JP2004236390A - Small-sized brushless motor - Google Patents

Small-sized brushless motor Download PDF

Info

Publication number
JP2004236390A
JP2004236390A JP2003019597A JP2003019597A JP2004236390A JP 2004236390 A JP2004236390 A JP 2004236390A JP 2003019597 A JP2003019597 A JP 2003019597A JP 2003019597 A JP2003019597 A JP 2003019597A JP 2004236390 A JP2004236390 A JP 2004236390A
Authority
JP
Japan
Prior art keywords
base
stator
bearing
bearing housing
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019597A
Other languages
Japanese (ja)
Other versions
JP2004236390A5 (en
Inventor
Kazusane Kurihara
和実 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2003019597A priority Critical patent/JP2004236390A/en
Priority to US10/766,579 priority patent/US7023116B2/en
Priority to CNB2004100036156A priority patent/CN100397753C/en
Publication of JP2004236390A publication Critical patent/JP2004236390A/en
Publication of JP2004236390A5 publication Critical patent/JP2004236390A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1675Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/085Structural association with bearings radially supporting the rotary shaft at only one end of the rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Motor Or Generator Frames (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brushless motor in which the workability and the assembling work of parts are simplified and which has a thrust bearing member having excellent reliability without the deformation of a bearing and without the leakage of a lubricant. <P>SOLUTION: A burring work is performed at the substantially center of a stator base 10 by a press, and a cylindrical part 11 as the base of the bearing housing of this motor is formed integrally with the stator base 10. The sleeve bearing 20 of a radial bearing is press injected and fixed to the inside 11a of this cylindrical part 11. Further, a stator S, to which a stator core 40 wound with a coil 30 made of a lead wire is fixed, is formed at the outside 11b of the cylindrical part 11. Incidentally, the thrust bearing part 60 of a rotary shaft 50 is molded integrally with the stator base 10 by the resin integrally molding process of an outsert molding method in the opening 11c of the cylindrical part 11 of the stator base 10, and receives the opposite output side end part of the rotary shaft 50. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えばディスクメディアを利用した記録再生装置の小型ブラシレスモータに関するものである。
【0002】
【従来の技術】
従来から小型ブラシレスモータの軸受部材を支持する軸受ハウジング構造において、鉄板等の鉄系金属材料やアルミニューム等の非鉄系金属材料の薄板からなるステータベースのほぼ中央をバーリング加工を施し、このステータベースと同一素材で軸受ハウジング部をステータベースと一体に形成しているものがある。
【0003】
このような軸受ハウジングの構造においては、このモータの回転軸の反負荷側端部を支持し、尚且つ、この軸受の潤滑油を漏れないように保持する、このステータベース材とは別部材からなるスラスト受け部材でバーリング基部を有底状に閉塞しなければならない。
なお、このスラスト方向の受け部材の形状と固着方法に関する従来の技術については次のようなものが知られている。
1)前記受け部材は皿状に形成し、これをステータベースの軸受ハウジング部周辺に設けられた段部の平面部を介してステータコアとネジ止めする。(例えば、特許文献1参照)
2)前記受け部材はプレス加工や切削加工などによりカップ状の金属リング部材を形成し、これをステータベースのバーリング基部に圧入する。(例えば、特許文献2参照)
3)前記受け部材は円盤状に形成し、これを軸受下端部の凹所に嵌入しカシメる。(例えば、特許文献3参照)
4)前記受け部材は円盤状に形成し、これをステータベースのバーリング基部を閉塞するように前記開口部の近傍に溶接または接着する。(例えば、特許文献4参照)
【0004】
【特許文献1】
特開平9−103043号公報
【特許文献2】
特開平8−289523号公報
【特許文献3】
特開平8−275439号公報
【特許文献4】
特開平8−214487号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前述した従来技術のいずれにおいても後述するような問題点を抱えている。
すなわち、前述の、
1)においては、タッピング加工時やセルフタッピングを含むネジ止め作業時に金属屑が発生し、その金属屑が軸受内部に入り込む恐れがある。さらに、ネジ部の加工およびネジ止めの作業性が悪く、また、合わせ目より潤滑油の漏れる危険性がある。
2)においては、金属リング部材が抜けたり外れたりする危険性があり、また、スラスト方向の寸法ばらつきが発生し易くロータが軸受部と接触し回転不能になる危険性がある。
3)においては、軸受の端部に直接カシメるので、軸受の内径等が変形する危険性と、カシメ部のガタや外れの危険性と、潤滑油の漏れの危険性がある。
4)においては、溶接や接着の作業性が悪いことと、溶着部や接着部が剥離したりピンホールが生じて、潤滑油が漏れる危険性がある。
【0006】
そこで、本発明は上記の問題点を解決し、部品の加工性やその部品の組立作業が効率よく行うことができ、また、落下・衝撃等が加えられても外れや抜けの生じない堅牢で剛性があり、さらに、軸受の変形や潤滑油の漏れがなく、長寿命で信頼性に優た回転軸のスラスト受け部材を備えた小型ブラシレスモータを提供しようというものである。
【0007】
【課題を解決するための手段】
上記課題を解決するには、請求項1に記載の発明のように、金属板からなるステータベースにバーリング加工を施すことにより円筒部を一体に形成して軸受ハウジングと、この軸受ハウジングの内側に取り付けられたロータの回転軸を回転自在に支承する軸受と、前記軸受ハウジングの外側に固着されたステータコアと、前記ステータコアに臨ませた複数の磁極を有するマグネットと、このマグネットが固着され中心に軸が配されたロータヨークとからなる小型ブラシレスモータにおいて、前記軸受ハウジングのバーリング基部は、このステータベースに樹脂一体成形により有底状に閉塞され、前記樹脂で前記回転軸の受け部を形成することにより達成できる。
【0008】
または、請求項2に記載の発明のように、金属板からなるステータベースにバーリング加工を施すことにより円筒部を一体に形成して軸受ハウジングと、この軸受ハウジングの内側に取り付けられたロータの回転軸を回転自在に支承する軸受と、前記軸受ハウジングの外側に固着されたステータコアと、前記ステータコアに臨ませた複数の磁極を有するマグネットと、このマグネットが固着され中心に軸が配されたロータヨークと、前記ステータベースの前記軸受ハウジング部側の外方に駆動および制御するための回路を実装した回路基板とからなる小型ブラシレスモータにおいて、前記軸受ハウジングのバーリング基部は、このステータベースに樹脂一体成形により有底状に閉塞され、前記樹脂で前記回転軸の受け部を形成することにより達成できる。
【0009】
さらに、請求項3に記載の発明のように、前記ステータベースの前記円筒部の基部にこのステータベースと樹脂一体成形により形成された前記ステータコアの位置決め係止部を形成するか、または、請求項4に記載の発明のように、前記ステータベースの前記円筒部の基部にこのステータベースと樹脂一体成形により形成された前記ステータコアおよび回路基板の位置決め係止部を形成することにより、前記部品の加工性やその部品の組立作業性の問題を解決できる。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を図面に従って説明する。
図1は、本発明の実施の形態を示すモータの断面図である。
図1において、鉄板からなるステータベース10のほぼ中央にプレスにてバーリング加工が施され、このモータの軸受ハウジングJの基礎部となる円筒部11がステータベース10に一体に形成されている。また、この円筒部11の内側11aには、ラジアル軸受のスリーブ軸受20が圧入固着されている。さらに、円筒部11の外側11bには、銅線からなるコイル30を巻回したステータコア40が固着されステータSを形成している。なお、ステータベース10の円筒部11の開口部11cには、回転軸50のスラスト受け部60がステータベース10にアウトサート成形法の樹脂一体成形法により一体成形され、回転軸50の反出力側端部を受けている。
【0011】
また、円筒部11の内側の軸受20とスラスト受け部60に支承された回転軸50には、カップ状のロータヨーク70が固着され、そのロータヨーク70の内周面にはステータコア40の磁極に対向し配置された複数極を有する駆動用のマグネット80が固着されロータ部Rを構成している。
さらに、ステータベース10の円筒部11側の平面部10aにはプリント基板からなる回路基板90が固着されている。
【0012】
図2は、図1に説明したプレスにてバーリング加工された円筒部11の斜視図である。図2において、ステータベース10の円筒部11の基部近傍に孔12が少なくとも1箇所設けられている。また、ステータベース10の平面部10aには、図1における回路基板90の取付孔13および記録再生装置(図示しない)のフレーム固定用の孔14がそれぞれ少なくとも1箇所設けられている。なお、ステータベース10の材質は、鉄板以外に鉄系金属板または黄銅やアルミニュウムからなる非鉄金属板でもよい。
【0013】
図3は、図1における軸受ハウジングJの構造を示した要部断面図である。
図3において、ステータベース10の円筒部11のバーリング基部11cを有底状に閉塞するスラスト受け部60がアウトサート成形で形成されている。
また、バーリングにより形成された円筒部11の基部方に、ステータコア40および回路基板90の位置決め係止部としての段部61が、孔12を介してスラスト受け部60と一体にアウトサート成形され形成されている。この段部61は、ステータベース10の面に接する大径部62と図1に示すステータコア40の取付孔の縁面を支持する中径部63および大径部62と中径部63をつなげるテーパ部64で形成され、さらに、中径部63に隣接して、図1のステータコア40の取付孔が嵌入される円筒部11の外周を覆うような小径部65で構成されている。
【0014】
図4は、図1に示したブラシレスモータのステータSの分解斜視図である。
前記のように、大径部62には、回路基板90の取付孔91が嵌入されるが、図4に示すように、この嵌合の回路基板90の位置決め係止部として大径部62の外周面に凸部66が少なくとも1箇所設けられ、また、この凸部66に対峙して回路基板90の孔91に位置決めの凹部92が設けられている。
