JP2004232022A - Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor - Google Patents

Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor Download PDF

Info

Publication number
JP2004232022A
JP2004232022A JP2003022091A JP2003022091A JP2004232022A JP 2004232022 A JP2004232022 A JP 2004232022A JP 2003022091 A JP2003022091 A JP 2003022091A JP 2003022091 A JP2003022091 A JP 2003022091A JP 2004232022 A JP2004232022 A JP 2004232022A
Authority
JP
Japan
Prior art keywords
less
point
martensite
steel sheet
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003022091A
Other languages
Japanese (ja)
Other versions
JP4085826B2 (en
Inventor
Kenji Kawamura
健二 河村
Kohei Hasegawa
浩平 長谷川
Toshiaki Urabe
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003022091A priority Critical patent/JP4085826B2/en
Publication of JP2004232022A publication Critical patent/JP2004232022A/en
Application granted granted Critical
Publication of JP4085826B2 publication Critical patent/JP4085826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging properties, and exhibiting the value of TS (tensile strength)×äEl (elongation)×λ}<SP>1/2</SP>satisfying ≥30,000, and to provide a production method therefor. <P>SOLUTION: The steel sheet has a composition comprising, by mass, 0.03 to 0.20% C, ≤2% Si, 0.5 to 3% Mn, ≤0.10% P, ≤0.01% S, 0.01 to 0.1% Sol.Al, ≤0.005% N, ≤1% Cr and ≤1% Mo, and the balance iron with inevitable impurities, and a structure in which the average crystal grain size of martensite is ≤2 μm, the average crystal grain size of ferrite is ≤2 μm, and the volume ratio of martensite is 20 to <60%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、優れた伸びおよび伸びフランジ加工性が要求される自動車用部品の強度部材に好適な、鋼板およびその製造方法に関する。
【0002】
【従来の技術】
近時、自動車の安全性向上および車体重量の軽量化のため、自動車部品への高強度薄鋼板の使用が検討されている。自動車構造部材用鋼板はプレス成形されるため、伸び、伸びフランジ加工性等の特性が求められる。しかし、伸びを向上させる方法と伸びフランジ成形性を向上させる方法は相反する関係にあり、両者を同時に改善することは困難とされてきた。
【0003】
従来の伸びフランジ性の向上の方法について以下の先行文献を例にあげて説明する。特許文献1および特許文献2には、伸びフランジ加工性を考慮した、引張強度780MPa以上の高強度鋼板およびその製造方法が開示されている。これらの特許文献1,2には、平均結晶粒径5.0μm以下の微細ベイナイトを80%以上の分率で含む組織とすることで、加工性に優れることが開示されている。しかし、特許文献1,2の鋼の金属組織はベイナイトを主相とするものであり、フェライト・マルテンサイトの二相を対象とするものではない。
【0004】
特許文献3には、局部伸び、すなわち伸びフランジ性が優れた高強度鋼板の製造方法が開示されている。この特許文献3の方法によれば、350〜600℃の範囲の温度にて過時効処理を行うと、フェライト相と低温変態生成相の硬度比が小さくなるので局部伸びが改善される。しかし、特許文献3の方法では350℃以上(実施例では400℃以上)の高温での過時効処理が必須であるので、この過時効処理により不可避的に発生する材料の引張強度の低下を補償するため、強化元素であるCを多量に添加しなければならない。
【0005】
自動車用鋼板は、ほとんどの場合がプレス成形などで成形後スポット溶接により組み立てられるが、鋼中C量が多いとスポット溶接部の靭性が劣化し、接合強度が低下するため、C含有量の低減が求められていた。さらに、上記した製品材質特性における問題点に加えて製造性の観点からも問題があった。すなわち、過時効処理温度が高いほど、製造におけるエネルギーコストが高く、また生産性が低下するため、過時効処理温度の低下が求められていた。
【0006】
次に、組織微細化による特性向上に関する従来知見について説明する。
特許文献4には、Nb、V、Tiの元素の1種または2種以上を添加すると、これが結晶粒を微細化させる効果があり、伸びおよび伸びフランジ成形性が向上することが開示されている。
【0007】
しかし、特許文献4の鋼において、Nb、Ti、Vなどの元素の添加は、合金コストの上昇および熱間圧延などの製造性を劣化させ、またNbC、VCなどの炭化物を生成し、伸びを劣化させる。このため、これらの元素はできるだけ添加しないことが望ましい。
【0008】
【特許文献1】
特開2001−226741公報(第3頁の段落0008,第5頁の段落0024)
【0009】
【特許文献2】
特開2001−220647公報(第3頁の段落0008,第5頁の段落0025)
【0010】
【特許文献3】
特公平7−59726公報(第4頁の右上欄)
【0011】
【特許文献4】
特開平11−350038公報(第3頁の段落0013)
【0012】
