pneumatic levitation device 26 to the transport direction A downstream. The carry-in section 37 and the carry-out section 38 include a plurality of rollers that are driven to rotate around a horizontal axis perpendicular to the transport direction A.
[0061]
The thin plate inspection device 20 configured as described above transports the thin plate 22 that has been transported to the thin plate inspection device 20 from the upstream in the transport direction A with respect to the thin plate inspection device 20 to the vicinity of the positioning pin 35b by the loading unit 37, and thereafter The thin plate 22 is accurately positioned by being pressed against the orthogonal positioning pin rows 35a and 35b by the upstream and side pressing cylinders 36.
[0062]
The pneumatic levitation device 26 floats the thin plate 22 by blowing air upward from the plurality of outlet holes 29. The support means 27 displaces the rotation shaft 31 angularly by the driving device 32, arranges the support 30 at a predetermined height, supports the floating thin plate 22 from above, and holds the thin plate 22.
[0063]
In this manner, when the thin plate 22 is in a so-called gripped state by the air pressure from the pneumatic levitation device 26 and the reaction force from the support 30, the horizontal driving unit 33 is controlled by the control command from the control unit 28 by the driving device 32 and The rotation amount detector 40 is moved to the downstream side in the transport direction A at a preset transport speed. At this time, the thin plate 22 held in a state of floating by the thin plate gripping device 23 is horizontally conveyed while maintaining a constant height with high accuracy in a state in which the height fluctuation is suppressed to the downstream side in the conveying direction A, After the defect inspection is performed by the defect inspection means 25 provided in the middle of the transport, the wafer is unloaded from the unloading section 38.
[0064]
The defect inspection means 25 sequentially images the passing thin plate 22 by each of the inspection imaging devices 34 and detects a defect of the thin plate 22. When the defect inspection is finished, that is, when the most upstream portion of the thin plate 22 in the transport direction A is transported to the downstream side in the transport direction A by the defect inspection means 25, the thin plate gripping device 23 causes the driving device 32 to move the rotating shaft 31. The support portion 30a of the support 30 is angularly displaced so as to be lifted, and the holding of the positioned thin plate 22 is released. Then, the thin plate 22 is unloaded from the thin plate inspection device 20 by the unloading section 38.
[0065]
According to the thin sheet inspection apparatus 20 of the present embodiment as described above, since the thin sheet transport apparatus 24 and the defect inspection means 25 are provided, the thin sheet 22 that has floated is transported while being maintained at a constant height. The thin plate 22 can be inspected for defects. Therefore, it is possible to prevent the height of the thin plate 22 from changing during transport, and prevent the focus of the imaging device for inspection 34 from being shifted from the thin plate 22, thereby enabling accurate and precise defect inspection.
[0066]
4 is a plan view showing a thin plate inspection apparatus 120 according to another embodiment of the present invention, FIG. 5 is a cross-sectional view showing a thin plate holding device 123 and a thin plate transport device 124, and FIG. It is sectional drawing seen from the surface line VI-VI. The thin plate inspection apparatus 120 of the present embodiment is similar to the thin plate inspection apparatus 20 of the embodiment shown in FIGS. 1 to 3 described above, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted. I do. An arrow E shown in FIG. 5 indicates a direction in which the air is blown out from the air blowing hole 29.
[0067]
The thin plate inspection device 120 according to the present embodiment includes a thin plate holding device 123, and the thin plate holding device 123 includes a support 130, a displacement shaft 131, and a driving device 132 to constitute a support unit 127. The support body 130 has a support portion 130a extending to the other side X2 and facing a portion of the pneumatic levitation device 26 on the upstream side in the transport direction A. The support portion 130a is provided with a support surface 130b contacting from above from a corner at one side X1 to a corner at the other side X2 on the upstream side in the transport direction A of the floating thin plate 22, and a transport direction A of the support portion 130a. An end support piece 39 is provided protruding from the lower portion on the upstream side and comes into contact with an end face of the thin plate 22 facing the upstream side in the transport direction A.
[0068]
The displacement shaft 131 is provided so as to penetrate a portion on one side X1 of the support body 130 in the height direction. The driving device 132 is provided in the vicinity of an end on one side X <b> 1 of the support 130, and displaces the support 130 in the height direction along the displacement axis 131. The control means 128 controls the driving device 132 such that the support 130 is displaced in the height direction along the axis of the displacement shaft 131 in accordance with the amount of displacement of the driving device 132 in the height direction.