【0015】
また、小径部65の外周には、ステータコア40の取付孔41が嵌入されるが、この小径部65の外周面には、ステータコア40の取付孔41の内周の所定の位置に設けられた取付位置決めの凹部42に対峙して凸部67が少なくとも1箇所設けられている。
なお、前記したそれぞれの凸部を凹部に、また前記したそれぞれの凹部を凸部に変えて設けてもよい。
【0016】
前述した本発明に係るバーリング加工により形成された軸受ハウジング部Jの円筒部11は、段部がないストレートな円筒状とすることができるので、特に、この円筒部11を含むステータベース10のプレス加工においての絞りの工程は簡略化でき、それにより金型費やプレス作業費を安価に得ることができる。
さらに、本発明に係るスラスト受け部60や段部61を形成するアウトサート成形は、このモータベース10の外形切り離し前のワークのストリップに連結した状態で行うことができるので、部品加工の作業性効率をさらに向上させることができる。また、このアウトサート成形工程は、容易にステータベース10のプレス工程に組み込むことができさらに生産性の向上に寄与できる。
【0017】
また、段部61の樹脂成形は、スラスト受け部60のアウトサート成形時にその成形樹脂をステータベース10の樹脂通過孔となる孔12を介して流れ込むことによりスラスト軸受部60と一体に形成されることになる。これによりスラスト受け部60と段部61はステータベース10の円筒部11の基部周囲に強固に密着した状態で形成される。また、同時に孔12においても成形樹脂が充満するので、孔12をほぼ完全に閉塞することができ、軸受ハウジングJの底部に軸受の潤滑油が溜まっても漏れることはない。なお、この構造における成形樹脂の流し込み方向、すなわち、成形金型のゲート位置は、スラスト受け部60または段部61のどちら側にしてもよい。
【0018】
なお、成形樹脂通過孔の孔12は、図2または図3においてはステータベース10の平面部10aに設けられたものを示しているが、円筒部11の円筒側面基部に樹脂通過孔を設けてもよい。その場合においても前述と同じように、アウトサート成形時にこの成型樹脂により基部円筒側面の樹脂通過孔を確実に閉塞することができる。
【0019】
また、前述した本発明に係るスラスト受け部60は、ポリフェニレンサルファイド(PPS)樹脂やポリアセタール(POM)樹脂等の低摩擦摺動性、耐熱性、耐油性、耐候性、耐クリープ性、機械的強度、弾力性、剛性、寸法安定性等に優れた合成樹脂で形成されているので、軽量化や長寿命化が容易に得られる。
また、本発明に係るスラスト受け部60は、従来技術における回転軸のアキシャル軸受としての当板の機能を兼用させることができるので、本発明品においてはその当板を省略することができる。
【0020】
また、本発明に係るモータと、従来技術の金属からなる軸受ハウジングの底部にポリエーテルエーテルケトン(PEEK)製の当板(アキシャル軸受)を用いた軸受機構を有するモータとの周囲温度40゜Cにおける3000時間連続耐久試験後の軸方向の変位量を比較すると、前者は0.05mmで後者は0.17mmであった。このことから、本発明に係るモータは、従来技術からなるモータより明らかに優れた耐久性を呈することがわかる。なお、前記耐久試験に用いた負荷は、3g−mmの偏心量を有する直径12cmディスクとし、耐久試験の回転数は5000rpmであった。
【0021】
さらに、スラスト受け部60の回転軸50の端部を受ける形状は、金型により任意に形成することができる。例えば、図1に示す如く凹状にしてもよい。この形状においては、回転軸60のスラスト受け部60側端部に空間を確保できるのでこの空間を利用して回転軸50の抜け止め部材(図示しない)を配置することができる。
【0022】
また、本発明に係る軸受ハウジング部11の基部を構成する段部61は樹脂で形成されているので、コイル30を軸受ハウジング部11の段部61に強く密着させてもコイル30の絶縁不良の問題を生じることがないので、よりモータの薄型化がはかれる。
【0023】
なお、ステータコア40は、金属製の円筒部11の外周にアウトサートされた樹脂スリーブ部、すなわち、段部61の小径部65を介して軸受ハウジング部Jに嵌入されることになる。このような構造においては、円筒部11やスリーブ軸受20を変形することなく、またステータコア40をガタ無く強固に軸受ハウジング部Jの所定の位置に嵌入することができる。また、ステータコア40の軸受ハウジング部Jからの抜け止め方法としては樹脂超音波溶着法が可能となる。
さらに、円筒部11の外周とステータコア40の内径の間に樹脂の小径部65が介添えするのでコギングや回転の振動が吸収され、その結果モータの回転特性は安定化される。
【0024】
なお、前述のように、樹脂から成る小径部65を設けたことにより軸受ハウジングの外径寸法がばらついてもこの樹脂部がその誤差分を吸収するので、ステータコア40の嵌入部、すなわち小径部65の外径寸法は常に一定に確保することができ、ステータコア40と軸受ハウジング部11の嵌入をガタ無くあるいはきつくなく行うことができる。
また、バーリング加工による円筒部11の高さ寸法がばらつく場合は、成形品の基準を円筒部11の内径とし、図5に示すようにバーリング部すなわち円筒部11の内径を金型固定側K1のガイドピンGに挿入し、ステータベース10を金型固定側K1にセットし、金型可動側K2を型締めし射出成形を行う。なお、ステータベース10を金型固定側にセットした状態で、円筒部11の先端部11cと金型固定側K1に間隙を持たせ、成形により段部61の小径部65の端面に樹脂部65aを形成するような構造にしてやれば、円筒部11の高さ寸法がばらついても、この誤差分を樹脂部65aで吸収でき、その結果、高さ寸法が安定した、尚且つ、成形バリのない軸受ハウジングJを得ることができる。この成形の変形例として、小径部65を廃止または短く形成しようとする構造の場合は、円筒部11の外径を基準として軸受ハウジング部を成形し、その後、軸受ハウジング部の内径をサイジングする方法もとることができる。
【0025】
図6は、図1の変形を示したものである。これは、図1の回路基板90を省いたものである。この実施においては、ステータベース110自体を回路がプリントされた鉄基板としてもよい。また、このステータベース110にコイルの給電端子台を一体に(図示しないが)アウトサートしてもよい。
【0026】
【発明の効果】
以上説明したように、ステータベースにバーリング加工を施し、円筒部を一体に形成して軸受ハウジングとし、この軸受ハウジングのバーリング基部を樹脂一体成形(アウトサート成型)により有底状に閉塞された前記樹脂で前記回転軸の受け部を形成することにより次のような効果を得ることができる。
1.スラスト受け部は、アウトサート成型によりモータベースに強固に取り付けられるので、剛性が有り、尚且つ、振動、落下等の衝撃においても外れ・ガタ・抜け、亀裂等が生じない軸受機構を有するモータが得られる。
2.スラスト受け部は、アウトサート成型で形成されるので、軸受ハウジングの底部の閉塞機能の信頼性が向上し、潤滑油等の漏れが生じない長寿命のモータが得られる。
3.軸受はスラスト受け部を形成後、取り付けられるので、従来技術におけるスラスト受け部材の取付による軸受内径等の変形が発生しない。
4.スラスト受け部はアウトサートにより形成されるので、効率よく部品の加工や組立作業を行うことができ、また、アウトサートされたスラスト受け部に回転軸の端部を受けるスラスト板の機能を兼用させることができるので部品の削減化がはかれる。
【0027】
さらに、前記軸受ハウジングを構成する前記円筒部の基部に、前記ステータベースと樹脂一体成形により、前記ステータコアや回路基板の位置決め部、ステータコアの嵌入部などを構成する前記段部を設けることにより確実に巻線のショートを防止でき、さらに、前記回路基板やステータコアの位置決めを所定の位置に効率よく行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す小型ブラシレスモータの断面正面図である。
【図2】図1におけるバーリング加工の円筒部を示す斜視図である。
【図3】図1におけるアウトサート成形された軸受ハウジング部を示す断面図である。
【図4】図1に示したブラシレスモータのステータ部の分解斜視図である。
【図5】図1における軸受ハウジングの成形を示す要部断面図である。
【図6】図1の変形例を示すモータの断面正面図である。
【符号の説明】
10 ステータベース
11 円筒部
20 スリーブ軸受
30 コイル
40 ステータコア
50 回転軸
60 スラスト受け部
70 ロータヨーク
80 マグネット
90 回路基板
J 軸受ハウジング
S ステータ
R ロータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a small brushless motor of a recording / reproducing apparatus using a disk medium, for example.
[0002]
[Prior art]
Conventionally, in a bearing housing structure for supporting a bearing member of a small brushless motor, a substantially center of a stator base made of a thin plate of an iron-based metal material such as an iron plate or a non-ferrous metal material such as aluminum is subjected to a burring process. And the bearing housing portion is formed integrally with the stator base using the same material as the above.
[0003]
In such a structure of the bearing housing, a member separate from the stator base material is used to support the end of the rotating shaft of the motor on the non-load side and to keep the lubricant of the bearing from leaking. The burring base must be closed by a thrust receiving member.
The following is known as a conventional technique relating to the shape and fixing method of the receiving member in the thrust direction.
1) The receiving member is formed in a dish shape and is screwed to the stator core via a flat portion of a step provided around the bearing housing of the stator base. (For example, see Patent Document 1)
2) The receiving member forms a cup-shaped metal ring member by pressing or cutting, and is press-fitted into a burring base of the stator base. (For example, see Patent Document 2)
3) The receiving member is formed in a disk shape, which is fitted into a recess at the lower end of the bearing and caulked. (For example, see Patent Document 3)
4) The receiving member is formed in a disk shape and is welded or bonded to the vicinity of the opening so as to close the burring base of the stator base. (For example, see Patent Document 4)
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-103443 [Patent Document 2]
JP-A-8-289523 [Patent Document 3]
Japanese Patent Application Laid-Open No. 8-275439 [Patent Document 4]
JP-A-8-214487
[Problems to be solved by the invention]
However, any of the above-mentioned prior arts has the following problems.
That is, as described above,
