JP2004232947A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2004232947A
JP2004232947A JP2003021459A JP2003021459A JP2004232947A JP 2004232947 A JP2004232947 A JP 2004232947A JP 2003021459 A JP2003021459 A JP 2003021459A JP 2003021459 A JP2003021459 A JP 2003021459A JP 2004232947 A JP2004232947 A JP 2004232947A
Authority
JP
Japan
Prior art keywords
temperature
heating
refrigerant
water
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003021459A
Other languages
Japanese (ja)
Inventor
Takashi Ando
隆史 安藤
Tadashi Yamaguchi
正 山口
Fumiaki Sato
文明 佐藤
Yoshio Muto
好夫 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003021459A priority Critical patent/JP2004232947A/en
Publication of JP2004232947A publication Critical patent/JP2004232947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect the trouble of a circulation pump without installing a special flow water switch or a flow sensor in the heating circulation water circuit of a heat pump type water heater. <P>SOLUTION: When a temperature obtained by deducting the forward temperature TH2 of heating circulation water detected by a thermister 14 detecting the forward temperature of the heating circulation water from a refrigerant temperature TH1 detected by a thermister 16 detecting the refrigerant temperature is larger than a temperature difference Δtmp including heat exchange rate between a refrigerant and the heating circulation water caused when the pre-set heating circulation water circulates normally, and it is detected that its state continues for a specified T hours, a microcomputer M (control means) installed in the water heater determines that the circulation pump 9 fails. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ式空気調和機の室外ユニットと、この室外ユニットから供給されるHFC、CO等の冷媒と暖房循環水との熱交換を行う熱交換器を有する温水ユニットとを備え、この温水ユニットの暖房循環水を循環ポンプにより床暖房パネル等に供給するヒートポンプ式温水暖房装置に関する。
【0002】
【従来の技術】
従来のこの種のヒートポンプ式温水暖房装置は、ヒートポンプ式空気調和機の室外ユニットの高温、高圧の冷媒を室内ユニットと温水ユニットに供給し、室内ユニットで室内空気を加熱して温風暖房を行うとともに、温水ユニットに内蔵された熱交換器で暖房循環水を加熱し、この温水ユニットの暖房循環水を循環ポンプにより床暖房パネル等に供給して温水暖房を行うものが知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平6−88628号公報
【0004】
【発明が解決しようとする課題】
しかし、上述のものでは、循環ポンプが接続されている温水循環回路中に流水スイッチを設け水流の有無を検知するか、または、流量センサーを設け温水流量を検知することにより循環ポンプの故障を検知しているが、前記循環ポンプの故障検知のために特別な流水スイッチや流量センサーを設ける必要があった。
【0005】
そこで本発明は、特別な流水スイッチや流量センサーを設けることなく、循環ポンプの故障を検知することを目的とする。
【0006】
【課題を解決するための手段】
このため第1の発明は、ヒートポンプ式空気調和機の室外ユニットと、この室外ユニットから供給される冷媒と暖房循環水との熱交換を行う熱交換器を有する温水ユニットとを備え、この温水ユニットの暖房循環水を循環ポンプにより床暖房パネル等に供給するヒートポンプ式温水暖房装置において、前記熱交換器に流れる冷媒の温度を検知する第1温度センサと、前記熱交換器に流れる暖房循環水の往き温度を検知する第2温度センサと、前記第1温度センサが検知した冷媒温度から第2温度センサが検知した暖房循環水の往き温度を減算した温度が所定温度より大きくなった状態が所定時間継続した場合には前記循環ポンプが故障したものと判断する判断手段とを設けたことを特徴とする。
【0007】