【発明が解決しようとする課題】
本発明は、上記の欠点を改善し、TS×(El×λ)1/2の値が30000以上を示す、優れた伸びおよび伸びフランジ性を有する二相型高張力鋼板およびその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、特許文献1,2の実施例のデータに基いて鋼の製造を試みてみたが、同文献に記載されているTS×El19000以上、TS×λ74000以上の高張力鋼を得ることはできなかった。もともと特許文献1,2の鋼の金属組織はベイナイトを主相とするものであり、フェライト・マルテンサイトの二相組織を対象とするものではなく、これにより伸びおよび伸びフランジ性に優れた超高張力鋼板が提供されるものではないという知見を得た。
【0014】
また、特許文献3の方法では350℃以上(実施例では400℃以上)の高温での過時効処理が必須であるので、この過時効処理により不可避的に発生する材料の引張強度の低下を補償するため、強化元素であるCを多量に添加しなければならない。
【0015】
本発明者らは、かかる問題を解決するために鋭意研究した結果、伸びおよび伸びフランジ性の両方に優れた鋼板およびその製造方法を発明するに至ったものであり、マルテンサイトとフェライトの平均結晶粒をともに極めて微細均一化し、さらにそれぞれの体積率を適正値とすることにより、伸び、溶接性などの諸特性を劣化させることなく、伸びフランジ性を向上させることができることを見出した。この効果は、当該組織を実現することで、伸びフランジ加工で問題となるブランキングにおける素材の端面の劣化を抑制できたためと考えられる。当該鋼板の製造方法として、熱間圧延後、またはさらに冷間圧延後、適正にフェライトとマルテンサイトの2相組織化された鋼板を、さらにフェライト、オーステナイトの2相温度域で均熱保持後焼入れすることで、上記の目標とする金属組織が達成できることを見出した。
【0016】
本発明の要旨は次のとおりである。
【0017】
(1)質量%で、C:0.03〜0.20%、Si:2%以下、Mn:0.5〜3%、P:0.10%以下、S:0.01%以下、Sol.Al:0.01〜0.1%、N:0.005%以下、Cr:1%以下、Mo:1%以下を含有し、残部が鉄および不可避的不純物からなり、マルテンサイトの平均結晶粒径が2μm以下、フェライトの平均結晶粒径が2μm以下であり、マルテンサイトの体積率が20%以上60%未満であることを特徴とする伸びおよび伸びフランジ性に優れた二相型高張力鋼板。
【0018】
(2)上記成分組成の鋼を溶製し、これを熱間圧延後、Ae点以上Ae点以下の温度で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷する熱処理を少なくとも1回施し、さらにAe点以上Ae点以下の温度域で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷し、マルテンサイトの平均結晶粒径を2μm以下、フェライトの平均結晶粒径を2μm以下とし、マルテンサイトの体積率が20%以上60%未満の組織とすることを特徴とする、伸びおよび伸びフランジ性に優れた二相型高張力鋼板の製造方法。
【0019】
(3)上記成分組成の鋼を溶製し、これを熱間圧延し、さらに冷間圧延した後に、Ae点以上Ae点以下の温度で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷する熱処理を少なくとも1回施し、さらにAe点以上Ae点以下の温度域で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷し、マルテンサイトの平均結晶粒径を2μm以下、フェライトの平均結晶粒径を2μm以下とし、マルテンサイトの体積率が20%以上60%未満の組織とすることを特徴とする、伸びおよび伸びフランジ性に優れた二相型高張力鋼板の製造方法。
【0020】
ちなみに、特許文献4の組成の鋼において、単にNb、Ti、Vなどの元素を添加しただけでは、本発明が伸びおよび伸びフランジ性を向上させる方法として見出した「フェライト粒径2μm以下、マルテンサイト粒径2μm以下」の微細組織は得られない。そればかりか、これらNb、Ti、Vの添加は、合金コストの上昇および熱間圧延などの製造性を劣化させ、またNbC、VCなどの炭化物を生成し、伸びを劣化させるため、できるだけ添加しないことが望ましい。また、特許文献4には本発明で見出された組織制御に関する定量的な臨界条件は示されていない。
【0021】
【発明の実施の形態】
以下、本発明の好ましい実施の形態と各限定理由について説明する。
【0022】
まず、本発明における鋼の成分組成の限定理由は以下の通りである。
【0023】
1)C:0.03〜0.20%
Cは焼入れ組織のマルテンサイトを強化するために重要な元素である。C量が0.03%未満では強度上昇の効果が不十分となる。一方、C量が0.20%を超えると、良好な溶接性が得られないため、上限を0.20%とした。
【0024】
2)Mn:0.5〜3%
Mnはフェライト生成を抑制するために重要な元素である。0.5%未満ではその効果が十分でなく、3%を超えると連続鋳造工程でスラブ割れが発生するため、Mnは0.5〜3%とする。
【0025】
3)Si:2%以下
Siは、固溶強化元素であって、高強度で高伸びの鋼板を得るために有効な元素である。2%を超えると鋼板表面にSi酸化物を多量に形成し、化成処理性を劣化させるため2%以下とする。
【0026】
4)P:0.1%以下、S:0.01%以下
P、Sは、本発明鋼中では不純物であり、鋼板の加工性を考慮した場合、低いほうが好ましく、このためPは0.1%以下、Sは0.01%以下とした。
【0027】
5)Sol.Al:0.01〜0.1%
Alは脱酸材として使用されるが、0.01%未満では十分な脱酸効果が得られず、0.1%以上ではAl添加の効果が飽和し不経済となる。以上の理由からSol.Alは0.01〜0.1%の範囲に規定する。
【0028】
6)N:0.005%以下
Nは粗鋼中に含有される不純物であり、素材鋼板の成形性を劣化させるので、可能な限り製鋼工程で除去、低減することが望ましい。しかしながら、Nを必要以上に低減すると精錬コストが上昇するので、実質的に無害となる0.005%以下とする。
【0029】
7)Cr:1.0%以下
Crは鋼板の高強度化のため、必要に応じて添加される。1%以下の含有量では本発明の効果を損なわず、耐食性が改善される等好ましい場合もある。
【0030】
8)Mo:1.0%以下
Moは析出強化元素であるが、多すぎると延性の低下をもたらし、また、価格も高価であるので、その上限は1.0%とする。
【0031】
9)その他の添加成分
Nb、Ti、V、Zr、Bなどの炭窒化物生成元素は、強度調整などを目的として鋼の特性および製造性を劣化させない範囲で微量含有していてもよい。
【0032】
次に、組織の限定理由について説明する。
【0033】
10)マルテンサイト平均結晶粒径が2μm以下、