In 1), metal chips are generated at the time of tapping or screwing work including self-tapping, and the metal chips may enter the inside of the bearing. Further, the workability of processing and screwing the screw portion is poor, and there is a risk that the lubricating oil leaks from the joint.
In the case of 2), there is a risk that the metal ring member comes off or comes off, and there is a risk that dimensional variations in the thrust direction are likely to occur, and the rotor comes into contact with the bearing portion and cannot rotate.
In 3), since the end of the bearing is directly caulked, there is a risk that the inner diameter of the bearing is deformed, a risk that the caulked portion is loose or detached, and a risk that the lubricating oil leaks.
In the case of 4), the workability of welding and bonding is poor, and there is a danger that lubricating oil leaks due to peeling of a welded portion or a bonded portion or generation of a pinhole.
[0006]
Therefore, the present invention solves the above-mentioned problems, the workability of the parts and the assembling work of the parts can be performed efficiently, and the robustness that does not cause detachment or detachment even when a drop or impact is applied. An object of the present invention is to provide a small brushless motor having a thrust receiving member of a rotating shaft which is rigid, has no deformation of a bearing, leaks lubricating oil, and has a long life and excellent reliability.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, as in the first aspect of the present invention, a cylindrical portion is integrally formed by performing burring processing on a stator base made of a metal plate to form a cylindrical body integrally with the bearing housing. A bearing that rotatably supports a rotating shaft of the attached rotor; a stator core fixed to the outside of the bearing housing; a magnet having a plurality of magnetic poles facing the stator core; In a small brushless motor including a rotor yoke provided with a burring base, the burring base of the bearing housing is closed to a bottomed shape by resin integral molding with the stator base, and the receiving portion of the rotary shaft is formed by the resin. Can be achieved.
[0008]
Alternatively, a cylindrical portion is integrally formed by subjecting a stator base made of a metal plate to burring processing as in the invention according to claim 2 to rotate a bearing housing and a rotor mounted inside the bearing housing. A bearing rotatably supporting a shaft, a stator core fixed to the outside of the bearing housing, a magnet having a plurality of magnetic poles facing the stator core, and a rotor yoke on which the magnet is fixed and the shaft is disposed at the center. A small brushless motor comprising a circuit board mounted with a circuit for driving and controlling the stator base outside the bearing housing portion side of the stator base, wherein the burring base of the bearing housing is formed integrally with the stator base by resin molding. By being closed with a bottom and forming the receiving portion of the rotating shaft with the resin, It can be formed.
[0009]
Further, as in the invention as set forth in claim 3, a positioning and locking portion of the stator core formed by resin integral molding with the stator base is formed at a base of the cylindrical portion of the stator base, or As in the invention described in Item 4, the positioning of the stator core and the circuit board formed by resin integral molding with the stator base is formed at the base of the cylindrical portion of the stator base, thereby processing the components. And the problem of assembly work of the parts can be solved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a motor showing an embodiment of the present invention.
In FIG. 1, a burring process is performed by press at substantially the center of a stator base 10 made of an iron plate, and a cylindrical portion 11 serving as a base portion of a bearing housing J of this motor is formed integrally with the stator base 10. A sleeve bearing 20 of a radial bearing is press-fitted and fixed to an inner side 11a of the cylindrical portion 11. Further, a stator core 40 around which a coil 30 made of a copper wire is wound is fixed to an outer side 11b of the cylindrical portion 11 to form a stator S. The thrust receiving portion 60 of the rotating shaft 50 is integrally formed with the stator base 10 in the opening 11c of the cylindrical portion 11 of the stator base 10 by an outsert molding method. Has received the end.
[0011]
Further, a cup-shaped rotor yoke 70 is fixed to the rotating shaft 50 supported by the bearing 20 and the thrust receiving portion 60 inside the cylindrical portion 11, and the inner peripheral surface of the rotor yoke 70 faces the magnetic pole of the stator core 40. A driving magnet 80 having a plurality of poles arranged is fixed to form a rotor portion R.
Further, a circuit board 90 made of a printed board is fixed to the flat portion 10a on the cylindrical portion 11 side of the stator base 10.
[0012]
FIG. 2 is a perspective view of the cylindrical portion 11 that has been burred by the press described in FIG. In FIG. 2, at least one hole 12 is provided near the base of the cylindrical portion 11 of the stator base 10. Further, at least one mounting hole 13 of the circuit board 90 in FIG. 1 and a hole 14 for fixing a frame of a recording / reproducing device (not shown) are provided in the flat portion 10 a of the stator base 10. The material of the stator base 10 may be an iron-based metal plate or a non-ferrous metal plate made of brass or aluminum other than the iron plate.
[0013]
FIG. 3 is a sectional view of a main part showing the structure of the bearing housing J in FIG.
In FIG. 3, a thrust receiving portion 60 for closing the burring base 11c of the cylindrical portion 11 of the stator base 10 with a bottom is formed by outsert molding.