また第2の発明は、ヒートポンプ式空気調和機の室外ユニットと、この室外ユニットから供給される冷媒と暖房循環水との熱交換を行う熱交換器を有する温水ユニットとを備え、この温水ユニットの暖房循環水を循環ポンプにより床暖房パネル等に供給するヒートポンプ式温水暖房装置において、前記熱交換器に流れる冷媒の温度を検知する第1温度センサと、前記熱交換器に流れる暖房循環水の往き温度を検知する第2温度センサと、前記第1温度センサが検知した冷媒温度から第2温度センサが検知した暖房循環水の往き温度を減算した温度が予め設定されている暖房循環水が正常に循環しているときに生じる冷媒と暖房循環水との熱交換率を含めた温度差より大きくなった状態が所定時間継続した場合には前記循環ポンプが故障したものと判断する判断手段とを設けたことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。図1はヒートポンプ式温水暖房装置の全体システムを示す系統図である。図1において、1はHFC、CO等の冷媒を高温、高圧に圧縮するコンプレッサ、四方切替弁、室外側熱交換器、減圧装置等が順次配管接続された冷媒回路と室外側送風機等(何れも図示せず)が内蔵された室外ユニット(ヒートポンプユニット)、2は前記室外ユニット1の冷媒回路の配管接続部T1及びT2に冷媒配管にて接続され、室内側熱交換器と室内側送風機等(何れも図示せず)が内蔵された室内ユニットであり、室内ユニット2は室外ユニット1から冷媒配管を介して冷媒が供給される室内側熱交換器と室内空気を熱交換し、室内に温風または冷風を供給するものである。この室外ユニット1と室内ユニット2とでヒートポンプ式空気調和機が構成されている。3はこのヒートポンプ式空気調和機の室外ユニット1を熱源とする温水ユニットで、室外ユニット1から供給される冷媒と暖房循環水との熱交換を行う。
【0009】
前記温水ユニット3は室外ユニット1の冷媒回路の配管接続部T1及びT2に冷媒配管にて接続された冷媒側コイル4Aと温水側コイル4Bとからなる熱交換器4と、温水側コイル4Bの暖房循環水を床暖房パネル5、6、7、8に強制的に循環させるための循環ポンプ9と、その循環路中に設けた膨張タンク10とを内蔵している。また、暖房循環水の往き側には熱動弁11、12、13を介して床暖房パネル6、7、8が並列接続されている。
【0010】
14は熱交換器4の温水側コイル4Bで高温に昇温された暖房循環水の往き温度を検出する温度センサとしてのサーミスタ、15は暖房循環水の戻り温度を検出する温度センサとしてのサーミスタ、16は冷媒温度を検出するための温度センサとしてのサーミスタである。
【0011】
17は台所等に設置されるボイラリモートコントローラ(以下、「ボイラリモコン」という)であり、サーミスタ14で検出する暖房循環水の制御温度を設定する摘み17a、運転スイッチ17b、運転ランプ17c等が設けられている。18、19、20は床暖房を行う部屋に設置している床暖房リモートコントローラ(以下、「床暖房リモコン」という)であり、運転スイッチ18a、19a、20a、室温センサ18b、19b、20b等を設けている。
【0012】
前記温水ユニット3内には、図2に示すように、メイン基板Kが設けられ、メイン基板KにはマイクロコンピュータM、水張りスイッチK1、暖房試運転スイッチK2、水張りランプK3、暖房試運転ランプK4等が設けられるとともに、基板端子には循環ポンプ9、熱動弁11、12、13、サーミスタ14、15、16、ボイラリモコン17、床暖房リモコン18、19、20、膨張タンク10に取り付けられた水位センサ21等が電気結線されている。
【0013】
また、前記マイクロコンピュータMには、図3に示すように、CPU、RAM、ROMが内蔵されるとともに、上述した各床暖房リモコン18〜20、各サーミスタ14〜16、各スイッチK1、K2、及び水位センサ21からの信号が入力されるとともに、室外ユニット1、循環ポンプ9、熱動弁11〜13、ボイラリモコン17、ランプK3、K4等に制御信号が出力される。
【0014】
床暖房パネル5の暖房を行う場合、先ずボイラリモコン17の運転スイッチ17bを操作すると、運転ランプ17cが点灯する。その運転信号が温水ユニット3内のメイン基板KのマイクロコンピュータMに入力されると、膨張タンク10内の循環水の有無を検出する水位センサ21に電圧を印加して循環水の有無を検出する。そして、この水位センサ21から循環水を介して電流が流れ、マイクロコンピュータMが水位センサ21からの水有り信号を入力すると、循環ポンプ9を運転して循環水を循環させるとともに、室外ユニット1に暖房運転信号を指示して暖房運転させる。
【0015】
この室外ユニット1が暖房運転することで、該室外ユニット1内のコンプレッサが運転して高温、高圧の冷媒が熱交換器4の冷媒側コイル4Aに供給され、温水側コイル4Bを流れる暖房循環水を加熱する。このときサーミスタ14で検出される暖房循環水の温度がボイラリモコン17の摘み17aで設定された設定温度になるように、マイクロコンピュータMが例えばコンプレッサをインバータ制御することにより熱交換器4での加熱量が制御され、床暖房パネル5に供給される循環水の温度が適度に調整される。このため、使用者がボイラリモコン17を操作することにより暖房循環水の温度を所望の温度とし、快適な床温あるいは室温とするものである。
【0016】
前記ボイラリモコン17の運転スイッチ17bをON(「オン」の意、以下同じ)した後、暖房したい部屋(例えばA室)に設置している床暖房リモコン18の運転スイッチ18aをONすると、対応している熱動弁11がONして温水が床暖房パネル6に供給され、A室の暖房が行われることとなる。
【0017】
その後、床暖房リモコン18は室温センサ18bにより室温上昇を検出し、温度偏差(室温−設定温度)が−1.15℃(deg)を超えると、メイン基板Kに出力しているアナログ出力電圧を20V(ボルト)から9Vの範囲で変化させる。そして、マイクロコンピュータMは床暖房リモコン18から出力されるアナログ電圧値に応じて、図4に示すように、前記熱動弁11の通電時間をデューティ制御し、熱動弁11の開時間を20分ごとに20分間(連続)から3分間に制御し、温水供給を断続的にON−OFF(オン−オフ)してA室の室温を設定温度に維持する。
【0018】
また、その他の床暖房パネル7、8に対応する床暖房リモコン19、20の運転スイッチ19a、20aをONすると、同様に、使用する部屋(B室、C室)の室温と設定温度とを比較演算した温度偏差信号がメイン基板Kに出力され、対応する熱動弁12、13のON−OFF時間を各々制御して各B室、C室の室温を制御する。
【0019】
このように、各A、B、C室に配置した床暖房リモコン18、19、20の出力する室温と設定温度との温度偏差により、熱動弁11、12、13の開閉時間を制御することにより、温水温度に関係なく各部屋の室温を設定温度に維持できる。
【0020】
尚、温水ユニット3による暖房運転中には室内ユニット専用リモコン(図示せず)の操作により室外ユニット1から冷媒配管を介して冷媒が供給される室内側熱交換器と室内空気とが熱交換され、室内ユニット2は室内に温風供給して暖房運転が可能であるが、このときは冷房運転は不可(できない)としており、また逆に、室内ユニット2の冷房運転中は温水ユニット3による暖房運転は不可としている。