フェライト平均結晶粒径が2μm以下、
マルテンサイト体積率が20%以上60%未満、
本発明における鋼はフェライトとマルテンサイトの二相組織であり、それぞれの平均結晶粒径を2μm以下とする。これにより、ブランキング加工時、伸びフランジ加工時において、フェライトとマルテンサイト界面および介在物近傍でのボイドの発生および連結が抑制され、伸びおよび伸びフランジ性が著しく向上する。
【0034】
マルテンサイト体積率が20%未満ではフェライトが多すぎて組織の微細化が達成できない。また、高張力鋼板として十分な強度が得られない。一方、マルテンサイト体積率が60%以上となるとマルテンサイト主体の組織となり、微細な組織でなくなる。また、伸びが不十分となる。このような理由から、本発明ではマルテンサイト体積率を20%以上60%未満の範囲とした。
【0035】
次に製造条件の限定理由について説明する。
スラブは連続鋳造または造塊で溶製する。スラブを冷却後再加熱するか、そのまま熱間圧延を行う。熱間圧延における最終圧延温度は伸びおよび伸びフランジ性を向上させるためAr点以上が望ましい。Ar点より低い最終圧延温度では、最終圧延の段階で二相組織となるためフェライト粒の著しい粗大化が起こり、冷延、焼鈍を行っても加工性の良い鋼板が得られない。熱延板は冷却後巻き取る。巻き取り温度は伸びおよび伸びフランジ性を向上させるため620℃以下が望ましい。
【0036】
さらに、これを冷間圧延し、所望の板厚としてもよい。このときの冷間圧延率は伸びおよび伸びフランジ性の向上のため50%以上が望ましい。
【0037】
次いで、Ae1点以上Ae点以下に、好ましくはAe点−50℃以上Ae点−10℃以下の温度域に加熱し、10秒以上保持した後、300℃以下までを冷却速度100℃/秒以上で急冷する。加熱温度がAe点未満の温度では、高温保持中にオーステナイト相が得られないため、急冷後にマルテンサイトが得られず、高強度が達成できない。Ae点を超える温度では、オーステナイト単相化し、組織が粗大化するため伸びおよび伸びフランジ性が劣化する。保持時間が10秒未満の場合には、未溶解炭化物が存在する可能性が高くなり、オーステナイトの存在量が少なくなるため、10秒以上とする。
【0038】
300℃までの冷却速度が100℃/秒未満では、マルテンサイト変態が起こらず、高張力を得るには合金添加量を多くしなければならない。この、Ae1点以上Ae点以下に、好ましくはAe点−50℃以上Ae点−10℃以下の温度域に加熱し、10秒以上保持した後、300℃以下までを冷却速度100℃/秒以上で急冷する熱処理を1回以上好ましくは2回以上行う。
【0039】
さらに、Ae1点以上Ae点以下に加熱し、10秒以上保持した後、Ar点以上の急冷開始温度から300℃まで冷却速度100℃/秒以上で急冷する。冷却速度100℃/秒未満では、マルテンサイト変態が起こらず、高張力を得るには合金添加量を多くしなければならないため、100℃/秒以上とする必要がある。保持温度がAe点を超えるとオーステナイト単相化し、組織が粗大化するため伸びおよび伸びフランジ性が劣化する。
【0040】
Ar点以上の急冷開始温度までの冷却速度を50℃/秒以下にすると、マルテンサイト相の分布状態を均一にすることができるので、50℃/秒以下の徐冷とすることが望ましい。急冷開始温度がAr点未満ではマルテンサイトが得られず、高強度が達成できない。さらに、150〜425℃の温度範囲で焼戻し処理を行ってもよい。焼戻し処理により、マルテンサイト相が軟化し、伸びフランジ性はさらに向上する。
【0041】
(実施例1)
表1に示す成分組成を有する鋼を溶製し、鋳造されたスラブを熱間圧延、冷間圧延して板厚1.2mmの鋼板とした。その後、それぞれの鋼について、780〜850℃で100秒保持後、そのまま水中に焼入れた。この熱処理(以後前処理と呼ぶ)をサンプルによって0〜2回繰返し、マルテンサイトとフェライトの粒径を変化させた。冷却速度は約2000℃/秒であった。ついで、780〜850℃で5分保持し、急冷開始温度(600〜740℃)まで50℃/秒以下の冷却速度で徐冷した後、水焼入れを行った。その後、300℃で焼戻し処理を15分行った。フェライトとマルテンサイトの平均結晶粒径およびマルテンサイトの体積率を表1に記載した。平均結晶粒径は、線分法により求めた。製造された鋼板について引張試験はJIS Z2241に準拠し、一方伸びフランジ性は日本鉄鋼連盟規格JFST1001−1996に準拠し実施した。表2に鋼板の機械的性質およびTS×(El×λ)1/2値を示す。
【0042】
【表1】

Figure 2004232022
【表2】
Figure 2004232022
【0043】
比較例Aは、マルテンサイト体積率が低く、またフェライトの平均結晶粒径が大きいため、伸びフランジ性が悪い。
【0044】
比較例D、Jは、マルテンサイトまたは両相の平均結晶粒径が大きいため、伸びフランジ性が優れない。比較例Gはマルテンサイト体積率が高すぎるため、伸びが劣る。
【0045】
比較例Lは、C濃度が高く、強度が高過ぎ、伸びが劣る。また、スポット溶接性が優れない。比較例MはMn濃度が低く、フェライトの平均結晶粒径が大きく、組織が粗いため、伸び特性は優れるが、伸びフランジ性が悪い。
【0046】
(実施例2)
表1の実施例鋼Eについて、実施例1と同様に板厚1.2mmの鋼版とした。この鋼板を表3に示す温度条件で熱処理を実施した。T1は前処理温度、nは前処理の回数、T2は焼鈍温度、Tqは急冷開始温度、Ttは焼戻し温度を示す。実施例1と同様に前処理での保持時間は100秒とし、焼鈍温度T2での保持時間は5分とした。供試材の機械的性質を表4に示す。
【0047】
【表3】
Figure 2004232022
【表4】
Figure 2004232022
【0048】
比較例鋼E3は前処理温度がAe点以上であり、フェライト粒が針状に析出しており、このため伸びフランジ性が低下した。比較例E5、E7は焼鈍温度がAe点以上であり、粗大なマルテンサイトが存在したため、伸びフランジ性が劣化した。比較例E9〜E11は、本発明の特徴である繰返し焼入れ処理を行っておらず、組織が微細化していないため、伸びフランジ性が劣る。
【0049】
【発明の効果】
本発明によれば、フェライト・マルテンサイトの二相型高張力鋼板の伸びおよび伸びフランジ性を大幅に向上させることができ、従来高強度鋼板の適用が困難であった難成形の部材にも適用を拡大することができ、自動車の軽量化、安全性向上などに対し、極めて有益である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel sheet suitable for a strength member of an automobile part requiring excellent elongation and stretch flangeability, and a method for producing the same.