In addition, a step portion 61 as a positioning and locking portion of the stator core 40 and the circuit board 90 is formed by outsert molding integrally with the thrust receiving portion 60 through the hole 12 on the base portion of the cylindrical portion 11 formed by burring. Have been. The stepped portion 61 has a large-diameter portion 62 in contact with the surface of the stator base 10, a medium-diameter portion 63 supporting the edge surface of the mounting hole of the stator core 40 shown in FIG. 1, and a taper connecting the large-diameter portion 62 and the medium-diameter portion 63. A small-diameter portion 65 is formed adjacent to the middle-diameter portion 63 and covers the outer periphery of the cylindrical portion 11 into which the mounting hole of the stator core 40 in FIG. 1 is fitted.
[0014]
FIG. 4 is an exploded perspective view of the stator S of the brushless motor shown in FIG.
As described above, the mounting hole 91 of the circuit board 90 is fitted into the large-diameter portion 62, but as shown in FIG. At least one convex portion 66 is provided on the outer peripheral surface, and a concave portion 92 for positioning is provided in the hole 91 of the circuit board 90 so as to face the convex portion 66.
[0015]
The mounting hole 41 of the stator core 40 is fitted into the outer periphery of the small diameter portion 65, and the mounting hole provided at a predetermined position on the inner periphery of the mounting hole 41 of the stator core 40 is fitted on the outer peripheral surface of the small diameter portion 65. At least one convex portion 67 is provided to face the positioning concave portion 42.
Note that each of the above-described convex portions may be provided as a concave portion, and each of the above-described concave portions may be provided as a convex portion.
[0016]
Since the cylindrical portion 11 of the bearing housing portion J formed by the burring process according to the present invention described above can be formed into a straight cylindrical shape with no step, in particular, the pressing of the stator base 10 including the cylindrical portion 11 is performed. The drawing process in the working can be simplified, so that the mold cost and the press work cost can be obtained at low cost.
Further, the outsert molding for forming the thrust receiving portion 60 and the step portion 61 according to the present invention can be performed in a state where the outer shape of the motor base 10 is connected to the strip of the work before the outer shape is cut off, so that the workability of component processing is improved. Efficiency can be further improved. In addition, this outsert forming step can be easily incorporated into the pressing step of the stator base 10 and can contribute to improvement in productivity.
[0017]
The resin molding of the step portion 61 is formed integrally with the thrust bearing portion 60 by flowing the molding resin through the hole 12 serving as the resin passage hole of the stator base 10 at the time of outsert molding of the thrust receiving portion 60. Will be. Thus, the thrust receiving portion 60 and the step portion 61 are formed in a state in which the thrust receiving portion 60 and the step portion 61 are firmly adhered to the periphery of the base of the cylindrical portion 11 of the stator base 10. At the same time, the hole 12 is also filled with the molding resin, so that the hole 12 can be almost completely closed, and even if lubricating oil for the bearing accumulates at the bottom of the bearing housing J, there is no leakage. In this structure, the direction in which the molding resin is poured, that is, the gate position of the molding die may be on either side of the thrust receiving portion 60 or the step portion 61.
[0018]
The hole 12 of the molded resin passage hole is shown in FIG. 2 or FIG. 3 as being provided on the flat portion 10 a of the stator base 10, but the resin passage hole is provided at the base of the cylindrical side surface of the cylindrical portion 11. Is also good. In this case, as in the case described above, the resin passage hole in the side surface of the base cylinder can be reliably closed by the molding resin during the outsert molding.
[0019]
Further, the above-described thrust receiving portion 60 according to the present invention is made of a low friction sliding property such as polyphenylene sulfide (PPS) resin or polyacetal (POM) resin, heat resistance, oil resistance, weather resistance, creep resistance, and mechanical strength. Since it is formed of a synthetic resin having excellent elasticity, rigidity, dimensional stability, and the like, it is easy to achieve weight reduction and long life.
In addition, the thrust receiving portion 60 according to the present invention can also function as an abutment plate as an axial bearing of a rotating shaft in the prior art, so that the abutment plate can be omitted in the product of the present invention.
[0020]
An ambient temperature of 40 ° C. between the motor according to the present invention and a motor having a bearing mechanism using a polyether ether ketone (PEEK) plate (axial bearing) at the bottom of a conventional bearing housing made of metal. When the amount of displacement in the axial direction after the 3000-hour continuous durability test was compared, the former was 0.05 mm and the latter was 0.17 mm. This shows that the motor according to the present invention exhibits significantly better durability than the motor according to the prior art. The load used in the durability test was a 12 cm diameter disk having an eccentricity of 3 g-mm, and the rotation speed in the durability test was 5000 rpm.
[0021]
Further, the shape of the thrust receiving portion 60 that receives the end of the rotating shaft 50 can be arbitrarily formed by a mold. For example, the shape may be concave as shown in FIG. In this shape, since a space can be secured at the end of the rotating shaft 60 on the thrust receiving portion 60 side, a retaining member (not shown) of the rotating shaft 50 can be arranged using this space.