[0069]
According to such a configuration, since the supporting means 127 has the end supporting piece 39 that comes into contact with the end face of the thin plate 22 facing the upstream side in the conveying direction A, the thin plate conveying device 124 including the thin plate gripping device 123 is By moving the support means 127 to the downstream side in the transport direction A, the end supporting piece 39 is pressed against the end face of the thin plate 22, and the thin plate 22 can be reliably transported downstream in the transport direction A while the thin plate 22 is floated.
[0070]
FIG. 7 is a plan view showing a thin plate inspection apparatus 220 according to still another embodiment of the present invention. The thin plate inspection device 220 of the present embodiment is similar to the thin plate inspection device 120 of the embodiment shown in FIGS. 4 to 6 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. I do.
[0071]
In the thin plate inspection device 220 of the present embodiment, the horizontal driving means 33 are provided on both sides in the X direction of the pneumatic levitation device 26, and each horizontal driving means 33 is provided on a pair of the thin plate transfer devices 224 and each of the thin plate transfer devices 224. And a pair of thin plate gripping devices 223 to be provided. Each of the thin plate transfer devices 224 has the same configuration as the thin plate transfer device 24 described above. Further, each thin plate gripping device 223 includes a support means 227, and each support means 227 has a support 230. Each support body 230 has support parts 230a1 and 230a2 that are attached to the upstream part of the pneumatic levitation device 26 and that oppose only the corners on the horizontal drive means 33 side.
[0072]
According to such a configuration, since the thin plate gripping device 223 having each support 230 is attached to the horizontal driving means 33, the moment force acting on the displacement shaft 131 by each support 230 is reduced. Durability can be improved.
[0073]
In still another embodiment of the present invention, in the embodiment of FIGS. 1 to 3 described above, the control means 28 causes the rotary shaft 31 to angularly displace according to the amount of displacement of the driving device 32 in the height direction. Instead of controlling the driving device 32 as described above, the driving device 32 is controlled so that the torque acting on the rotating shaft 31 is kept constant. Other configurations are the same as those of the above-described embodiment of FIGS.
[0074]
According to such a configuration, when the driving device 32 is displaced in the height direction, a change in the gap between the pneumatic levitation device 26 and the thin plate 22 causes a change in the push-up force. Since the support 30 maintains a constant pressing force F3 by maintaining the torque constant, the support 30 has a height at which a lifting force that balances the thin plate 22 with the pressing force F3 acts. That is, the driving device 32 is displaced in the height direction to the height before the displacement in the height direction.
[0075]
As described above, even if the pushing-up force F3 fluctuates only by keeping the pushing force F3 of the support 30 against the thin plate 22 constant, the pushing-up force F1 of the thin plate 22 according to the fluctuation of the pushing-up force F3. , F2 can be moved almost at the same time, and the entire thin plate 22 can be stably held at a constant height, so that control for maintaining the thin plate 22 at a constant height can be simplified.
[0076]
In still another embodiment of the present invention, in the above-described embodiments of FIGS. 4 to 6, the control means 128 causes the support 130 to shift the displacement shaft 131 according to the amount of displacement of the driving device 132 in the height direction. Instead of controlling the driving device 132 to displace in the height direction along the direction, the driving device 132 may be controlled so that the driving force for pushing down the support 130 is kept constant.
[0077]
In still another embodiment of the present invention, in the embodiment of FIG. 7 described above, the control means 128 moves the support 230 along the displacement axis 131 in accordance with the amount of displacement of the driving device 132 in the height direction. Instead of controlling the driving device 132 to displace in the height direction, the driving device 132 may be controlled so that the driving force for pushing down the support 230 is kept constant.
[0078]
In still another embodiment of the present invention, in each of the above-described embodiments, an air blowing hole 29 is provided as a pushing-up force generating means, and air is blown upward from the air blowing hole 29 to form the thin plate 22. Is used, but an air pressure levitation device having, for example, an air blowing hole for blowing air and an air suction hole for sucking air may be used, and a thin plate is floated by electrostatic force or magnetic force. A floating stage may be used.