[0002]
[Prior art]
Recently, the use of high-strength steel sheets for automobile parts has been studied to improve the safety of automobiles and reduce the weight of vehicle bodies. Since steel sheets for automobile structural members are press-formed, characteristics such as elongation and stretch flangeability are required. However, the method of improving the elongation and the method of improving the stretch flange formability have a conflicting relationship, and it has been difficult to improve both at the same time.
[0003]
A conventional method for improving stretch flangeability will be described with reference to the following literature. Patent Literatures 1 and 2 disclose a high-strength steel sheet having a tensile strength of 780 MPa or more in consideration of stretch flangeability and a method for manufacturing the same. These Patent Literatures 1 and 2 disclose that a structure containing fine bainite having an average crystal grain size of 5.0 μm or less in a fraction of 80% or more has excellent workability. However, the metal structures of the steels of Patent Documents 1 and 2 have bainite as a main phase and do not target two phases of ferrite and martensite.
[0004]
Patent Document 3 discloses a method for manufacturing a high-strength steel sheet having excellent local elongation, that is, excellent stretch flangeability. According to the method of Patent Document 3, when the overaging treatment is performed at a temperature in the range of 350 to 600 ° C., the hardness ratio between the ferrite phase and the low-temperature transformation generation phase is reduced, so that the local elongation is improved. However, since the method of Patent Document 3 requires an overaging treatment at a high temperature of 350 ° C. or more (400 ° C. or more in the example), a reduction in tensile strength of a material inevitably generated by the overaging treatment is compensated. Therefore, a large amount of C as a strengthening element must be added.
[0005]
In most cases, automotive steel sheets are assembled by spot welding after forming by press forming, etc. However, if the amount of C in the steel is large, the toughness of the spot welds will deteriorate and the joining strength will decrease, reducing the C content. Was required. Furthermore, in addition to the above-mentioned problems in the material properties of the products, there are also problems from the viewpoint of manufacturability. That is, the higher the overaging temperature, the higher the energy cost in the production and the lower the productivity, so that a lowering of the overaging temperature has been required.
[0006]
Next, a description will be given of conventional findings regarding the improvement of characteristics due to the refinement of the structure.
Patent Document 4 discloses that when one or more of the elements of Nb, V, and Ti are added, this has the effect of making crystal grains fine, and improves elongation and stretch flangeability. .
[0007]
However, in the steel of Patent Literature 4, addition of elements such as Nb, Ti, and V increases alloy cost and deteriorates manufacturability such as hot rolling, and also generates carbides such as NbC and VC to reduce elongation. Deteriorate. For this reason, it is desirable not to add these elements as much as possible.
[0008]
[Patent Document 1]
JP 2001-226741 A (page 3, paragraph 0008, page 5, paragraph 0024)
[0009]
[Patent Document 2]
JP 2001-220647 A (Paragraph 0008 on page 3 and Paragraph 0025 on page 5)
[0010]
[Patent Document 3]
Japanese Patent Publication No. 7-59726 (upper right column on page 4)
[0011]
[Patent Document 4]
JP-A-11-350038 (paragraph 0013 on page 3)
[0012]
[Problems to be solved by the invention]
The present invention improves the above-mentioned drawbacks and provides a two-phase high-strength steel sheet having excellent elongation and stretch flangeability, having a TS × (El × λ) 1/2 value of 30,000 or more, and a method for producing the same. The purpose is to do.
[0013]
[Means for Solving the Problems]
The present inventors tried to produce steel based on the data of the examples of Patent Documents 1 and 2, and obtained a high-tensile steel of TS × El19000 or more and TS × λ74000 or more described in the document. I couldn't do that. Originally, the metal structure of the steels of Patent Documents 1 and 2 has bainite as a main phase and does not target the two-phase structure of ferrite and martensite. It has been found that a tensile steel sheet is not provided.
[0014]
Further, in the method of Patent Document 3, since overaging treatment at a high temperature of 350 ° C. or more (400 ° C. or more in the example) is indispensable, a reduction in tensile strength of a material inevitably generated by this overaging treatment is compensated. Therefore, a large amount of C as a strengthening element must be added.
[0015]
The present inventors have conducted intensive studies to solve such problems, and as a result, have come to invent a steel sheet excellent in both elongation and stretch flangeability and a method for producing the same, and have an average crystal of martensite and ferrite. It has been found that stretch flangeability can be improved without deteriorating various properties such as elongation and weldability by making both particles extremely fine and uniform and further setting each volume ratio to an appropriate value. This effect is considered to be due to the fact that by realizing the structure, deterioration of the end face of the material in blanking, which is a problem in stretch flange processing, could be suppressed. As a method of manufacturing the steel sheet, after hot rolling or further cold rolling, a steel sheet appropriately formed into a two-phase structure of ferrite and martensite is further quenched after maintaining a soaking temperature in a two-phase temperature region of ferrite and austenite. By doing so, it has been found that the above-mentioned target metal structure can be achieved.
[0016]
The gist of the present invention is as follows.
[0017]
(1) In mass%, C: 0.03 to 0.20%, Si: 2% or less, Mn: 0.5 to 3%, P: 0.10% or less, S: 0.01% or less, Sol . Al: 0.01 to 0.1%, N: 0.005% or less, Cr: 1% or less, Mo: 1% or less, the balance being iron and unavoidable impurities, the average crystal grain of martensite A two-phase high-strength steel sheet excellent in elongation and stretch flangeability, characterized in that the diameter is 2 μm or less, the average crystal grain size of ferrite is 2 μm or less, and the volume fraction of martensite is 20% or more and less than 60%. .