【0021】
次に、循環ポンプの故障検知方法について、図5のフローチャートを参照して詳述する。先ず、ボイラリモコン17の運転スイッチ17bがONされていなければ、循環ポンプ9が運転されず、室外ユニット(ヒートポンプユニット)1へマイクロコンピュータMから出力停止が指示され、所定のT時間だけ該マイクロコンピュータM内のタイマーをリセットする。
【0022】
そして、床暖房パネル5の暖房を行うべくボイラリモコン17の運転スイッチ17bを操作すると、運転ランプ17cが点灯する。その運転信号が温水ユニット3内のメイン基板KのマイクロコンピュータMに入力されると、膨張タンク10内の循環水の有無を検出する水位センサ21に電圧を印加して循環水の有無を検出する。そして、この水位センサ21から循環水を介して電流が流れ、マイクロコンピュータMが水位センサ21からの水有り信号を入力すると、循環ポンプ9を運転して循環水を循環させるとともに、室外ユニット1に暖房運転信号を指示して暖房運転させる。
【0023】
室外ユニット1が暖房運転することで、該室外ユニット1内のコンプレッサが運転して高温、高圧の冷媒が熱交換器4の冷媒側コイル4Aに供給され、温水側コイル4Bを流れる暖房循環水を加熱する。このときサーミスタ14で検出される暖房循環水の往き温度がボイラリモコン17の摘み17aで設定された設定温度になるように、マイクロコンピュータMが例えばコンプレッサをインバータ制御することにより熱交換器4での加熱量が制御され、床暖房パネル5に供給される循環水の温度が適度に調整される。
【0024】
熱交換器4の冷媒側コイル4Aの入口近傍にはサーミスタ16が設けられ、このサーミスタ16で冷媒温度(TH1)を検知し、温水側コイル4Bの出口近傍にはサーミスタ14が設けられ、このサーミスタ14で暖房循環水の往き温度(TH2)を検知している。
【0025】
また、冷媒温度(TH1)の上昇に合わせて暖房循環水の往き温度(TH2)も上昇するが、熱交換器4には各種形式や流体条件によって定まる熱交換率があり、冷媒温度(TH1)と温水温度(TH2)の間には温度差が生じ、さらに、応答遅れや熱伝導の影響によりその温度差は変動するので、余裕をみて暖房循環水が正常に循環している場合の冷媒温度(TH1)と暖房循環水の往き温度(TH2)との温度差(△tmp)を設定する。
【0026】
そして、冷媒温度を検知するサーミスタ16が検知した冷媒温度(TH1)から、予め設定されている暖房循環水が正常に循環しているときに生じる冷媒と暖房循環水との熱交換率を含めた温度差(△tmp)を減算した温度が、暖房循環水の往き温度を検知するサーミスタ14が検知した暖房循環水の往き温度(TH2)より大きくなり、更にその状態が所定のT時間(マイクロコンピュータM内のタイマーが計時)継続していない場合には、現在の暖房循環水の往き温度(TH2)とボイラリモコン17の摘み17aで設定された設定温度の偏差により室外ユニット1の出力値をマイクロコンピュータMが演算し、室外ユニット1にその出力値を指示し、そのように運転させる。
【0027】
そして、サーミスタ16が検知した冷媒温度(TH1)が冷媒の高負荷となるような温度(高負荷温度)より高くなった場合は、室外ユニット1へ出力ダウンを指示し、冷媒が高負荷状態とならないようにする。この出力ダウンの結果、前記冷媒温度(TH1)が高負荷温度より下がれば、出力ダウン指示を解除する。これにより、室外ユニット1内にあるコンプレッサ及びそのシステムの冷媒配管が保護される。
【0028】
しかし、冷媒温度を検知するサーミスタ16が検知した冷媒温度(TH1)から、前記温度差(△tmp)を減算した温度が、暖房循環水の往き温度を検知するサーミスタ14が検知した暖房循環水の往き温度(TH2)より大きくなり、更にその状態が所定のT時間経過(マイクロコンピュータM内のタイマーが計時)した場合には、循環ポンプ9が故障したものとマイクロコンピュータMが判断し、この循環ポンプ9を停止し、同時にヒートポンプ式空気調和機の室外ユニット1への出力を停止する。この場合、循環ポンプ9が故障した旨を、ボイラリモコン17に表示ランプ等を設けて表示させるようにしてもよい。
【0029】
以上説明したように、本発明によれば、ヒートポンプ式空気調和機の室外ユニットと、この室外ユニットから供給される冷媒と暖房循環水との熱交換を行う熱交換器を有する温水ユニットとを備え、この温水ユニットの暖房循環水を循環ポンプにより床暖房パネル等に供給するヒートポンプ式温水暖房装置において、冷媒温度を検知するサーミスタが検知した冷媒温度(TH1)から、暖房循環水の往き温度を検知するサーミスタが検知した暖房循環水の往き温度(TH2)を減算した温度が、予め設定されている暖房循環水が正常に循環しているときに生じる冷媒と暖房循環水との熱交換率を含めた温度差(△tmp)より大きくなったうえに、その状態が所定のT時間継続したことを検知した場合に、前記循環ポンプが故障したものと判断する判断手段とを設けている。このため、循環ポンプ9が故障し熱交換器4の温水コイル側4Bの暖房循環水が循環しなくなると、冷媒コイル側4Aからの伝熱が行なわれず冷媒温度(TH1)が上昇し暖房循環水の往き温度(TH2)との温度差が、暖房循環水が正常に循環しているときに生じる冷媒と暖房循環水との熱交換率を含めた温度差(△tmp)より、大きくなるので循環ポンプの故障を検知することができる。
【0030】
また、暖房循環水回路中のフィルター(図示せず)や配管の目詰まりにより循環流量が低下した場合も、冷媒温度(TH1)が上昇し暖房循環水の往き温度(TH2)との温度差が、暖房循環水の正常に循環しているときに生じる冷媒と暖房循環水との熱交換率を含めた温度差(△tmp)より、大きくなるので目詰まりの発生を検知できる。
【0031】
なお、以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。
【0032】
【発明の効果】
以上のように本発明は、温度制御用の冷媒温度サーミスタと循環水温度サーミスタを使用して循環ポンプの故障を検知するので、循環ポンプの故障を検知するために特別に流水スイッチや流量センサーを設けなくて済むようになり安価にできる。
【図面の簡単な説明】
【図1】ヒートポンプ式温水暖房装置の全体系統図である。
【図2】メイン基板の電気配線図である。
【図3】制御装置のブロック図である。
【図4】制御装置の床暖房制御説明用の表である。
【図5】制御装置の動作説明用のフローチャートである。
【符号の説明】
1 室外ユニット