[0079]
【The invention's effect】
As described above, according to the present invention, the thin plate floats by receiving the push-up force dispersed by the push-up force generating means from below, is supported from above by the support means, and keeps the whole horizontal without hanging down. It is held in a floating state. Since the thin plate can be held in a floating state in this way, the structure of the thin plate gripping device is different from the conventional technology in which the thin plate is sandwiched and held by a push-up cylinder and a push-down cylinder. Can be simplified.
[0080]
Further, since the support means can displace the thin plate in the height direction under the control of the control means, the height of the thin plate is lowered by setting the position of the support means for supporting the thin plate at a predetermined height. At this time, the thin plate is raised, and when the height of the thin plate is increased, the thin plate is lowered, so that a simple and simple method can be used without using the horizontal driving device 9 which requires a high level of flatness as in the related art. With the configuration, the thin plate can be stably maintained at an exactly constant height.
[0081]
Further, according to the present invention, since the support means applies a frictional force to the thin plate from the support surface by moving the support in the horizontal transport direction, the thin plate is kept floating, and the support means is moved in the same direction as the movement of the support means. Can be moved and stopped.
[0082]
Furthermore, according to the present invention, since the supporting means has an end supporting piece which comes into contact with an end face facing the upstream in the predetermined conveying direction on the thin plate, the end support is provided on the end face of the thin sheet by moving the supporting means in the conveying direction. By bringing the pieces into contact with each other, the thin plate can be reliably moved in the moving direction of the support.
[0083]
Further, according to the present invention, the pushing-up force generating means is configured such that the pushing-up force to the lower surface of the supporting region of the thin plate is set to be larger than the pushing-up force to the lower surface of the non-supporting region. Is applied, the height of the support area can be prevented from being lower than the height of the support area when a uniform pushing force is applied to the entire thin plate. Can be reduced.
[0084]
In addition, by increasing the pushing force to the lower surface of the support area and increasing the pushing force applied to the support area in accordance with the pushing force to the lower surface of the support area, the rigidity can be increased without increasing the distortion at the boundary. The thin plate can be held securely and reliably, and the frictional force acting on the thin plate from the support surface can be increased.
[0085]
Furthermore, according to the present invention, the difference between the pushing force to the lower surface of the support area and the pushing force to the lower surface of the non-support area is made equal to the pushing force by which the supporting means pushes down the thin plate, The height of the supporting region can be made to match the height of the non-supporting region, so that distortion occurring at the boundary between the thin plates can be eliminated.
[0086]
Further, according to the present invention, the supporting means is controlled by the control means so as to maintain the force for pushing down the thin plate constant, so that the pushing force received by the thin plate from the pushing up force generating means and the pushing down by the supporting means The thin plate is held at a position where the force is balanced. In this way, even if the pushing-up force fluctuates simply by keeping the pushing force of the supporting means to the thin plate constant, the thin plate is moved to a position that balances the pushing-up force almost simultaneously according to the variation of the pushing-up force. As a result, the entire thin plate can be stably held at a constant height, so that control for maintaining the thin plate at a constant height can be simplified.
[0087]
Further, according to the present invention, since the thin plate gripping device and the horizontal driving means for horizontally moving the support means of the thin plate gripping device are provided, the thin plate is moved while being floated at a certain height. By stopping the horizontal driving means, the thin plate can be stopped in a floating state.
[0088]
Also, by having the thin plate gripping device, it is not necessary to use a horizontal drive unit for precisely moving the support unit at a constant height in order to move the thin plate precisely at a constant height, Further, since there is no need to control the horizontal driving means so that the height is constant during the movement of the supporting means, the horizontal driving means can be simplified.
[0089]
Further, according to the present invention, since the apparatus has the thin sheet transport device and the defect inspection means for detecting a defect of the thin sheet, it is possible to perform the defect inspection while transporting the levitated thin sheet while maintaining it at a constant height. it can. Therefore, for example, when performing a defect inspection by defect inspection means having an imaging device or the like, it is possible to prevent the height of the thin plate from changing and the focus of the imaging device from deviating from the thin plate, thereby performing accurate and precise defect inspection. Can be.
[Brief description of the drawings]
FIG. 1 is a plan view showing a thin plate inspection apparatus 20 according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view schematically showing a thin plate gripping device 23 and a thin plate transport device 24.