[0018]
(2) above the steel chemical composition was melted, after which hot rolling was maintained at a temperature of Ae 3 point or less than 1 point Ae 10 seconds or more, from more than one point Ar to 300 ° C., cooling rate 100 ° C. / heat treatment of quenching in seconds at least once, further kept at Ae 1 point or more Ae 3 point or less of the temperature range 10 seconds or more, from more than one point Ar to 300 ° C., cooling rate 100 ° C. / sec or higher Quenching at a rate of 2 μm or less for the average crystal grain size of martensite, 2 μm or less for the average crystal grain size of ferrite, and a structure in which the volume fraction of martensite is 20% or more and less than 60%. A method for manufacturing a two-phase high strength steel sheet with excellent stretch flangeability.
[0019]
(3) The above ingredients were melted a steel composition, which was hot-rolled, after further cold rolling, and held at a temperature of at least 1 point Ae Ae 3 point or less 10 seconds or more, 300 from one or more point Ar C., at least one heat treatment of quenching at a cooling rate of 100 ° C./sec or more, and further holding for 10 seconds or more in a temperature range of 1 Ae or more and 3 Ae or less, and from 1 Ar or more to 300 ° C. Rapid cooling at a cooling rate of 100 ° C./sec or more, the average crystal grain size of martensite is 2 μm or less, the average crystal grain size of ferrite is 2 μm or less, and the volume fraction of martensite is 20% or more and less than 60%. A method for producing a two-phase high-strength steel sheet having excellent stretchability and stretch flangeability.
[0020]
Incidentally, in the steel having the composition of Patent Document 4, simply adding an element such as Nb, Ti, V, or the like, the present invention has found that a method of improving elongation and stretch flangeability is "ferrite grain size of 2 μm or less, martensite. A microstructure having a particle size of 2 μm or less cannot be obtained. In addition, the addition of Nb, Ti, and V increases alloy cost and deteriorates manufacturability such as hot rolling, and also generates carbides such as NbC and VC and deteriorates elongation. It is desirable. Further, Patent Literature 4 does not show a quantitative critical condition relating to tissue control found in the present invention.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention and the reasons for each limitation will be described.
[0022]
First, the reasons for limiting the composition of steel in the present invention are as follows.
[0023]
1) C: 0.03 to 0.20%
C is an important element for strengthening martensite in a quenched structure. If the C content is less than 0.03%, the effect of increasing the strength becomes insufficient. On the other hand, if the C content exceeds 0.20%, good weldability cannot be obtained, so the upper limit was made 0.20%.
[0024]
2) Mn: 0.5-3%
Mn is an important element for suppressing the formation of ferrite. If it is less than 0.5%, the effect is not sufficient, and if it exceeds 3%, slab cracking occurs in the continuous casting step, so Mn is set to 0.5 to 3%.
[0025]
3) Si: 2% or less Si is a solid solution strengthening element, and is an effective element for obtaining a steel sheet with high strength and high elongation. If it exceeds 2%, a large amount of Si oxide is formed on the surface of the steel sheet, and the chemical conversion property is deteriorated.
[0026]
4) P: 0.1% or less, S: 0.01% or less P and S are impurities in the steel of the present invention, and are preferably lower in consideration of the workability of the steel sheet. S was set to 1% or less, and S was set to 0.01% or less.
[0027]
5) Sol. Al: 0.01 to 0.1%
Al is used as a deoxidizing material. However, if it is less than 0.01%, a sufficient deoxidizing effect cannot be obtained, and if it is 0.1% or more, the effect of adding Al is saturated and uneconomical. For the above reasons, Sol. Al is defined in the range of 0.01 to 0.1%.
[0028]
6) N: 0.005% or less N is an impurity contained in the crude steel and degrades the formability of the raw steel sheet. Therefore, it is desirable to remove and reduce as much as possible in the steel making process. However, if N is reduced unnecessarily, the refining cost increases. Therefore, the content is set to 0.005% or less, which is substantially harmless.
[0029]
7) Cr: 1.0% or less Cr is added as necessary to increase the strength of the steel sheet. If the content is 1% or less, the effects of the present invention are not impaired, and the corrosion resistance is sometimes improved.
[0030]
8) Mo: 1.0% or less Mo is a precipitation strengthening element, but if it is too much, it causes a decrease in ductility and the price is expensive, so the upper limit is made 1.0%.
[0031]
9) Other additive components Nb, Ti, V, Zr, B, and other carbon-nitride-forming elements may be contained in trace amounts for the purpose of adjusting the strength and the like so long as the properties and productivity of the steel are not deteriorated.
[0032]
Next, the reasons for limiting the organization will be described.
[0033]
10) Martensite average crystal grain size is 2 μm or less;
Ferrite average crystal grain size is 2μm or less,
Martensite volume fraction of 20% or more and less than 60%,
The steel in the present invention has a two-phase structure of ferrite and martensite, and each has an average crystal grain size of 2 μm or less. This suppresses generation and connection of voids at the interface between ferrite and martensite and in the vicinity of inclusions during blanking and stretch flange processing, and significantly improves stretch and stretch flangeability.
[0034]
If the martensite volume ratio is less than 20%, the amount of ferrite is too large to achieve a fine structure. Moreover, sufficient strength cannot be obtained as a high-tensile steel sheet. On the other hand, when the martensite volume ratio is 60% or more, the structure becomes mainly martensite and is not a fine structure. In addition, elongation becomes insufficient. For this reason, in the present invention, the martensite volume ratio is in the range of 20% or more and less than 60%.
[0035]
Next, the reasons for limiting the manufacturing conditions will be described.
The slab is produced by continuous casting or ingot making. The slab is cooled and then reheated or hot rolled. The final rolling temperature in the hot rolling is desirably Ar 3 or more in order to improve elongation and stretch flangeability. At a final rolling temperature lower than the Ar 3 point, a two-phase structure is formed at the final rolling stage, so that the ferrite grains are significantly coarsened, and a steel sheet having good workability cannot be obtained even if cold rolling and annealing are performed. The hot rolled sheet is taken up after cooling. The winding temperature is desirably 620 ° C. or lower in order to improve elongation and stretch flangeability.