3 温水ユニット
4 熱交換器
4A 冷媒側コイル
4B 温水側コイル
14、16 サーミスタ
M マイクロコンピュータ(制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes an outdoor unit of a heat pump type air conditioner, and a hot water unit having a heat exchanger for performing heat exchange between a refrigerant such as HFC and CO 2 supplied from the outdoor unit and heating circulating water. The present invention relates to a heat pump type hot water heating apparatus that supplies heating circulating water of a hot water unit to a floor heating panel or the like by a circulation pump.
[0002]
[Prior art]
This type of conventional heat pump hot water heating apparatus supplies a high-temperature, high-pressure refrigerant of an outdoor unit of a heat pump air conditioner to an indoor unit and a hot water unit, and heats indoor air by the indoor unit to perform hot air heating. In addition, there is known an apparatus in which heating circulating water is heated by a heat exchanger built in a hot water unit, and heating circulating water of the hot water unit is supplied to a floor heating panel or the like by a circulation pump to perform hot water heating (for example, And Patent Document 1).
[0003]
[Patent Document 1]
JP-A-6-88628
[Problems to be solved by the invention]
However, in the above-described case, a failure of the circulation pump is detected by providing a flow switch in the hot water circulation circuit to which the circulation pump is connected to detect the presence or absence of water flow, or by providing a flow sensor and detecting the flow rate of hot water. However, it is necessary to provide a special water switch and a flow sensor for detecting the failure of the circulation pump.
[0005]
Therefore, an object of the present invention is to detect a failure of a circulation pump without providing a special flow switch or flow sensor.
[0006]
[Means for Solving the Problems]
Therefore, a first invention includes an outdoor unit of a heat pump type air conditioner, and a hot water unit having a heat exchanger for exchanging heat between a refrigerant supplied from the outdoor unit and heating circulating water. In a heat pump type hot water heating apparatus that supplies heating circulating water to a floor heating panel or the like by a circulating pump, a first temperature sensor for detecting a temperature of a refrigerant flowing to the heat exchanger, and a heating circulating water flowing to the heat exchanger A second temperature sensor for detecting an outgoing temperature, and a state in which the temperature obtained by subtracting the outgoing temperature of the heating circulating water detected by the second temperature sensor from the refrigerant temperature detected by the first temperature sensor is higher than a predetermined temperature for a predetermined time A determination means is provided for determining that the circulating pump has failed if continued.
[0007]
Further, the second invention includes an outdoor unit of a heat pump type air conditioner, and a hot water unit having a heat exchanger for performing heat exchange between a refrigerant supplied from the outdoor unit and heating circulating water. In a heat pump type hot water heating apparatus that supplies heating circulating water to a floor heating panel or the like by a circulating pump, a first temperature sensor that detects a temperature of a refrigerant flowing through the heat exchanger, and a flow of heating circulating water flowing through the heat exchanger. The second temperature sensor for detecting the temperature and the heating circulating water in which the temperature obtained by subtracting the outgoing temperature of the heating circulating water detected by the second temperature sensor from the refrigerant temperature detected by the first temperature sensor are normally set are normal. If the state in which the temperature difference including the heat exchange rate between the refrigerant and the heating circulating water generated during circulation is larger than the temperature difference continues for a predetermined time, the circulating pump may fail. Characterized in that a determining means for determining that.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an entire system of a heat pump hot water heating apparatus. In FIG. 1, reference numeral 1 denotes a refrigerant circuit in which a compressor for compressing a refrigerant such as HFC and CO 2 to a high temperature and a high pressure, a four-way switching valve, an outdoor heat exchanger, a pressure reducing device, and the like are sequentially connected to a pipe and an outdoor blower or the like. An outdoor unit (heat pump unit) 2 having a built-in internal heat exchanger and an indoor blower are connected to the piping connections T1 and T2 of the refrigerant circuit of the outdoor unit 1 by refrigerant piping. The indoor unit 2 (which is not shown) is a built-in indoor unit. The indoor unit 2 exchanges heat with indoor heat exchangers to which refrigerant is supplied from the outdoor unit 1 via refrigerant pipes, and heats indoors. It supplies wind or cold air. The outdoor unit 1 and the indoor unit 2 constitute a heat pump type air conditioner. A hot water unit 3 uses the outdoor unit 1 of the heat pump type air conditioner as a heat source, and performs heat exchange between the refrigerant supplied from the outdoor unit 1 and the heating circulating water.
[0009]
The hot water unit 3 includes a heat exchanger 4 composed of a refrigerant side coil 4A and a hot water side coil 4B connected to the pipe connection portions T1 and T2 of the refrigerant circuit of the outdoor unit 1 by a refrigerant pipe, and heats the hot water side coil 4B. A circulating pump 9 for forcibly circulating circulating water to the floor heating panels 5, 6, 7, 8 and an expansion tank 10 provided in the circulating path are incorporated. Further, floor heating panels 6, 7, 8 are connected in parallel to the circulation side of the heating circulating water via thermal valves 11, 12, 13.
[0010]
14 is a thermistor as a temperature sensor for detecting the temperature of the heating circulating water that has been heated to a high temperature by the hot water side coil 4B of the heat exchanger 4, 15 is a thermistor as a temperature sensor for detecting the return temperature of the heating circulating water, Reference numeral 16 denotes a thermistor as a temperature sensor for detecting a refrigerant temperature.
[0011]
Reference numeral 17 denotes a boiler remote controller (hereinafter, referred to as “boiler remote controller”) installed in a kitchen or the like, which is provided with a knob 17a for setting a control temperature of the heating circulating water detected by the thermistor 14, an operation switch 17b, an operation lamp 17c, and the like. Have been. Reference numerals 18, 19, and 20 denote floor heating remote controllers (hereinafter, referred to as "floor heating remote controllers") installed in a room for performing floor heating, and include operation switches 18a, 19a, and 20a, and room temperature sensors 18b, 19b, and 20b. Provided.
[0012]
As shown in FIG. 2, a main board K is provided in the hot water unit 3, and a microcomputer M, a water filling switch K1, a heating test operation switch K2, a water filling lamp K3, a heating test operation lamp K4, and the like are provided on the main board K. A water level sensor attached to the circulation pump 9, the thermal valves 11, 12, 13, thermistors 14, 15, 16, the boiler remote controller 17, the floor heating remote controllers 18, 19, 20 and the expansion tank 10 are provided on the substrate terminals. 21 are electrically connected.
[0013]
As shown in FIG. 3, the microcomputer M includes a CPU, a RAM, and a ROM, and further includes the above-described floor heating remote controllers 18 to 20, thermistors 14 to 16, the switches K1, K2, and A signal from the water level sensor 21 is input, and a control signal is output to the outdoor unit 1, the circulation pump 9, the heat operated valves 11 to 13, the boiler remote controller 17, the lamps K3, K4, and the like.
[0014]
When heating the floor heating panel 5, when the operation switch 17b of the boiler remote controller 17 is first operated, the operation lamp 17c is turned on. When the operation signal is input to the microcomputer M of the main board K in the hot water unit 3, a voltage is applied to the water level sensor 21 for detecting the presence or absence of circulating water in the expansion tank 10, and the presence or absence of circulating water is detected. . When a current flows from the water level sensor 21 via the circulating water and the microcomputer M receives the water presence signal from the water level sensor 21, the circulating pump 9 is operated to circulate the circulating water, and the water is circulated to the outdoor unit 1. A heating operation signal is instructed to perform a heating operation.
[0015]
When the outdoor unit 1 performs the heating operation, the compressor in the outdoor unit 1 operates to supply the high-temperature and high-pressure refrigerant to the refrigerant coil 4A of the heat exchanger 4, and the heating circulating water flowing through the hot water coil 4B. Heat. At this time, the microcomputer M heats the heat in the heat exchanger 4 by, for example, inverter-controlling the compressor so that the temperature of the heating circulating water detected by the thermistor 14 becomes the set temperature set by the knob 17a of the boiler remote controller 17. The amount is controlled, and the temperature of the circulating water supplied to the floor heating panel 5 is adjusted appropriately. For this reason, the user operates the boiler remote controller 17 to set the temperature of the heating circulating water to a desired temperature and to set a comfortable floor temperature or room temperature.