[0022]
Further, since the step 61 constituting the base of the bearing housing portion 11 according to the present invention is formed of resin, even if the coil 30 is brought into close contact with the step portion 61 of the bearing housing portion 11, insulation failure of the coil 30 may occur. Since no problem occurs, the motor can be made thinner.
[0023]
In addition, the stator core 40 is fitted into the bearing housing J through the resin sleeve portion that is outsert on the outer periphery of the metal cylindrical portion 11, that is, the small diameter portion 65 of the step portion 61. In such a structure, the stator core 40 can be firmly fitted into a predetermined position of the bearing housing J without deformation of the cylindrical portion 11 and the sleeve bearing 20 and without play. As a method for preventing the stator core 40 from coming off from the bearing housing J, a resin ultrasonic welding method can be used.
Furthermore, since the small diameter portion 65 of the resin is interposed between the outer periphery of the cylindrical portion 11 and the inner diameter of the stator core 40, cogging and rotational vibration are absorbed, and as a result, the rotational characteristics of the motor are stabilized.
[0024]
As described above, even if the outer diameter of the bearing housing varies due to the provision of the small-diameter portion 65 made of resin, the resin portion absorbs the error, so the fitting portion of the stator core 40, that is, the small-diameter portion 65 Can always be kept constant, and the fitting between the stator core 40 and the bearing housing portion 11 can be performed without play or tightly.
When the height of the cylindrical portion 11 varies due to the burring process, the reference of the molded product is the inner diameter of the cylindrical portion 11, and as shown in FIG. It is inserted into the guide pin G, the stator base 10 is set on the mold fixed side K1, the mold movable side K2 is clamped, and injection molding is performed. In the state where the stator base 10 is set on the mold fixing side, a gap is provided between the distal end portion 11c of the cylindrical portion 11 and the mold fixing side K1, and the resin portion 65a is formed on the end face of the small diameter portion 65 of the step portion 61 by molding. Is formed, the error can be absorbed by the resin portion 65a even if the height of the cylindrical portion 11 varies, so that the height is stable and there is no molding burr. A bearing housing J can be obtained. As a modified example of this molding, in the case of a structure in which the small diameter portion 65 is to be eliminated or shortened, a method of forming the bearing housing portion based on the outer diameter of the cylindrical portion 11 and then sizing the inner diameter of the bearing housing portion is adopted. Can be taken.
[0025]
FIG. 6 shows a modification of FIG. This omits the circuit board 90 of FIG. In this embodiment, the stator base 110 itself may be an iron substrate on which a circuit is printed. In addition, a power supply terminal block for the coil may be integrated with the stator base 110 (not shown).
[0026]
【The invention's effect】
As described above, the burring process is performed on the stator base, the cylindrical portion is integrally formed to form a bearing housing, and the burring base of the bearing housing is closed with a bottom with a resin integral molding (outsert molding). The following effects can be obtained by forming the receiving portion of the rotating shaft with resin.
1. Since the thrust receiving part is firmly attached to the motor base by outsert molding, there is a motor that has a rigidity, and has a bearing mechanism that does not come off, rattle, drop out, crack, etc. even under shocks such as vibration and dropping. can get.
2. Since the thrust receiving portion is formed by outsert molding, the reliability of the closing function of the bottom portion of the bearing housing is improved, and a long-life motor free of leakage of lubricating oil and the like can be obtained.
3. Since the bearing is attached after forming the thrust receiving portion, deformation of the bearing inner diameter and the like due to attachment of the thrust receiving member in the prior art does not occur.
4. Since the thrust receiving portion is formed by outsert, parts can be processed and assembled efficiently, and the outsert thrust receiving portion also serves as a thrust plate for receiving the end of the rotating shaft. Parts can be reduced.
[0027]
Further, by providing the stator base and the resin base integrally with the stator base to form the stator core and the circuit board positioning portion, the stator core fitting portion, and the like, the base portion of the cylindrical portion constituting the bearing housing is securely provided. Short-circuiting of the winding can be prevented, and the circuit board and the stator core can be efficiently positioned at predetermined positions.
[Brief description of the drawings]
FIG. 1 is a sectional front view of a small brushless motor according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a burring cylindrical portion in FIG. 1;
3 is a sectional view showing an outsert molded bearing housing section in FIG. 1;
FIG. 4 is an exploded perspective view of a stator portion of the brushless motor shown in FIG.
FIG. 5 is a cross-sectional view of a main part showing molding of the bearing housing in FIG.
FIG. 6 is a sectional front view of a motor showing a modification of FIG. 1;
[Explanation of symbols]
Reference Signs List 10 Stator base 11 Cylindrical part 20 Sleeve bearing 30 Coil 40 Stator core 50 Rotating shaft 60 Thrust receiving part 70 Rotor yoke 80 Magnet 90 Circuit board J Bearing housing S Stator R Rotor