[0036]
Further, this may be cold-rolled to a desired thickness. The cold rolling reduction at this time is desirably 50% or more to improve elongation and stretch flangeability.
[0037]
Then, it is heated to a temperature range from Ae 1 point to Ae 3 point or less, preferably Ae 3 point −50 ° C. to Ae 3 point −10 ° C. or less, and after holding for 10 seconds or more, a cooling rate of 300 ° C. or less to 100 ° C. Rapid cooling at more than / sec. If the heating temperature is lower than one Ae point, no austenite phase is obtained during high-temperature holding, so that martensite cannot be obtained after rapid cooling, and high strength cannot be achieved. At a temperature exceeding Ae 3 points, austenite becomes a single phase and the structure becomes coarse, so that elongation and stretch flangeability deteriorate. If the holding time is less than 10 seconds, the possibility of the presence of undissolved carbides increases and the amount of austenite decreases, so that the holding time is set to 10 seconds or more.
[0038]
If the cooling rate to 300 ° C. is less than 100 ° C./sec, martensitic transformation does not occur, and the alloy content must be increased to obtain high tensile strength. After heating to a temperature range of Ae 1 point or more and Ae 3 points or less, preferably Ae 3 points −50 ° C. or more and Ae 3 points −10 ° C. or less and holding for 10 seconds or more, the cooling rate is 100 ° C. to 300 ° C. or less. One or more heat treatments, preferably two or more heat treatments, for quenching at a rate of at least per second.
[0039]
Furthermore, after heating to Ae 1 point or more and Ae 3 point or less and holding for 10 seconds or more, it is rapidly cooled from the rapid cooling start temperature of Ar 1 point or more to 300 ° C. at a cooling rate of 100 ° C./second or more. If the cooling rate is less than 100 ° C./sec, martensitic transformation does not occur, and the alloy addition amount must be increased in order to obtain high tensile strength. If the holding temperature exceeds 3 points of Ae, it becomes a single phase of austenite and the structure becomes coarse, so that the elongation and stretch flangeability deteriorate.
[0040]
When the cooling rate to the quenching start temperature of one or more points of Ar is 50 ° C./second or less, the distribution state of the martensite phase can be made uniform. Therefore, it is preferable to perform slow cooling at 50 ° C./second or less. If the quenching start temperature is less than one Ar point, martensite cannot be obtained, and high strength cannot be achieved. Further, the tempering treatment may be performed in a temperature range of 150 to 425 ° C. By the tempering treatment, the martensite phase is softened, and the stretch flangeability is further improved.
[0041]
(Example 1)
Steel having the composition shown in Table 1 was melted, and the cast slab was hot-rolled and cold-rolled to obtain a steel sheet having a thickness of 1.2 mm. Thereafter, each steel was kept at 780 to 850 ° C. for 100 seconds and then quenched in water as it was. This heat treatment (hereinafter referred to as pretreatment) was repeated 0 to 2 times depending on the sample to change the grain size of martensite and ferrite. The cooling rate was about 2000 ° C./sec. Then, the temperature was held at 780 to 850 ° C. for 5 minutes, and gradually cooled to a quenching start temperature (600 to 740 ° C.) at a cooling rate of 50 ° C./second or less, followed by water quenching. Thereafter, a tempering treatment was performed at 300 ° C. for 15 minutes. Table 1 shows the average crystal grain size of ferrite and martensite and the volume ratio of martensite. The average crystal grain size was determined by a line segment method. The tensile test of the manufactured steel sheet was performed in accordance with JIS Z2241, while the stretch flangeability was performed in accordance with Japan Iron and Steel Federation Standard JFST1001-1996. Table 2 shows the mechanical properties and the TS × (El × λ) 1/2 value of the steel sheet.
[0042]
[Table 1]
Figure 2004232022
[Table 2]
Figure 2004232022
[0043]
In Comparative Example A, the stretch flangeability is poor because the martensite volume ratio is low and the average crystal grain size of ferrite is large.
[0044]
Comparative Examples D and J have poor stretch flangeability because the average crystal grain size of martensite or both phases is large. Comparative Example G is inferior in elongation because the martensite volume ratio is too high.
[0045]
Comparative Example L has a high C concentration, too high strength, and poor elongation. Also, the spot weldability is not excellent. Comparative Example M has a low Mn concentration, a large average crystal grain size of ferrite, and a coarse structure, and thus has excellent elongation characteristics but poor stretch flangeability.
[0046]
(Example 2)
Example steel E of Table 1 was made into a steel plate having a plate thickness of 1.2 mm as in Example 1. This steel sheet was heat-treated under the temperature conditions shown in Table 3. T1 is the pretreatment temperature, n is the number of pretreatments, T2 is the annealing temperature, Tq is the quenching start temperature, and Tt is the tempering temperature. As in Example 1, the holding time in the pretreatment was 100 seconds, and the holding time at the annealing temperature T2 was 5 minutes. Table 4 shows the mechanical properties of the test materials.
[0047]
[Table 3]
Figure 2004232022
[Table 4]
Figure 2004232022
[0048]
The comparative example steel E3 had a pretreatment temperature of three or more Ae points, and ferrite grains were precipitated in the form of needles, so that the stretch flangeability was reduced. In Comparative Examples E5 and E7, the annealing temperature was Ae 3 or more, and the presence of coarse martensite resulted in poor stretch flangeability. In Comparative Examples E9 to E11, the repeated quenching treatment, which is a feature of the present invention, was not performed, and the structure was not refined.
[0049]
【The invention's effect】
According to the present invention, the elongation and stretch flangeability of a ferritic / martensitic dual-phase high-strength steel sheet can be significantly improved, and the present invention can also be applied to difficult-to-form members in which conventional high-strength steel sheets have been difficult to apply. This is extremely useful for reducing the weight of vehicles and improving safety.