[0016]
When the operation switch 17b of the boiler remote controller 17 is turned ON (meaning "ON", the same applies hereinafter), and then the operation switch 18a of the floor heating remote controller 18 installed in the room (for example, room A) to be heated is turned ON. The heated thermal valve 11 is turned on, hot water is supplied to the floor heating panel 6, and the heating of the room A is performed.
[0017]
Thereafter, the floor heating remote controller 18 detects an increase in the room temperature by the room temperature sensor 18b, and when the temperature deviation (room temperature-set temperature) exceeds −1.15 ° C. (deg), the analog output voltage output to the main board K is reduced. It is changed in the range of 20V (volt) to 9V. Then, according to the analog voltage value output from the floor heating remote controller 18, the microcomputer M performs duty control of the energization time of the thermal valve 11 as shown in FIG. The temperature is controlled from 20 minutes (continuous) to 3 minutes every minute, and the hot water supply is intermittently turned ON-OFF (on-off) to maintain the room temperature of the room A at the set temperature.
[0018]
When the operation switches 19a and 20a of the floor heating remote controllers 19 and 20 corresponding to the other floor heating panels 7 and 8 are turned on, the room temperature of the room (room B and room C) to be used is similarly compared with the set temperature. The calculated temperature deviation signal is output to the main board K, and the ON / OFF time of the corresponding thermal valve 12, 13 is controlled to control the room temperature of each of the B and C chambers.
[0019]
As described above, the opening and closing time of the thermal valves 11, 12, and 13 is controlled by the temperature deviation between the room temperature output from the floor heating remote controllers 18, 19, and 20 arranged in the rooms A, B, and C and the set temperature. Thereby, the room temperature of each room can be maintained at the set temperature regardless of the hot water temperature.
[0020]
During the heating operation by the hot water unit 3, heat is exchanged between the indoor air and the indoor heat exchanger to which the refrigerant is supplied from the outdoor unit 1 via the refrigerant pipe by the operation of the indoor unit remote controller (not shown). The indoor unit 2 is capable of performing heating operation by supplying warm air into the room, but at this time, cooling operation is not possible (cannot be performed). Conversely, during the cooling operation of the indoor unit 2, heating by the hot water unit 3 is performed. Driving is not allowed.
[0021]
Next, a method of detecting a failure of the circulation pump will be described in detail with reference to the flowchart of FIG. First, if the operation switch 17b of the boiler remote controller 17 is not turned on, the circulating pump 9 is not operated, and the microcomputer M instructs the outdoor unit (heat pump unit) 1 to stop output, and the microcomputer M for a predetermined T time. Reset the timer in M.
[0022]
When the operation switch 17b of the boiler remote controller 17 is operated to heat the floor heating panel 5, the operation lamp 17c is turned on. When the operation signal is input to the microcomputer M of the main board K in the hot water unit 3, a voltage is applied to the water level sensor 21 for detecting the presence or absence of circulating water in the expansion tank 10, and the presence or absence of circulating water is detected. . When a current flows from the water level sensor 21 via the circulating water and the microcomputer M receives the water presence signal from the water level sensor 21, the circulating pump 9 is operated to circulate the circulating water, and the water is circulated to the outdoor unit 1. A heating operation signal is instructed to perform a heating operation.
[0023]
When the outdoor unit 1 performs the heating operation, the compressor in the outdoor unit 1 operates to supply the high-temperature, high-pressure refrigerant to the refrigerant-side coil 4A of the heat exchanger 4 and to supply the heating circulating water flowing through the hot-water-side coil 4B. Heat. At this time, the microcomputer M performs, for example, inverter control of a compressor so that the outgoing temperature of the heating circulating water detected by the thermistor 14 becomes the set temperature set by the knob 17 a of the boiler remote controller 17. The heating amount is controlled, and the temperature of the circulating water supplied to the floor heating panel 5 is adjusted appropriately.
[0024]
A thermistor 16 is provided near the inlet of the refrigerant-side coil 4A of the heat exchanger 4, the refrigerant temperature (TH1) is detected by the thermistor 16, and a thermistor 14 is provided near the outlet of the hot-water-side coil 4B. At 14, the outgoing temperature (TH2) of the heating circulating water is detected.
[0025]
Further, the outgoing temperature (TH2) of the heating circulating water also increases with the rise of the refrigerant temperature (TH1). However, the heat exchanger 4 has a heat exchange rate determined by various types and fluid conditions, and the refrigerant temperature (TH1) Difference between the temperature and the hot water temperature (TH2), and furthermore, the temperature difference fluctuates due to a response delay or the influence of heat conduction. A temperature difference (△ tmp) between (TH1) and the outgoing temperature (TH2) of the heating circulating water is set.
[0026]
Then, based on the refrigerant temperature (TH1) detected by the thermistor 16 for detecting the refrigerant temperature, the heat exchange rate between the refrigerant and the heating circulating water generated when the preset heating circulating water is normally circulating is included. The temperature obtained by subtracting the temperature difference (△ tmp) becomes higher than the heating circulating water outgoing temperature (TH2) detected by the thermistor 14 that detects the heating circulating water outgoing temperature. If the timer in M does not continue), the output value of the outdoor unit 1 is reduced by the difference between the current temperature of the circulating water (TH2) and the temperature set by the knob 17a of the boiler remote controller 17. The computer M calculates, instructs the output value to the outdoor unit 1, and operates as such.