Claims (4)

金属板からなるステータベースにバーリング加工を施すことにより円筒部を一体に形成して軸受ハウジングと、この軸受ハウジングの内側に取り付けられたロータの回転軸を回転自在に支承する軸受と、前記軸受ハウジングの外側に固着されたステータコアと、前記ステータコアに臨ませた複数の磁極を有するマグネットと、このマグネットが固着され中心に軸が配されたロータヨークとからなる小型ブラシレスモータにおいて、
前記軸受ハウジングのバーリング基部は、このステータベースに樹脂一体成形により有底状に閉塞され、前記樹脂で前記回転軸の受け部を形成したことを特徴とした小型ブラシレスモータ。
A cylindrical housing is integrally formed by subjecting a stator base made of a metal plate to a burring process, a bearing for rotatably supporting a rotating shaft of a rotor mounted inside the bearing housing, and the bearing housing. In a small brushless motor including a stator core fixed to the outside of the rotor, a magnet having a plurality of magnetic poles facing the stator core, and a rotor yoke on which the magnet is fixed and a shaft is arranged at the center,
A small brushless motor characterized in that a burring base of the bearing housing is closed to a bottom with a resin integral molding with the stator base, and a receiving portion of the rotating shaft is formed of the resin.
金属板からなるステータベースにバーリング加工を施すことにより円筒部を一体に形成して軸受ハウジングと、この軸受ハウジングの内側に取り付けられたロータの回転軸を回転自在に支承する軸受と、前記軸受ハウジングの外側に固着されたステータコアと、前記ステータコアに臨ませた複数の磁極を有するマグネットと、このマグネットが固着され中心に軸が配されたロータヨークと、前記ステータベースの前記軸受ハウジング部側の外方に駆動および制御するための回路を実装した回路基板とからなる小型ブラシレスモータにおいて、
前記軸受ハウジングのバーリング基部は、このステータベースに樹脂一体成形により有底状に閉塞され、前記樹脂で前記回転軸の受け部を形成したことを特徴とした小型ブラシレスモータ。
A cylindrical housing is integrally formed by subjecting a stator base made of a metal plate to a burring process, a bearing for rotatably supporting a rotating shaft of a rotor mounted inside the bearing housing, and the bearing housing. A magnet having a plurality of magnetic poles facing the stator core, a rotor yoke to which the magnet is fixed and having a shaft disposed at the center thereof, and a stator yoke having an outer periphery on the bearing housing portion side of the stator base. In a small brushless motor consisting of a circuit board on which a circuit for driving and controlling is mounted,
A small brushless motor characterized in that a burring base of the bearing housing is closed to a bottom with a resin integral molding with the stator base, and a receiving portion of the rotating shaft is formed of the resin.
前記ステータベースの前記円筒部の基部にこのステータベースと樹脂一体成形により形成された前記ステータコアの位置決め係止部を形成した請求項1に記載の小型ブラシレスモータ。2. The small brushless motor according to claim 1, wherein a positioning locking portion of the stator core formed by integrally molding the stator base and the resin is formed at a base of the cylindrical portion of the stator base. 3. 前記ステータベースの前記円筒部の基部にこのステータベースと樹脂一体成形により形成された前記ステータコアおよび回路基板の位置決め係止部を形成した請求項2に記載の小型ブラシレスモータ。3. The small brushless motor according to claim 2, wherein a positioning locking portion for positioning the stator core and the circuit board formed by integrally molding the stator base and the resin is formed at a base of the cylindrical portion of the stator base. 4.
JP2003019597A 2003-01-29 2003-01-29 Small-sized brushless motor Pending JP2004236390A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003019597A JP2004236390A (en) 2003-01-29 2003-01-29 Small-sized brushless motor
US10/766,579 US7023116B2 (en) 2003-01-29 2004-01-27 Small brushless motor
CNB2004100036156A CN100397753C (en) 2003-01-29 2004-01-29 Small brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019597A JP2004236390A (en) 2003-01-29 2003-01-29 Small-sized brushless motor

Publications (2)

Publication Number Publication Date
JP2004236390A true JP2004236390A (en) 2004-08-19
JP2004236390A5 JP2004236390A5 (en) 2005-12-22

Family

ID=32949423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019597A Pending JP2004236390A (en) 2003-01-29 2003-01-29 Small-sized brushless motor

Country Status (3)

Country Link
US (1) US7023116B2 (en)
JP (1) JP2004236390A (en)
CN (1) CN100397753C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053670A1 (en) * 2006-10-30 2008-05-08 Panasonic Corporation Brushless motor
US7911099B2 (en) 2007-11-06 2011-03-22 Shinano Kenshi Kabushiki Kaisha Outer rotor motor
KR101124127B1 (en) * 2010-07-07 2012-03-21 삼성전기주식회사 Hydrodynamic bearing assembly and motor including the same
KR101141440B1 (en) 2010-09-28 2012-05-04 삼성전기주식회사 Motor, fabrication method thereof, and disc drive using the same
JP2015142499A (en) * 2014-01-30 2015-08-03 株式会社東芝 brushless motor
JP2016171731A (en) * 2015-03-16 2016-09-23 ミネベア株式会社 Motor

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661200B2 (en) * 2004-12-13 2011-03-30 日本電産株式会社 Member joining method for improving prevention of leakage of lubricating fluid, spindle motor using the joining method, and recording disk drive using the spindle motor
JP4325559B2 (en) * 2005-01-11 2009-09-02 パナソニック株式会社 Brushless motor
JP2006280046A (en) * 2005-03-28 2006-10-12 Nippon Densan Corp Spindle motor and recording disk drive device therewith
JP2006311709A (en) * 2005-04-28 2006-11-09 Nippon Densan Corp Sleeve, sleeve unit, and motor
US20070046118A1 (en) * 2005-08-23 2007-03-01 Adda Corp. Shaft sleeve of a DC brushless fan
JP4901162B2 (en) 2005-09-06 2012-03-21 Ntn株式会社 Hydrodynamic bearing device and motor provided with the same
US7692892B2 (en) * 2006-07-19 2010-04-06 Seagate Technology Llc Two-material base for a data storage system
US20080048532A1 (en) * 2006-08-28 2008-02-28 Adda Corp. Magnetic force sensing device in a brushless motor to enhance magnetic force sensibility of a hall element inside the brushless motor
WO2008069016A1 (en) * 2006-12-04 2008-06-12 Mitsubishi Electric Corporation Dc motor
US20080247689A1 (en) * 2007-04-06 2008-10-09 Nidec Corporation Motor
KR100887535B1 (en) * 2007-04-10 2009-03-09 주식회사 아모텍 Stator for aspiration motor, aspiration motor and In-Car sensor using the same
CN101285476A (en) * 2007-04-13 2008-10-15 富准精密工业(深圳)有限公司 Cooling fan
JP4946625B2 (en) * 2007-05-21 2012-06-06 日本電産株式会社 motor
CN101364754B (en) * 2007-08-08 2011-05-11 富准精密工业(深圳)有限公司 Motor stator construction and manufacturing method thereof
KR100999482B1 (en) * 2008-08-19 2010-12-09 엘지이노텍 주식회사 Spindle motor
JP2010098817A (en) * 2008-10-15 2010-04-30 Shinano Kenshi Co Ltd Outer-rotor brushless motor
JP4512803B2 (en) * 2008-10-15 2010-07-28 シナノケンシ株式会社 Brushless motor
CN201303272Y (en) * 2008-10-23 2009-09-02 中山大洋电机股份有限公司 End cap of outer rotor motor
KR101020799B1 (en) * 2008-12-17 2011-03-09 엘지이노텍 주식회사 Connecting structure between spindle motor and printed circuit board
JP2010252622A (en) * 2009-03-27 2010-11-04 Nippon Densan Corp Manufacturing method of recording-disk driving motor, recording-disk driving motor, and recording-disk driving apparatus having the same
KR101004772B1 (en) * 2009-05-15 2011-01-04 삼성전기주식회사 motor
KR101019271B1 (en) * 2010-07-16 2011-03-07 삼성전기주식회사 Motor and optical disc drive using the same
KR101101618B1 (en) * 2010-07-16 2012-01-02 삼성전기주식회사 Motor and optical disc drive using the same
JP2012104169A (en) * 2010-11-08 2012-05-31 Nippon Densan Corp Motor unit and disk drive
KR101133365B1 (en) 2010-11-18 2012-04-06 엘지이노텍 주식회사 Spindle motor
KR101145873B1 (en) * 2011-01-05 2012-05-17 주식회사 삼홍사 Spindle motor
JP2013024217A (en) * 2011-07-25 2013-02-04 Nidec Sankyo Corp Pump device
JP2013034373A (en) * 2011-08-02 2013-02-14 Samsung Electro-Mechanics Co Ltd Spindle motor and hard disc drive including the same
TWI448054B (en) * 2012-02-04 2014-08-01 Sunonwealth Electr Mach Ind Co Motor with an oil storage function
WO2013122542A1 (en) * 2012-02-13 2013-08-22 Agency For Science, Technology And Research A motor and a method of assembling the same
US20140368079A1 (en) * 2012-02-13 2014-12-18 Agency For Science, Technology And Research Motor and method for assembling the same
KR101350586B1 (en) * 2012-03-08 2014-01-14 삼성전기주식회사 Hydrodynamic bearing assembly and motor including the same
KR101275304B1 (en) * 2012-03-29 2013-06-17 삼성전기주식회사 Spindle motor
JP6519985B2 (en) 2014-05-07 2019-05-29 日本電産株式会社 Casing and blower
JP6379644B2 (en) 2014-05-07 2018-08-29 日本電産株式会社 motor
US10693344B2 (en) 2014-12-18 2020-06-23 Black & Decker Inc. Packaging of a control module for a brushless motor
TWI559658B (en) * 2015-01-07 2016-11-21 建準電機工業股份有限公司 Motor of ceiling fan
US9887602B2 (en) * 2015-05-28 2018-02-06 Asia Vital Components Co., Ltd. Fan bearing cup connection structure
CN107565722A (en) * 2017-09-19 2018-01-09 晁会岩 A kind of compressor electric motor
JP7363287B2 (en) * 2019-09-26 2023-10-18 ニデック株式会社 Motor and blower

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540906A (en) * 1984-03-09 1985-09-10 Synektron Corporation Stator assembly for permanent magnet rotary device
JPH05161299A (en) * 1991-12-03 1993-06-25 Mabuchi Motor Co Ltd Bearing for small-sized motor
US5610462A (en) * 1993-06-22 1997-03-11 Nidec Corporation Brushless motor
JP3312826B2 (en) * 1995-03-31 2002-08-12 松下電器産業株式会社 Spindle motor for magnetic disk drive
KR19990027969A (en) * 1997-09-30 1999-04-15 이형도 Hydrodynamic bearing device and its manufacturing method
JPH11215764A (en) * 1998-01-29 1999-08-06 Tokyo Parts Ind Co Ltd Flat-type brushless motor equipped with resin-made bearing
JP2000125505A (en) * 1998-10-09 2000-04-28 Sankyo Seiki Mfg Co Ltd Motor
JP3388345B2 (en) * 1999-01-11 2003-03-17 ミネベア株式会社 Axial fan motor
US6380651B1 (en) * 2000-05-04 2002-04-30 Tokyo Parts Industrial Co., Ltd. Brushless motor having resin bearing
JP3994673B2 (en) * 2001-02-28 2007-10-24 松下電器産業株式会社 Brushless motor
US6617736B1 (en) * 2002-02-22 2003-09-09 Sunonwealth Electric Machine Industry Co., Ltd. Axle tube structure for a motor
TW591860B (en) * 2003-05-27 2004-06-11 Sunonwealth Electr Mach Ind Co Assembling device for an axial tube of a motor
JP2005192313A (en) * 2003-12-25 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv Data storage device
JP2005317125A (en) * 2004-04-28 2005-11-10 Hitachi Global Storage Technologies Netherlands Bv Device and method for erasing data, and method for writing servo pattern in recording disk

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053670A1 (en) * 2006-10-30 2008-05-08 Panasonic Corporation Brushless motor
JP2008113475A (en) * 2006-10-30 2008-05-15 Matsushita Electric Ind Co Ltd Brushless motor
CN101529696B (en) * 2006-10-30 2011-06-22 美蓓亚马达株式会社 Brushless motor
US7911099B2 (en) 2007-11-06 2011-03-22 Shinano Kenshi Kabushiki Kaisha Outer rotor motor
CN101431274B (en) * 2007-11-06 2011-10-05 信浓绢糸株式会社 Outer rotor motor
KR101124127B1 (en) * 2010-07-07 2012-03-21 삼성전기주식회사 Hydrodynamic bearing assembly and motor including the same
KR101141440B1 (en) 2010-09-28 2012-05-04 삼성전기주식회사 Motor, fabrication method thereof, and disc drive using the same
JP2015142499A (en) * 2014-01-30 2015-08-03 株式会社東芝 brushless motor
JP2016171731A (en) * 2015-03-16 2016-09-23 ミネベア株式会社 Motor

Also Published As

Publication number Publication date
CN100397753C (en) 2008-06-25
CN1520009A (en) 2004-08-11
US7023116B2 (en) 2006-04-04
US20040189113A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP2004236390A (en) Small-sized brushless motor
JP2990432B1 (en) Stepping motor
JP4684689B2 (en) Stepping motor
US6342739B1 (en) Small-sized motor and method of manufacturing the same
JP3881126B2 (en) motor
JP2002039091A (en) Blower
JP2002136031A (en) Brushless motor and manufacturing method for the motor
JP2001244110A (en) Fan motor
US20090152968A1 (en) Spindle motor
JP2003514498A (en) Electrical drive unit
JP2002153010A (en) Rotor assembly for electric motor and inner rotor-type electric motor
JPWO2007080887A1 (en) Rotating electric machine
KR20050035079A (en) Stator containing a driving circuit member and axial direction gap type brushless motor having the stator
KR101020798B1 (en) Spindle motor
JP3640818B2 (en) Small motor
JP2011142702A (en) Disk drive device
JP2009189109A (en) Brushless motor
EP0827258B1 (en) Device for supporting rotating shaft and small-sized motor
JP3665755B2 (en) STATOR SUPPORT MECHANISM, METHOD FOR MANUFACTURING THE STATOR SUPPORT MECHANISM, AND BRUSHLESS MOTOR HAVING THE STATOR SUPPORT MECHANISM
JP2004340183A (en) Fluid bearing device
JP3487066B2 (en) Brush holder
JP2003230247A (en) Stator supporting mechanism in motor, and method of manufacturing the supporting mechanism
JP2005218169A (en) Electric motor
KR101376809B1 (en) spindle motor
KR20100026807A (en) Spindle motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081210