Claims (3)

質量%で、C:0.03〜0.20%、Si:2%以下、Mn:0.5〜3%、P:0.10%以下、S:0.01%以下、Sol.Al:0.01〜0.1%、N:0.005%以下、Cr:1%以下、Mo:1%以下を含有し、残部が鉄および不可避的不純物からなり、マルテンサイトの平均結晶粒径が2μm以下、フェライトの平均結晶粒径が2μm以下であり、マルテンサイトの体積率が20%以上60%未満であることを特徴とする伸びおよび伸びフランジ性に優れた二相型高張力鋼板。In mass%, C: 0.03 to 0.20%, Si: 2% or less, Mn: 0.5 to 3%, P: 0.10% or less, S: 0.01% or less, Sol. Al: 0.01 to 0.1%, N: 0.005% or less, Cr: 1% or less, Mo: 1% or less, the balance being iron and unavoidable impurities, the average crystal grain of martensite A two-phase high-strength steel sheet excellent in elongation and stretch flangeability, characterized in that the diameter is 2 μm or less, the average crystal grain size of ferrite is 2 μm or less, and the volume fraction of martensite is 20% or more and less than 60%. . 請求項1記載の成分組成の鋼を溶製し、これを熱間圧延後、Ae点以上Ae点以下の温度で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷する熱処理を少なくとも1回施し、さらにAe点以上Ae点以下の温度域で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷し、マルテンサイトの平均結晶粒径を2μm以下、フェライトの平均結晶粒径を2μm以下とし、マルテンサイトの体積率が20%以上60%未満の組織とすることを特徴とする、伸びおよび伸びフランジ性に優れた二相型高張力鋼板の製造方法。A steel having the composition described in claim 1 is melted, and after hot rolling, the steel is held at a temperature of at least one point of Ae and no more than three points of Ae for at least 10 seconds, and a cooling rate of at least one point of Ar to 300 ° C. subjected at least once to heat treatment of quenching at 100 ° C. / sec or more, and further kept at Ae 1 point or more Ae 3 point or less of the temperature range 10 seconds or more, from more than one point Ar to 300 ° C., cooling rate 100 ° C. / sec Elongation characterized by having a structure in which the average crystal grain size of martensite is 2 μm or less, the average crystal grain size of ferrite is 2 μm or less, and the volume fraction of martensite is 20% or more and less than 60%. And a method for producing a two-phase high strength steel sheet with excellent stretch flangeability. 請求項1記載の成分組成の鋼を溶製し、これを熱間圧延し、さらに冷間圧延した後に、Ae点以上Ae点以下の温度で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷する熱処理を少なくとも1回施し、さらにAe点以上Ae点以下の温度域で10秒以上保持し、Ar点以上から300℃までを、冷却速度100℃/秒以上で急冷し、マルテンサイトの平均結晶粒径を2μm以下、フェライトの平均結晶粒径を2μm以下とし、マルテンサイトの体積率が20%以上60%未満の組織とすることを特徴とする、伸びおよび伸びフランジ性に優れた二相型高張力鋼板の製造方法。Smelted claims 1 component composition according steel which was hot rolled, after further cold rolling, and held for 10 seconds or more at a temperature of Ae 3 point or less than 1 point Ae, from more than one point Ar up to 300 ° C., subjected at least once to heat treatment of quenching at a cooling rate 100 ° C. / sec or more, and further kept at Ae 1 point or more Ae 3 point or less of the temperature range 10 seconds or more, from more than one point Ar to 300 ° C. Quenching at a cooling rate of 100 ° C./sec or more to obtain a structure in which the average crystal grain size of martensite is 2 μm or less, the average crystal grain size of ferrite is 2 μm or less, and the volume fraction of martensite is 20% or more and less than 60%. A method for producing a two-phase high-strength steel sheet having excellent stretchability and stretch flangeability.
JP2003022091A 2003-01-30 2003-01-30 Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same Expired - Fee Related JP4085826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022091A JP4085826B2 (en) 2003-01-30 2003-01-30 Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022091A JP4085826B2 (en) 2003-01-30 2003-01-30 Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004232022A true JP2004232022A (en) 2004-08-19
JP4085826B2 JP4085826B2 (en) 2008-05-14

Family

ID=32951258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022091A Expired - Fee Related JP4085826B2 (en) 2003-01-30 2003-01-30 Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4085826B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307246A (en) * 2004-04-19 2005-11-04 Nippon Steel Corp High-tensile-strength steel with composite structure of fine crystal grain
JP2007009269A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk ULTRAHIGH STRENGTH COLD ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND >=780 MPa TENSILE STRENGTH, AND ITS MANUFACTURING METHOD
WO2009035120A1 (en) * 2007-09-10 2009-03-19 Nippon Steel Corporation High-strength steel sheet for can manufacturing and process for manufaturing the sheet
WO2009066734A1 (en) 2007-11-22 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
WO2009110607A1 (en) 2008-03-07 2009-09-11 株式会社神戸製鋼所 Cold-rolled steel sheets
JP2010106343A (en) * 2008-10-31 2010-05-13 Kobe Steel Ltd Steel sheet for automotive member having excellent nut projection weldability and member
JP2010126787A (en) * 2008-11-28 2010-06-10 Kobe Steel Ltd Ultrahigh-strength steel sheet having excellent hydrogen embrittlement resistance and workability, and method for producing the same
WO2010114131A1 (en) 2009-04-03 2010-10-07 株式会社神戸製鋼所 Cold-rolled steel sheet and process for producing same
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE
JP2011179050A (en) * 2010-02-26 2011-09-15 Kobe Steel Ltd High strength cold rolled steel sheet having excellent balance in elongation and stretch flange property
JP2011214071A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Hot-dip zinc coated cold-rolled steel sheet, and method for producing the same
JP2011214070A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, and method for producing same
JP2011214072A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, and method for producing the same
JP2011214073A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, and method for producing the same
EP2465961A1 (en) * 2006-07-14 2012-06-20 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
JP2014065975A (en) * 2013-12-27 2014-04-17 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and method of producing the same
JP2014077203A (en) * 2013-12-27 2014-05-01 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
JP2014095155A (en) * 2013-12-27 2014-05-22 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
JP2014122426A (en) * 2013-12-27 2014-07-03 Nippon Steel & Sumitomo Metal Hot-dip plated cold rolled steel sheet and its manufacturing method