FIG. 3 is a front view showing a state where the support 30 is angularly displaced from a horizontal state.
FIG. 4 is a plan view showing a thin plate inspection apparatus 120 according to another embodiment of the present invention.
FIG. 5 is a sectional view showing a thin plate holding device 123 and a thin plate transport device 124.
FIG. 6 is a sectional view taken along section line VI-VI in FIG. 5;
FIG. 7 is a plan view showing a thin plate inspection apparatus 220 according to still another embodiment of the present invention.
FIG. 8 is a plan view showing a conventional thin plate inspection apparatus 1.
FIG. 9 is a partially enlarged sectional view showing the vicinity of the thin plate gripping device 8 in a simplified manner.
[Explanation of symbols]
20,120,220 Thin plate inspection equipment
21 base
22 Thin plate
23, 123, 223 Thin plate holding device
24, 124, 224 Thin plate conveying device
25 Defect inspection means
26 Pneumatic levitation device
27,127,227 Supporting means
28,128 control means
29 Air outlet
30,130,230 Support
30a; 130a; 230a1, 230a2 Support
30b, 130b Support surface
31 Rotary axis
32,132 drive unit
33 horizontal drive means
34 Inspection imaging device
35 Positioning pin
36 Press Cylinder
37 Loading section
38 Unloading section
39 End support piece

Claims (8)

水平に配置されたステージを有し、このステージ上に配置された薄板に下方から押上げ力を作用させて、その薄板を浮上させる押上げ力発生手段と、
前記押上げ力発生手段の押上げ力によって浮上する薄板を上方から支持し、高さ方向に移動可能な支持体を有する支持手段と、
前記支持手段の支持体の前記高さ方向の位置を制御する制御手段とを含むことを特徴とする薄板把持装置。
A horizontally arranged stage, and a push-up force generating means for applying a push-up force to a thin plate disposed on the stage from below to float the thin plate;
Supporting means having a support capable of supporting a thin plate that floats by the pushing-up force of the pushing-up force generating means from above, and movable in a height direction,
Control means for controlling the position of the support in the height direction of the support means.
前記支持手段の支持体は、略水平な予め定める搬送方向に移動可能とされ、かつ薄板に上方から摩擦接触する支持面を有し、
前記制御手段は、支持手段の支持体の前記高さ方向の位置および前記予め定める搬送方向の位置を制御することを特徴とする請求項1記載の薄板把持装置。
The support of the support means is movable in a substantially horizontal predetermined transport direction, and has a support surface that comes into frictional contact with the thin plate from above,
2. The thin plate gripping device according to claim 1, wherein the control unit controls a position of the support of the support unit in the height direction and a position in the predetermined transport direction.
前記支持手段の支持体は、略水平な予め定める搬送方向に移動可能とされ、かつ薄板に上方から摩擦接触する上部支持面と、この上部支持面よりも下方に突出する側部支持面とを有し、
前記制御手段は、支持手段の支持体の前記高さ方向の位置および前記予め定める搬送方向の位置を制御することを特徴とする請求項1記載の薄板把持装置。
The support of the support means is movable in a substantially horizontal predetermined conveyance direction, and includes an upper support surface that comes into frictional contact with the thin plate from above and a side support surface that protrudes below the upper support surface. Have
2. The thin plate gripping device according to claim 1, wherein the control unit controls a position of the support of the support unit in the height direction and a position in the predetermined transport direction.
前記押上げ力発生手段は、薄板の前記支持体によって支持される支持領域への押上げ力が、薄板の前記支持体によって支持されていない非支持領域への押上げ力よりも大きく選ばれることを特徴とする請求項1〜3のいずれか1つに記載の薄板把持装置。The push-up force generating means is configured such that a push-up force to a support region of the thin plate supported by the support is selected to be larger than a push-up force to an unsupported region of the thin plate that is not supported by the support. The thin plate holding device according to any one of claims 1 to 3, characterized in that: 前記薄板の支持領域への押上げ力の前記非支持領域への押上げ力に対する増加分は、支持体による薄板への押下げ力に等しいことを特徴とする請求項4記載の薄板把持装置。5. The thin plate gripping device according to claim 4, wherein an increase of a pushing force of the thin plate to the support region with respect to a pushing force of the non-support region is equal to a pressing force of the thin plate to the thin plate. 前記制御手段は、支持体による薄板への押下げ力が一定に維持されるように、前記支持手段を制御することを特徴とする請求項1〜5のいずれか1つに記載の薄板把持装置。The thin plate gripping device according to any one of claims 1 to 5, wherein the control unit controls the support unit such that a pressing force of the support on the thin plate is maintained constant. . 請求項2〜6のいずれか1つに記載の薄板把持装置と、
略水平な予め定める搬送方向に駆動する水平駆動手段とを含むことを特徴とする薄板搬送装置。
A thin plate gripping device according to any one of claims 2 to 6,
A horizontal driving means for driving in a substantially horizontal predetermined conveying direction.
請求項7に記載の薄板搬送装置と、
前記薄板の搬送経路に臨んで設けられ、薄板の欠陥を検出する欠陥検査手段とを含むことを特徴とする薄板検査装置。
A thin sheet conveying device according to claim 7,
A thin plate inspection apparatus provided to face the thin plate transport path and detecting a defect of the thin plate.
JP2003028275A 2003-02-05 2003-02-05 Thin plate gripping device, thin plate conveying device, and thin plate inspecting device Pending JP2004238133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028275A JP2004238133A (en) 2003-02-05 2003-02-05 Thin plate gripping device, thin plate conveying device, and thin plate inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028275A JP2004238133A (en) 2003-02-05 2003-02-05 Thin plate gripping device, thin plate conveying device, and thin plate inspecting device

Publications (1)

Publication Number Publication Date
JP2004238133A true JP2004238133A (en) 2004-08-26

Family

ID=32955780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028275A Pending JP2004238133A (en) 2003-02-05 2003-02-05 Thin plate gripping device, thin plate conveying device, and thin plate inspecting device

Country Status (1)

Country Link
JP (1) JP2004238133A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010022A (en) * 2005-06-30 2007-01-18 Ckd Corp Flotation simulator and non-contact supporting device manufacturing method
WO2008035752A1 (en) * 2006-09-22 2008-03-27 Olympus Corporation Substrate inspecting apparatus
WO2011021711A1 (en) * 2009-08-20 2011-02-24 Nikon Corporation Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
WO2011021709A1 (en) * 2009-08-20 2011-02-24 Nikon Corporation Object moving apparatus, object processing apparatus, exposure apparatus, object inspecting apparatus and device manufacturing method
JP2011086875A (en) * 2009-10-19 2011-04-28 Tokyo Ohka Kogyo Co Ltd Coating apparatus
JP2011095260A (en) * 2009-10-28 2011-05-12 Corning Inc Off-axis sheet-handling apparatus and technique for transmission-mode measurements
JP2013079847A (en) * 2011-10-03 2013-05-02 Olympus Corp Substrate inspection apparatus and substrate inspection method
US8598538B2 (en) 2010-09-07 2013-12-03 Nikon Corporation Movable body apparatus, object processing device, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010022A (en) * 2005-06-30 2007-01-18 Ckd Corp Flotation simulator and non-contact supporting device manufacturing method
JP4481219B2 (en) * 2005-06-30 2010-06-16 シーケーディ株式会社 Levitation simulator and non-contact support device manufacturing method
WO2008035752A1 (en) * 2006-09-22 2008-03-27 Olympus Corporation Substrate inspecting apparatus
JPWO2008035752A1 (en) * 2006-09-22 2010-01-28 オリンパス株式会社 Board inspection equipment
TWI562270B (en) * 2009-08-20 2016-12-11 Nikon Corp Object moving apparatus, object processing apparatus, exposure apparatus, object inspecting apparatus and device manufacturing method
CN105388710A (en) * 2009-08-20 2016-03-09 株式会社尼康 Object moving apparatus, object processing apparatus, exposure apparatus, object inspecting apparatus and device manufacturing method
CN105954976B (en) * 2009-08-20 2019-11-26 株式会社尼康 Object processing apparatus, exposure device and exposure method and manufacturing method
CN105957827B (en) * 2009-08-20 2019-11-26 株式会社尼康 Object processing apparatus, exposure device and exposure method and manufacturing method
CN102483579A (en) * 2009-08-20 2012-05-30 株式会社尼康 Object moving apparatus, object processing apparatus, exposure apparatus, object inspecting apparatus and device manufacturing method
CN102483578A (en) * 2009-08-20 2012-05-30 株式会社尼康 Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
TWI632640B (en) * 2009-08-20 2018-08-11 尼康股份有限公司 Moving body apparatus, object processing apparatus, flat-panel display manufacturing method, device manufacturing method, and carrying method
JP2017142523A (en) * 2009-08-20 2017-08-17 株式会社ニコン Transfer device, object treatment device, method for producing flat panel display, device production method, and carrying method
US8699001B2 (en) 2009-08-20 2014-04-15 Nikon Corporation Object moving apparatus, object processing apparatus, exposure apparatus, object inspecting apparatus and device manufacturing method
WO2011021709A1 (en) * 2009-08-20 2011-02-24 Nikon Corporation Object moving apparatus, object processing apparatus, exposure apparatus, object inspecting apparatus and device manufacturing method
CN102483578B (en) * 2009-08-20 2016-05-25 株式会社尼康 Object processing apparatus, exposure device and exposure method and manufacturing method
CN105954976A (en) * 2009-08-20 2016-09-21 株式会社尼康 Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
CN105957827A (en) * 2009-08-20 2016-09-21 株式会社尼康 Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
CN105954982A (en) * 2009-08-20 2016-09-21 株式会社尼康 Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
WO2011021711A1 (en) * 2009-08-20 2011-02-24 Nikon Corporation Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
JP2017142522A (en) * 2009-08-20 2017-08-17 株式会社ニコン Transfer device, exposure device, method for producing flat panel display, method for producing device, and exposure method
JP2011086875A (en) * 2009-10-19 2011-04-28 Tokyo Ohka Kogyo Co Ltd Coating apparatus
JP2011095260A (en) * 2009-10-28 2011-05-12 Corning Inc Off-axis sheet-handling apparatus and technique for transmission-mode measurements
US8598538B2 (en) 2010-09-07 2013-12-03 Nikon Corporation Movable body apparatus, object processing device, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method
JP2013079847A (en) * 2011-10-03 2013-05-02 Olympus Corp Substrate inspection apparatus and substrate inspection method

Similar Documents

Publication Publication Date Title
KR101344869B1 (en) High precision gas bearing split-axis stage for transport and constraint of large flat flexible media during processing
CN108133903B (en) Joining device, joining system, joining method, and computer storage medium
JP4426276B2 (en) Conveying device, coating system, and inspection system
JP5056339B2 (en) Substrate gripping mechanism for substrate transfer equipment
JP2012094770A (en) Inspection device and substrate positioning method
JP2000009661A (en) Flat panel inspection device
KR102605917B1 (en) Scribing apparatus
JP2004238133A (en) Thin plate gripping device, thin plate conveying device, and thin plate inspecting device
JP2012094711A (en) Inspection equipment
TWI586975B (en) A substrate abutment device for the probe card, and a substrate inspection device provided with a substrate abutment device
JP2006273501A (en) Base board transferring device and method, and manufacturing method for electro-optical device
JP6817986B2 (en) Stage measurement jig, coating device and stage measurement method
KR101543875B1 (en) Apparatus for transferring substrate and apparatus for inspecting substrate including the same
JP6738373B2 (en) Substrate processing apparatus and substrate processing method
KR100837436B1 (en) Apparatus for inspection and measurement of substrate
JP2010034382A (en) Substrate transport apparatus and substrate imaging pickup apparatus
JP2010066242A (en) Substrate inspection device and substrate inspection method
JP2009022823A (en) Inspection apparatus and substrate treatment system
KR20160052192A (en) Apparatus for transferring substrate and apparatus for inspecting substrate including the same
KR102657517B1 (en) Apparatus and method for inspecting surface of substrate
KR102215123B1 (en) Apparatus and method for inspecting surface of substrate
JP5683333B2 (en) Substrate inspection apparatus and method
JP4842348B2 (en) Conveying device, coating system, coating method, inspection system, and holding mechanism
KR102634944B1 (en) Apparatus and method for inspecting surface of substrate
JPH05326363A (en) Aligner and interval setting method for substrate