[0027]
Then, when the refrigerant temperature (TH1) detected by the thermistor 16 becomes higher than a temperature at which the refrigerant becomes a high load (high load temperature), an instruction is issued to the outdoor unit 1 to reduce the output, and the refrigerant enters a high load state. Not to be. As a result of this output down, if the refrigerant temperature (TH1) falls below the high load temperature, the output down instruction is canceled. This protects the compressor in the outdoor unit 1 and the refrigerant piping of the system.
[0028]
However, the temperature obtained by subtracting the temperature difference (△ tmp) from the refrigerant temperature (TH1) detected by the thermistor 16 that detects the refrigerant temperature becomes the heating circulating water detected by the thermistor 14 that detects the incoming temperature of the heating circulating water. When the temperature becomes higher than the outgoing temperature (TH2) and the state further elapses for a predetermined T time (a timer in the microcomputer M measures time), the microcomputer M determines that the circulating pump 9 has failed, and this circulation is performed. The pump 9 is stopped, and at the same time, the output to the outdoor unit 1 of the heat pump air conditioner is stopped. In this case, a display lamp or the like may be provided on the boiler remote controller 17 to indicate that the circulation pump 9 has failed.
[0029]
As described above, according to the present invention, an outdoor unit of a heat pump air conditioner and a hot water unit having a heat exchanger that performs heat exchange between a refrigerant supplied from the outdoor unit and heating circulating water are provided. In a heat pump type hot water heating device that supplies the heating circulating water of the hot water unit to a floor heating panel or the like by a circulating pump, the outgoing temperature of the heating circulating water is detected from the refrigerant temperature (TH1) detected by a thermistor that detects the refrigerant temperature. The temperature obtained by subtracting the outgoing temperature (TH2) of the heating circulating water detected by the heating thermistor includes the heat exchange rate between the refrigerant and the heating circulating water generated when the preset heating circulating water circulates normally. If the temperature difference (温度 tmp) becomes larger than the temperature difference (Δtmp) and the state is detected to have continued for a predetermined time T, it is determined that the circulating pump has failed. It is provided determining means for. Therefore, when the circulation pump 9 fails and the heating circulating water on the hot water coil side 4B of the heat exchanger 4 ceases to circulate, heat transfer from the refrigerant coil side 4A is not performed, and the refrigerant temperature (TH1) rises to increase the heating circulating water. Temperature difference (TH2) is larger than the temperature difference (△ tmp) including the heat exchange rate between the refrigerant and the heating circulating water generated when the heating circulating water is circulating normally. The failure of the pump can be detected.
[0030]
Also, when the circulation flow rate is reduced due to clogging of a filter (not shown) or piping in the heating circulating water circuit, the refrigerant temperature (TH1) rises and the temperature difference from the outgoing temperature (TH2) of the heating circulating water increases. Since the temperature difference (△ tmp) including the heat exchange rate between the refrigerant and the heating circulating water generated when the heating circulating water is circulating normally becomes larger, the occurrence of clogging can be detected.
[0031]
Although the embodiments of the present invention have been described above, various alternatives, modifications or variations are possible for those skilled in the art based on the above description, and the various alternatives described above do not depart from the spirit of the present invention. , Modifications or variations.
[0032]
【The invention's effect】
As described above, the present invention uses a refrigerant temperature thermistor for temperature control and a circulating water temperature thermistor to detect a failure of the circulating pump. It is not necessary to provide it, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of a heat pump type hot water heating apparatus.
FIG. 2 is an electrical wiring diagram of a main board.
FIG. 3 is a block diagram of a control device.
FIG. 4 is a table for explaining floor heating control of the control device.
FIG. 5 is a flowchart for explaining the operation of the control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit 3 Hot water unit 4 Heat exchanger 4A Refrigerant side coil 4B Hot water side coil 14, 16 Thermistor M Microcomputer (control means)

Claims (2)

ヒートポンプ式空気調和機の室外ユニットと、この室外ユニットから供給される冷媒と暖房循環水との熱交換を行う熱交換器を有する温水ユニットとを備え、この温水ユニットの暖房循環水を循環ポンプにより床暖房パネル等に供給するヒートポンプ式温水暖房装置において、前記熱交換器に流れる冷媒の温度を検知する第1温度センサと、前記熱交換器に流れる暖房循環水の往き温度を検知する第2温度センサと、前記第1温度センサが検知した冷媒温度から第2温度センサが検知した暖房循環水の往き温度を減算した温度が所定温度より大きくなった状態が所定時間継続した場合には前記循環ポンプが故障したものと判断する判断手段とを設けたことを特徴とするヒートポンプ式温水暖房装置。An outdoor unit of a heat pump type air conditioner, and a hot water unit having a heat exchanger that exchanges heat between the refrigerant supplied from the outdoor unit and the heating circulating water, and the heating circulating water of the hot water unit is supplied by a circulation pump. In a heat pump type hot water heating apparatus for supplying to a floor heating panel or the like, a first temperature sensor for detecting a temperature of a refrigerant flowing to the heat exchanger, and a second temperature for detecting an outgoing temperature of heating circulating water flowing to the heat exchanger. A circulating pump in which a state in which a temperature obtained by subtracting a temperature of the circulation water of the heating circulating water detected by the second temperature sensor from a temperature of the refrigerant detected by the first temperature sensor exceeds a predetermined temperature continues for a predetermined time; And a judging means for judging that the device has failed. ヒートポンプ式空気調和機の室外ユニットと、この室外ユニットから供給される冷媒と暖房循環水との熱交換を行う熱交換器を有する温水ユニットとを備え、この温水ユニットの暖房循環水を循環ポンプにより床暖房パネル等に供給するヒートポンプ式温水暖房装置において、前記熱交換器に流れる冷媒の温度を検知する第1温度センサと、前記熱交換器に流れる暖房循環水の往き温度を検知する第2温度センサと、前記第1温度センサが検知した冷媒温度から第2温度センサが検知した暖房循環水の往き温度を減算した温度が予め設定されている暖房循環水が正常に循環しているときに生じる冷媒と暖房循環水との熱交換率を含めた温度差より大きくなった状態が所定時間継続した場合には前記循環ポンプが故障したものと判断する判断手段とを設けたことを特徴とするヒートポンプ式温水暖房装置。An outdoor unit of a heat pump type air conditioner, and a hot water unit having a heat exchanger that exchanges heat between the refrigerant supplied from the outdoor unit and the heating circulating water, and the heating circulating water of the hot water unit is supplied by a circulation pump. In a heat pump type hot water heating apparatus for supplying to a floor heating panel or the like, a first temperature sensor for detecting a temperature of a refrigerant flowing to the heat exchanger, and a second temperature for detecting an outgoing temperature of heating circulating water flowing to the heat exchanger. The sensor and a temperature obtained by subtracting the temperature of the heating circulating water detected by the second temperature sensor from the temperature of the refrigerant detected by the first temperature sensor occurs when the preset heating circulating water is normally circulating. If the state in which the temperature difference including the heat exchange rate between the refrigerant and the heating circulating water has become larger than the temperature difference has continued for a predetermined time, a determining means for determining that the circulating pump has failed. The heat pump type hot-water heating system, characterized in that a and.
JP2003021459A 2003-01-30 2003-01-30 Heat pump type water heater Pending JP2004232947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021459A JP2004232947A (en) 2003-01-30 2003-01-30 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021459A JP2004232947A (en) 2003-01-30 2003-01-30 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2004232947A true JP2004232947A (en) 2004-08-19

Family

ID=32950789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021459A Pending JP2004232947A (en) 2003-01-30 2003-01-30 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2004232947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349195A (en) * 2005-06-13 2006-12-28 Sanyo Electric Co Ltd Fault indication method for apparatus
CN103154626A (en) * 2010-10-15 2013-06-12 东芝开利株式会社 Heat source apparatus
CN110023683A (en) * 2016-11-14 2019-07-16 庆东纳碧安株式会社 The abnormal circulation control device and its control method of electric boiler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349195A (en) * 2005-06-13 2006-12-28 Sanyo Electric Co Ltd Fault indication method for apparatus
CN103154626A (en) * 2010-10-15 2013-06-12 东芝开利株式会社 Heat source apparatus
KR101496599B1 (en) * 2010-10-15 2015-02-26 도시바 캐리어 가부시키가이샤 Heat source apparatus
CN103154626B (en) * 2010-10-15 2015-11-25 东芝开利株式会社 Heat power supply device
CN110023683A (en) * 2016-11-14 2019-07-16 庆东纳碧安株式会社 The abnormal circulation control device and its control method of electric boiler
CN110023683B (en) * 2016-11-14 2021-03-02 庆东纳碧安株式会社 Circulation abnormality control device for electric boiler and control method thereof

Similar Documents

Publication Publication Date Title
JP5884042B2 (en) Heat pump type hot water heater
JP4549241B2 (en) Heat pump type water heater
JP4120683B2 (en) Water heater abnormality detection device
JP6471672B2 (en) Hot water heating system
JP6571540B2 (en) Air conditioning indoor terminal, air conditioning system, and miswiring detection method
JP4493889B2 (en) Air conditioning system
JP2004205200A (en) Heat pump type hot-water room heating system
AU2009227388B2 (en) Heating and method for controlling the heating
EP3608603B1 (en) Heating medium circulation system
JP3774615B2 (en) Test run control method for hot water heater
EP3258185B1 (en) Heat supply system
EP2589883A2 (en) Heat pump hydronic heater
JP2000018671A (en) Heat pump type heating apparatus
JP2004232947A (en) Heat pump type water heater
WO2018154768A1 (en) Air conditioner
EP3026364B1 (en) Heat pump type heating and hot water supply apparatus
JP4368295B2 (en) Hot water heater
JP2017072345A (en) Heating device
JP3850653B2 (en) Heat pump type water heater
KR102382516B1 (en) Water heater and controlling method for the same
JP4368294B2 (en) Hot water heater
KR101450549B1 (en) Heat pump heating apparatus and Control method of the same
JP2006349195A (en) Fault indication method for apparatus
JP2001254991A (en) Hot water air conditioner
JP6666808B2 (en) Hot water heating system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522