WO2016194272A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for producing same
WO2018030501A1 (en) * 2016-08-10 2018-02-15 Jfeスチール株式会社 Thin steel sheet, and production method therefor
CN113584395A (en) * 2021-08-05 2021-11-02 攀钢集团攀枝花钢铁研究院有限公司 450 MPa-grade hot-galvanized dual-phase steel and production method thereof

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307246A (en) * 2004-04-19 2005-11-04 Nippon Steel Corp High-tensile-strength steel with composite structure of fine crystal grain
JP4655782B2 (en) * 2005-06-30 2011-03-23 Jfeスチール株式会社 Method for producing ultra-high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more that has high ductility and excellent chemical conversion properties
JP2007009269A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk ULTRAHIGH STRENGTH COLD ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND >=780 MPa TENSILE STRENGTH, AND ITS MANUFACTURING METHOD
EP2465961A1 (en) * 2006-07-14 2012-06-20 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
WO2009035120A1 (en) * 2007-09-10 2009-03-19 Nippon Steel Corporation High-strength steel sheet for can manufacturing and process for manufaturing the sheet
KR101159824B1 (en) 2007-09-10 2012-06-26 신닛뽄세이테쯔 카부시키카이샤 High-strength steel sheet for can manufacturing and process for manufacturing the sheet
WO2009066734A1 (en) 2007-11-22 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
US8679265B2 (en) 2007-11-22 2014-03-25 Kobe Steel, Ltd. High-strength cold-rolled steel sheet
EP2455507A1 (en) 2007-11-22 2012-05-23 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
US8343288B2 (en) 2008-03-07 2013-01-01 Kobe Steel, Ltd. Cold rolled steel sheet
WO2009110607A1 (en) 2008-03-07 2009-09-11 株式会社神戸製鋼所 Cold-rolled steel sheets
JP2010106343A (en) * 2008-10-31 2010-05-13 Kobe Steel Ltd Steel sheet for automotive member having excellent nut projection weldability and member
JP2010126787A (en) * 2008-11-28 2010-06-10 Kobe Steel Ltd Ultrahigh-strength steel sheet having excellent hydrogen embrittlement resistance and workability, and method for producing the same
WO2010114131A1 (en) 2009-04-03 2010-10-07 株式会社神戸製鋼所 Cold-rolled steel sheet and process for producing same
US8840738B2 (en) 2009-04-03 2014-09-23 Kobe Steel, Ltd. Cold-rolled steel sheet and method for producing the same
JP2011179050A (en) * 2010-02-26 2011-09-15 Kobe Steel Ltd High strength cold rolled steel sheet having excellent balance in elongation and stretch flange property
JP2011214071A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Hot-dip zinc coated cold-rolled steel sheet, and method for producing the same
JP2011214070A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, and method for producing same
JP2011214072A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, and method for producing the same
JP2011214073A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, and method for producing the same
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE
JP2014095155A (en) * 2013-12-27 2014-05-22 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
JP2014122426A (en) * 2013-12-27 2014-07-03 Nippon Steel & Sumitomo Metal Hot-dip plated cold rolled steel sheet and its manufacturing method
JP2014065975A (en) * 2013-12-27 2014-04-17 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and method of producing the same
JP2014077203A (en) * 2013-12-27 2014-05-01 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
KR102004077B1 (en) 2015-05-29 2019-07-25 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet, high-strength coated steel sheet, method for manufacturing high-strength cold-rolled steel sheet, and method for manufacturing high-strength coated steel sheet
WO2016194272A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for producing same
JPWO2016194272A1 (en) * 2015-05-29 2017-06-15 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
KR20170137899A (en) * 2015-05-29 2017-12-13 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for producing same
WO2018030501A1 (en) * 2016-08-10 2018-02-15 Jfeスチール株式会社 Thin steel sheet, and production method therefor
KR20190022769A (en) * 2016-08-10 2019-03-06 제이에프이 스틸 가부시키가이샤 Steel sheet and its manufacturing method
CN109563582A (en) * 2016-08-10 2019-04-02 杰富意钢铁株式会社 Sheet metal and its manufacturing method
JP6296214B1 (en) * 2016-08-10 2018-03-20 Jfeスチール株式会社 Thin steel plate and manufacturing method thereof
KR102206448B1 (en) 2016-08-10 2021-01-21 제이에프이 스틸 가부시키가이샤 Thin steel plate and its manufacturing method
US11066716B2 (en) 2016-08-10 2021-07-20 Jfe Steel Corporation Steel sheet and method for producing the same
CN109563582B (en) * 2016-08-10 2021-08-24 杰富意钢铁株式会社 Thin steel sheet and method for producing same
CN113584395A (en) * 2021-08-05 2021-11-02 攀钢集团攀枝花钢铁研究院有限公司 450 MPa-grade hot-galvanized dual-phase steel and production method thereof

Also Published As

Publication number Publication date
JP4085826B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP5359168B2 (en) Ultra-high strength cold-rolled steel sheet with excellent ductility and method for producing the same
JP4524850B2 (en) High-tensile cold-rolled steel sheet with excellent ductility and strain age hardening characteristics and method for producing high-tensile cold-rolled steel sheet
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4288201B2 (en) Manufacturing method of automotive member having excellent hydrogen embrittlement resistance
KR101540507B1 (en) Ultra high strength cold rolled steel sheet having excellent ductility and delayed fracture resistance and method for manufacturing the same
CA3133435A1 (en) High strength and high formability steel sheet and manufacturing method
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
EP2604715A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
WO2001092593A1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
EP1375694B2 (en) Hot-rolled steel strip and method for manufacturing the same
WO2012060294A1 (en) High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
CN110938773B (en) Steel sheet for soft nitriding and method for producing same
WO2013051714A1 (en) Steel plate and method for producing same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees